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Abstract

Nowadays we heavily rely on all kinds of control systems, ranging from boilers and
thermostats to airplanes and GPS satellites. By means of measurement devices, useful
information about a dynamical system can be obtained. Using the measurement data, a
control law generating an input may be designed to meet specific demands of the closed-
loop dynamics.

Output saturation, describing range limitations of measurement devices, has not re-
ceived much attention yet. Since output saturation is present in many automatic con-
trol systems, controllers coping with this measurement limitation are desired. The main
difficulty with output saturation is that the magnitude of a saturated measurement is
unknown. To be able to control the system, the output must be steered towards the
region where it does not saturate. If this can be achieved, well-known observation tech-
niques can be applied locally.

We specialise to the class of controllable and observable linear time-invariant systems
with saturated output. We show that, if such a system is stable, a controller global
asymptotically stabilising the system can be designed by means of a quadratic Lya-
punov function. LaSalle’s invariance principle is necessary to prove this result. First
continuous-time systems are treated. Since implementability is the major issue, we
expand the results to discrete-time systems. Furthermore, we discuss how a continuous-
time system can be discretised, and under which conditions an implementable controller
design can be achieved.
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Chapter 1

Introduction

1.1 Motivation

The theory of automatic control proved to be of major importance for centuries. The an-
cient Greeks used an automatic control system to accurately determine time. Inventions
from the industrial revolution, such as the steam engine, created new requirements for
automatic control systems. Until then, the design of control systems was a combination
of trial-and-error and intuition. Therefore, mathematical analysis of control systems was
desired, and this was first used in the middle of the 19th century. Since then, mathemat-
ics is the formal language of control theory. Nowadays we heavily rely on all kinds of
control systems, ranging from boilers and thermostats to airplanes and GPS satellites.
Mathematical modeling allows for proper analysis and control of dynamical systems.
By means of measurement devices, useful information about a dynamical system can
be obtained. Using the measurement data, a control law generating an input may be
designed to meet specific demands of the closed-loop dynamics. The basic structure of
an automatic control system is depicted in Figure 1.1.

Unfortunately, the basic structure as in Figure 1.1 is too simplistic for many control
systems. Therefore, an extension of the model structure is required. It may occur that
the input desired by the controller can not be reached, due to actuator limitations. This

Dynamical
SystemController

MeasurementsInput

Figure 1.1: Structure of an automatic control system.
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Dynamical
SystemController

Input

Saturation
Saturated

Measurements

Output

Figure 1.2: Structure of an automatic control system subject to output saturation.

phenomenon is called input saturation, and has been studied extensively for the last
couple of years. In general, neglecting input saturation results in a behaviour that is
far from optimal. Another possibility is to consider range limitations of measurement
devices. If the measurement range is exceeded, and some minimum or maximum value
is attained, we say that the measurement is saturated. We speak of output saturation
in the latter case. Opposed to input saturation, output saturation in control systems
has not received much attention yet. Since output saturation is present in many au-
tomatic control systems nowadays, controllers coping with this measurement limitation
are desired. An automatic control system subject to output saturation can be viewed
as in Figure 1.2. The main difficulty with output saturation is that the magnitude of a
saturated measurement is unknown. To be able to control the system, the output must
be steered toward the region where it does not saturate. If this can be achieved, well-
known stabilisation techniques can be applied locally. Intuitively speaking, the output
must be out of saturation long enough to guarantee output regulation. We will see that
a solution to this problem is not that straightforward.

In 1996, Kreisselmeier proposed a stabilising controller for the entire class of continuous-
time single-input-single-output (SISO) linear time-invariant (LTI) systems subject to
output saturation, see [12]. This result was extended to multi-input-multi-output (MIMO)
LTI systems in 2010, see [4]. Unfortunately, the suggested controller is very sensitive to
measurement disturbances. Furthermore, it heavily relies on continuous measurements.
Since most control systems depend on sampled measurements, the proposed controller is
not implementable in general. Therefore, it is a milestone to design stabilising controllers
for control systems with sampled saturated output. Obviously, sampled measurements
give less information about some dynamical system than continuous measurements. A
different approach is required, which we describe next.
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1.2. Approach

1.2 Approach

In this thesis, we specialise to the class of linear time-invariant systems, and incorpo-
rate output saturation in the model structure. This is an obvious starting point, since
LTI systems have many important applications in different fields, ranging from electrical
engineering to biology and economics. While two LTI systems may be physically differ-
ent, the beauty is that they may be mathematically equivalent. Considering the class of
neutrally stable LTI systems first, we show that stabilising controllers using saturated
measurements can be designed. Neutrally stable systems have the property that their
trajectories neither converge to some fixed equilibrium point, nor diverge. This result
holds in both continuous- and discrete-time, and can be extended to the class of stable
LTI systems with output saturation.

1.3 Goal

The goal of this thesis is two folds. First of all, this work serves to give insight into
systems subject to output saturation, by explaining the results obtained so far and de-
scribing the additional bottlenecks that are to be resolved. The main bottlenecks are
implementability and rejection of measurement noise. After that, an elegant solution
tackling those bottlenecks is proposed for the class of stable LTI systems with output
saturation.

1.4 Structure of the Thesis

To start, some basic concepts regarding LTI systems are introduced in Chapter 2. The
mathematical definition of a dynamical system is given. Then state space models are
introduced, which serve as a mathematical framework for LTI systems. Controllability
and observability are defined and intuitively explained. Finally, we explain the notion
of stability and how LTI systems can be stabilised.

In Chapter 3, the saturation function is defined and LTI systems subject to output
saturation are introduced. The solution for stabilisation of continuous-time LTI sys-
tems proposed by Kreisselmeier (see [12]) is discussed, along with its shortcomings that
motivate further research. A procedure for discretisation is explained, and conditions
are given for preservation of controllability and observability after discretisation of a
continuous-time LTI system.
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Chapter 1. Introduction

Specialising to the class of stable LTI systems subject to output saturation, a stabilising
controller for both continuous-time and discrete-time systems is derived in Chapter 4.
An observer and a feedback law can be designed independently. However, the separa-
tion principle fails and a more advanced approach is required to prove stability. We
prove stability using Lyapunov functions and LaSalle’s invariance principle. The result-
ing controllers have a certain immunity to measurement noise. The chapter ends with
simulations verifying the theoretical results.

Chapter 5 provides conclusions and recommendations for future work.
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Chapter 2

Basic Concepts of Linear
Time-Invariant Systems

This chapter introduces some important definitions and theorems regarding linear time-
invariant (LTI) systems, which are necessary for the sequel. Starting from the definition
of a dynamical system, linearity and time-invariance are defined. Basically, we view a
system in terms of input, state and output. Roughly speaking, the state of a dynamical
system contains all the information that is necessary to determine its future evolution,
without information about the past input. The concept of state is introduced, and this
leads to so-called state space representations. State space models provide us with a
beautiful general description of both continuous- and discrete-time LTI systems. Fur-
thermore, state space models are very suitable for analysis. Looking at a state space
representation, properties such as controllability and observability can immediately be
verified. In words, a system is controllable if the input can be chosen such that the state
can be steered to any trajectory within the possible behaviour. A system is observable
if its state can be reconstructed from input and output measurements on some time in-
terval. Finally the important concept of stability is described, which we need to analyse
the effect of disturbances on the system dynamics.

2.1 Some Important Definitions

We start with the mathematical definition of a dynamical system.

Definition 1 (Dynamical System [14, 15]). A dynamical system Σ is a triple Σ =
(T,W,B) where T ⊂ R and B ⊂ {w : T→W}.

5



Chapter 2. Basic Concepts of Linear Time-Invariant Systems

Here T is the time axis, describing the set of time instants we consider. W is the set
of possible outcomes, and B denotes the behaviour of the system. For continuous-time
systems, usually T = R or T = R+, whereas for discrete-time systems T = Z or T = Z+
are often useful. For our purposes, we consider W = Rq. We give an example of a
dynamical system.

