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Summary

At a railroad crossing several events take place. Usually these events are moving objects, barriers
going down if a train is approaching and going up if the train has passed. This is escorted by
flashing lights and the sound of a warning bell. Strukton Rail Consult possesses an application
(VOM, Visual Railroad Crossing Monitoring) which is able to observe these events. The goal of
observing these events is to detect dangerous situations. For instance when a car is stationary
at the railroad crossing or (slalom) driving through the barriers while these are closed. Another
dangerous situation is when the barriers do not reach to 0°.

Research is done on the algorithms used by the application. The algorithms needed a more
efficient approach, since in future the algorithms are to be implemented in a warning bell at
several railroad crossings. So the application only transmits a signal if a dangerous situation
occurs. Besides that, some algorithms had to be extended. In the current situation it is not
possible to differentiate between several types of traffic, for instance a car or a cyclist.

Motion is usually detected by the relation (coherence) between a current frame and its back-
ground. If something has changed this suggets motion. So the first step is to keep track of a
background. This can be done by the previous frame or by taking some more frames into account,
for instance by averaging over previous frames or adapting the background by a stepsize or by
exponential adaptation. The exponential adaptation appears to be the best method.

The (adapting) background is used to detect moving objects. The calculations are limited
to measuring loops. In these measuring loops the coherence between the current frame and its
background is determined. Several methods for the coherence are discussed, namely detection
based on threshold, sum over the measuring loop, averaging and correlation. The correlation of
the current frame and its background appears to be the best technique to detect moving objects.

If the objects are moving it is desirable to differentiate between types of traffic. Several
properties of a moving object are discussed and used to type the object. For instance, a car is
longer than a cyclist and has a higher speed. Besides that a car is wider and thus the indicator for
motion is larger and rises faster. With a combination of these properties an algorithm is created
which is able to classify the moving objects for the available sample video’s.

The indicator for motion is also used to check for dangerous situations. If the barriers are
closed, usually no motion is detected on the railroad (unless when a train is passing) and the
coherence is great since nothing is going on. If motion is detected at this point this might be
because a object crosses the railroad while it is not allowed. The development of the indicator
is used to detect if objects are stationary at the railroad crossing. If an object is moving, the
indicator fluctuates. While a stationary object generates a more constant value. Besides that the
value can be used to detect solid objects at the railroad crossing such as the andreas cross.

To observe the path of the barriers, various methods have been tested to detect the barrier in
a frame. The position of the barrier yields a set of data points. By the set of these points the best
line through these points can be determined. To do this the least squares, total least squares and
Ll-approximation are examined. By the slope of the best line, the angle of the barrier is known.

Besides the visual aspects also the audio of a warning bell is studied. Before the barriers
close the warning bells turn on. It is desirable to check the status of the warning bells and how
many warning bells are turned on. To do this, the fast Fourier transformation is applied to see
in which frequency spectrum the sound of a warning bell lies. Realtime checking is done using
the fast Fourier transformation or a bandpassfilter. It appears that the technique by the Fourier
transformation is the fastest method to detect the status of the bells.
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Chapter 1

Introduction

To have an idea of the current work done for VOM (Visual Railroad Crossing Monitoring), Sec-
tion 1.1 describes the current situation for VOM. Then in Section 1.2 the assignment is explained.
During the research some problems were encoutered which are described in Section 1.2, also an
indication is given on how these problems can be approached.

1.1 Current situation

Strukton Rail Consult (division Systems and Software Engineering), located in Hengelo, has de-
veloped a railroad crossing safety system. This system contains of a computer application which is
able to analyse video images of a railroad crossing. The application reads a video file and presents
this as video to a user on a screen. The user is then able to see if any anomalies (unwanted
situations) occur at the railroad crossing.

The application can also read a live video-stream, MJPEG (Moving JPEG), instead of a
recorded video-file. This stream is acquired from a camera which is located at a railroad crossing
in Koekange (Drenthe, The Netherlands). The camera sends images to a central server at Hengelo,
where they are processed by the application.

The purpose of the application is to detect unwanted situations and give an alarm if such a
situation occurs, for instance when a non moving (stationary for more than a couple of seconds)
object is blocking the railroad crossing.

1.2 Assignment

The final goal of the system is to implement the application at a system attached to the bell of a
railroad crossing, see Figure 1.1. The concept of the implemented situation is given in Figure 1.2.
Then the application only transmits a signal to the server if a dangerous situation at the railroad
crossing occurs. At present this is not possible because the algorithms, which are used by the
application, are not efficient enough to be applied at the location.

The main assignment for this project is to research the currently used algorithms [9]. The goal
is to make the algorithms currently in use more efficient, meaning faster, and also extend their
functionality. The extension of the algorithms is needed because the current algorithms are, for
instance, not able to make a distinction between cyclists and cars. This is one of the desires for the
final application. Besides that the current algorithms can not detect non moving objects blocking
the railroad crossing.

The development and comparison of the algorithms is done with MATLAB®. Information
about image processing in MATLAB is found in [3, 4, 6]. For image and video processing in general
see [2].
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Figure 1.1: Warning bell of railroad crossing with camera (the black circle above the logo)

O------ . pBeII

Vision camera 2~ ision camera 1

o et

Figure 1.2: Outline of the implementation; the dotted lines denote the barriers of a railroad
crossing and the solid lines denote the cameraview
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Problem formulation As explained in Section 1.2 there were two main problems taken into
account in this project. The first one and at the same time the most important goal is to speed
up the algorithms or to make them work more efficient. This is done by adapting them or totally
rewriting the algorithms. The second goal is about implementing new functionalities at the algo-
rithms. The work needed for this project can be divided using the MoSCoW method (Must have,
Should have, Could have, Would like to have but not right now).

Must have: detection of trains and traffic, path of the barrier, functionality of the lamps, inten-
sity of the traffic

Should have: stationary check (check if vehicles are non-moving on the railroad crossing), slalom
driving (driving around the barriers while they are closed), driving through the red light,
differentiate types of traffic (for instance cyclists, cars, etcetera)

Could have: checking the solid objects (e.g. warning cross), sound of the bell

‘Would like to have: discerning types of trains.

Structure Figure 1.3 gives an overview of the application and shows the flow of the data. The
camera receives an image, with this image a background can be created. The coherence between
these two images creates an indicator for motion. This indicator is used to detect dangerous
situations, solid objects, several types of traffic and the barrier. Since the camera has an installed
microphone the audio can be analysed.

’ check for
ciar:'r]:::a image ™ dangerous situations
betweon o check
imsgs and solid objects
! 3
= , distinguish types
| of traffic
background T ey
detection
audio

»  audio analyser

Figure 1.3: Overview of the application (total)

Motion is usally detected by comparing two images, the background and the current frame. The
easiest way is to set the background as the previous frame but better is to adapt the background
to the current situation more slowely. Chapter 2 describes the technique for the background
adaptation. Several algorithms are discussed in this chapter for the adaptation of the background.

If the background is adapted to the current situation, the coherence between the background
and the current frame can be determined. The coherence of these images is determined in Chap-
ter 3. This yields an indicator for motion. One of the problems which is discussed, deals with
the luminious intensity. If the sun starts shining this may lead to false positive detections. Say
traffic is detected while the railroad crossing is empty. This chapter describes several techniques
to evade these false positive detections.

An extension for the indicator of motion is the stagnation of vehicles at the railroad crossing. A
stationary vehicle leads to dangerous situations. Other dangerous situations are for instance when
vehicles slalom around the closed barriers. The check for these dangerous situation is discussed in
Chapter 4. Problem to this check is how to distinguish a vehicle which is stationary and a long
vehicle like a lorry which is driving by. Related to stagnation of vehicles is the presence of the
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andreas cross and fenches. These objects are also stationary and may be detected by the same
technique.

If the vehicles are moving, it is desirable to know which type of vehicle is driving by. So the
indicator for motion is used to differentiate between several types of traffic, which is described
in Chapter 5. The current application is not able to discern the several types of traffic [9]. So
this algorithm has to be written. Several methods are tested which describe the properties of the
traffic. For instance a cyclist has a lower speed in comparison to a car. A problem which occured is
the detection of two in sequence or side by side driving vehicles. These vehicles might be detected
as one vehicle.

The image and background can also be used to detect the angle of the barrier. By vandalism the
barrier may describe another path, which must be detected. Chapter 6 describes some techniques
to detect the position of the barrier (and how to determine the angle of the barrier). Problems
which occur during the detection are the vehicles which drive by on the background or moving trees.
These objects cause noise that disturbs the measurements. Several solutions for this problems are
also discussed in Chapter 6.

Besides the video stream also the audio stream of the camera is researched. This is done to
investigate the sound of the bell, see Chapter 7. The techniques used for this research are the
Fourier transformation and bandpassfiltering. In the final concept two cameras are attached at
the railroad crossing. This enables detection of multiple sound bells. The second camera can also
be used to detect the other side of the railroad crossing.

Every chapter first describes some algorithms and later on in the chapter the discussed algo-
rithms are tested and compared. The final chapters describe the conclusion of this research and
recommandations for future work. The develloped algorithms are tested to several sample video’s.
These sample video’s are denoted by the text “sample video” and a number. Appendix B contains
a legend for these video’s. The same holds for “sample audio”.

References are placed between brackets, [0], and can be found in the bibliography.
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Chapter 2

Background adaption

Detecting moving objects is done by comparing two images. If a moving object is on some position
at frame Xj;_; and in the next frame X the object is at another position, then movement can
be detected by comparing the pixels of two frames. More generally, to dectect motion the current
frame, X}, is compared to a background, By, which is some function of the frames in the past.
Figure 2.1 shows the overview of the application.

2.0 Defining data

A frame is denoted as Xj and contains m x n pixels. Here m denotes the height of the frame
and n denotes the width of the frame. The variable & denotes the number of the frame, & €
[1,2,...,NoF], where NoF stands for the Number of Frames. Every pixel in X at position
(4,7), (@ = 1 : m,j = 1 : n), usually consist of three color channels, ¢ € {R,G, B}. This is
numerically denoted as ¢ € {1,2,3}. Every color channel the pixel X(3,j,c, k) is an element of
{0...255}. For the background adaptation these values can be non-integer and they are rounded
to integers for display. If a pixel of X} is {0,0,0} for {R,G, B}, the pixel is black. Otherwise
if {R,G, B} are {255,255,255} the pixel is white. A background, By, is defined with the same
dimensions and structure as Xj.

Remark 2.0.1. For images with only one colorchannel there holds that, if ¢ = 0 the pixel is black
and if ¢ = 255 the pixel is white.
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C.T;;ﬁia J image .3 | * dangerous situations
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Figure 2.1: Overview of the application (background)
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Given the background, the current image can be compared by for instance taking the absolute
difference of these two,

| Xk — Be| = Y _ |X(i,5,¢, k) — B(i, j,c, k). (2.1)
[

In almost every video the images are updated through a sampling frequency. This is denoted
by fvideo and is usually 24 Hz.

2.1 Fast background adaptation

The most easy way to see motion is by taking the previous frame, Xy, as the background,
By = X1,

to which the absolute difference of X and By, is taken,
[ Xk — Xi—1].

Here |...| means elementwise absolute value.

Figure 2.2 displays two frames from sample video 1, X9 and Xs19. Since the current frame,
X, does not differ much from the background, By (= X;_1), the difference is mostly zero which
results in black pixels.

Due to the sampling frequency the difference between X} and Xj_; is very small if an even
colored car is driving by. Which means that only the contours of the car remain visible, as can be
seen in Figure 2.2c.

(b) Xa10 (¢} X210 — X209|

Figure 2.2: Simple motion detection

2.2 Slow background adaptation

Intuitively it is clear that the best result is achieved if the background is an empty road. When
a car is driving by then the car is high lighted against the background entirely. To see this the
same video as in Section 2.1 is loaded with the same frame (X219). The only difference is that the
background is not frame Xopg but frame X (see Figure 2.3a), the result of the absolute difference
is shown in Figure 2.3c. Something remarkable is the truck at the upper right corner of the
figure. In reality this truck is not there any more. Because of the fact that the background does
not change the truck remains visible in | X} — By| for all k. The same happens if the sun starts
shining. Then the current frame, X}, becomes brighter while the background, By, remains the
same. So the absolute difference, | X — Bj| becomes larger. If the absolute difference is a measure
for motion, a larger difference, as a result of the sun, may result in a false positive detection. So
it is desirable to adapt the background to new situations, but not as fast as By = X;_1. There
are a couple of possibilities to do this, namely;
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(a) X3 (b) X210 (c) | X210 — X1 |

Figure 2.3: Extended motion detection

e Average over frames (see Subsection 2.2.1)
e Step size by pixel (see Subsection 2.2.2)

¢ Exponential adaptation (see Subsection 2.2.3)

2.2.1 Average over frames

One of the possibilities is to set the background as the average over the last h frames.

B, = % Z X;. (2.2)

A disadvantage of this technique is that it is calculation intensive (that means consumes a lot of
time). The number of operations for this formula is A x (3mn) (the dimension of the matrix is
3mn). The bigger h will be, the more operations that are needed and the longer the application
takes.

2.2.2 Step size by pixel

Another approach for slow background adaptation is by introducing a step size (z). For every
pixel (¢,7) in the current frame, X}, take the difference between the previous background, By_1,
and the current image. The new background is the old background plus the maximum between
the negative step size and the minimum of the difference and the step size,

By = Bi_1 + max(—z, min((Xy — Br_1),2)). (2.3)

This technique is shown in Algorithm 2.1 and is used in the current application [9].
The working of Algorithm 2.1 is explained in the following example.

Example 2.2.1. Choose a background which is even white (every pixel has a value of [255, 255,
255)). Now a black area (every pixel in this area has a value of [0, 0, 0]) is entering the background.
The difference in this area is everywhere [255, 255, 255]. If z is set to 10, the background becomes
[245, 245, 245]. This process continues until the background is fully adapted. If the black area
has gone before the background is adapted, the process continues in the other direction.

This algorithm requires 4 x (3mn) operations.

2.2.3 Exponential adaptation

This technique is based on the exponential function. The new background consists of the previous
background plus a factor § times a correction,

Bi = By_1+ B (Xx — Br-1) By = X1, (2.4)
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Algorithm 2.1: Determine new background with step size [Subsection 2.2.2]
Input: X and Ek_l
Output: By
fori=1...mdo

for j=1...ndo

if X(,5,¢,k) — B(i,5,¢,k —1) > z then

| stepl =z
else

| stepl = X (i,7,¢,k) — B(i,j, ak-1)
end

if step! > —z then
| step2 = stepl

else
| step2 = —=z
end
B(i, j,c, k) = B(i,,¢,k — 1)+step2
end

end

Algorithm 2.2: Determine new background with exponential factor {Subsection 2.2.3]

Input: X (i,5,c,k) and B (i,5,¢,k — 1)
Output: B (i, j,c, k)
for i=1..m do

for j=1..n do

| B(i,jc.k)=B(@,jck—1)+8(X@E5,¢,k)—B(@E,4,¢k—1))

end

end
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with 8 € [0,1]. The number of operations required by this technique described in Algorithm 2.2
is 3 x (mn3).