Example 1 (Cycling Paul). Paul likes to go cycling, and decides to model his cycling be-
haviour. Paul has a mass of m kilograms. Furthermore, it is assumed that his resistance
is proportional to his speed, with proportionality coefficient k. Denoting the transversal
component of the applied force at time t by F (t), this yields the equation

F (t) = m
d2

dt2
s(t) + k

d

dt
s(t), (2.1)

where s(t) is the total distance travelled up to time t. Paul starts at time zero with
an initial distance of zero kilometres. A description of the behaviour for the dynamical
system ”cycling Paul” is

B =
{[

F
s

]
: R+ → R2 | F (t) = m

d2

dt2
s(t) + k

d

dt
s(t), s(0) = 0

}
. (2.2)

The dynamical system is described by Σ = (R+,R2,B).

Now linearity and time-invariance of dynamical systems are defined.

Definition 2 (Linearity [14, 15]). A system Σ = (T,Rp,B) is linear if

w1, w2 ∈ B ⇒ αw1 + βw2 ∈ B ∀α, β ∈ R (2.3)

If the response of a dynamical system does not change with time, that system is said to
be time-invariant. Many dynamical systems possess this property.

Definition 3 (Time-Invariance [14, 15]). Let T = R or T = Z. A system Σ =
(T,W,B) is time-invariant if for every τ ∈ T we have

w ∈ B ⇒ στw ∈ B (2.4)

where στ is the shift operator defined as (στw)(t) = w(t− τ).

Systems that are both linear and time-invariant are LTI systems. Examples of LTI
systems are mass-spring-damper systems and electrical circuits made up of capacitors,
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inductors and resistors. While mechanical- and electrical systems are physically differ-
ent, they may be mathematically equivalent. This motivates the desire for a general
mathematical model, and makes mathematics very powerful.

The next step is to define the concept of state. This concept simplifies the analysis of
dynamical systems, since the state exactly contains the information that is critical for
determination of the system evolution, without information about the past input.

Definition 4 (State [14]). If a system with input u and output y is of the form

y(t) = H(x(t0), u(τ) |τ∈[t0,t], t) ∀t ∈ T, t ≥ t0 (2.5)

for some map H and time axis T ⊂ R, then we say that x is a state for the system.

Throughout this report, the state is denoted by x, and is a function of time. In the next
section state space models are introduced. We will see that LTI systems can be written
in a very elegant way, using the notion of state.

2.2 State Space Models

For the class of (finite-dimensional) LTI systems, the behaviour can be described in a very
convenient way. The input, state and output of a differential/difference LTI system are
related through a set of first order linear differential/difference equations with constant
coefficients. In general, systems may have multiple inputs and outputs. Those systems
are called multi-input-multi-output (MIMO), as opposed to single-input-single-output
(SISO) systems. We consider systems with input vector

u =

 u1
...
um

 , (2.6)

and output vector

y =

 y1
...
yp

 . (2.7)

Moreover, the state is usually multi-dimensional. We denote the state vector x ∈ Rn
by

x =

 x1
...
xn

 . (2.8)

7



Chapter 2. Basic Concepts of Linear Time-Invariant Systems

Continuous- and discrete-time LTI systems are distinguished, since their mathematical
properties are different. For both continuous- and discrete-time systems, the same results
regarding controllability and observability hold. However, stability properties require to
be stated separately.

2.2.1 Continuous-Time LTI Systems

Continuous-time LTI systems can often be written in the form{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) , t ∈ R, (2.9)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are given. ẋ denotes the derivative of x
with respect to time. The first equation of (2.9) is called the state equation, because it
describes the evolution of the state for some given input. The second equation is the
output equation, which describes the measured quantities of the system.

The solution of the state equation is explicitly given by

x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−τ)Bu(τ)dτ, (2.10)

for given input u on [t0, t) and initial state x(t0). In addition, the solution of the output
equation is

y(t) = CeA(t−t0)x(t0) +
∫ t

t0
CeA(t−τ)Bu(τ)dτ. (2.11)

Example 2 (Cycling Paul continued). Paul realises that his cycling behaviour is linear
and time-invariant, and decides to make a state space model with u(t) := F (t) as input
and y(t) := s(t) as output. He defines the state vector x(t) := (s(t), ṡ(t)). A state space
representation for our bike fanatic is

ẋ(t) =
[

0 1
0 − k

m

]
x(t) +

[
0
1
m

]
u(t),

y(t) =
[

1 0
]
x(t).

(2.12)

Now using equation (2.11) for a given input results in y(t). (Details on the calculation
of y(t) are omitted.) Suppose that the trip lasts T time units. Then y(T ) is the total
cycling distance.
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2.2. State Space Models

2.2.2 Discrete-Time LTI Systems

In discrete-time, many LTI system can be described by the system of equations{
x[k + 1] = Ax[k] +Bu[k]
y[k] = Cx[k] , k ∈ Z. (2.13)

The dependence on discrete time is indicated by square brackets. The explicit solution
of the state- and output equation are

x[k] = Ak−k0x[k0] +
k−1∑
j=k0

Ak−1−jBu[j] (2.14)

and

y[k] = CAk−k0x[k0] +
k−1∑
j=k0

CAk−1−jBu[j] (2.15)

respectively, for given input u on time instants k0, . . . , k − 1 and initial state x[k0].

2.2.3 Controllability and Observability

Controllability of dynamical systems is an important issue in many applications. For
example, consider a cruise controller for a car. The dynamics of the car can be modelled
as a dynamical system, of which the input is the throttle opening and the output is the
velocity. Given a reference velocity to the system, it is desired for the car to maintain
that velocity by applying an input. If the system is controllable, such an input exists if
the desired velocity is within the system behaviour.

We give the formal definition of controllability.

Definition 5 (Controllability [15]). Let B be the behaviour of a time-invariant
dynamical system. This system is called controllable if for any two trajectories
w1, w2 ∈ B there exist a t1 ≥ 0 and a trajectory w ∈ B with the property

w(t) =
{
w1(t) t ≤ 0
w2(t) t ≥ t1

(2.16)

For both the systems (2.9) and (2.13), controllability can be determined by looking at
the rank of the so-called controllability matrix

C =
[
B AB · · · An−1B

]
. (2.17)

9



Chapter 2. Basic Concepts of Linear Time-Invariant Systems

Theorem 1 (Controllability [15]). Consider the system (2.9). The system is con-
trollable if and only if its controllability matrix C has rank n.

Obviously, controllability of (2.9) can be determined by only looking at the state equa-
tion. Occasionally, we talk about controllability of the pair (A,B). This is identical to
controllability of the system (2.9). Theorem 1 also holds for the discrete-time system
(2.13), see [14].

An important concept which is strongly related to controllability is that of observability.
Loosely speaking, observability of a dynamical system means that its state can uniquely
be determined by looking at the input and the output on some time interval. The point
is that, for an observable system, the state does not have to be measured directly in
order to recover it. In reality it is not always possible and often expensive to measure
each state component independently.

We define observability in analogy with the definition of observability in [15].

Definition 6 (Observability). Let Σ = (T,W1×W2,B) be a time-invariant dynam-
ical system. Trajectories in B are partitioned as (w1, w2) with wi : R→Wi, i = 1, 2.
We say that w2 is observable from w1 if (w1, w2), (w1, w

′
2) ∈ B implies w2 = w

′
2.

If the state is to be observed from the input/output pair, one should make the substitu-
tion w1 = (u, y) and w2 = x in Definition 6. Looking at the observability matrix defined
as

O =


C
CA
...

CAn−1

 , (2.18)

observability of the LTI system (2.9) can be investigated.

Theorem 2 (Observability [15]). Consider the system (2.9). The system is observ-
able if and only if its observability matrix O has rank n.

Observability of the system (2.9) depends on the pair (A,C). If O has rank n, the pair
(A,C) is called observable. Theorem 2 can also be applied to the system (2.13), see [14].

10



2.2. State Space Models

Example 3 (Paul’s Velocity). Consider the state equation of the ”cycling Paul” model.

ẋ(t) =
[

0 1
0 − k

m

]
x(t) +

[
0
1
m

]
u(t) . (2.19)

First of all, assume that we continuously measure Paul’s position, then C =
[

1 0
]
.

The corresponding observability matrix is[
C
CA

]
=
[

1 0
0 1

]
, (2.20)

and has full rank. Hence the state is observable from input and output measurements. In
other words, measuring the applied force and the position continuously, the velocity can
be determined. Is it also possible to derive Paul his position by measuring his velocity?
Notice that C =

[
0 1

]
in that case, thus the observability matrix is

[
C
CA

]
=
[

0 1
0 − k

m

]
. (2.21)

Obviously this matrix does not have full rank, so the state is not observable. This is
intuitive, since only relative position can be determined by measuring velocity. An initial
position is required to find the current position.