To see what happens, take a look at a pixel (i, 7). Suppose that the pixel value (total amount
of red, green and blue),

3
pixel value = Z X(@,j,¢ k), (2.5)

c=1

is one and at frame Xio the pixel value rises up to five then the background, By, follows it with
a exponential factor. Figure 2.4 shows this in a graph. The red solid line (shown in Figure 2.4a
and 2.4b) is the pixel value of the image on position (Z,7) and the blue dotted line (shown in
Figure 2.4b) is the pixel value of the background. As one can see the background adjusts to the
pixel value exponentially fast.
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Figure 2.4: Simulation of the Algorithm 2.2, 3=0.2

For this example the pixel value looks a bit like the step function. In reality this value is not
that straight as in Figure 2.4, it fluctuates around a value and decreases after some time. A more
realistic reproduction of the pixel value and the adapting background are shown in Figure 2.5.
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Figure 2.5: More realistic simulation of Algorithm 2.2, §=0.2

The greater the factor 3, the faster the background adjusts. The § chosen in Figures 2.4
and 2.5 of 0.2 is not a good value. Because after some k the difference between the pixel and the
background is almost zero. Zero difference results in that no motion is detected while there still
might be objects moving at the railroad crossing. Choosing the right value 3 is not trivial, as is
discussed in Section 2.3.
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2.2.4 Comparing the algorithms

As the values for m and n are usually 320 and 240, it is clear that the technique from Sub-
section 2.2.1 requires the most time. Furthermore Algorithm 2.2 is somewhat faster than Algo-
rithm 2.1. To test this, a function is written, in MATLAB, which compares the calculation time of
Algorithm 2.1 and 2.2, using a sample video. The results are shown in Table 2.1. The values at the
bottom of the table are average values of ten measurements. The results show that Algorithm 2.2
is approximately two times faster compared to Algorithm 2.1 for this particular sample video. The
sample video contains (only) 295 frames. So the same comparison is performed on a lager video
(NoF = 2184) and the results were similar. Algorithm 2.2 is still approximately two times faster
compared to Algorithm 2.1, see Table 2.2.

Table 2.1: Operation times of Algorithms 2.1 and 2.2 in seconds (NoF = 295)

Time in seconds
index | Algorithm 2.1 (p.22) | Algorithm 2.2 (p.22) | Proportion
1 1.8191 0.8758 2.0770
2 1.7711 0.8762 2.0212
3 1.8061 0.8714 2.0728
4 1.8242 0.8689 2.0995
5 1.8244 0.8713 2.0939
6 1.8289 0.8702 2.1017
7 1.8148 0.8701 2.0857
8 1.7385 0.8692 2.0001
9 1.8146 0.8705 2.0845
10 1.8011 0.8705 2.0691
average 1.8043 0.8714 2.0705

The reason that Algorithm 2.2 is almost two times faster in comparison with Algorithm 2.1
can be explained by the fact that it requires fewer operations. But this proportion is %. The
reason for the factor 2 is explained by the structure of the algorithms. Algorithms 2.1 takes for
every number four operations (two for loops and two if statements). Otherwise, Algorithm 2.2
needs for every number two operations (two for loops). The fraction between these two explains

the factor 2 in the proportion of Table 2.1 and 2.2.

2.3 Choice of 3

As discussed in Subsection 2.2.3 a smaller J results in slower background adjustments. Thus the
road in By is empty for a longer time and therefore highlights a car better in | X} — By|. But the

Table 2.2: Operation times of Algorithms 2.1 and 2.2 in seconds (NoF = 2184)

Time in seconds
index | Algorithm 2.1 (p.22) | Algorithm 2.2 (p.22) | Proportion
1 12.3952 6.4391 1.9250
2 12.3971 6.7176 1.8455
3 12.4198 6.5711 1.8901
4 12.3782 6.4383 1.9226
5 12.3680 6.4937 1.9046
6 12.3698 6.4356 1.9221
7 12.3741 6.4423 1.9208
8 12.4430 6.4209 1.9379
9 12.4960 6.4212 1.9461
10 12.6167 6.3944 1.9731
average 12.4258 6.4774 1.9183
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value of § must not be too small, because then a rise of luminious intensity is seen as motion. To
see the effect of different values of 3, a measuring loop is placed onto sample video 1 as shown
in Figure 2.6. With this loop (rectangle) it is possible to measure the mean pixel value for the
pixels in this loop. This technique is applied for various values of § and the results are shown in
Figure A.1 in Appendix A. The results lead to the conclusion that a smaller 3 is better. This
results in better peaks, which indicates the difference between motion and no motion.

Figure 2.6: Xas of sample video 1 with measuring loop (rectangle)

A smaller § denotes that the background takes longer to adapt to the current image. But
when 3 is 0, then the background does not change and remains the first frame. This may result
that rotations of the sun are denoted as motion. So it is better to define the 7 dependent on the
settling time.

Definition 2.3.1. The settling time (i) is defined as the elapsed time for which the original
difference between By, and X}, is less than 1% of (Bg — Xg). The discrete settling time, kg, equals
kset = tget X fvideo~

The tsey and G are correlated according to the following theorem.

Theorem 2.3.2. Given the video sampling frequency, fuideo, and the settling time, tge, 0 in
Algorithm 2.2 approzimately equals
In(100)
~ . 2.6
ﬂ fmdeotset ( )
O

Proof. Suppose that the pixel value at position (4,4) of X, starts at zero (and so the pixel value
of By = 0). When k = p define Xy (4,5) := X,(¢,7) = 1. Then (2.4) becomes:

By = By_1+ B(Xx — Br1), By =0

B, = B,p—l'*'ﬂ(xijp—l)’ ?0:0 (2.7
Bp=(1-p)Bp-1+5, Bo=0 '
By, — (1—-8)Bp-1 =0, By=0

This can be solved by the technique of difference equations. The homogeneous solution yields:
Bp == (1 == ,B)Bp_l = 0
N—(1-p/XN"1 =0
1
1-(1-/)~- =0
(1-9)5

A= (1-p)
Bzc’m = h(1-pB)?, h = constant (2.8)

The particular solution can be taken equal to:

Bt = 1 (2.9)
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combining (2.8) and (2.9) gives a solution for B, which is equal to By:
Bi=1+h(1-0)F,  By=0
Introducing the initial condition, By = 0, gives a solution for h:
By=0-B,=1+h1-08)°—>h=-1

Combining this results in i
B,=1-(1-p* (2.10)

The background converges exponentially to Xy, so it takes co frames for By, and X, to be exactly
the same. X was set to 1, so By, has to be at least 0.99. Then the original difference is
approached to 1%.

set

001 = (1—p)ke
1
In (m) = k’set 111(1 - ﬂ)
~1n(100) ~ —keetf
ket =~ In100
In 100
IB ~ kset
In 100
fvideotset

This is okay as long as fyideo - tset > 20, fvideo is usually 24 Hz so (2.6) can be used. With
Theorem 2.3.2 it is possible to define a good 8.

Example 2.3.3. Take tg at thirty seconds then g will be

In 100
8= 30.90 "~ 0.0064
Henceforth, all calculations are done with
B :=0.001

corresponding to a settling time of

In 100 In 100

0.001 = s==51 = bt *= 50,001

=2 192 seconds

Conclusion

To detect motion a background is needed such that it can be compared with the current image.
The background can be derieved in different ways. One way is by taking the background as the
previous image, By, := Xj—_;1. A disadvantage of this method is that only the edges of a moving
vehicle remain visible. This leads to few detection points and attendantly a larger probability for
incorrect detection (vehicles are present while they are not detected).

A better way is setting the background as the first image, By := X;. This highlights the
moving object much better which results in more detection points with a higher proballity of good
measurements. A disadvantage of this method is, that it is very sensitive to changes in luminous
intensity. This leads to detection while there are no moving objects at the railroad crossing.

So a better method is to adapt the background to the current situation. One way to make
this happen is by defining the background as the average over a couple of images. On this way
the background adapt itself to the new situation. A disadvantage of this method is the required
number of operations, as shown in Subsection 2.2.1.
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A faster way to adapt the background is using the stepsize method as described in Subsec-
tion 2.2.2. This method is also used in the current application {9]. An advantage of this method is
that the rate with which the background is adapted can be adjusted. This allows finetuning and
thus better detection.

By the research done it was concluded that using the exponential adaptation, see Subsec-
tion 2.2.3, is even almost two times faster in comparison with the stepsize method. Both tech-
niques are described in Algorithms 2.1 and 2.2. From now on the background, By, is calculated
according to the exponential adaptation (Algorithm 2.2) i.e.,

Bk = Bk.

The rate of adaption for the background, 3, can be calculated using the settling time, fg. The
relation between these two variables is described in Theorem 2.3.2.
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Chapter 3

Motion detection

As described in Chapter 2 (and shown in Figure 3.1) motion can be detected by comparing the
current frame, X, and a background, Bj. In Chapter 2 an algorithm was found to adapt the
background by using the current image. This chapter discusses several methods for comparing X},
and By, see the overview of the application in Figure 3.1. All methods have in common that a
parameter, R, (as indicator), is adapted each time a new frame is acquired. A larger Rj, means a
higher probability for detection of motion. The calculation of Ry, is restricted to measuring loops.
The size of the measuring loops is usually denoted as M x N.

3.1 Algorithms for detection of movement

3.1.1 Threshold by pixel

This section explains the method currently in use by the application [9]. The currently used
technique is based on using a threshold, 8. For every pixel check if the pixel value (2.5) is more
than 8, that is,

I(i,j,¢,k) = |X(i,4,¢,k) — B(i, j,¢, k)| (3.1)
. 0 if Y3 I(i,j,¢,k) <6
I k — =1 1 J1 &y = .
o(i.5 k) { 255 if S°_ I(i,g,c,k) > 6. (3-2)

So if the pixel value of the absolute difference between the image and the background at position
(%,7) is above theta the pixel is set to white otherwise it is white. Figure 3.2a shows the original

check for

et image R " dangerous situations

input] ™

check
solid objects

distinguish types
of traffic

background & XAB | barier
detection

audio >
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Figure 3.1: Overview of the application (compare background and image)
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(a) Zg=l I(%Jy 61210) = |X210 - (b) Iloo(iyjizlo) Vl!] (C) 1250(i1j1210) Vl!]
Bajol

Figure 3.2: Sample video 1 with and without threshold filtering

difference, Z§=1 I(i,7, ¢, k), without threshold filtering. Figure 3.2b and 3.2c show the difference,
I (i, 7, k), with filtering respectively for § = 100 and § = 250.

By summing Iy over all pixels (7, j) in a measuring loop, like the one in Figure 2.6, and dividing
by the maximum value of the measuring loop (255M N) it returns a value between zero and one
which is an indicator for motion,

RH .= 2—1215;?\(;—15“ =:Ig(i,7,k), (i,5) in measuring loop of size M N (3.3)
0<RIH<1 (3.4)

This can be summarized in Algorithm 3.1. The number of operations required for this algorithm
is shown in Table 3.1.

Algorithm 3.1: Determing Rf " [Subsection 3.1.1]
Input: X and By
Output: RFH
for i=1..m do

for j=1..n do
I(i,j,c,k) = | X, 4, ¢, k) — B, 3, ¢, k)|
if 3°2_ I(i,j,c,k) < 0 then
| To(i,5,k) =0
else
| Ig(i,j, k) = 1
end
end
end
RM = Z_W (¢,7) in measuring loop of size M N

Table 3.1: Number of operations for Algorithm 3.1 (p. 30)

By, = Bi—1 + B(Xx — Bx—1) | 3(3mn)
I(ivjvcyk) = |X(i,j,c,k)—B(i,j,c,k)| 3mn
. 0 if 2 I(i,j,c,k) <8
I k = c=1 1J1 = 2 3
o(, 7, k) { 955 if Zgzl 1,3, c,k) > (3mn)
RTH = Z‘égéj\,(,lj’j’k) (2, 7) in measuring loop of size MN | (MN)+1
Total | 6(3mn)+ MN +1

Algorithm 3.1 can be accelerated by determing the absolute value only on the measuring loop
instead of the whole image. Besides that, By, only needs to be calculated for the measuring loop,
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which requires 3(3AM/N) operations. Then the total number of operations for computing Iy is less.
Table 3.2 shows the adapted number of operations.

Table 3.2: Adapted number of operations for Algorithm 3.1

Bi(i,7) = Bi-1(i,5) + B(Xk(2,5) — Be-1(:,5)) (4,7) in measuring loop | 3(3MN)
I(i,3,¢c,k) = |X(i,j,¢,k) — B(i,4,c, k)| (4,7) in measuring loop | 3MN
o 0 if 2, I(i,j,c,k) <6
A =1", 2(3M N
lo(é.3,) { LY fGgek)>e |28 )

U= Zs ﬁ'g’j’k) (Z,7) in measuring loop | (MN)+1

Total | 6(3MN) + MN + 1

Algorithm 3.1 has been applied on two sample video's, where different values of @ are tested.
The results for sample video 1 are in Figure A.2, (Appendix A), and for sample video 2 in Fig-
ure A.3 (Appendix A). The results in Figure A.3 contain two lines. This is because measurements
has been done over two measuring loops, see Figure 3.3a. By using two measuring loops it is pos-
sible to measure the speed of moving objects. The number of frames between these two measuring
loops is used to calculate the time which takes the objects to go from the first untill the second
loop, since fyideo is known. With this time and a known distance between the measuring loops, it
is possible to calculate the speed of the objects.

(a) Loops for traffic detection (b) Loops for train detection

Figure 3.3: Measuring loops

The detection of objects may also be applied to detect trains. One of the differences is the
position of the measuring loops. These loops are placed on a position where no traffic is detected.
The best result is obtained when there is a continuous stream of motion (window - no window -
window etc.). An example for the position of the measuring loops is shown in Figure 3.3b.

A big disadvantage of Algorithm 3.1 occurs when the luminious intensity changes, which hap-
pens a couple of times a day for instance when the sun breaks through the clouds. Since By, adapts
slowly to X}, I rises above 6 resulting in false positive detections. Figure 3.4b shows X3g4 and
its background, Bsg4, (see Figure 3.4a) from sample video 3. As can be seen in Figure 3.4c no
conclusion about motion can be drawn from this picture. There are several ways to solve this.

Adapting 6 One way to compensate for luminious intensity alterations is by rising € like in
Figure 3.4d. This picture is more clear then the one in Figure 3.4c. A disadvantage of rising the
threshold is that it leads to fewer detection points. See for instance Figure 3.2. So rising € is not
advisable.

Adapting 8 Another way is by adapting 8. A larger value of f results that By adapts faster
to X;. So a rising difference as a result of the changed luminious intensity is corrected faster.
A disadvantage of rising G is that a faster background impairs detection because the difference
between the background and the image is adjusted faster.
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(C} | X384 — B3asa| > 100 (d) | X384 — ng4| > 250

Figure 3.4: Rising luminious intensity at sample video 3

Adapting the speed with which the background adapts to the image is used in the current
application [9]. If the luminious intensity rises the background speed is adjusted for a short time.
The advantage is that the background does not approach the image much, so the difference remains
enough to detect motion. This solution has a disadvantage that the luminious intensity has to be
stored in a separate measuring loop. Besides that it is difficult to find a relation with which 3 or
0 is adapted in comparison with the changing luminous intensity.

3.1.2 Sum

Another way to compensate luminious intensity changes and detect motion is by summing X}
over ¢ and dividing it by the maximum value of this sum (3 x 255 x M x N). The result is a mean
over the intensity,

R§UM .= oo lxa"‘,_,(;"s]i’;}’;),ﬁB"(i’j’c’k)': , (3,7) in measuringloop, (3.5)

0< RSVM <1 (3.6)

Since R§UM does not depend on @ this is an advantage in accordance to R} ™. This technique is
described in Algorithm 3.2.