Notice the similarity between the conditions for controllability and observability of LTI
systems. Observability and controllability are related through the following duality:

Theorem 3 (Duality). (A,B) is controllable if and only if (AT , BT ) is observable.

Theorem 3 is very useful for deriving observability theorems from controllability theo-
rems, or vice versa.

2.2.4 Stability

The notion of stability of autonomous systems is discussed in this section. Automatic
control systems are examples of autonomous systems, and are very important nowadays.
First a general definition is given, and then some properties regarding stability of LTI
systems are discussed.

11
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Continuous-Time Systems

In continuous-time, a time-invariant autonomous system has the form

ẋ = f(x). (2.22)

The assumption that f is continuously differentiable guarantees existence and unique-
ness of solutions x(t) for (2.22), for any initial condition x(0) ∈ Rn, see [7]. The class of
systems for which (2.22) holds includes systems where the input is a function of the state.
Those systems are called closed-loop systems, and choosing the state feedback properly
might result in desired behaviour of (2.22). To analyse the behaviour of autonomous
systems, we need the definition of an equilibrium point.

Definition 7 (Equilibrium Point [10]). Consider the system (2.22). We say that
x∗ ∈ Rn is an equilibrium point for the system if

f(x∗) = 0. (2.23)

If x = x∗, then the state will always remain in the equilibrium point x∗, under the
assumption that (2.22) is not subject to any disturbances. Without loss of generality,
we assume that x = 0 is an equilibrium point of (2.22). To classify stability of the
equilibrium point x = 0, we state a definition.

Definition 8 (Stability of an Equilibrium Point [10]). The equilibrium point x = 0
of (2.22) is

• stable if, for each ε > 0, there is a δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0.

• unstable if not stable.

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0.

• globally asymptotically stable if it is stable and

lim
t→∞

x(t) = 0

for all initial conditions.

12



2.2. State Space Models

Here ‖ ·‖ can be any desired vector norm which agrees with the definition (see Appendix
A). In words, an equilibrium point is stable if a small disturbance has small effect on
the evolution of the state. An equilibrium point is unstable if a small disturbance in the
initial condition may result in huge differences as time progresses. Asymptotic stability
of an equilibrium point implies that the state converges to the equilibrium point, pro-
vided that the disturbance is not too large. When global asymptotic stability holds, the
state will always converge to the equilibrium point, no matter what the size of the distur-
bance is. Notice that a globally asymptotically stable equilibrium point is always unique.

We consider autonomous continuous-time LTI systems of the form

ẋ = Ax. (2.24)

The origin is an equilibrium point of (2.24). However, it is not necessarily unique. Equi-
libria of autonomous LTI systems all have the same stability properties [15]. So for LTI
systems, stability can be seen as a property of the system. Stability of (2.24) can be
characterised in terms of the eigenvalues of A. To achieve this characterisation, we need
the definition of a semisimple eigenvalue first.

Definition 9 (Semisimple Eigenvalue [15]). Let A ∈ Rn×n and let λ be an eigenvalue
of A. We call λ a semisimple eigenvalue of A if the dimension of

Ker(λI −A) := {v ∈ Rn | (λI −A)v = 0} (2.25)

is equal to the multiplicity of λ as a root of the characteristic polynomial of A.

The definition of a semisimple eigenvalue can be illustrated with an example.

Example 4. Consider the system (2.24) and let

A =
[
λ 1
0 λ

]
. (2.26)

Matrix A has eigenvalue λ with multiplicity 2. For λI −A we have

λI −A =
[

0 −1
0 0

]
. (2.27)

A has only one linear independent eigenvector corresponding to λ, thus the dimension
of Ker(λI −A) is 1. This means that λ is not a semisimple eigenvalue of A.

Now a theorem for stability of (2.24) is stated.

13
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Figure 2.1: Stability regions for the autonomous system (2.24)

Theorem 4 (Stability of Continuous-Time LTI systems [15]). The system (2.24) is:

• asymptotically stable if and only if the eigenvalues of A have negative real part.

• stable if and only if for each λ ∈ C that is an eigenvalue of A, either

1. Re(λ) < 0, or

2. Re(λ) = 0 and λ is a semisimple eigenvalue of A.

• unstable if and only if A has either an eigenvalue with positive real part or a
nonsemisimple eigenvalue with zero real part.

If (2.24) is asymptotically stable, we say that the matrix A is Hurwitz. This is exactly
the case if all the eigenvalues of A are in the open left half complex plane. See Figure
2.1. Notice that for the system (2.24), the definitions of asymptotic stability and global
asymptotic stability coincide.

Example 5. Recall Example 4. We will intuitively explain why a zero eigenvalue must
be semisimple for stability to hold. Consider the system

ẋ =
[

0 1
0 0

]
x. (2.28)

14
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The two eigenvalues of A are λ1,2 = 0. Using equation (2.10), we get

x(t) = exp
{[

0 1
0 0

]
t

}
x(0) (2.29)

=
{[

1 0
0 1

]
+
[

0 1
0 0

]
t

}
x(0) (2.30)

=
[

1 t
0 1

]
x(0). (2.31)

The second step follows from the fact that Ak = 0 for all k ≥ 2, and by applying the
expansion eA = ∑∞

k=0
1
k!A

k. Despite the fact that both eigenvalues are zero, the state
grows linearly.

Discrete-Time Systems

Analogous to the continuous-time case, discrete-time autonomous systems are described
by

x[k + 1] = f(x[k]). (2.32)

An equilibrium point for (2.32) is defined as follows.

Definition 10 (Equilibrium Point). Consider the system (2.32). We say that x∗ is
an equilibrium point for the system if

f(x∗) = x∗. (2.33)

Notice that, compared to the continuous-time definition, the definition of an equilibrium
point for discrete-time systems is different. Without loss of generality, we assume that
x = 0 is an equilibrium point of (2.32). In analogy with Definition 8, we define stability
for discrete-time systems.

Definition 11 (Stability of an Equilibrium Point). The equilibrium point x = 0 of
(2.32) is

• stable if, for each ε > 0, there is a δ = δ(ε) > 0 such that

‖x[0]‖ < δ ⇒ ‖x[k]‖ < ε, ∀k ≥ 0.

• unstable if not stable.

15



Chapter 2. Basic Concepts of Linear Time-Invariant Systems

• asymptotically stable if it is stable and δ can be chosen such that

‖x[0]‖ < δ ⇒ lim
k→∞

x[k] = 0.

• globally asymptotically stable if it is stable and

lim
k→∞

x[k] = 0

for all initial conditions.

For linear autonomous systems

x[k + 1] = Ax[k], (2.34)

results comparable to those in theorem 4 can be derived.

Theorem 5 (Stability of Discrete-Time LTI systems [15]). The system (2.34) is:

• asymptotically stable if and only if the eigenvalues of A have modulus smaller
than one.

• stable if and only if for each λ ∈ C that is an eigenvalue of A, either

1. |λ| < 1, or

2. |λ| = 1 and λ is a semisimple eigenvalue of A.

• unstable if and only if A has either an eigenvalue with modulus larger than
one or a nonsemisimple eigenvalue with modulus one.

If (2.34) is asymptotically stable, we say that the matrix A is Schur. It is not the left
half complex plane, but the unit circle which characterises stability of a discrete-time
system. Figure 2.2 illustrates this idea.

2.2.5 Stabilisation of LTI Systems

In this section we briefly discuss two types of stabilising feedback controllers for both
continuous- and discrete-time LTI systems. The first type is a static state feedback and
the second is a dynamic output feedback. For controllable LTI systems, a static feedback
stabilising the system always exists, provided that the initial state is given. However, in
most of the cases the state is unknown. The class of LTI systems that are both control-
lable and observable can always be stabilised by dynamic output feedback.
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Figure 2.2: Stability regions for the autonomous system (2.34)

Static State Feedback

Consider the continuous-time state equation

ẋ = Ax+Bu. (2.35)

A classical choice is to apply a state feedback of the form

u = Fx (2.36)

to stabilise the system (2.35). F ∈ Rm×n is a parameter matrix. With the control law
(2.36), the state equation reduces to the autonomous system

ẋ = (A+BF )x. (2.37)

Notice that x = 0 is an equilibrium point. As described in section 2.2.4, the eigenvalues
of A + BF determine the stability of the equilibrium point x = 0. A famous result is
that F can always be chosen such that the matrix A+BF has any desired eigenvalues, if
(A,B) is controllable [15]. This means that there exists an F such that (2.37) is globally
asymptotically stable.

The same result holds for controllable discrete-time LTI systems. However, for discrete-
time systems we get something extra. Let us take a closer look at the autonomous
discrete-time LTI system

x[k + 1] = (A+BF )x[k], k ∈ Z. (2.38)

If F is chosen such that all the eigenvalues of A + BF are equal to zero, we get that
A + BF is a nilpotent matrix. This follows from the fact that a matrix is nilpotent if
and only if all of its eigenvalues are zero [17]. This yields

x[k + n] = (A+BF )nx[k] = 0. (2.39)

17



Chapter 2. Basic Concepts of Linear Time-Invariant Systems

The state of the system is zero within n steps. A controller achieving x = 0 within n
steps is called a dead beat controller.

Dynamic Output Feedback

So far, we have seen that a stabilising controller exists, provided that the system is
controllable and the initial state is known. Usually, the state of a system is unknown.
In that case, we need a systematic way to obtain information about the state. There are
several techniques providing estimates of the state by measuring some output variable
y(t). A commonly used technique is to define a dynamical system for the estimate of the
state. Such a dynamical system is called a state observer. The objective of an observer
is to make the error

e(t) := x(t)− x̂(t) (2.40)

smaller as time progresses. Here x̂(t) denotes the state estimate at time t. In this section
an observer design is discussed, to provide us with an estimate of the state. If the error
is small enough, the state estimate can be treated as the state itself. This allows us to
steer the behaviour of the system, by defining some feedback using the state estimate.

For continuous-time LTI systems, a linear observer of the form

ˆ̇x = Ax̂+Bu︸ ︷︷ ︸
copy plant

+K(y − ŷ)︸ ︷︷ ︸
innovation

, ŷ = Cx̂ (2.41)

is very popular. K ∈ Rn×p is the so-called observer gain. The dynamics (2.41) are
governed by a copy of the plant and an innovations term. The copy of the plant lets
the state estimate undergo the same evolution as the real state. This is intuitive, since
it serves as some sort of tracking when the estimate is good enough. The innovations
term corrects for the measurement error, improving the estimate if K is chosen properly.
Combining (2.35) and (2.41), dynamics for the error can be derived.

ė = ẋ− ˆ̇x
= (Ax+Bu)− (Ax̂+Bu+K(Cx− Cx̂))
= (A−KC)e (2.42)

If (A,C) is observable, K can always be chosen such that A − KC has any desired
eigenvalues [15].

A natural choice is to feed back the estimated state to the input of the system using the
feedback law

u = Fx̂. (2.43)
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Doing so, we obtain a closed-loop system where the observer is part of the controller.
The resulting closed-loop dynamics are given by

ẋ = (A+BF )x−BFe,
ė = (A−KC)e,
e = x− x̂.

(2.44)

Writing the state- and the error equation in matrix form, we obtain[
ẋ
ė

]
=

[
A+BF −BF

0 A−KC

] [
x
e

]
. (2.45)

The eigenvalues of A+BF and A−KC together determine the stability of the closed-
loop dynamics. In fact, the observer and the controller can be designed independently.
This is known as the separation principle for LTI systems. We state a famous result:

Theorem 6 (Stabilising Dynamical Controller [14]). If the system (2.9) is control-
lable and observable, then there exist matrices F and K such that A + BF and
A − KC are Hurwitz. In that case, limt→∞ x(t) = 0 and limt→∞ x̂(t) = 0 for all
initial conditions x(0) and x̂(0).

We state without proof that similar results holds for discrete-time LTI systems.

Theorem 7 (Stabilising Dynamical Controller). If the system (2.13) is controllable
and observable, then there exist matrices F and K such that A+BF and A−KC are
Schur. In that case, limk→∞ x[k] = 0 and limk→∞ x̂[k] = 0 for all initial conditions
x[0] and x̂[0].

For discrete-time LTI systems, a dead beat observer may be designed to make the error
zero within n steps. In combination with a dead beat controller, the system is stabilised
within a finite number of steps.

Now the basic concepts of LTI systems are introduced. In the next chapter, output
saturation is incorporated, resulting in an overall system which is piecewise linear. The
difficulties of designing a controller are explained, and a solution for continuous-time
LTI systems is discussed.
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Chapter 3

LTI Systems Subject to Output
Saturation

A lot of research has been devoted to the problem of stabilising LTI systems subject to
input saturation, modelling actuator limitations. However, stabilisation of LTI systems
with output saturation has not received much attention yet. Output saturation may
occur due to range limitations of some measurement device. Consider a camera on a
robot for example, whose objective is to track an object. If the object to be tracked is in
range, the camera can detect it and determine its position. If the object is not in range,
the camera detects nothing, and its position can not be deduced. In many applications
however, it is known on which side of the camera the object is located. In the latter
case, we say that the measurement is saturated.

To incorporate output saturation in a dynamical system, a saturation function is defined
in Section 3.1. Thereafter, Section 3.2 gives an overview of the difficulties we face when
considering output saturation in state space models. Results regarding LTI systems sub-
ject to output saturation are discussed in Section 3.3. Until now, only stabilisation of
continuous-time output saturated systems is considered in the literature. See for exam-
ple [4, 11, 12]. In [12], a feedback compensator for a SISO LTI system subject to output
saturation is presented, globally asymptotically stabilising the system. In Section 3.3,
the design of this feedback compensator is explained in more detail. This gives us an
idea of the difficulties we face when trying to implement the proposed controller. Mo-
tivated by the implementability issues, Section 3.4 explains how continuous-time state
space models can be discretised. Furthermore, a condition is given for preservation of
controllability and observability of a discretised system.
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Figure 3.1: The saturation function (3.1)

3.1 The Saturation Function

To start this chapter, the saturation function is defined. We decide to use a piecewise
linear saturation function, which assumes correct measurements in the range [−1, 1].
Any values above 1 or below −1 are mapped to 1 and −1 respectively.

Definition 12 (Scalar Saturation Function). The scalar saturation function
σ : R→ R is defined as

σ(x) :=


x if |x| < 1
−1 if x ≤ −1
1 if x ≥ 1

(3.1)

This function can be shifted and scaled as desired, without influencing the generality.
See Figure 3.1 for an illustration of the saturation function (3.1). This function is piece-
wise linear, which allows us to use LTI systems theory locally. However, an LTI system
subject to output saturation is only piecewise linear. We will see that the solution for
stabilising a system with saturated outputs is not that straightforward.

As we consider MIMO LTI systems in the sequel, a vector saturation function is desired
to model saturation in all of the measurements. The vector saturation function is defined
element-wise, making use of the scalar saturation function.
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Definition 13 (Vector Saturation Function). Let x = [x1, . . . , xn]T . The vector
saturation function σ(.) : Rn → Rn is defined element-wise as

σ(x) :=

 σ(x1)
...

σ(xn)

 . (3.2)

The saturation function (3.2) is directly applicable to systems using measurement de-
vices with limited range. Our choice for a saturation function is a logical one, since many
physical saturation elements can be closely approximated by a piecewise linear function
of the form (3.2). If a measurement device provides correct measurements only within
some specific range, the saturation function (3.2) can be used as a generalisation.

3.2 Introduction to Output Saturated LTI Systems

To introduce the difficulties arising in a system with saturated output, consider a
continuous-time SISO LTI system of the form{

ẋ = Ax+ bu
z = cx

(3.3)

with x ∈ Rn. We explicitly note that (3.3) is allowed to be unstable. Furthermore, we
assume that the measured output y is a saturated version of z:

y = σ(z). (3.4)

The problem of stabilising the overall system (3.3)-(3.4) is trivial if the state is given,
since controllability of (A, b) guarantees stabilisability of the state by static state feed-
back. The saturation element plays no role then. So suppose that the initial state is
unknown. Our only hope to recover the state is by measuring the output y, and use
this together with information about the input u. Assuming observability of the pair
(A, c), the state can be observed as long as y is not saturated. In that case, the overall
system behaves locally as an LTI system, and the techniques described in Chapter 2 can
be applied. An observer design can be done to improve the state estimate. However, no
state observation is possible when y is saturated.