"This algorithm can be accelerated by applying the absolute difference and the calculation for
the background only on the measuring loop, just like has been done in Subsection 3.1.1. The
number of operations required for this algorithm is shown in Table 3.3.
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Algorithm 3.2: Determing R{UM [Subsection 3.1.2]

Input: X and B
Output: RiUM
for i=1..m do
for j=1..n do
| | I(i,j,¢,k) =|X(i,5,¢, k) — B3, j,c, k)|
end
end

oS8 I(ig,.ek Lo . .
R3UM = &%ﬂ (¢,7) in measuring loop

g

. Table 3.3: Number of operations for Algorithm 3.2 (p. 33)

By, = Bi—1 + B(Xk — Be—1) (i,7) in measuring loop | 3(3MN)
] I(i,j,¢,k) = |X (4,4, ¢,k) — B(i,4,¢,k)| (4,7) in measuring loop | 3MN

3 liick
RFUM = Lij X [(00K) (¢,7) in measuring loop | 3(MN) +3

3-255-MN
Total | 5(3MN) + 3
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3.1.3 Averaging

Actually, what is done in Section 3.1.2 is taking the average of the image. The following train of
thought may clarify this. If the luminous intensity of the picture changes, this happens on the
entire measuring loop. When a vehicle drives by only a part of the measuring loop rises. A simple
version of this is given in Figure 3.5.

(a) sunlight

(b) object

Figure 3.5: Increase of the lumineus intensity

Now do not compare B, with X but first divide both by their mean,

- it E?:l Zi:l X(i,4, ¢, k)

X. =
, 3mn
B, = PRHID Dy Zi:l B(i, j, ¢, k)
T 3mn
3 . o
RYVG = % XkSZ_(,J,c) B Bk(g‘J,c) (i, ) in measuring loop. 57)
1,j e=1 k k

If the luminous intensity changes, this typically happens over the entire image. Then the
average, X}, also changes such that the fraction of the image and its average, %“-, compensates for
this increase. If an object is passing the railroad crossing the luminous intensity does not change
over the entire image but only changes on a small part. This means that the average, X}, does
not change that much as X itself and so the fraction over the image and the average, %’f-, is
changed but not that much as when the luminious intensity changed. Therefore it is possilbfe to
distinguish between a rise of the luminous intensity and a passing object. The described technique
for determing RAVC is shown in Algorithm 3.3. Table 3.4 shows the number of operation required

for Algorithm 3.3.

Algorithm 3.3: Determing R{VE [Subsection 3.1.3

Input: X} and By

Output: R{VE

X — take average of X}

B, — take average of By,

foreach i, j in measuring loop do

.o X(i,3,c,k B(ij,c.k
| I(ig.c,k) = |Xigek)  Blgeh)

end

PO RN (RN ) R .
RVE = ;——}325‘1“# (2,7) in measuring loop

The bottleneck of Algorithm 3.3 lies in the computation of the mean for the image and the
background. It is clear that this can be accelerated by determing the mean over the measuring
loops instead of over the whole image. Table 3.5 shows the adapted number of operations. This
table also has taken into account that the calculation of the background only needs to be done on
the measuring loops, as described in Subsection 3.1.1.
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Table 3.4: Number of operations for Algorithm 3.3 (p. 34)

By = By, +ﬂ(Xk — By_1) | 3(3mn)
X = Tim X Z “X(wc” 2(3mn) + mn + 2

By = Zi=t Z“‘ BGISH | o(3mn) + mn + 2
(i, j,e, k) = ‘(’lg: " B"gf“ 3(3mn)

RRVE =3, S I(i,j,¢c,k) (i,) in measuring loop | (3MN) — 1
Total | 10(3mn) + 2mn + (3MN) +3

Table 3.5: Number of operations for averaging over measuring space

By =Bp_1+ [J(X;~ — Bi—1) (i,7) in measuring loop | 3(3MN)
X = Luke A‘,;\\;(”C ) (i,7) in measuring loop | 2(3MN) + MN +2

N # ]
B = L Z;“,z(l‘]’c’” (i,7) in measuring loop | 2(3BMN) + MN + 2

I(i,j,¢,k) = ‘\'(i‘;‘ff”") - B(’g:'k) (4,7) in measuring loop | 3(3MN)

RAVG =3 o S0 I(i,j,c,k) | (BMN) —1
Total | 9(3MN) + 2MN +3

A disadvantage for averaging over the measuring loop occurs when in only a small part of
the measuring loop the luminious intensity changes. For instance when the shadow of a tree is
covering a small part of the measuring loop. Then X changes while the average of X} changes
less, resulting in an alteration of R{VC. This leads to a false positive detection.

3.1.4 Correlation between image and background

Instead of looking at the absolute difference between the image and its background, | X}, — Bg|, it
is also possible to determine the correlation of two images, X} and By. In the signal processing
the correlation coéfficient, v, at time k is defined as [8].

i (s Bl dye, ) Ty X(ivdies )
Vs Ty B2 g e, k) S5 $omy X260, k)

If the Cauchy-Schwarz inequality [16],

(o) 5 () £9)-

is applied to (3.8) this yields that 0 < vy, < 1 and in fact vx = 1 & X = ABy, (where A is a positive
constant). The more the images are correlated, the more <y, is around one. So if the luminous
intensity changes evenly in the measuring loop, it is more or less a multiple of the background such
that v is unaltered. When a vehicle is driving by, the background and the image are correlated
less such that 7 decreases towards zero. Now define,

ROORR  .— 1 . (3.10)

(i,7) in measuring loop. (3.8)

(3.9)

Algorithm 3.4 summarizes this and Table 3.6 shows the number of operations for this algorithm.
The algorithms discussed in Section 3.1 are now tested for three different video’s namely:

e Sample video 4 (see Section 3.2)
e Sample video 3 (see Section 3.3)
e Sample video 5 (see Section 3.4)

For each video the calculation times and results are compared.
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Algorithm 3.4: Determing REORR [Subsection 3.1.4]
Input: X} and By
Output: REORR
k. +— determine the correlation coéfficient of X and B
as described in (3.8)
REORR =1—-m

Table 3.6: Number of operations for Algorithm 3.4 (p. 36)

( ) By, = By_1 + (X — Br—1) | 3(3MN)
_ 2 (EiBlgek) T, X(idek) o .
Ve = \/Zi’j’zg=l BT e S NP (,7) in measuring loop | 10MN

REORR =1 -, |1

Total | 3(3MN) + 10MN + 1

3.2 Comparing the calculation times and results for sample
video 4

The first video which is tested is sample video 4. Figure 3.6 shows the real situation obtained by
visual scoring and gives an explanation about what the peaks represent. In Figure 3.7 the results
of the algorithms are shown.

As discussed in Subsection 3.1.3 the bottleneck of Algorithm 3.3 lies in calculating the mean of
the image and the background. This can be skirted by computing the mean only for the measuring
loops. The result of this technique is shown in Figure 3.8a. A disadvantage of this technique is
that the peaks all have similar magnitude. This is explained by that when a cyclist is driving by
the influence for X} is less than the influence when a car is driving by. Conversely the influence
of a cyclist for )L(k is in accordance to the influence of a car similar. This results in similar peak
heights for X} and so the value of R,{.WG can not be used to distinquish the several types of traffic.
A solution for this is raising the signal to the square. Then the difference in the peak heights
becomes larger.

Since R{VC (neither R{VE squared) is between zero and one, it needs to be scaled. There is
no guarantee that every video has the same scaling factor.

Another disadvantage are the small peaks preceding to the peak of the train. This may be
explained by a small rise of luminous intensity in the measuring loops. This can be compensated
by splitting the signal into three color threads. So instead of averaging over the mean of the three
colors, divide every channel by its own mean,

o _ Zi,jX(ivjv c, k)

Xke = N c¢=1,2,3 (i,7) in measuring loop
_ .. B(i, ¢,k
By, = % c=1,2,3 (i,7) in measuring loop
3 . .
X(@,j,¢,k) B(,j¢k o .
RVG = Z Z (Xk - ) _ (Bk - ) (¢,7) in measuring loop. (3.11)
4,7 le=1 s ’

The result of (3.11) is shown in Figure 3.8b.

As expected the calculation time of this technique is somewhat longer since some extra oper-
ations have to be done. But an advantage of this technique is that the peaks preliminary to the
peak of the train are smaller. This can be explained by the following train of thought. If only
one channel changes in luminious intensity while the other two remain the same, this alteration is



3.2. RESULTS SAMPLE VIDEO 4

0.9

0.8

0.7

0.6

0.5

S|,
Jed

R«
T
uien
1S2Aa
Jed
Bed
I8

1S)j040 4

0.4

0.3r

0.2

0.1

0 500 1000 1500 2000
frame number (k)

Figure 3.6: Result for sample video 4 obtained by visual scoring

2500

37



38 CHAPTER 3. MOTION DETECTION

boom2avi TH= 125 130 soconds boon2 avi TH= NA 12 8 seconds
1 oS5
09 045
o8 o4
o7 035
g. 06 g 03
l 05 E 025
E oap E 02
03 0.15
o2 A n o1 J\//\l\
01F 005
Tl Jit 1L :
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
rame number (k) frama number (k)
(a) Algorithm 3.1 (b) Algorithm 3.2
boom2avi  TH=NA 689 saconis s boom2avi  TH=NA 7 5 seconds
03
500 03
025
_ 400 ~
< g .,
L. ;
E g 015
- §
[X]
) N A A
—A =
[+ 500 1000 1500 2000 2500 () 500 1000 1500 2000 2500
frame number (k) fame number (k)
(c) Algorithm 3.3 (d) Algorithm 3.4

Figure 3.7: Results (Ry) of the algorithms applied to sample video 4

corrected for only one third,

By .14+Bk.2+Bi,y X a+Xe2+Xe s

[Bx,1,Bk,2,Bk 3] [Xk,1,Xk 2, Xk 1]

l B _ Xka
[Bi,1,Bk,2,Br3]  [Xk1,Xn2,Xe8]
By 2 Xi.2
- === +...
[Bk,1,Bk,2,Bx 3] [Xk,1,Xk,2,Xk 4]
B3 _ X3 —
[Br,1,Br,2,Br,3]  [Xg,1,Xk,2,Xk 3]
_ Bia _ XNea +
1(Bx,1+Bx2+Bi 3) %(«\'k,1+)\’k,2+xk,.|) e
By 2 4\":.2 + (3 12)

1(Bra+Bia+Brs)  3(Xea+Xe2+Xka)

_ Bras _ Xia
:li(Bk.l+Bk.2+Bk.3) %,—()?k,1+)_(k,g+xk’3)

Whereas the raise is corrected entirely by averaging over each color channel,

By Xk | Bra  Xk2 | Bes  Xks
Brn Xky Bra Xko Brz  Xigs

. (3.13)

The technique of averaging over each color channel can also be applied on the correlation
algorithm. Instead of first summing over all colors for the image and the background calculate the
correlation coéfficient for every color channel. The result for R,?ORR split into colors is shown in
Figure 3.8c.
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Figure 3.8: Results (Ry) for the extended versions of the algorithms applied to sample video 4

3.3 Comparing the calculation times and results for sample
video 3

The algorithms discussed in Section 3.1 are now applied to sample video 3. The result are shown in
Figure 3.10. For a reference there is a general graph, based on visual scoring, shown in Figure 3.9
with some explanation for the several peaks.

After the passing of the train, the intensity rises. As can be seen Algorithm 3.1 does not give
any workable result since the value of Rf ! remains high. Even Algorithm 3.2 is not able to solve
this problem correctly. Algorithm 3.3 and 3.4 on the other hand have a much better result and
are independent of the luminous intensity. Results of the extended versions of Algorithm 3.3,
averaging over measuring loops and averaging split into color channels, and the extended version
of Algorithm 3.4, correlation split into colors, are shown in Figure 3.11. The results shown in
Figure 3.10 and 3.11 confirm the results of Section 3.2.

3.4 Comparing the calculation times and results for sample
video 5

This section treats another video namely sample video 5 the choice for this video is because several
vehicles are driving by at the railroad crossing. Figure 3.12 gives a general result and explains
what the peaks represent. Figure 3.13 shows the results of the algorithms.

For this video also the extended algorithms are applied. The results of the extended algorithms
are shown in Figure 3.14. These results confirm what is shown in Sections 3.2 and 3.3.

As can be seen, the correlation split into colors is the fastest algorithm. A remarkable phe-
nomenon is that the algorithm where the correlation is split into colors is faster than the algorithm
where it is not split into colors. This may be a result of the efficiency of MATLAB.

Train detection The algorithms discussed in Section 3.1 can also be applied for detection
of a train. The results for the three videos discussed in Sections 3.2 up to 3.4 are shown in
Appendix A.3. These results conclude that RFY, RFUM, RAVC and R{ORR fluctuate when a
train is passing. An explanation is that the train is not even colored at the position of the loops,
see Figure 3.3b. At this position a continious motion takes place (window - no window - window -
no window - etc) which is needed to detect the train. This causes that the value of Ry fluctuates.
A solution for this problem can be found by averaging the signal over time.
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3.5 Averaging over time

Averaging over time can be seen as taking the average over the last F' measurements, setting F'
as the filter order.

- 1
Ry, = F(Rk+Rk—1+~-+Rk--F+1) (3.14)
Large peaks are filtered and so the signal is more flat.

Example 3.5.1. As an example a vector has been generated with 100 uniformly distributed
pseudorandom numbers between zero and ten, Figure 3.15a shows this data. (The original data
can be seen as filtering with order FF = 1). Figure 3.15b and 3.15¢ show the filtered data for
respectively F = 5 and F = 10.
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Figure 3.15: 100 random numbers and different filter orders

The filterorder may not be too large since then the peaks are flatten out. On the other hand
a too small filterorder is also useless because then the signal fluctuates too much. To determine
a good filterorder a couple of filterorders are tested and the results are shown in Appendix A.4.
From this results it may be concluded, by visual scoring, that for the train a good filterorder might
be around forty or fifty and for the traffic around ten or fifteen. From the results there is chosen
to set Firain = 48 and Fiame = 12. The filterorder can be linked to fyideo. Then F' divided by
Svideo is the time about which is filtered. So with fiideo = 24 Hz the signal for the train detection
is filtered over two seconds while the singal for traffic is filtered over 0.5 seconds.

In the example there are 100 data points this is doable to store for filtering. But in reality
the number of data points depends on the number of frames and the number of measuring loops.
When streaming a video it is not known how many frames this will be, so saving every data point
may cost lots of memory which slows down the application. A workaround for this is done by only
saving the last F' data points. Every time when a new data point is measured it is set at the end
of a vector and the rest is shifted to the left,

Rk = [ Ry _py1 Re_po ... Rr_1 Ry ] (3.15)

At the beginning a zero-vector of size 1 x F' is created to store the measurements of R. The
vector R is filtered according to (3.14) such that it will become R. More information about
averaging over time can be found in [7].

A disadvantage of this technique is that the vector R needs to be stored in memory, the larger
F is, the more memory it requires. The technique of the exponential forgetting theorem, described
in Subsection 2.2.3, can also be used to filter the values of Ry

R.=Ri_1+p (Rk = Rk—l) : (3.16)

With )
0<A<1,

which can be different from the value of 3. The larger B is, the faster the adaptation to Ry. Again
Theorem 2.3.2 is used to determine a value for 3.
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Example 3.5.2. If the filter settling time for traffic is set to one second then Biagic = In 100

0.1919 and for the train to 0.5 seconds corresponding with ﬁtrain = 12'1‘,.109?’ = (0.3838.

An advantage of this method is the number of required operations, since Ry, is a (real) number
(3.16) requires only three operations while (3.15) requires F'+ 2 operations. So the second method
is the fastest method tested and is from now on used to filter the values of Rj.

3.6 Averaging over position

Another way to filter background noise is by averaging over position. This means that the image
is shifted and summed over the new values and then averaged.