A general question of interest is under which conditions a saturated output can be
desaturated. If (A, b) is controllable, the existence of an input desaturating the output
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Figure 3.2: Schematic overview of the general problem.

is guaranteed. To see this, note that

z(t) = ceAtx(0) +
∫ t

0
ceA(t−τ)bu(τ)dτ. (3.5)

For any x(0) ∈ Rn, the input can be chosen such that the integral term dominates over
ceAtx(0). Hence the state can be observed. How to choose the input is another problem
of interest. An input which is too small not necessarily lets the output cross zero. We
are forced to choose a diverging input in case of an unstable system, resulting in an
output which only desaturates on a very short time interval. To recover the state, a
very fast observer is required in the latter case. This means that the observer is hardly
implementable and very sensitive to measurement noise in practice.

We are interested in a controller stabilising the system (3.3)-(3.4) by output feedback.
Or, stated more generally, stabilise the MIMO variant of (3.3)-(3.4). See Figure 3.2 for
a schematic overview of the general problem. In [12], Kreisselmeier proposes a solution
for the SISO case.

3.3 Kreisselmeier’s Solution

In this section Kreisselmeier’s solution to the stabilisation of the overall system (3.3)-
(3.4) is explained. Controllability and observability of (3.3) are assumed. See [12] for
the original publication of Kreisselmeier.
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3.3. Kreisselmeier’s Solution

3.3.1 Solution Concept

As discussed in the previous section, controllability and observability of (3.3) imply con-
trollability and observability of the overall system. Provided that (A, b) is controllable,
the existence of an input desaturating the output is clear. Without knowledge about
the initial state, Kreisselmeier constructs an input that eventually dominates over the
potential growth rate of the system. To achieve this, time intervals of length T are
introduced, where T > 0 is a parameter. To explain Kreisselmeier’s method, first of all
his algorithm described in [12] is given. Thereafter, the algorithm is explained in detail.

The input applied on the kth interval is given by

u(kT + τ) = −bT e−AT τUk, τ ∈ [0, T ), k ∈ Z+. (3.6)

Here Uk explicitly depends on the interval length T and on k, and is defined as

Uk =
{
αkB−1(T )[αh− eATh]y(kT ) if θk = 0,
B−1(T )eAT [eATD−1

k ξk −B(T )Uk−1] if θk > 0. (3.7)

In (3.7), h ∈ Rn is any vector such that ch > 0, further α := exp{2T · ‖A‖}, and

θ0 := 0; θk :=
∫ kT

kT−T
[1− |y(t)|]dt, k > 0, (3.8)

B(τ) :=
∫ τ

0
eA(τ−s)bbT e−A

T sds, (3.9)

Dk :=
∫ T

0
eA

T τ cT ceAτ [1− |y(kT − T + τ)|]dτ, (3.10)

ξk :=
∫ T

0
eA

T τ cT [y(kT − T + τ) + cB(τ)Uk−1][1− |y(kT − T + τ)|]dτ.(3.11)

For the definition of the matrix norm, appearing in the definition of α, see Appendix A.

First of all, we focus on (3.7). Consider the interval [kT − T, kT ). If only saturated
measurements are available, we have that |y(t)| = 1 for t ∈ [kT − T, kT ). Looking at
(3.8), this gives that θk = 0. On the other hand, if observations are available in the
interval [kT −T, kT ), then θk > 0 and a different input is applied. Therefore, depending
on whether observations are available in the interval [kT − T, kT ), a different input is
applied in the next interval [kT, kT + T ).

Consider the case that no observations are available in the interval [kT−T, kT ). Looking
at (3.7), the factor αk lets the size of the input grow exponentially. Especially the usage
of the norm of A makes the growth enormous. For a large initial state, this results in a
huge input, and hence the output graph is very steep at the point of desaturation (we
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refer to section 3.3.2 for details). To determine the state from a tiny interval, a very fast
observer is required. However, in the continuous-time case, an arbitrary small interval
is sufficient for determination of the state from input and output measurements. The
structure of (3.10) reveals that Dk is very small if the output is desaturated for a very
short amount of time. The inverse of Dk, appearing in the input, is therefore huge.

The inverse of both B(T ) and Dk appear in the input. To clarify that those inverses
exist, we introduce the controllability- and observability Gramians

Wc(t) =
∫ t

0
e−Aτ bbT e−A

T τdτ, (3.12)

and
Wo(t) =

∫ t

0
e−A

T τ cT ce−Aτdτ (3.13)

respectively. A well known result is that the controllability/observability Gramian of a
controllable/observable LTI system (3.3) is invertible for any t > 0 [15]. Since control-
lability and observability of (3.3) is assumed, both Gramians are invertible. Looking at
(3.9), this yields that B(T ) is invertible. Furthermore, since Dk is only utilised in the
input when θk > 0, and z(t) is continuous, the inverse of Dk exists when necessary.

In fact, Kreisselmeier proposes a nonlinear dead beat controller. Provided that θk > 0
for some k, the state is zero within T time units. To see this, we use the state equation
of (3.3) together with (3.6) to write

ẋ(kT + τ) = Ax(kT + τ)− bbT e−AT τUk, τ ∈ [0, T ]. (3.14)

Solving (3.14) explicitly gives

x(kT + τ) = eAτx(kT )−
(∫ τ

0
eA(τ−s)bbT e−A

T sds

)
Uk

= eAτx(kT )−B(τ)Uk, (3.15)

where we used that Uk is independent of τ . An explicit equation for z then becomes

z(kT − T + τ) = ceAτx(kT − T )− cB(τ)Uk, τ ∈ [0, T ]. (3.16)

If θk > 0, the output is observed in the interval [kT − T, kT ). Noting that y(t) = z(t)
whenever 1−|y(t)| 6= 0 and multiplying (3.16) on both sides by [1−|y(kT−T+τ)|]eAT τ cT ,
we obtain

[1− |y(kT − T + τ)|]eAT τ cT ceAτx(kT − T )
= [1− |y(kT − T + τ)|]eAT τ cT [y(kT − T + τ) + cB(τ)Uk] . (3.17)
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Figure 3.3: Illustration of Kreisselmeier’s dead beat controller.

Looking at (3.10) and (3.11), integration of (3.17) gives that Dkx(kT − T ) = ξk. Since
θk > 0, the invertibility of Dk together with (3.7) results in

Uk = B−1(T )eAT [eATx(kT − T )−B(T )Uk−1]
= B−1(T )eATx(kT ). (3.18)

In the last step we used equation (3.15). Substituting the resulting Uk into (3.15) again
yields x(kT + T ) = 0. By induction, x((k + i)T ) = 0 for all i ≥ 1. Figure 3.3 depicts
how Kreisselmeier’s controller works. For the proof of global asymptotic stability of the
closed-loop system, we refer to [12].

3.3.2 Implementability Issues

As we already stated briefly, Kreisselmeier’s dead beat controller assumes a very fast
observation. In continuous-time this is possible, provided that no noise is present in
the system, because the state of an observable system can be recovered by continuous
measurement on an arbitrary small interval. However, nowadays the majority of indus-
trial controllers is digital, so discrete-time. Discretisation of continuous-time systems is
necessary to allow for implementation. Furthermore, it is plausible to assume sampled
measurements. Is the controller (3.6)-(3.11) implementable? Or, how does the controller
cope with system- and/or measurement disturbances? Implementability and disturbance
rejection are important topics to guarantee applicability of controllers. In this section,
attention is given to those questions of interest. First we study implementability of the
controller (3.6)-(3.11) in detail. Later, we briefly explain why Kreisselmeier’s controller
is sensitive to measurement disturbances.
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Assume that a measurement is done every S time units. So S is the sampling period.
This yields an array of measurements

y(0), y(S), . . . , y(kS), . . . (3.19)

Applying Kreisselmeier’s algorithm, the first thing to notice is that S must be small
enough to guarantee measurements |y(kS)| < 1, k ∈ Z+. The choice of a proper sam-
pling period depends explicitly on the system dynamics and the initial state. Namely,
the larger the real part of the eigenvalues of A and the initial state x(0) are, the larger
the input (3.6) will grow before desaturation of the output. The consequence is that the
output desaturates only on a very small time interval.