X0, j,ck)+ X(E+1,5,¢,k)+ X(0,5+1,¢,k)+ X(i+1,54+1,c,k)

X (&, 4, k) = i (3.17)
Example 3.6.1.
1 2 3 4] 1 2 3 4 0 0 0 O
5 6 7 8 1 5 6 7 8 1 1 2 3 4
o 101 12|"@]| 90 101 12|tT@|s5 6 7 8
13 14 15 16 | 13 14 15 16 9 10 11 12
01 2 3 0 0 0 O 025 0.75 125 175
+(3) 0 5 6 7 +(3) 01 2 3| _ | 150 350 450 550
4 0 9 10 11 4 0 5 6 7 | | 350 750 850 950
0 13 14 15 | 0 9 10 11 550 11.50 12.50 13.50
This technique can be extended by shifting over all directions.
= 1
X(@,j,c, k) = -g-(X(i,j,c,k)+X(i+1,j,c,k)+X(i+1,j+1,c,k)+...

X@,j+Lek)+X(E-1,7+1,¢,k)+X(i—1,4,¢k)+...
X(’L"" 11.7'—' 1,Cyk)+X(Za]_ 1,C,]\7)+X(Z+]_,]— ].,C,k))

If the image is shifted over position the algorithms are redefined, the sum over all colors is redefined
by:

3
> X(,d,c k)
c=1
And (3.2) becomes:
I(i.j,c,k) = |X(i.j,c.k) = B(i,drc, k)|
0 if Y2 I(i,j,c,k) <8
1, k) = =1 Aot = 3.18
(8,5, k) { 255 it S0 F(i,j,c,k) > 6 (3.18)
In this way RT™ can be redefined by:
RTH .= ;—# (,7) in measuring loop =: :g(i,j, k) (3.19)
By filtering this over time: 5
R = B+ (AT - TR (3.20)

To test if this algorithm is useful, for every measuring loop the amount of fill with shifting
(R) and without shifting (R) is measured for sample video 4. These amounts have been plotted

in Figure 3.16. By the look of it there is no big difference between the values of R and R. But the
number of operations for this technique is for every multiplication 3A/ N and for every summation
another 3M N. So the total number of operations are 7(3M/ N). But as seen from Figure 3.16
the result does not have that much effect that the noise is left out totally so this technique is
not applied for detecting objects. Anyways this method might still be useful to compensate for
moving trees, when the barrier needs to be detected.
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Figure 3.16: Difference between shifting (}:2) and no shifting (R)

3.7 Colorspace

3.7.1 Red, Green and Blue

As was concluded at the end of Section 3.4, Algorithm 3.4 split into colors is the fastest. So it is
better to look at one color channel instead of looking at all three color channels. This speeds up
Algorithm 3.4 even more. Figure 3.17 shows the results for respectively the red, green and blue
channel. Figures a, b and c are for measuring loop 1, figures d, e and f ones are for measuring loop
2. These result show that for sample video 3, all three colorchannels provide a continious result.
Unfortunately there is no difference in peak heights.

3.7.2 Hue, Saturation and Value

Another colorspace which is used frequently is Hue, Saturation and Value [6]. Figure 3.18 shows
the results for each channel of this colorspace. One disadvantage can be seen from the results that
the values of RCORR are sometimes not defined. Another disadvantage is the fact that the images
must be converted to this color space before it can be used for calculation.

3.7.3 YCbCr

A third colorspace is YCbCr [5]. A big advantage of this colorspace is the fact that JPEG-images
are normally stored in this format. At the final application a MPJEG (Moving JPEG) stream
delivers the video images. Figure 3.19 shows the results for this color space. The only usable
channel is the Y-channel (this is a channel for the luminious intensity of the image).
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Figure 3.20: Results for R{ORR (Grayscale)

3.7.4 Grayscale

Instead of looking at the colored image, it might be even better to apply the algorithms on the
grayscale images. A big advantage of this technique is that only one color channel remains. Besides
that the influence of changes in the luminious intensity is less, since the grayscale is usually a mean
of the channels Red, Green and Blue. The results for grayscale images are shown in Figure 3.20.

Conclusion

This chapter described several algorithms for detecting traffic. When the algorithms are applied
to the tested video’s, some advantages and disadvantages arise. By Algorithm 3.1 (see Subsec-
tion 3.1.1) it is easy to see the vehicles because the clustered white points demonstrate their
position. Problem with this algorithm is how to choose € correctly. A large 8 means less detection
but also less noise. Otherwise a small 8 leads to more accurate measurements. Unfortunately this
gets along with more noise.

Besides that, a big disadvantage of this algorithm is the dependence on the luminous intensity.
When the luminous intensity changes the absolute difference of X}, and Bj rises. This may lead
to false positive detection. This can be get around by a reference area which adapts 8 or 6, which
is used in the current application [9]. Another possiblity is by skipping 6.
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Algorithm 3.2 (see Subsection 3.1.2) does not use 6 so the position detection of the object is
more difficult. But still this algorithm is not independent on the luminious intensity. When the
luminous intensity changes, it still leads to false positive detection. This is because the absolute
difference is divided by a constant factor. If the absolute difference rises, as a consequence of an
alteration in the luminious intensity, the numerator of (3.6) changes while the denominator does
not change, resulting that (3.6) also changes.

The problem of a changing luminious intensity is skirted by the use of Algorithm 3.3 (see
Subsection 3.1.3). Since the denominators of (3.7) contains the averages of Xj and By there
is a correction for a change in the luminious intensity. If the luminious intensity in the image
changes, also the average of X} changes and so the influence to ka.\VG is less. A disadvantage of
this algorithm is the number of operations required to calculate R?VG. This is for instance more
than the operations required for REH.

Instead of the absolute difference of By, and X}, Algorithm 3.4 (see Subsection 3.1.4) uses the
correlation between By, and Xj. If the luminous intensity changes over the whole measuring loop,
then X, is still more or less a linear multiple of B. Then the correlation factor remains around
one. Instead of the case when a car is driving by, then the luminious intensity does not change over
the whole measuring loop resulting that X, and By are less correlated. So the correlation factor
fluctuates. This confirms that Algorithm 3.4 is independent from alternating luminious intensity.
Besides that this algorithm is normalized between zero and one. A disadvantage for this algorithm
is when the intensity changes only partial on the measuring loop. This may lead to false positive
detection.

The results in Sections 3.2 up to 3.4 and the number of operations required by the algorithms
show that Algorithm 3.4, which is based on the correlation, is the best algorithm to use. This
algorithm is independent from intensity changes and even requires the least operations of the
tested algorithms. This confirms that # can be chosen small since it does not have influence on
the luminious intensity.

This algorithm is also robust, since only detection takes place if a object is passing. When
nothing passes the railroad crossing nothing is detected.

To supress the noise the image can be averaged over its position. By this technique the influence
of noise is filtered. A big disadvantage of this technique is the number of operations required for
this technique, as shown in Section 3.6. A better method to filter noise is to flatten R this is
done using the exponential adaptation as described in Section 3.5.

In further research it may be useful to only use the Y-channel of YCbCr-colorspace or grayscale
images. Besides that it is currently unknown how REORR will react on wheater changes like rain
or snow. Unfortunately from the available video’s it was not possible to test these situations. For
these weather situations it might be interesting to research the possibilities of a infrared camera.

Now define Lo as the limit for REORR to detect a vehicle. So if

REORR 2 Lmot

a vehicle is detected.
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Chapter 4

Detection of dangerous situations

In the previous chapter several indicators, Ry, are discussed for detecting motion. The method
with correlation, REORR, is the most likely method for detecting motion. So from now on Ry is
defined as:

Ry, := RJORR

This chapter treats an expansion on motion detection to detect stationary objects abd other
dangerous situations on the railroad crossing, see Figure 4.1. To test this, measuring loops are
placed onto the video and the value of Ry, is further investigated.

4.1 Algorithm

Chapter 3 already defined that a vehicle is present if
Rk > Lmot‘

As was seen in some of the figures where R; was shown, R rises when a vehicle drives into
the measuring loop and it goes down if the vehicle drives out of the measuring loop. When a long
vehicle (for instance a lorry) is driving by, R fluctuates for some time. But when a vehicle is
stationary, Ry does not fluctuate in the ideal case.

So by keeping up the latest values of R; and comparing these values, theoretically it might
be possible to detect stagnation of objects on the railroad crossing. The choice for comparing the
values is done by checking if the absolute difference, Dy, of Ry and Rj_1,

Dy, Ry — Ry, (4.1)

camera .
inpu Image
".'.‘.'7.;..;"':." N check
mm solid objects
X »
T ,/  distinguish types
of traffic
background 8B e
detection
audio

»  audio analyser

Figure 4.1: Overview of the application (stagnation)
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is less then or equal to a specified value d,
D <d.

When this is the case, start a counter which keeps track for how long Ry has not changed.
When the difference of Ry, and Ry is outside the range (greater than d) the counter resets,

counter = 0 if D,<d
counter = counter +1 otherwise

If the counter is above a certain level, W, the application gives a warning status. The technique
described is shown in Algorithm 4.1.
The check for stationary objects only puts into effect if R; has crossed the border of motion,
Lmota
Ry > Liot-

This is because otherwise a foul seem to be detected when there is no traffic. Since the value of
R, remails also almost flat when nothing is going on.

Algorithm 4.1: Detection of stationary objects [Section 4.1

Input: Ry, R

Output: foul boolean

if Ry, > L0t then

D), — Calculate the difference between Ry and Ry_;
if D), < d then

| counter = counter 4 1

else
| counter =0

end
if counter > W then
| foul boolean = 1
else
| foul boolean = 0

end
end

4.2 Simulation

To test Algorithm 4.1 a function is written in which Ry, is simulated by fantasy data. For the test
of the algorithm these numbers are first filtered on level 0.4, meaning that numbers below 0.4 are
set to zero. This is the same as defining

Lmot :=0.4

Rk — { Rk if Rk > Lmot
’ 0 otherwise ’

The next step is to determine the relative difference between two successive values. If Dy, is
below 0.25 (so d = 0.25) the counter is increased. Until it reaches the value four (so W = 4), then
a warning message is displayed. When the counter is above seven a danger message is shown. The
original data, Ry, Rk and the counter are shown in Figure 4.2.

The values of Lot and d are chosen for this simulation. These values do not correspond for
each video. More information about choosing the value for L, is found in Chapter 5.
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Figure 4.2: Results of the simulation (Section 4.2)

4.3 Reality

From Section 4.2 it can be concluded that Algorithm 4.1 is working well for this simulation. Now it
needs to be tested on a real video. Since there was no video available in which a car was stationary
on the railroad crossing it was made from another video. In sample video 1 a car is driving by
at frame 230. A new video is created where frame 230 is strechted for four seconds (96 frames if
fvideo = 24 Hz). The rest of the frames are kept in place. Now in this new video it looks like at
Xo3g a car is stationary on the railroad crossing. The result of Ry is shown in Figure 4.3.

1 : : ! : , . N——
0.9} Loop 2|4
osf
07
06

o« 0.5 {
0.4} ]
0.3} 1
02t 1
o1 J |

% S0 100 150 200 250 300 350 400

frame number (k}
Figure 4.3: Ry, for the video with stagnation

From Figure 4.3 it can be concluded that it is easy to see where a vehicle is stationary.

4.4 Position of the loop

As shown in Figure 3.3a to detect the moving objects two measuring loops have been placed on
the railroad crossing. The first loop is usually placed in front of the railroad. Stationary objects at
this position is not a dangerous situation. For instance this can occur when a vehicle is stationary
because the barriers are closed. A more dangerous situation is created when a object is stationary
at the second measuring loop. Usually this one is placed at the end of the railroad or on the
railroad itself, see for instance Figure 3.3a. So it is better to apply Algorithm 4.1 only on the
second measuring loop, this even takes less operations.

Another approach is to introduce an extra measuringloop, positioned over the whole railroad.
For instance like is done in Figure 4.4. Name this loop the ‘loop 12’ since it lies between loop 1
and loop 2. Ry is denoted as Rz .
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Definition 4.4.1. Rjp is defined as Ry, for the ‘stationarity loop'.

An advantage of this method is the possibility to detect other fouls like driving through the
red light. This is the case when for instance the barriers are already closing or are still opening.
Another dangerous situation is crossing the railroad while the barriers are closed. For instance by
slalom driving around the barrier or crawling underneath the barriers.

Figure 4.4: Measuring loop on railroad

By the position of the extra measuring loop these fouls can be detected. If the barriers are
open then this measuring loop can be used to detect stationary objects. In this scenario, Ria 4,
must be fluctuating when it is above L. In the other scenario when the ligths are are on, in
this case a train is approaching and the barriers will go down, this loop needs to be empty and so

Status: ‘Safe’ if Rstack < Lot
Status: ‘Danger’ otherwise ’

Except when a train is driving by, in this case Rjs 4 is larger than L. This situation is detected
by the measuring loops for the train, see also Figure 3.3b. Since R;s; is based on the correlation
method as described in Subsection 3.1.4 there is no easy way to determine the direction of the
train using loop 12. Even better is to disable the loop when a train is detected since it has no
additive value.

Another advantage of this extra loop is the sampling frequency. For this loop it is not needed
to perform this check at a frequency fyideo. Figure 4.5 shows R;2 ) for various frequencies applied
to sample video 14.

As can be seen the fastest result is with fyigeo = 1. This is clear since this takes the least
number of frames. For the results in Figure 4.5,

1

5= To000°

corresponding to tee; & 1919 seconds. Filtering the signal is not useful in this case because then
Ry, is affected by the previous values resulting in a less straight line. So

,612 = la

or said differently: filtering is totally skipped. In this video a car was stationary, but when vehicles
are driving on, this also needs to be concluded from Rijs ;. Besides that a changing luminious
intensity should again be skirted. To test if this technique satisfies these conditions, it is applied
to sample video 3. The results for this video are shown in Figure 4.6. These figures show that
the technique is working. The value of Rip 4 is fluctuating when a vehicle is driving on and the
luminious intensity does not influence the value of R .
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Unfortunately there were no videos available where vehicles are driving around the closed
barriers or where people cross the railroad while the barriers are closed. Also there was no video
available where a vehicle drives through the red light.

The last problem can be solved by defining at which frame the ligths turn off. In the final
scenario this is done by the application. For this test situation, define a k for which the lights
turn on and a k for which they turn off for the last time.

Definition 4.4.2. Light,: the value of k£ for which the lights turn on for the first time.
Lightgq: the value of k for which the lights turn off for the last time.

Between these two frames there must be no motion in ‘loop 12’. So
Rizj < Limot, k= [Light,, ... Light.g].

Example 4.4.3. Now for instance take a video where a train is driving by. By visual scoring
it is known at which k the lights turn on and off and at which & the first vehicle is driving on
the railroad after the barrier has opened. By setting Light, g later than the frame where the first
vehicle is driving through ‘loop 12’ a foul is simulated to see if it is detected. The detection of
fouls can be added to Algorithm 4.1 resulting in Algorithm 4.2.

Algorithm 4.2: Foul detection [Section 4.4]
Input: Rk, Riox—1
Output: foul boolean
if Rstat,k > Lo then
if Lights are on then
| fool boolean = 1
else
D). — Calculate the absolute difference between Rj2 ) and Rz

if D), <d then
| counter = counter + 1

else
| counter = 0

end

if counter > W then
| foul boolean = 1

else
| foul boolean = 0
end
end
end

4.5 Solid objects

The technique used for the detection of staionary vehicles can also be used to check the presence
of solid objects like the andreas cross and fences, see Figure 4.7 and Figure 4.8. The rate at which
these areas needs to be checked can be very low, say once in a quarter of an hour. Usually these
areas do not detect motion, or at least the difference between Rj, and Rj_; is small.

If the difference between these two values is not small this denotes that motion is at this place.
This can be caused by several possibilities. A first scenario is when for instance pedestrians come
by, they are seen as a change in the image in comparison with the background and so they are
denoted as motion. A second scenario is when something is broken for instance by vandalism.
This scenario also yields to a difference and is denoted as motion.