To clarify the above argumentation, let z(t) be saturated on [0, k̄T ]. Then |y(t)| =
|y(0)| = 1 for t ∈ [0, k̄T ]. Combining (3.7) with (3.15), we get

x(kT + T ) = eATx(kT )− αk[αh− eATh]y(kT )
= eAT (x(kT ) + αkhy(0))− αk+1hy(0), k ∈ [0, k̄). (3.20)

This equation can be solved explicitly as

x(kT ) = ekAT (x(0) + hy(0))− αkhy(0), k ∈ [1, k̄]. (3.21)

Hence,
z(kT ) = cekAT (x(0) + hy(0))− cαkhy(0), k ∈ [1, k̄]. (3.22)

If the real part of the eigenvalues of A and/or the initial state are large, it takes a long
time for the input to compensate the growth of the first term on the right hand side of
(3.22).

To investigate the transition speed from y = 1 to y = −1 (or vice versa) of an unstable
system with large initial state, we look at the difference

z(kT + T )− z(kT ) (3.23)

for large k. Using the relation z = cx, and substituting (3.21) in (3.23) gives

z(kT + T )− z(kT ) =
[
eAT − I

]
ekAT (x(0) + hy(0))− (α− 1)αkhy(0). (3.24)

From the definition of α, we see that the rightmost term dominates for large k. The
larger the initial condition x(0) and/or the eigenvalues of A are, the faster the transition
from y = ±1 to y = ∓1 is.

Given some sampling period S, it is always possible to define an initial state x(0) such
that no non-saturated output measurements become available when crossing the non-
saturated region for the first time. Hence, the system is not globally asymptotically
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Figure 3.4: Loss of global asymptotic stability when the output is sampled.

stabilisable within T time units after crossing the non-saturated region. Despite of the
input being such that z(t) will cross the non-saturated region again and again, we cannot
guarantee that measurements will eventually become available. This is depicted in figure
3.4.

To verify the implementability issues, we discretise Kreisselmeier’s algorithm and sim-
ulate the response of an unstable system in closed-loop with Kreisselmeier’s controller.
For details on the algorithm, we refer to Appendix E. As a typical example of an unstable
system that is both controllable and observable, we take{

ẋ(t) = Ax(t) +Bu(t)
y(t) = σ(Cx(t)) , t ∈ R. (3.25)

with
A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
. (3.26)

First of all we select the parameter h and the initial condition as

h :=
[

1
0

]
, x(0) :=

[
5
5

]
. (3.27)

We choose T = 10−3, and define a sampling period of 10−4T . The total simulation time
is set to 99T . The result is plotted in Figure 3.5, and agrees with our expectations. The
applied input leads to a transition speed that is too fast to obtain measurements that
are not saturated. Consequently, the input grows unbounded and the output diverges.
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Figure 3.5: Response of the actual output, saturated output and input of the system
(3.25) to Kreisselmeier’s algorithm with initial conditions (3.27).
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To illustrate what can happen when nonsaturated measurements become available, we
simulate (3.25) with the following parameters:

h :=
[

1
0

]
, x(0) :=

[
0.9
0

]
, (3.28)

T = 10−2, sampling period 10−2T and total simulation time 149T . The first two mea-
surements are not saturated. Despite of that, Figure 3.6 shows diverging behaviour of
both the input and the output. This is probably due to numerical errors, because a
small numerical error is amplified by the agressive behaviour of the dead beat observer.
Setting

h :=
[

100
0

]
, (3.29)

it even occurs that the entries in matrix Dk become infinitesimal small, such that matrix
inversion is no longer possible.

Disturbance Rejection

In practice, small measurement- and system errors are always present in a dynamical
system. Hence, disturbance rejection of a closed-loop system is desired. Kreisselmeier’s
controller is sensitive to measurement disturbances, especially when the initial state is
large [4]. To see this, notice that measurement sensitivity is only important when z is
not saturated. Assume that the initial state is large, resulting in a fast transition from
y = ±1 to y = ∓1. The entries of matrix Dk (see (3.10)) are very small then, because z
is not saturated only on a very small interval. This results in a nearly singular matrix
Dk, whose inverse is large. Now look at the control (3.7) for θk > 0:

Uk = B−1(T )eAT [eATD−1
k ξk −B(T )Uk−1], (3.30)

and note the product D−1
k ξk. The factor

y(kT − T + τ) + cB(τ)Uk−1 (3.31)

in ξk (see (3.11)) may contain measurement noise, which is amplified by the large in-
verse of Dk. Thus, a small measurement error might result in large errors in the applied
control. Consequently, the dead-beat control structure is ruined in the presence of mea-
surement errors.

To make a first step towards an implementable and noise rejecting controller, we pro-
pose to discretise the continuous-time state space model. This is done in the next section.
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Figure 3.6: Response of the actual output, saturated output and input of the system
(3.25) to Kreisselmeier’s algorithm with initial conditions (3.28).
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3.4 Discretisation of State Space Models

Most industrial measurement devices measure some quantity in a discrete fashion, in-
stead of measuring continuously. Sampled measurements motivate the discretisation
of continuous-time state space models. As we have seen in the previous section, a
discrete-time LTI system subject to output saturation is more difficult to control than
its continuous-time counterpart. Figure 3.4 makes this clear. For an n-dimensional
discrete-time LTI system, at least n subsequent non-saturated measurements are re-
quired to observe the state dead beat, while an arbitrary small interval is satisfactory
for a continuous-time LTI system.

There are many ways to cope with discrete-time input/output in a dynamical system
which is continuous in nature. Despite of some dynamical system being continuous, we
decide to look at its behaviour only at discrete points in time. Obviously, this gives us
less information about the system. However, under certain conditions important prop-
erties of a continuous-time system are retained after discretisation. Furthermore, the
assumption of a piecewise constant input is quite a natural one, and can conveniently be
incorporated in the structure of a discrete-time system. An advantage of discrete-time
models is that they allow for dead beat observation/control using a linear observer/-
controller. For a controllable/observable discrete-time state space model, a dead beat
controller/observer design can be done, such that the desired reference is reached in
finite time. The disadvantage is that dead beat controllers and observers are sensitive to
disturbances. This is an immediate consequence of the fact that dead beat controllers
and observers are aggressive, in the sense that the control- and observer gains are large.

For the derivation of a discretised model, we use [1]. Consider the continuous-time state
space representation

Σc :
{
ẋ(t) = Ax(t) +Bu(t)
z(t) = Cx(t) , t ∈ R, (3.32)

where u ∈ Rm, x ∈ Rn and z ∈ Rp. We can discretise Σc, and look at its behaviour only
at discrete points in time. For some sampling period S, we define z[k] := z(kS), such
that the output equation becomes

z[k] = Cx[k]. (3.33)

The smaller the sampling period, the more information the samples give us about the
continuous-time system. Assuming a constant input during each sampling interval,

u(kS + τ) = u[k], τ ∈ [0, S), (3.34)

and equation (2.10), we obtain

x(kS + S) = eASx(kS) +
(∫ S

0
eA(S−τ)Bdτ

)
u(kS). (3.35)
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This can conveniently be expressed as

x[k + 1] = Adx[k] +Bdu[k], (3.36)

where
Ad = eAS and Bd =

∫ S

0
eA(S−τ)Bdτ. (3.37)

Note that Ad and Bd explicitly depend on the sampling period S. The discretised model
becomes

Σd :
{
x[k + 1] = Adx[k] +Bdu[k]
z[k] = Cx[k] , k ∈ Z. (3.38)

An interesting question that arises is whether controllability and observability are pre-
served after discretisation of the model Σc. Intuitively, the sampling frequency plays
a major role in this. We have to keep in mind that the underlying dynamics are con-
tinuous, and that discretisation adds more restrictions to the input and the output.
Obviously, the smaller S is, the better the discretised model (3.38) approximates the
continuous-time dynamics Σc. From this fact, it is quite intuitive that controllability
and observability are only retained under some extra conditions on the dynamics. Those
conditions are derived by Kalman, Ho and Narendra [9].

Theorem 8 (Kalman, Ho, Narendra [9]). Suppose the system Σc from (3.32) is
controllable. Restrict u(t) to be given by (3.34), i.e., piecewise constant on intervals
of constant length S. Let λi(A) denote the ith eigenvalue of matrix A. A sufficient
condition for controllability is that

Im[λi(A)−λj(A)] 6= 2πq
S

whenever Re[λi(A)−λj(A)] = 0, q = ±1,±2, . . . (3.39)

If Σc is single input, i.e. u ∈ R, this condition is necessary as well.

Consequently, if Σc is controllable and condition (3.39) holds, then Σd is controllable.
When discretising a state space model, controllability can always be preserved by choos-
ing S small enough. However, depending on the matrix A, a large sampling period might
be satisfactory. A similar result holds for observability: If condition (3.39) holds and
the pair (A,C) is observable, then the pair (Ad, C) is observable. For an elegant and
intuitive proof, we refer to [1].

We proceed with an example.

Example 6 (Discretisation of a State Space Model). Consider Σc with

A :=
[

0 ω
−ω 0

]
, B :=

[
0
1

]
, C :=

[
1 0

]
. (3.40)
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This system is both controllable and observable. We want to discretise this continuous-
time system with sampling period S. We define the corresponding sampling frequency as
ωS := 2π/S. Calculation of eAS can be done by diagonalising A, and gives

Ad =
[

cos(ωS) sin(ωS)
− sin(ωS) cos(ωS)

]
. (3.41)

Using (3.37), for Bd we obtain

Bd =
∫ S

0

[
cos(ω(S − τ)) sin(ω(S − τ))
− sin(ω(S − τ)) cos(ω(S − τ))

] [
0
1

]
dτ

=
∫ S

0

[
sin(ω(S − τ))
cos(ω(S − τ))

]
dτ

=
[

(1− cos(ωS))/ω
sin(ωS)/ω

]
. (3.42)

The discretisation is done now. We are interested in a sampling period S which assures
that the discretised system is controllable and observable. To this extent, we calculate
the eigenvalues of A as λ1,2 = ±iω. Looking at Theorem 8, we get that

Re[λ1(A)− λ2(A)] = 0, (3.43)

so we must have

Im[λ1(A)− λ2(A)] = Im[iω − (−iω)] = 2ω 6= 2πq
S
, q = ±1,±2, . . . (3.44)

Expressing S in terms of ωS makes clear that

2ω 6= qωS , q = ±1,±2, . . . (3.45)

must hold. Choosing ωS > 2ω is a possible solution. Controllability and observability
are preserved in that case. Note however, that choosing the sampling frequency as an
irrational multiple of ω also works.

In summary, LTI systems subject to output saturation are introduced, and the main
difficulties are discussed. Kreisselmeier’s solution is described, along with its shortcom-
ings for LTI systems with discrete-time measurements. A procedure for discretisation
is given, serving as a first step towards an implementable and noise rejecting controller.
Controllability and observability of a continuous-time system are preserved after discreti-
sation, provided that the Kalman, Ho, Narendra condition holds. In the next chapter,
we propose a stabilising controller for the class of stable LTI systems.
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Chapter 4

Stabilisation of Stable LTI
Systems with Saturated Output

An important class of systems are the so-called neutrally stable systems. Those systems
possess the property that their trajectories neither converge to some fixed equilibrium
point, nor diverge. For example, consider an industrial robot arm which is accidentally
hit. The position and orientation of the robot arm change, and will remain changed if
no action is taken. To avoid errors, automatic repositioning of the robot arm is desired.
This is an example of a neutrally stable system that needs to be stabilised. The basic
idea is illustrated in Figure 4.1, which displays a cone on a flat surface. The left cone will
go back to its initial equilibrium point after a small perturbation, implying asymptotic
stability. A small perturbation of the middle cone will let it roll, and it may come to rest
in a different position and orientation. An equilibrium point with this property is called
neutrally stable. Lastly, the equilibrium point of the right cone is unstable, since a small
disturbance lets the cone diverge from the equilibrium point. (Figure 4.1 is copied from
[2].)

For both continuous- and discrete-time neutrally stable MIMO LTI systems subject to
output saturation, we show how to find a stabilising controller. Continuous-time systems
are our starting point, and give us the possibility to introduce some important concepts.
Lyapunov functions and invariant sets are introduced, which we need to prove stabil-
ity. This is done in Section 4.1. In Section 4.2 we expand the theory to the class of
discrete-time LTI systems. The same technique as for the continuous-time case is used.
However, a scaling factor is necessary to find Lyapunov functions and prove stability. For
both continuous- and discrete-time systems, global asymptotic stability of the resulting
closed-loop system is proved. Lastly, we prove that the class of systems stabilised by the
proposed controllers can be extended to the class of stable LTI systems.
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Figure 4.1: Asymptotic stability (left), neutral stability (centre), and instability (right)
of a cone on a flat surface.

4.1 Solution for Deterministic Continuous-Time Systems

In this section we propose a solution for the stabilisation of the class of neutrally stable
continuous-time LTI system with saturated output measurements. First the system is
defined, and an introduction to the solution concept is given. Then an observer design
to provide a state estimate is discussed. A feedback utilising this estimate is proposed,
such that the closed-loop system is globally asymptotically stable. Finally, the class of
stabilised systems is extended. It is shown that stable LTI systems subject to output sat-
uration are stabilised by making use of the controller design for neutrally stable systems.

4.1.1 System Definition

Consider the dynamics {
ẋ(t) = Ax(t) +Bu(t)
y(t) = σ(Cx(t)) , t ∈ R, (4.1)

with u ∈ Rm, x ∈ Rn and y ∈ Rp. For the definition of the saturation function σ(.), we
refer to Definition 13 on page 23. We assume that (4.1) is neutrally stable (for u(t) = 0).
If no input is applied, the trajectories of such a system neither grow nor decay, but have
a constant amplitude. All states are thus a mixture of constant and oscillating signals.
This implies that every eigenvalue λ of A is on the imaginary axis. In other words, the
sum of an eigenvalue and its complex conjugate is zero:

λ+ λ̄ = 0. (4.2)
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It can be shown that there exists a basis such that

A+A∗ = 0, A ∈ Cn×n. (4.3)

For every complex skew-symmetric matrix A, there exists a similarity transformation
which reduces A to a real-valued skew-symmetric matrix [18]. We assume that A is in
this form, thus

A+AT = 0, A ∈ Rn×n. (4.4)
Stability properties are independent of the basis choice [5]. Therefore, we can assume
without loss of generality that the basis choice is such that (4.4) holds.

Example 7. The autonomous system

ẋ =

 0 0 0
0 0 ω
0 −ω 0

x (4.5)

is an example of a neutrally stable system. It is clear that A = −AT . The first element
of the state remains constant. The second and third element of the state oscillate with a
constant amplitude.

We assume that (A,B) is controllable and (A,C) is observable. Notice that the state
can only be observed if |(Cx)i| < 1 for at least one i. Due to controllability, there always
exists an input such that |(Cx)i| < 1 is achieved for all i, implying observability of (4.1).
The problem is however, that it is often unknown how to choose an input to achieve this.

4.1.2 Introduction of the Solution Concept

To introduce our strategy, we assume that the initial condition x(0) is known. Then,
given the input on the interval [0, t), the state is known for all t ≥ 0. This means that
the output does not play any role, since it is not needed to obtain information about
the state of the system. Therefore, the state equation of (4.1) is all we have to consider,
which is linear and time-invariant. We propose a state feedback of the form

u = Fx (4.6)

to stabilise the system (4.1). F ∈ Rm×n is a parameter matrix. With the control law
(4.6), the state equation reduces to the autonomous system

ẋ = (A+BF )x. (4.7)

Notice that x = 0 is an equilibrium point. As described in Section 2.2.4, the eigenvalues
of A + BF determine the stability of the equilibrium point x = 0. Because of the con-
trollability assumption, F can always be chosen such that the matrix A+BF is Hurwitz.

39



Chapter 4. Stabilisation of Stable LTI Systems with Saturated Output

Even stronger, F can be chosen such that A+BF has any desired eigenvalues. Usually,
the determination of a desired F requires quite some work. We will show that for the
class of neutrally stable systems, there exists an F that can be directly derived from the
dynamics, such that x = 0 is a globally asymptotically stable equilibrium point.

We need Lyapunov’s stability theorem to proceed.

Theorem 9 (Lyapunov Stability Continuous-Time Systems [10]). Let x = 0 be an
equilibrium point for the autonomous system

ẋ = f(x), (4.8)

and D ⊂ Rn be a domain (open set) containing x = 0. Let V : D → R be a
continuously differentiable function, such that

V (0) = 0 and V (x) > 0 in D \ {0}, (4.9)

V̇ (x) ≤ 0 in D. (4.10)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D \ {0}, (4.11)

then x = 0 is asymptotically stable.