In the first scenario there is nothing to worry about, since after a little while this motion is not
denoted any more. At the other scenario it is not desirable if the motion is not denoted any more.
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Figure 4.7: Overview of the application (solid objects)

Figure 4.8: Railroad crossing with andreas cross and fence
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This situation is solved by increasing the rate at which the images are checked when motion is
detected for instance up to once per five minutes. If Ry again differs from Ry_;, this is because
there was a moving object. If it does not differ this is caused by a solid change, like a broken
fence.

Conclusion

Stationary objects may be detected by researching the development of Ri. When a vehicle is
driving by this value fluctuates in contrast to the case when a vehicle is stationary. Then the
value of R; does not fluctuate, it is more a flat line and so this makes it possible to detect
stagnation at the railroad crossing.

To detect other fouls, like crossing while the lights are on, an extra measuringloop is placed
on the railroad itself. This loop checks for detection of motion while the lights are on. This check
is skipped when a train is passing, since in this scenario it is obvious that motion is detected in
this loop. The frequency sampling for this loop is set to one per second. This is done to save
operations.

The check of solid objects can also be done by the technique of stagnation. For future work it
is advisable to define seperate areas for these objects self. In this way it is easy to detect at which
position these objects are broken.



Chapter 5

Distinguish different types of
traffic

Chapter 3 discussed algorithms for detecting objects. The results showed that Algorithm 3.4 based
on the correlation between the image, X, and the background, By, was the best algorithm for
detecting objects. As seen in the general results, there are several types of objects passing the
railroad crossing. So the next step is to distinguish these different types of traffic, see Figure 5.1.
This chapter discusses some methods which are researched to discern these types of objects. There
might be several better methods but these are not discussed in this research.

5.1 Algorithms for distinguishing

To distinguish the different types of traffic, several properties of the vehicles are discussed. The
next sections research the following attributes of the traffic.

velocity between loops (see Subsection 5.1.1)

e ‘velocity’ when entering loop (see Subsection 5.1.2)

value of R;, (see Subsection 5.1.3)

length of vehicle (see Subsection 5.1.4)

- check for
c?;::ﬁ;a et image dangerous situations
pemen. Ry check
image and
background
X >
background XaB s
detection
audio

»  audio analyser

Figure 5.1: Overview of the application (types of traffic)
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5.1.1 Velocity between loops

When two measuring loops are placed onto X}, like in Figure 3.3a it is possible to measure the
speed (S;) of the vehicles if the distance between the measuring loops is known. Here j denotes
the vehicle number. This speed can tell something about the vehicle type. If the speed is above a
fixed limit Lepeeq the vehicle is typed car, while it is typed cyclist if the speed is below Lgpeed,

_f car if 55 2> Lgpeed
typej - { cyclist if Sj < Lspeed )

Since now there are two measuring loops there will also be two indicators of Ry, one for each loop.
The indicator where traffic enters the railroad crossing, is denoted by Rjj. The second indicator,
where the traffic is leaving the railroad crossing, is denoted by Ray.

Algorithm 5.1: Types of traffic (velocity between measuring loops) {Subsection 5.1.1]

Input: Ry, Rop
Output: type of vehicle
if le Z Lmot then

| frame;:=k

end

if Ryp, > Lot then
| frameg:=k

end

Time « (frames - frame;) divided by fiideo
§; « Distance divided by time
if S; > s then
| typej:= ‘car’
else
| type;j:= ‘cyclist’
end

A disadvantage of Algorithm 5.1 arises if it is getting busy at the railroad crossing. This may
cause slow driving cars to be seen as cyclists. So this algorithm is not robust.

5.1.2 “Velocity” when entering loop

Instead of determing the type by the speed between the two measuring loops, it is also possible
to take a look at the speed with which the vehicle enters the measuring loop. Since a car is wider,
it fills the measuring loop faster and so this may be an indicator for the type. For stagnation
detection, see Chapter 4, the difference is determined according to (4.1). For a car this value is
larger than it is for a cyclist. By checking if this value is above a fixed limit Lg;g it is possible to
give a type to the vehicle which has just entered the loop.

It is even better not to look at the last two values, Ry and Rj_1, but at some more values. For
instance by taking the absolute difference of R* (see (3.15)). Then there is a better approximation
of the difference and it can be established better which type the vehicle is. Since a car is usually
wider than a cyclist, for a car Ry rises faster in comparison with a cyclist. Even if vehicles are
accelarating by the width of a car, the value of Dy, will be larger;

_ car if Dy > Lqig
type; = { cyclist if Dg < Lgig ~

The same can be done by the other measuring loop. If both types are the same there is a clear
type for the vehicle. So Algorithm 5.1 can be adjusted to Algorithm 5.2.

5.1.3 Value of R;

As can be seen in the figures in Section 3.2 up to Section 3.4 the different types of vehicles have
different peak values for Rj. This is a good indicator for characterizing the traffic. A car is wider
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Algorithm 5.2: Types of traffic (loop entering velocity) [Subsection 5.1.2]

Input: Ry, Rok
Output: type of vehicle
if Ryx > Ly then
Dy, +— absolute difference of [ Rij—ry1 Rig—r-2 ... Rip—1 Rip ]
if le 2 Ldiﬁ' then
| type;:= ‘car’
else

| typep:= ‘cyclist’
end
end
if Ry > Lot then
Doy, — absolute difference of [ Ry x—rt1 Rig-r-2 ... Rig-1 Rip |
if Doy > Lyif then
| typea:= ‘car’
else

| types:= ‘cyclist’
end
end

if type; = types then

| type;:= type;
else

| typej:= ‘unknown’
end

than a cyclist, so a car covers a larger area of the measuring loop resulting in a higer value for
Ry.. Two side by side driving cyclists which cross the railroad crossing, cover not that much of the
loop as when a car is passing. The peak of Ry for these cyclists is still lower than the peak of Ry
when a car is passing. If Ry, is larger than Ly, the vehicle is typed as a car and if Ry, is less than
Lar the vehicle is typed as a cyclist,

_f car if Rp > Lear
type; = { cyclist if Ry < Lear ~

This technique is described in Algorithm 5.3.

5.1.4 Length of the vehicle

Another property which may characterise the type of the vehicle is its length. The length of a
cyclist is usally less than the length of a car. Since the speed of the vehicle is known, S;, and it
is possible to see for how long the vehicle is in the loop, t;, the length of the vehicle is known.

length of vehicle j = Sjt;

When the length is above a fixed limit, Liength, the vehicle can be typed as a car. Otherwise
it is denoted as a cyclist,

tvoe. = 4 T if length of vehicle j > Liengn
yPe; = cyclist if length of vehicle j < Liengen

This technique is described in Algorithm 5.4.

Algorithm 5.4 also uses the calculation of S; from Algorithm 5.1, so it is useful to combine
these techniques. It is even better to combine all four properties. The more properties to be
checked the better the result is.



62 CHAPTER 5. DISTINGUISH DIFFERENT TYPES OF TRAFFIC

Algorithm 5.3: Types of traffic (value of Ry) [Subsection 5.1.3]
Input: Ry, Ro
Output: type of vehicle
if Ry > Lot then

if Rir < Loy then
| typei:= ‘cyclist’

else
| typej:= ‘car’

end

end

if Ror > Lo then

if Ry < Lo, then
| types:= ‘cyclist’

else
| types:= ‘car’
end
end
if type; = type; then
| type:= type;
else
| type:= ‘unknown’
end

5.1.5 Combining the algorithms

Algorithms 5.1 up to 5.4 can be combined to one general algorithm. So the properties for the
velocity between the loops (S;), the ‘velocity’ when entering the loop, the value of Ry and the
length of the vehicle all define a ‘type;’ and a ‘type,’. Comparing all these properties every time
a vehicle enters the loop is useful but takes a lot of operations.

Even better is to clasify the algorithms first. This is done by using a scatter plot, see [13].
For every available video where traffic is driving by, visual scoring is done. The results are shown
in the first collumn of Table 5.3. For every crossing vehicle its length,, lengtho, Dy, Do, Ry
and Ry, are measured. The speed, Sj, is left out, since this is already processed in length;; and
lengtha;. This data is plotted in 3D-scatter plots, see Figure 5.2. The different colors of the points
in these figures stand for different types of traffic. Table 5.1 gives an explanation of these colors.

Remark 5.1.1. By the results of R; ; (¢ = 1,2) for alle videos (Appendix A.5) and visual scoring
it was possible to choose a value for Lo,

Lmot =0.2.

This value works fine for almost every tested video except for sample video 6. The luminious
intensity of this video was lower and so Ry is multiplied by a factor two, otherwise R; ;. (i = 1,2)
does not reach Lpgq.

It might happen that a car and a cyclist are driving side by side or just consecutively such
that the cyclist is denoted first. What happens then is that it is typed as a car from the value
of Ry but by D, ;, the entering velocity part, it is typed as a cyclist. Since the car is driving
faster this car reaches the second measuring loop before the cyclist does. So the second measuring
loop denotes in both cases ‘car’. Since the check for the speed also announces ‘car’, the output
of Algorithm 5.5 is in this case ‘car’. The consequence is that the cyclist is not noticed. So an
extra type (instead of only ‘car’ and ‘cyclist’) is defined called ‘car + cyclist’. This occurs when
the type is ’car’ according to the value of R;; for ¢ = 1,2 and the type is ‘cyclist’ by the value of
Dy fori=1,2.

The plots in Figure 5.2 do not give a clear overview if the vehicles are scattered. For this
reason also 2D-scatter plots have been made. The results are shown in Figure 5.3. The colors are
the same as explained in Table 5.1.
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Algorithm 5.4: Types of traffic (length of the vehicle) [Subsection 5.1.4]

Input: Ry, Rop
Output: type of vehicle
if Ryj > Ly then

| timeOn; :=k
end

if Ry < Lo then
| timeOff; :=k
end

t1; + timeOn; - timeOff;
if Ror > Lot then

| timeOns, :=k
end

if Rop < Lo then
| timeOffy :=k
end

ta; — timeOn; - timeOff;

Time «— (timeOns - timeOn;) divided by fyideo
§; « Distance divided by Time

lengthy; «— Sjt1;

lengt;hgj — Sjtgj

if lengthy; > Lienger then

| typep:=‘car’

else

| typei:=‘cyclist’

end

if lengthgj Z Llength then
| types:=‘car’

else

| types:=‘cyclist’

end

if type; = types then
| typej:= type
else

| typej:= ‘unknown’
end

Table 5.1: Legend for the scatter plots

vehicle type symbol color
car + blue
cyclist X red
car + cyclist * green
moped ) blue
lorry O black
two cars | pentagram | cyan
two cyclists | hexagram | magenta
two walkers o yellow
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(a) loop 1 (b) loop 2

(c) loop 1 (d) loop 2

(e) loop 1 (f) loop 2

Figure 5.2: 3D scatter plots
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The results in Figure 5.3 show that the cars and cyclists are clustered the best when Dy ; is
plotted against Ry ;. So Dy ; and Ry ; for i = 1,2 might be the best methods to classify the traffic.
The length; ; (¢ = 1,2) can be used to detect two consecutively or side by side driving vehicles.
The combination of Algorithms 5.2 up to 5.3 leads to four different checks of the type;

e type; p:= type of the vehicle on loop 1 based on Dy

e types p:= type of the vehicle on loop 2 based on Dy

e type; r:= type of the vehicle on loop 1 based on Ry
e types r:= type of the vehicle on loop 2 based on Ro,

The combinations of these types leads to several possibilities. For instance when the vehicle
is typed ‘car + cyclist’ at the first measuring loop and typed ‘car’ at the second measuring loop.
The chance is great that this was a car and a cyclist. Some other possibilities are explounded in
Table 5.2. Now the algorithms can be combined into one general algorithm shown in Algorithm 5.5.

Table 5.2: Several possibilities of type combinations

typei,p | typei,r typey typez,p | typea.r types result
cyclist | cyclist cyclist cyclist | cyclist cylist cyclist
car car car car car car car
cyclist | cyclist cyclist car car car depends on speed
car car car cyclist | cyclist cyclist depends on speed
cyclist car car 4 cyclist || cyclist car car + cyclist car + cyclist
cyclist car car + cyclist car car car car + cyclist
car car car cyclist car car + cyclist car + cyclist
cyclist | cyclist cyclist cyclist car car + cyclist car + cyclist
cyclist car car + cyclist || cyclist | cyclist cyclist two cyclists

5.2 Placement of measuring loops

The current application has a small measuring loop [9]. For this new situation there should be
placed a loop over the whole road, just as in Figure 3.3a. In this way every vehicle drives through
the measuring loop. Since the camera is not standing straight ahead on the railroad crossing, it is
better to place a loop such that it is a bit obliquely. For easy programming there has been taken
five measuringloops placed such that it forms a skew measuring loop. Figure 5.4 shows this idea.
Since there are now five measuring loops at each side and two measuring positions there are also
ten different values of R;, 4 € 1,2,...,10. All ten are treated as described before.

5.3 Test results for the algorithm

For testing Algorithm 5.5 (combined with Table 5.2) the values of R; x,% € 1,2,...,10 are cal-
culated based on correlation, Algorithm 3.4 (Subsection 3.1.4). The types of the vehicles are
determined with Algorithm 5.5. The script contains some extra commands which are not de-
scribed in Algorithm 5.5 these are used to display and store the measured data correctly.

Before Algorithm 5.5 can be tested, first some variables as Lear, Laiff, Lspeed: Liength, 3, B must
be defined. These variables can be defined using the scatter plots in Figure 5.3. The scatter plots
can be used to see how many red (x), green (*) and magenta (hexagram) points lie above Lgig
and how many blue (+), black () and cyan (pentagram) points lie below Lgig. By minimizing
the sum over these two values the optimal Lg;g is found. This same technique can be done for the
value of Lcar. As said before a value for Ly was chosen to be 0.2 based on visual scoring. Also
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Algorithm 5.5: Types of traffic (combination of algorithms) [Subsection 5.1.5]

Input: Rig, Rok
Output: type of vehicle
if le Z Lmot then
Dy, — absolute difference of [ Rik-ry1 Rik—r-2
frame;:= k
if Dix 2 Laiy then
| typei,p:= ‘car’
else
| typei,p:
end
if Rix > Lear then
| typei,r:= ‘car’
else
| typei,r:= ‘cyclist’
end
end
if Rox > Lot then
Doy «— absolute difference of [ Rak—rs1  Rak—r—2
frames = k
if Dax > Laig then
| typez,p:= ‘car’
else
| typez,p:= ‘cyclist’
end
if Rar > Lcor then
| types,gr:= ‘car’
else
| typez r:= ‘cyclist’
end
end
S;j «— distance times fyiqeo divided by (frame; - frame;)
switch type:,p, typei,r, typez,n, types,r do
case lypei,p = typez,p and typei,r = typez,r
if typei,p = types,p then
| result:= typei,p
else
if Sj > Lspeea then
| result:= ‘car’
else
| result:= ‘cyclist’
end
end
ase typer,p # typei,r and type2,p # types,r
if S; > Lspeca then
| result:= ‘car’
else
| result:= ‘cyclist’
end
ase type1,p # lypei,r Tor types,p # typez,r
if type;,p = typez,r then
| result:= typei,p
else
| result:= types,r
end
end

end

‘cyclist’

]

[}

Rit ]

Rayx |
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Figure 5.4: X of sample video 2 with extended measuring loops

the value for Lgpeed is chosen based on experiences. This yields the following set of variables,

A = 0.0001
ﬂ . ln21400
Loy = 0.2
Laig = 0.05
Lopeeda = 30
Leor = 0.6,

is used to test Algorithm 5.5 (combined with Table 5.2). Table 5.3 displays the results.

Remark 5.3.1. For sample video’s 3, 4, 5 and 7 the measurements did not start at £ = 1 but at
another value. This is because first a train is crossing and to prevent that the train is detected as
a car by the algorithm the videos started somewhat later. In the column reality there is a term
‘(cyclist)’ this is because a cyclist is crossing loop 1. But does not cross loop 2, see Figure 5.5.

Figure 5.5: X369 from sample video 13

Some other remarkable facts are for instance that the stationary car in sample video 14 is
detected as two cars. This is because the check for stagnation was not implemented in the script
for traffic detection. Something else are the two pedestrians in sample video 8. These two are
walking on the road for a short time such that they are detected as vehicles, normally these two
are not noticed. An extension for the traffic detection is by introducing an extra measuringloop
placed above the other measuringloops. If the value of Ry for the lower and upper loop are both
above their limit then a high vehicle is driving by. In this way it is possible to detect ‘high traffic’
like lorries.
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Video Reality Algorithm
Sample video 1 lorry - car car - car

Sample video 2

car - car + cyclist - car

car - car + cyclist - car

Sample video 3
(start 250)

car - car - two cars driving
consecutively - cyclist + car
- two cyclists - car - car

car - two cars - car + cyclist
- car + cyclist - car - car

Sample video 4
(start 800)

cyclist - car - car - car - cy-
clist - two cyclists - car

cyclist - car - car - car - cy-
clist - two cyclists - car

Sample video 5
(start 900)

cyclist + car - car - car - car
- car - car - car - car - car -
moped - car - car - car - car
- car - car - car - car - car

two cars - car - car - car -
car - car - car - car - car -
car - car - car - car - car -
car - car - car - car - car

Sample video 6
(loop 1 x2)

moped - car - car - car -
lorry - car - car - car

car - cyclist - car + cyclist -
cyclist - car - car - car - car

Sample video 7
(start 100)

car - car - car + trailer - car
- car - car - car - car - car -
car

car - car - car - car - car -
car - car - car -~ car - car

Sample video 8

cyclist - two pedestrians

car + cylist - car

Sample video 9

moped - car

car - car

Sample video 10
(start 750)

car - car

car - car

Sample video 11

car - car - cyclist - car - car
- cyclist - cyclist

car - car - cyclist - car - car
- cyclist - cyclist

Sample video 12

car - cyclist - car - car - cy-
clist - car

car - cyclist - car - car +
cyclist - car - car

Sample video 13

cyclist - car - car - car - car
- car - car - car - car - car
- (cyclist) - car - car - car -
cyclist - car - car - car - car
- car - car - car - car - car -
car - car - car - two cyclist
+ lorry - car - car

cyclist - car - car - car - car
- car - car - car - car - car -
car - car - car - car - car +
cyclist - car - car - car - car
- car - car - car - car - car -
car - car - two cyclists - car
- car

Sample video 14

lorry - stationary car

car - two cars

Table 5.3: Results of the algorithm for type detection of the vehicles
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Conclusion

From Table 5.3 the conclusion can be drawn that Algorithm 5.5 (combined with Table 5.2) is in
88% of the cases correct. Some cars are typed as cyclists and some cyclists are typed as cars. This
has to do with the luminious intensity of the video’s, since the intensity is not the same everywhere.
This yields that the values of Ry are not the same in every video. A hundred percent result (with
this algorithm) is therefore almost impossible since in every situation there are different situations
for the environment. These results are the optimal result for the tested video’s with for every
video the same settings.

In future work it is advisable to implement a calibration for the video’s. Adaptation of the
variables to the luminious intensity yields even a better result, but problem is how to find a
relation between the luminious intensity and the variables for the distinguishment of the objects.
As shown in Table 5.3 for sample video 6 R, is for instance already multiplied by a factor two.
This can be skirted by dividing the limits by two for this video. But then all other video’s give a
worse result.

As discussed in the conclusion of Chapter 3 it is unknown how REORR will respond to other
weather situations. Besides that there might be other methods to clasify the traffic which are not
investigated in this research.



Chapter 6

Barrier detection

Previous chapters discussed the detection and distinction of the several types of traffic. As dis-
cussed in the introduction another important check of the application is the detection of the
barrier. See also the overview in Figure 6.1. This detection is used to see if the barrier is making
the correct movement. There are several techniques which can be used for detecting the barrier
movement, in terms of the angle . This chapter treats some of these techniques, namely:

e Detection based on masks (see Section 6.1)
e Detection based on least square fitting (see Section 6.2)

e Detection based on total least square fitting (see Section 6.3)

6.1 Detection based on masks

The current application uses the technique of masks to check the barrier [9]. For each barrier
angle a mask is generated beforehand. The barrier is then easily detected by checking which mask
matches best. Figure 6.2 shows this schematically. Here ten different masks are taken, in reality
ninety masks are used for a better accuracy.

One way to speed this up is by checking a certain area around the last detected angle. (If the
angle at X; was « then the angle at X;; lies around a.) This accelerates the application, since
fewer masks needs to be checked. A disadvantage of checking fewer masks is that large errors (for
instance by a technical disturbance the angle is lowered a lot in one frame) are not detected. This
may cause that the application is in alarm status while nothing special is going on.

N check for
cf.f;:ﬁfa - image % ¥ dangerous situations
| between Ry check
bah:gm solid objects
X« >
. distingulsh types
of traffic
background B 8B,

audio "
»  audio analyser

Figure 6.1: Overview of the application (barrier)
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Figure 6.2: Sample video 10, Xsgo with masks

The technique of the detection by masks is summarized in Algorithm 6.1. (Algorithm 6.1 can
be accelarated by checking the masks around the last ¢ instead of all possible masks between 0°
and 90°.)

Algorithm 6.1: Barrier detection based on masks [see Section 6.1]

Input: Masks, Coordinates z and y
Output: o
for i — 0 to 90 do
foreach pair (z, y) do
if (z,y) € Mask; then
| counter; = counter; + 1
end
end
end
a = {i |counter; is maximal }

6.2 Detection based on the least squares method

Another way to detect the barrier is by using the least square method [17]. If there is a set
consisting of z and y coordinates the least square method is able to find a straight line through
these points,

Ybess () = a + bz

such that

l
Z (ybest(ml) = yz)z
i=1

is minimized. This can be rewritten in

n a T €1 Y1 1 3] €1
Y2 a Z2 €2 Y2 1 Za €2
ys | = | @ | yp| T3 | 4| €3 = y3 | = |1 {g+p| 3 | 4| €3

77 a T €l Y 1 L] €
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and in matrix formula, Az = b,

Y1 1 =
Y2 1 zo
ya | o~ |1 @ |x [ ‘g ] (6.1)
: . ——
un 1 = 1
N — \_X—/
b

such that it can be solved easily, where [ is the number of found coordinates for the barrier. If a
and b are known it is easy to determine the angle a by

a = arctan (b) 1—18r—0- (6.2)

A problem for this method is the rotation. When « approaches 90° the distance between the
coordinates and the ideal line is very large since the least square method is looking at the vertical
offset. Figure 6.3a shows schematicly what is happening when « approaches 90°. One way to
solve this problem is by flipping the axis, as has been done in Figure 6.3b. In this way the errors
are less, such that the coefficients are more accurate. Unfortunately there is no good value for k&
at which the axis should be flipped.

X—

T
>

X-> y=
(a) Normal schedule (b) Flipped schedule

Figure 6.3: Schematic representation of a =~ 90°

Algorithm 6.2 shows an algorithm to calculate o based on the least square method.

Algorithm 6.2: Barrier detection based on least squares [see Section 6.2]
Input: Coordinates z and y
Output: o
a,b — least squares solution to (6.1)
o = arctan (b) 180
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6.3 Detection based on the total least squares method

The total least squares method is based on the perpendicular offset of the data in relation to the
best line [14, 18]. Figure 6.4 shows this schematically.

T

X—

Figure 6.4: Schematic representation of perpendicular offset

The slope based on the total least square method can be calculated using the Singular Value
Decomposition (SVD). SVD is a matrix-factorisation. More information about SVD can be found
in [14]. According to Theorem 6.3.1 the best approximation with respect to the perpendicular
offset is given by a column vector times a row vector.

Theorem 6.3.1. Given a matriz A € R**™. A rank one matriz K minimizes the Frobenius
norm ([14]) of A - K,

14 = K1l zzos 6:3)
if

K= U10'1 Vl*
with U,o and V from the SVD of A. Where Uy is the first column of U, o, is the first singular
value of A and Vi is the first column of V. O

This is also known as the Eckart-Young-Mirsky matrix approximation theorem [11, 14]. First
a lemma is defined which is needed to proof Theorem 6.3.1.

Lemma 6.3.2. Let w be a column with norm 1 and o1 be the first singular value of a matriz A
then there holds;
sup w} (A*A)w; = o3
lwa=1]|

Proof of Lemma 6.3.2. Take USV as a SVD of A. Since a unitary matrix preserves the length of
a norm;
IV*ws || = |lwi]| = 1.

Implementation of the SVD yields;
w} (A*A)w; = w} (VSSV*)w, = g*S?g,
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where g = V*w; and
gl =1 <= Jlw|l = 1.

So the maximum for g*S2g is o2.

Proof of Theorem 6.3.1. Let K = USV* be the SVD of K. Split matrix V into [ w W ],
where w; denotes a column.
The squared Frobenius norm of A — K is given by;

14 - Kllzros -
Since the norm is unitarily invariant this yields
2 2
1A= Klzros = (A = K) Viizrop > (A = K) W|izrop - (6.4)
Since K has rank one, there holds KW = 0. So (6.4) turns into
| AW |lFrop = tr (AWW*A*) (6.5)
Due to the fact that V' is a unitary matrix there holds,

wi

VVi= [w W] [W*

] =ww] + WW*=1 (6.6)

Implementation of (6.6) into (6.5) yields,
AW I2ron = tr (AL — wiwi] A%) = tr (AA*) — wi (A" A)wy
It follows that ||AW ||2gop is minimal if and only if
wi (A*A) w,
is maiximal. Since w; has norm one by Lemma 6.3.2,
w} (A*A)w; < o3,
with sigma, the first singular value of A. So
|4 - K|2pop > tr (A4*) —0? VK
And with w; = V; (the first column of V from the SVD of A) otherwise;
K =Uyo1V}* From the SVD of A,
equality is achieved. Which completes the proof. [ ]

Before the matrix A is defined first the centered z and y need to be defined.

Definition 6.3.3. Given vector z, the centered Z is given by

I:=x-—1I.
Where T is the mean of .

Now define the matrix A by
A=[z 7

Then the best approximation for A with rank 1 is defined by

K = UlalVl*,
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with U e R1*2, & e R?*2 V ¢ R?*2. Since K has rank 1, the second column is a multiple of the
first column. The proportion between these two values is the slope of the approximated line and

is given by
Va1

Vi

This will give an error if V1 ; = 0. Since V is an unitairy matrix there holds

b

Vv =1
Where V* is the conjugate tranpose of V and I is the identity or unit matrix. So
i+ V=1,
this means that V1,1 and V3 ; lie on an unit circle, see Figure 6.5. As can be seen in Figure 6.5,

Va1
Vit

180 180 180
) 180 _ arcsin|Va 1| — = arccos |V 1| —.
T T T

a = arctan (

Figure 6.5: Unit circle for V5, and V;;

The detection of o by the total least square method can be written in Algorithm 6.3.

Algorithm 6.3: Barrier detection based on total least squares [see Section 6.3]

Input: Co-ordinate vectors z and y
Output: o
T=x—1T
y=y-—19
[U,S, V] =svD(
a = arcsin [Va 1|

7)

T
180
w

A disadvantage of this method is the implementation into C#. The SVD is not a standard
function in C#. Since the matrix V is a matrix of eigenvectors the calculation of eigenvalues and
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eigenvectors may be used. First define a matrix B by

IR &)
B=atd [(m) ||g||2}

Determine the largest eigenvalue, Aq, of B using the characteristic polynominal or the eigenvalue
solvers [1, 14, 19]. The corresponing eigenvector is found by

[ B—A\ ] [ “;1’1 ] =0

2
<1

This eigenvector needs to be normalized for a unitary basis.

Via 1 Vi1 ]

L R 6.7

|: VQ:I ] ‘/1,1 |: V211 ( )
Vaa

The technique is described in Algorithm 6.4.

Algorithm 6.4: Barrier detection based on total least squares with use of eigenvalues [see
Section 6.3]

Input: Co-ordinate vectors  and y

Output: o
I=x—-1%
y=y-7
A=[2z §]
B:=A*A

A1 « largest eigenvalue of B

[ Vi ] +— eigen vector corresponding to A;
2,1

Normalize the eigen vector using (6.7)

a = arcsin |V, | 182

6.4 Detection based on L;-approximation

Instead of minimizing the squared distance between the approximated line and the coordinates, the
L-approximation minimizes absolute distance between the approximated line and the coordinates,

!
min Z lyi — (a+ bz;))- (6.8)
i=1

Since the absolute distance is minimized heavy peaks have less influence to the best line approxi-
mation. This type is an exmaple of Linear Programming (LP) problem. In general a LP-problem
is defined as
minimize fTz
subject to Az =1b (6.9)
x> 0.

More information about LP-problems can be found in [15].
To rewrite (6.8) into the form of (6.9), express y; as

yi=a+br;+u—v;, u;>0,v,>20 i€l,... L
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The new objective is to minimize the sum of u and v. Written as LP-problem:

a
b
ur
minimize [0 0 1 ... 1]
w
U1
R
[ o ] (6.10)
b
1 2z 1 0 ... 0 -1 0 ... O Uy i
1 2z 0 1 0 0 -1 0 : Y2
subject to Co w |~ :
1l zp 00 ... 1 0 o ... -1 U1 Yl
L vt |
u>0 v>0

One way to solve this LP-problem is by using the Simplex method. More information about
the Simplex method can be found in [10].
Algorithm 6.5 shows the calculation of o based on the L; approximation.

Algorithm 6.5: Barrier detection based on linear programming [see Section 6.4]

Input: Co-ordinate vectors z and y
Output: «

a,b « solution of the LP-problem (6.10)
a = arctan (b) 182

6.5 Finding the coordinates

Sections 6.1 up to 6.4 describe algorithms for calculating the angle . As described these algo-
rithms need coordinates (z;, y;) for the calculation. Chapter 2 already specified an algorithm for
background adaptation. By comparing the current background with the current image it may be
possible to high light the barrier such that it can be detected. To detect the coordinates of the
barrier this section treats some methods.

6.5.1 Threshold

The easiest way to find the coordinates of the barriers is by using the threshold algorithm described
in Subsection 3.1.1. Make every pixel white when its pixelvalue is above the threshold and black
if the pixelvalue is below the threshold,

I(i,j,¢, k) := |X(i,j, ¢, k) — B(i, 4, ¢, k)|
. 0 if 2, I(i,4,c,k) <6 (6.11)
Io(3,5,k) = =1 \L R GRSV
o(i, 5, k) {255 if S0 I(,j,c,k) > 0

The positions of these white pixels are the coordinates needed. It is not useful to check the
whole image, but only check the loop where the barrier is moving. See also Figure 6.6, which
displays the measuring loop for various frames.
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(a) Xu (b) X200 (c) X400

Figure 6.6: Various frames for sample video 10

6.5.2 Background

‘To determine this background Algorithm 2.2 (exponential adaptation) on page 22 is used. For
the detection of the barrier a faster background adaption, (3, is desired. Since with a larger 3 the
background adapts faster such that the influence of the previous frames is less. Here (3 is set to
1‘1‘010%0 ~ 0.0046, which corresponds t0 teet barrier = 41.67 seconds.

Algorithm 3.1, based on threshold, uses the absolute difference between the image and the

background,

| Xk — Byl

A disadvantage of this technique occurs when the barrier is starting to move. Since the absolute
difference is taken the original barrier remains visible in this difference. This may lead to a wrong
detection of the angle. Figure 6.7c shows the absolute difference for £ = 200. A solution to this
problem is to take the ‘normal’ difference between the image and the background,

Xy — Bg.

By the absolute difference the barrier remains visible. Since negative values become positive. The
normal difference sets negative values to zero resulting in more black pixels. Figure 6.7d shows
the ‘normal’ difference for & = 200. Then (6.11) needs to be redefined as

IG,j,c,k) = X(i,3,¢k) — B(i,j,c k)

. 0 if X2 I(G,5,ck)<0 (6.12)
I ]\7 = =1 " 1 J1 Ly =

o(i, 7, k) { 255 if Yo (i, 4,c,k) > 6.

6.5.3 Colorchannel red

Since the images are RGB-format, it may be useful to apply the threshold algorithm only on
the red-channel. This lowers the number of operations by 2AM/ N, since the summation for the
pixelvalue can be skipped. Besides that it erases some noise and high lights the barrier better
since this is colored red-white-red-etc. Now redefine (6.12) by

[0, = X(,5,1,k) = BG,3,1, k)

; if 105,51,k 6.13

Io(iijy k) = O lf {(21.71 1, I\«) S 0 ( )
255 if I(3,5,1,k) > 6.

Apply (6.13) to Xagp of sample video 10 which results are shown in Figure 6.8. As can be seen
the least noise is in Figure 6.8c. As a matter of fact the chosen 8 in Figure 6.8a and 6.8b has to
be multiplied by a factor three, since there are three color-channels. This adaption is shown in
Figure 6.8d and 6.8e. As can be seen there is no great difference between Figure 6.8c and 6.8e.
But to create Figure 6.8c fewer operations are required.

Unfortunately there is still some noise in Figure 6.8 which disturbs the measuring of the right
angle.
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(c) | X200 — B2oo| (d) X200 — B2oo

Figure 6.7: Normal and absolute difference applied to sample video 10

(a) T1oo(i, 5,200)

(d) I300(s, 4, 200) (e) T300(i, §,200)

Figure 6.8: Threshold applied to Xagg from sample video 10
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Figure 6.9: Too (2,7, 200) of sample video 10 averaged over position

6.5.4 Averaging over position

Section 3.6 already discussed a technique for averaging the image over position to supress noise.
As shown in that section in practice it was not useful for the detection of objects. Since the results
were not that good in accordance to the number of operations it requires. But it may be useful to
use it at the barrier detection. Figure 6.8¢c already showed that the barrier is a straight line, but
still some noise is around it. If the measuring area is averaged over its position according to (3.17)
only the clustered points remain exactly white. By skipping all other values, only the barrier
remains visible. Figure 6.9 shows the result of this technique. The red line shows the measuring
area.

6.5.5 Averaging over time

As was treated in Section 3.5, it is useful to average the signal for traffic detection over time to
smooth it. This technique can also be used to smooth a. Then the course of the angle contains
less noise.

6.5.6 Adapting measuring area

A problem with the techniques described in Subsections 6.5.1 up to 6.5.4 may occur when the
barrier is up, at 90°. If a (red) vehicle is driving through the measuring loop of the barrier the
vehicle may be noticed as a movement of the barrier which causes wrong measurements. To
prevent this the measuring loop can be adapted to the position of the barrier. If the angle, o, and
the length, &, of the barrier, are known, the height and width of the measuring loop are easily
calculated according to;

height := dcos(a)

width = dsin(a). (6.14)

Figure 6.10 shows three frames with the adapted measuring loop.

But this yields the same problem as discussed in Section 6.1. If the barrier falls down a lot
(for instance by a technical disurbance) this is not noticed since the barrier is mostly outside the
area. A small part is still visible but this might be not enough to detect the barrier correctly.

6.5.7 Contour filter

For future work it is advisable to research the possibilities for a contour filter. Since the barrier is
usually a straight line, this can be detected easily by the contour filter. The barrier is generally the
only straight line visible. MATLAB contains a function to create a contour plot of a image. When
this function is applied to X209 — Bago from sample video 10, the result is shown in Figure 6.11.
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(a) Xu (b) X150 (c) X300

Figure 6.10: Adapting measuring loop for sample video 10

Figure 6.11: COI]tOUl'plOt of X'_J_UQ = Bguu
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6.6 Comparing and testing the algorithms

Section 6.5 discussed some techniques for finding the coordinates of a barrier. With the found
coordinates it is possible to calculate o according to the techniques described in Sections 6.1 up
to 6.4. This section compares and tests these techniques.

The first method is based on the detection of masks, see Section 6.1. An advantage of this
technique is the small influence from the noise at the background of the measuring loop. Since
only a small area around the last « is checked, noise that is not in this area is skipped. Besides
that there is only one a which corresponds best to the coordinates. This is shown in Figure 6.12.
All six lines cover the mask, the two middle lines cover the mask best. But there is exactly one
mask which covers the barrier best.

Figure 6.12: Detection based on lines vs detection based on lines

A big disadvantage of this technique is the calculation of which mask fits best. For every mask
a check has to be done for how many coordinates lie in that specified mask. So for every possible
mask around the last « all the coordinates have to be checked if they lie in the specified mask.
The number of operation required to check all masks with a dipersion of & is then O(hl), where [
is the number of coordinates.

Example 6.6.1. Suppose the dispersion of the masks around the last « is +-5° and —5°. Then
for every frame check if the pair (z,y) is within the mask which belongs to a specified angle. This
has to be done for eleven different masks. The mask which covers the most pairs (z,y) is the new
Q.

A faster way may be the technique of the least squares method. This method gathers all
coordinates in a matrix at each frame to determine . The total calculation takes about O(l) op-
erations [14]. Figure 6.13a and Figure 6.13b show the calculation time plotted against . Zooming
in shows that the calculation time is linear in . As described in Section 6.2, there is a problem
with the rotation factor. Switching the axis is useful but then arises the problem at which point
to switch.

A solution to this problem was found in the total least squares method, since this method
minimizes the perpendicular offset to the barrier it is independent for rotation of the barrier. The
number of operations needed for his method is O(!) [14]. To see the development of the calculation
time it is plotted against [ and shown in Figure 6.13c
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The third method which is discussed was the Li-approximation. An advantage of this method
is the fact that is less sensible for noise. If coordinates lie far away from the line, the L;-
approximation is able to ignore these points. The big disadvantage of this method is the number
of required operations, this is approximately O(l*) when the solution is found using the simplex
algorithm. The calculation time is plotted against [ and shown in Figure 6.13d. Instead of the
simplex algorithm MATLAB also is able to a ‘Large-scale’ algorithm. This algorithm is based on
LIPSOL (Linear-programming Interior Point SOLvers, see [20]) and can also be used to solve
the Li-approximation. This also takes about O(I*) operations, see Figure 6.13e. The order of
operations is the same but the large scale algorithm takes fewer operations when there is a large
amount of data points. The more data points, the faster the large scale algorithm is in proportion
to the calculation time of the simplex algorithm.

00 200 %0 0 =] 00 200 £ =3 %0 100 E £ ) %0
router of cosearates M) Purber of coordrsted () mamber of coordrams (§

(a) Least squares (normal) (b) Least squares (flipped) (c) Total least squares

L1 - Sengles L1 - Large scale

100 20 %0 3 B0 100 % %0 [l 500
ot of seerdnates Prmbes of ceoronetes )

(d) Ly (Simplex) (e) Ly (Large scale)

Figure 6.13: Calculation time of the algorithms

All results in Figure 6.13 show a peak at the first values of I. This can be explained by the
efficiency of MATLAB. Table 6.1 shows the operation times of the algorithms applied to sample
video 4. The results for the angle are shown in Figure 6.14.

Table 6.1: Operation times for tested algorithm

Time in seconds
Least Squares | Least Squares Total Ly L,
index (normal) (Ripped) Least Squares | (Simplex) | (Large scale)
1 20.2050 21.3739 22.7826 214.0752 132.1119
2 21.0833 21.1156 22.9899 212.9121 126.2807
3 20.6102 21.6637 21.3123 212.5387 127.0201
4 21.2032 21.2573 20.8572 211.7042 125.9847
5 20.4128 21.1687 20.4009 210.9406 125.7218
6 20.3740 21.3658 20.5204 217.3878 126.3036
7 20.3223 21.1822 21.0053 213.5475 128.4090
8 20.2895 21.5292 21.1978 216.9851 126.8530
9 20.0501 21.5477 20.7715 213.7597 127.1518
10 20.0494 21.3119 208402 213.0759 123.4988
average 20.4600 21.3516 21.2678 213.6925 126.9335
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Figure 6.14: Results for the several algorithms applied to sample video 4

The reason that the L;-approximation require more operations in comparison with the least
square methods can be explained by that the solution technique is based on iterations. The larger
l is, the more iterations have to be done to perform a good solution. This can be skirted by setting
a maximum number of iterations, but this influences the error of the solution. More operations
usually means a smaller error and so a more accurate result.

Table 6.1 and Figure 6.14 conclude that the best algorithm is the total least square method.
The next question is if this algorithm also gives a good resultfor other video’s. Figure 6.15 shows
the results.

These results show a good development of the angle. Visual scoring is done to compare the
results with the real situation. For the tested video’s the value at which the barrier reached 0°
or 90° corresponds with the frame at which the barrier is horizontal or vertical. Figure 6.15d
showed that at k = 200 the angle is approximately 40°. Visual scoring shows that the real angle
is approximately 44°, see Figure 6.16. This figure also displays the barrier at 0° and 90°.

Conclusion

From Section 6.6 the conclusion can be drawn that the total least square method, Algorithm 6.3 in
Section 6.3, is the best method tested for the detection of the angle from the barrier. This is not the
quickest method, which is the least square method (Algorithm 6.2 in Section 6.2). Unfortunately
this method does not work quite well since this method is dependent from the angle of the barrier,
as shown in Section 6.2. The third method tested is based on linear programming, Algorithm 6.5,
described in Section 6.4. This method takes to long in comparison with the (total) least square
methods. So the best method is the total least square method.

The results in Figure 6.15 are acquired with the method of total least squares. A conclusion
from this results can be drawn that this method is working good and is independent for rotation of
the barrier. For the tested video’s all the barriers shows a good path from its original position to
their new position. Not all sample video’s contain two movements (UP-DOWN and DOWN-UP),
but also the video’s which contain one movement (DOWN-UP or UP-DOWN) show a good path.

As described in Section 6.6 a disadvantage for the detection of lines instead of detection based
on masks may be that only one mask may cover the barrier while several lines may cover it. So at
frame k it might be that the angle « is not exactly correct. This is in principle no problem since
the most interesting part is the development of a.
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Figure 6.15: Results for the barrier-detection
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Figure 6.16: Angle of the barrier from sample video 10
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So instead of using the theory of masks it is better to use the technique based on the total
least square method. This method works faster in comparison with the currently used method
based on masks [9]. Besides that it also deploys a good result.

To find the coordinates the several methods described in Section 6.5 can be used. From these
methods the averaging over position may require the most operations. But this is very useful since
the coordinates on the barrier are clustered around the line. Noise points are filtered out on this
way. To find the coordinates it might also be possible to use the contour filter.

Since the camera is not recording on the front side of the railroad crossing but from a angle,
the path of the barrier is a bit distorted. If the angle on which the camera stands is known, it
might be possible to create a better calculation for a.
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Chapter 7

Analysis of the audio

While previous chapters discussed detection based on the images taken from the camera, this
chapter analyses the audio track of the camera. This audio is needed to check the status of the
bell and the number of bells ringing. To analyze the audio it is splitted from the sample video
files. Figure 7.1 shows an overview of the application for the analysis of the audio.

7.1 Frequencies

Figure 7.2 shows an original data file for the audio taken from sample video 4. As can be seen
there is no clear timestamp at which the bells of the railroad crossing turn on and turn off. This
is because the data also contains sounds from the enviroment. By analyzing the frequencies of
the bell it is possible to filter the noise such that the audio of the bell remains. The Fourier
transformation can be used to detect the frequencies of the bells and also to filter the noise.

7.2 Fourier transformation

To determine which frequencies the bell uses, the Discrete Fourier Transformation (DFT) which

maps N numbers, sg,...,Sy—1, onto N numbers Sy, ..., Sy—_1 defined as,
N-1
2ni
= h
Sp = spe” N PR p=0,...,N—1, (7.1)
h=0
A check for
.iar:::{a il image X ™! dangerous situations
| batween Ry | check
=l )
image | solid objects
X N
4 distinguish types
of traffic
background % xams | dcarr
detection
) ST
audio E ‘,Ed'._ ana_lysor' ;
i ar i { BRED

Figure 7.1: Overview of the application (audio analyser)
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Figure 7.2: Original audio file (sample audio 1) taken from sample video 4

is used. Here sy, is the original data. For the calculation of the DFT, the Fast Fourier Transformation
(FFT) is used. This is an efficient algorithm for the DFT. The most common FFT algorithm is
the Cooley-Tukey algorithm [12]. Figure 7.3 shows the absolute DFT of sample audio 1, where as
the original audio file is shown in Figure 7.2. For elemination of the zero frequency, the original
data is first centered around zero.
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Figure 7.3: Frequency spectrum for audio sample 1

As can be seen there are three important frequencies which dominate the audio of the bell.
Visual scoring shows that these frequencies lie at approximately 750 Hz, 1200 Hz and 2000 Hz,
see Figure 7.4. By eliminating these frequencies (setting all other values to zero), only the audio
of the bell remains. To this (new) data, S'p, the inverse Fourier transformation,

2ni

N-1
1 Z h
Shzﬁpzo SpeTp y h:07"'7N_11 (72)

is applied, where S, is the Fourier transformed data from (7.1). Figure 7.5 shows §j, the inverse
Fourier transformation for .§'p.

This figure shows the moments when the bell is ‘on’ and when the bell is ‘off’. If the bell is
‘on’, there is a higher amplitude in comparison with the moments where the bell is ‘off’. The



e

7.2. FOURIER TRANSFORMATION

Intensity
o
o
-
n

o

o
T
L

04

y I T |

500 1000 1500 2000 2500
Frequency (Hz)

Figure 7.4: Frequency spectrum for audio sample 1 (zoomed in)
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Figure 7.5: §p for audio sample 1
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reason that the amplitude of the signal is lower for some time can be explained by the passing
train. The audio recording device causes that the audio of the passing train drowns out the audio
of the bell. So the intensity of the bell frequencies seams less, which is not the case.

To create Figures 7.3 and 7.5 the Fourier transformation is applied to all data points. In reality
the data is received from an audiostream and so it is impossible to apply the Fourier transformation
to all datapoints. So there is a need for real time checking of the audio. But single data points
only contain one frequency (zero). Better is to apply the Fourier transformation to a set of data
points.

Since the FFT algorithm requires O(N log N) operations the set must not be too great, but a
small set leads to more frequent Fourier transformations. A compromise may be for instance by
taking N equal to the sampling frequency for the audio faudio, which is usually 32000 Hz. Every
period a new set of data points is gathered and the Fourier transformation is applied to this set.

The amplitude of §, depends on the value of 5’,,. So instead of taking the inverse transformation
for S'p, take a look at ép itself. If the bell is ‘off’, the frequencies have a much lower value compared
to when the bell is ‘on’. This is faster since there is no inverse transformation needed and by only
checking a specified area around the frequencies makes it possible to see if the bell is ‘on’.

The frequency areas are defined as

faudio, = 700 : 800
faudio2 = 1150:1250 (7.3)
faudio,g = 1950 : 2050

Define the status of the bell as ‘on’ when the maximum for two out of the three frequency areas
are above the limit, Lpen, and ‘off” when one or no maxima are above the limit. So by applying
the FFT to every set of 32000 samples and determing the maxima of the three areas it is feasible
to see if the bell is ‘on’ or ‘off’, see Algorithm 7.1. Even better is to apply the FFT to a set of
32768 (= 210) samples, this is more efficient for the FFT.

Algorithm 7.1: Status of the bell [see Section 7.2]

Input: Original audio data (sp)

Output: Status for the bell
Sp — £ft (sp)

if max Sp > Len for p € foudio,1 and maxSp > Lpey for p € faudio2 then

| Status = ‘on’

else if max S, > Ly for p € faudio,n and max.Sy > Lpey for p € foudio,s then
| Status = ‘on’

else if max Sy > Lpen for p € faudio,n and maxSp > Lyey for p € foudio2 then
| Status = ‘on’

else

| Status = ‘off’
end

The original audio files, the Fourier transformation for this data and the status of several audio
files are shown in Appendix A.6.

When a railroad crossing contains four alarm bells, all four are ‘on’ when the barriers are going
down. If the barriers are down, only two bells remain on. By the amplitude of the frequencies it
should be able to detect how many bells are ‘on’. Unfortunately as can be seen in Figure 7.5 the
amplitude almost remains the same in the development of the time. The only decrease is when
the train is passing. Figure 7.6 shows the amplitude of the three frequency areas.

This figure shows that the amplitude of the three frequencies almost remains the same. The
explanation for this may be found in the position of the camera. If the camera is assembled near
the bell which is always ‘on’, the other bells are not noticed. A better approach is to assemble
four different audio recording devices where every device measures its own position on the railroad
crossing. In this manner it is easier to detect which bells are ‘on’.
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Figure 7.6: Development of the three frequencies for audio sample 1

As described previously a disadvantage for this technique is when a train is passing. This
makes that the audio of the bell is drown out by the audio of the passing train. This causes that
the amplitude is lower and so the satus of the bell is denoted as ‘off’. This disadvantage can
be solved by the video part of the application. If a train is passing and the status of the bell is
denoted ‘off’ it can be set to ‘on’.

7.3 Bandpass filter

Since the frequency areas are known another approach is to build a bandpassfilter [7]. By passing
the audio data through such a filter, only the frequencies remain which lie in the specified band.
A sixth order butterworth bandpass filter is created for the frequency areas as defined in (7.3).
The magnitude response of these filters is shown in Figure 7.7.

Magnitude Rasponse (dB)

Magnitude (dB)

Frequency (kHz)

Figure 7.7: Magnitude response
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The corresponding (discrete) transfer function ([7]) to this filters are:

9.279-1077 —2.784-1076272 4+ 2.784 - 1076274 +9.279 - 10~ 7z~

() 1—5.8962-1 + 14.5522 — 19.232-3 + 14.3627¢ — 5.7442~5 4 0.96152—6 (7.4)
Ha(z) = 9.279 107 —2.784- 1076272 4+ 2.784 - 107524 4+ 9.279 - 10~ 726 (7.5)
2 1—5.796z"1 + 14.16272 — 18.65z~3 + 13.982—% — 5.6472=5 4+ 0.96152=6 *

9.279-107 —2.784 - 1075272 + 2.784 - 1076274 +9.279 - 10-72 6
Hy(z) = (7.6)

1-5.507271 +13.0722 — 17.062—3 + 12.92—4 — 5.3652—5 + 0.96152—6

As can be seen, the numerator in (7.4), (7.5) and (7.6) are all the same. This is because the
coefficients of the numerator depend on the input data, which is the same for all three transfer
functions. To see if these functions are stable, the position of the poles (roots of the denominator
in the transferfunction) is needed. This is shown in Table 7.1.

faudio,l faudio,2 faudio.S
0.9828 + 0.1542i 0.9655 + 0.24041 0.9160 + 0.3885¢
0.9828 — 0.15421 0.9655 — 0.24041 0.9160 — 0.38851
pBles 0.9858 + 0.137517 0.9697 + 0.2240¢ 0.9227 4 0.3730¢
0.9858 — 0.13751¢ 0.9697 — 0.2240: 0.9227 — 0.37301
0.9796 + 0.1447¢ 0.9630 + 0.2308: 0.9149 + 0.3787¢
0.9796 — 0.14471 0.9630 — 0.2308: 0.9149 — 0.3787:

Table 7.1: Poles of the transferfunctions

For the transferfunction to be stable, these poles have to lie within the unit circle. Figure 7.8
shows that this is the case.

Pole/Zero Plot
o ¢  wodot Zero
x ! ot Pole
O ooz 2870
x \os0.2 Pole
- O Mugan 2870 xx
i X Ty POl : % o
% iz o} Q
g %
X

Real Part

Figure 7.8: Pole zero plot for the transferfunctions

These transfer functions are applied to the original data as shown in Figure 7.2. Which yields
the output as shown in Figure 7.9.

A disadvantage of this technique is the number of required operations to apply the bandpass-
filter. The fast Fourier algorithm is almost two times faster in comparison to the bandpassfilter.
Table 7.2 gives an overview of mean computation times. This is because the bandpass filter has
to be applied three times, for each frequency area. Conclusion from this table is that the Fourier
transformation (see Section 7.2) is the fastest algorithm tested to analyse the audio.
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Figure 7.9: Sum of the three bandpass filters applied to audio sample 1
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Table 7.2: Comparison of the operation times in seconds

Time in seconds

Index | Fourier transformation | Bandpassfilter | Proportion
(see Section 7.2) (see Section 7.3)

1 0.9343 2.5787 2.7602
2 0.9338 2.5753 2.7580
3 0.9399 2.5801 2.7451
4 0.9327 2.5902 2.7771
5 0.9343 2.5729 2.7537
6 0.9346 2.5890 2.7702
7 0.9328 2.5845 2.7705
8 0.9350 2.5787 2.7580
9 0.9325 2.5748 2.7610
10 0.9330 2.5818 2.7671

average 0.9343 2.5806 2.7621
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Conclusion

The status of the bell can be detected by looking in the frequency domain. Three frequency areas
define the audio of the bell. If two out of the three frequencies are above the limit, the bell is
defined as ‘on’, otherwise it is defined as ‘off’. To transform the signal into the frequency domain,
the FFT-algorithm is used. In the current situation it is not yet possible to detect how many bells
are ringing, to do this it is better to have four measuring points one for each bell.

Another approach which is investigated is the bandpassfilter. This method requires more
operations in comparison to the Fourier transformation and is therefore skipped.

Future research may be done by eliminating the audio of the train and researching this.



Chapter 8

Conclusion

During the research several properties of the application has been tested. The currently used
algorithms are compared to new developed algorithms. As discussed in Chapter 2 a background is
needed to observe motion. This background needs to be adapted to new situations. Otherwise a
change in luminious intensity causes false positive detection. Several methods for the adaptation
have been tested and Algorithm 2.2 on page 22 (exponential adaptation) is the most efficient
algorithm tested.

This algorithm is approximately two times faster than Algorithm 2.1 which is used in the
current application [9]. The rate at which the background is adapted (8) is chosen according to
the settling time, see Threorem 2.3.2 on page 25.

The (adapted) background is used for the coherence between the current frame and its back-
ground. With this coherence it is possible to detect motion. Several methods have been discussed
for this coherence. The biggest problem with this methods is the changing luminious intensity.
If detection is based on threshold (6) with the absolute difference (Algorithm 3.1 on page 30)
a brigther image yields a larger difference, since the background remains the same. This larger
difference results in detection of motion. One way to solve this problem is to adapt § or 5. A
larger @ results in less accuracy for detection, the same occurs with a larger 5. This problem can
be solved by temporarily adapting 6 or 8. A disadvantage of this technique is to find relation
between the intensity and @ or 5.

A better approach is to skip 8, by summing over colorchannel ¢ and dividing this by the number
of colorchannels the image is converted to grayscale, see Algorithm 3.2 on page 33. The intensity
of the grayscale is a indicator for motion, Rj. Unfortunately this method is not independent to
the luminous intensity. If the luminous intensity changes then the average over the colorchannels
also changes. To compensate changing luminous intensity it is better to divide the pixelvalue by
the average over the measuringloop (Algorithm 3.3 on page 34). If now the luminous intensity
changes, the average pixelvalue changes such that the fraction of the pixelvalue with its average
approximately remains the same. When a object is passing, the average changes less in compar-
ison with the pixelvalue itself. Resulting in that the fraction rises and motion is detected. A
disadvantage of this method is the required operations, this is particularly caused by the average.

The best approach tested appears to be detection by correlation, see Algorithm 3.4 on page 36.
This algorithm determines the correlation between the current frame and its corresponding back-
ground. This yields a correlation factor (v) with a value between zero and one. Besides that it
is normalized between zero and one and independent on the luminous intensity, it is the fastest
algorithm tested for detection. An even better result is acquired when the correlation is applied
on each colorchannel seperate in stead of the sum of the three colorchannels.

The indicator for motion is used to detect dangerous situations on the railroad crossing. If the
barriers are closed usually no motion is detected and so Ry lies around zero. If motion is detected
while the barriers are closed this might be caused by a crossing object. Otherwise if the barriers
are open, R fluctuates when a object is passing by. If this is not the case, so Ry approximately
remains constant, this suggests that a object is stationary. The same technique can be used to
detect vandalism on solid objects like the andreas cross and fenches.

As discussed usually the objects are moving on. In this scenario it is desirable to differentiate
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between the types of traffic. This is done by researching the several properties of the objects. Every
type of object has some properties. Since a car is usually wider than a cyclist, it covers more area
of the measuring loop. So the correlation between the image and its background is less, resulting
that Ry is larger. Besides that Ry rises faster because of the width of a car in comparison to a
cyclist. Also the length and speed of a car are larger in comparison to a cyclist. These properties
can be combined into Algorithm 5.5 on page 67. This algorithm yields in approximately 88% a
corresponding result.

Besides the traffic another important check is the path of the barrier. This can be done
by placing masks over the image to detect the angle. A disadvantage of this method is the
number of required operations. A faster approach is based on line detection. Several methods
for line detection have been tested namely the least square method, total least square method
(perpendicular offset) and L;-approximation. These methods showed that the total least squares
was the best method tested in both ways. In develepmont as well as in operation time Algorithm 6.3
(page 76) showed the best result. The L;-approximation, described in Algorithm 6.5 on page 78
(with solving techniques simplex and large scale), took much longer and did not produce a good
result in comparison with the total least square method. The least square method (Algorithm 6.2
on page 73) was a little bit faster but is dependent on the rotation of the barrier.

Not only the video components of the railroad crossing were discussed. Also the audio of the
warning bell is researched. By the Fourier transformation three frequencies are eliminated for
the bell. With these frequencies a realtime check is made based on the Fourier transformations
and bandpassfiltering. These methods have been compared for the operation times. The Fourier
transformation is the fastest method to see the status of the bell.

As a total conclusion the new developed algorithms are faster than the currently used algo-
rithms.

8.1 Future work

At the new developed algorithms a RGB colorspace is used. To prevent noise it might be an idea
to take a look at grayscale images or YCbCr colorspace. In the YCbCr colorspace, the Y-channel
denotes the luminious intensity of an image. Another idea is check the possibilities of an infrared
camera. This camera might be a solution for detection of motion. Since it might have less influence
on weather situation (like rain or snow). Which is not taken into account in this research.

For the tests of the algorithms, described in the thesis, several variables are defined for instance
Lot and Legr. These variables are chosen at the same value for each video. Better is to calibrate
these values to the luminious intensity, since not every video has the same luminious intensity.
So for instance L¢,r does not need to be the same every time. By calibrating these variables a
better accuracy is obtained, resulting in better results. A third approach to improve the detection
of traffic can be done by positioning the loops better. For instance placing one loop slantwise
instead of five measuringloops gradually. Another approach is to adapt the luminious intensity of
a image such that bright images become darker and the other way around. If in a future version
objects approaching from two sides needs to be detected, then the luminious intensity or color of
an object can also be used to distinguish them.

In this situation it might be even better to create a situation with two cameras. In this way
two checks for the objects can be done. Besides that it might be possible to make a 3D-situation
of the railroad crossing. Such that a user is even more able to see what is going on at the railroad
crossing and it makes it easier to see vandalism on the solid objects.

For the detection of the barrier it might be useful to apply a contourfilter. Since the bar-
rier consists of a straight line, this is easily detected by its contours. Increasing the number of
detection points leads to more operations to calculate the angle but also leads to more accurate
measurements. Since the images are not taken in front of the barrier it might be useful to take
the angle of the camera into account. This also leads to a more accurate angle of the barriers.

With the algorithm for the audio it is not able to detect the number of bells which are ‘on’.
To do this the number of measuringpoints might be extended. With more measuring points it is
easier to detect the audio of the bell at the other corners of the railroad crossing. In this research
only the audio of the camera is used.
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Appendix A

Figures

This chapter contains various figures.

A.1 Various values of

As described in Section 2.3 the sample video 1 is tested with several values of 3.
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Figure A.1: A plot of mean pixel value with various values of 3 for the sample video 1
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A.2 Various values of §

This section shows sample video’s 1 and 2 tested with various values of 8. In both video’s there

holds:
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Figure A.2: A plot of Ry, for various values of @ applied to sample video 1
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A.2.2 Sample video 2
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Figure A.3: A plot of Ry for various values of § applied to sample video 2
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A.3 Results for the train detection
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Figure A.4: Results (Ry) of the algorithms applied to sample video 4 for the train
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A.3.2 Sample video 3
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Figure A.G: Results (Ry) of the algorithms applied to sample video 3 for the train
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Figure A.7: Results (Ry) for the extended algorithms applied on sample video 3 for the train
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A.3.3 Sample video 5

Samplawdeo5 TH=125 166 seconds
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Figure A.8: Results (Ry) of the algorithms applied to sample video 5 for the train
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Figure A.9: Results (Ry) for the extended algorithms applied to sample video 5 for the train
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A.4 Various values of F
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Figure A.10: Results of REORR for various F' applied to the traffic
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A.4.2 Train
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Figure A.11: Results of REORR for various F' applied to the train
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A.5 Results for R

This section shows the results for

CORR
Ry

on loop 1 and loop 2 for all video’s.
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Figure A.12: Result for RfORR applied on loop 1
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A.6 Results for the audio

This section shows the original audio file, its Fourier transformation and the status of the bell for
several sound files. For the graphs of the status there holds:
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Figure A.15: Results sample audio 3
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Figure A.16: Results sample audio 4
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Appendix B

Legend for the samples

B.1 Video

Table B.1: Explanation of sample video numbers

Sample video # | Filename

1| “IMG20012.MPG”
2 | “IMG21009.MPG”
3 | “IMG20006.MPG”
4 | “Boomz2.avi”
5 | “Almelo-fotocamera-deell.avi”
6 | “IMG20007.MPG”
7 1 “IMG20011.MPG”
8 { “IMG20012.2.MPG”
9 | “IMG20002_2.MPG”
10 | “IMG20004.MPG”
11 | “IMG20005.MPG”
12 | “IMG20008.MPG”
13 | “Almelo-fotocamera-deel2.avi”
14 | “Stilstand4.avi”
15 | “IMG20010_2.MPG”
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B.2 Audio

APPENDIX B. LEGEND FOR THE SAMPLES

Table B.2: Explanation of sample audio numbers

Sample audio # | Filename

1| “Boom2.wav”

2 | “Almelo-fotocamera.wav”

3 | “Booml.wav”

4 | “IMG20004.wav”

5 | “IMG20005.wav”

6 | “IMG20006.wav”

7 | “IMG20008.wav”

8 | “IMG20009.wav”

9 | “IMG20010_2.wav”
10 | “IMG20011.wav”
11 | “IMG20012_2.wav”
12 | “Nacht.wav”
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