We say that a function V (x) is a candidate Lyapunov function if (4.9) holds. A candidate
Lyapunov function is always the starting point when trying to prove Lyapunov stability
of an equilibrium point. When a candidate is chosen, the time derivative is computed
by using the state equation, and conditions (4.10) and (4.11) can be checked. Unfortu-
nately, there is no straightforward method for the construction of Lyapunov functions.
Finding a good Lyapunov function is a matter of experience together with trial and er-
ror. Figure 4.2 intuitively explains Theorem 9. It is clear from the figure that V (x) ≥ 0,
and V (x) = 0 only for x = 0. If condition (4.10) holds, V does not grow, so neither will
x. The arrows indicate that the state converges to zero if V̇ (x) < 0.

For the system (4.7), we define the candidate Lyapunov function

V1(x) = xTx. (4.12)

This function is strictly positive for all x 6= 0, and V1(0) = 0, so (4.9) holds. Taking the
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Figure 4.2: A typical Lyapunov function.

time derivative, we get

V̇1(x) = xT (A+BF )x+ xT (A+BF )Tx
= xT (A+AT )x+ xTBFx+ xTF TBTx

= 2xTBFx. (4.13)

In the last step we used that A+AT = 0. Selecting

F = −BT , (4.14)

we have
V̇1(x) = −2xTBBTx ≤ 0. (4.15)

V̇1 is negative semidefinite, implying stability of the autonomous system

ẋ = (A−BBT )x. (4.16)

However, we cannot say anything about asymptotic stability yet. This is where LaSalle’s
Invariance Principle comes in. This principle uses the notion of positively invariant sets,
which we will introduce now. A setM is called positively invariant with respect to some
system if

x(0) ∈M ⇒ x(t) ∈M, ∀t ≥ 0. (4.17)

In words, some set being positively invariant means that starting in that set, the state
will always remain in that particular set. We state LaSalle’s theorem (see Appendix C):
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Figure 4.3: LaSalle’s Invariance Principle.

Theorem 10 (LaSalle’s Theorem Continuous-Time Systems). If there exists a con-
tinuously differentiable function V : Rn → R+ satisfying

1. V (x) ≥ 0 for all x ∈ Rn and V (0) = 0,

2. V̇ (x) ≤ 0 for all x ∈ Rn,

3. Let M be the largest positively invariant set contained in

E = {x ∈ Rn | V̇ (x) = 0},

and let 0 ∈M . 0 is asymptotically stable for the dynamics restricted to M .

4. All solutions of the system ẋ = f(x) are bounded,

then the origin is globally asymptotically stable.

Figure 4.3 illustrates LaSalle’s Invariance Principle, which is now intuitively explained.
Starting from an initial state x0, the state of a stable system ẋ = f(x) approaches the
set where V̇ (x) = 0, which is denoted by E. Given that the state is in E, at some
point in time the state at least converges to the largest positively invariant set in E,
denoted by M . The power of LaSalle’s theorem is that global asymptotic stability can
be determined by considering only the points in the limit set M . Once M is reached,
the state will always remain in M by definition. If x = 0 is an asymptotically stable
equilibrium point inside M , obviously the state converges to zero.

We are now ready to prove global asymptotic stability of the equilibrium point x = 0,
for the autonomous system (4.16).
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Theorem 11. Assume that (A,B) is controllable and A + AT = 0. Then x = 0 is
a globally asymptotically stable equilibrium point of the autonomous system

ẋ = (A−BBT )x. (4.18)

Proof. We define V (x) = xTx, and check that all conditions of Theorem 10 hold. For
the first condition, observe that V (x) ≥ 0 and V (0) = 0. The second condition is clear
from

V̇ (x) = −2xTBBTx ≤ 0. (4.19)
Moreover, V is continuously differentiable. To prove the third condition, we define

E = {x ∈ Rn | V̇ (x) = 0} = {x ∈ Rn | BTx = 0}. (4.20)

We denote the largest positive invariant set contained in E by M . Using the definition
of E, the dynamics restricted to M reduce to

ẋ(t) = Ax(t), ∀t ≥ 0. (4.21)

This yields the explicit expression

x(t) = eAtx(0), ∀t ≥ 0. (4.22)

From the definition of E, it is obvious that

BT eAtx(0) = 0, ∀t ≥ 0. (4.23)

Taking derivatives with respect to time on both sides of (4.23), we obtain
BT eAt

BTAeAt

...
BTAn−1eAt

x(0) = 0, ∀t ≥ 0. (4.24)

Since this equation holds for t = 0, we get
BT

BTA
...

BTAn−1

x(0) = 0. (4.25)

Using the relation A+AT = 0 gives
BT

BTAT

...
BT (An−1)T

x(0) =
[
B AB · · · An−1B

]T
x(0) = 0. (4.26)
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Controllability of (A,B) implies full rank of the controllability matrix, and x(0) = 0
follows. Therefore, x = 0 is an asymptotically stable equilibrium point for the dynamics
restricted to M . Stability of the autonomous system (4.18) implies that all solutions
are bounded, implying the last condition of Theorem 10. Hence the origin is globally
asymptotically stable.

4.1.3 State Observation

Until now, we proved that a stabilising controller exists, provided that the initial state
is known and the system (4.1) is controllable. Usually, the initial state of a system is
unknown. In that case a systematic way to obtain information about the state is desired.
As we have seen in section 2.2.5, a commonly used technique is to define a dynamical
system for the estimate of the state, which is called a state observer. Denoting the
estimate of the state at time t by x̂(t), the objective of an observer is to make the
error

e(t) := x(t)− x̂(t) (4.27)

smaller as time progresses. In this section an observer design is proposed for the system
(4.1). Thus, output saturation is taken into account. We propose to use a slight modi-
fication of a linear observer, which provides us with an estimate of the state.

We propose an observer of the form

ˆ̇x = Ax̂+Bu︸ ︷︷ ︸
copy plant

+K (σ(Cx)− σ(Cx̂))︸ ︷︷ ︸
measurement error

, (4.28)

incorporating the vector saturation function in the dynamics. K ∈ Rn×p is the so-called
observer gain, and is to be determined. The dynamics (4.28) are governed by a copy
of the plant and an innovations term. The copy of the plant lets the state estimate
undergo the same evolution as the real state. This is intuitive, since it serves as some
sort of tracking when the estimate is good enough. The innovations term corrects for
the observation error, improving the estimate if K is chosen properly.

Compare (4.28) with (2.41) and recall (2.42). If both Cx and Cx̂ are not saturated, the
observer dynamics are linear, hence the error dynamics are given by

ė = (A−KC)e. (4.29)

Selecting K = CT , it might come as no surprise that e = 0 is a globally asymptotically
stable equilibrium point of (4.29), provided that (A,C) is an observable pair. We for-
malise this in a theorem.
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Theorem 12. Assume that (A,C) is observable and A+ AT = 0. Then e = 0 is a
globally asymptotically stable equilibrium point of the autonomous system

ė = (A− CTC)e. (4.30)

Proof. The theorem can be proved using the duality

(A,C) observable ⇔ (AT , CT ) controllable. (4.31)

We apply theorem 11 to the controllable pair (AT , CT ). Provided that A+AT = 0 and
(A,C) observable, this gives that the matrix AT − CTC is Hurwitz. Since the stability
properties of a matrix do not change by taking the transpose, we get that

(AT − CTC)T = (A− CTC) (4.32)

is also Hurwitz. Hence, the system

ė = (A− CTC)e (4.33)

is globally asymptotically stable.

Elaborating on this argument, we select K = CT for the observer (4.28):
ˆ̇x = Ax̂+Bu+ CT (σ(Cx)− σ(Cx̂)). (4.34)

It is clear that this observer behaves as desired, as long as Cx and Cx̂ are not saturated.
Now we discuss the behaviour of (4.34) when Cx and/or Cx̂ are saturated, which is best
explained by looking at each element of σ(Cx) − σ(Cx̂) independently. The following
two cases are distinguished:

• (Cx)i and (Cx̂)i are saturated and have the same sign. In this case we have
that (σ(Cx) − σ(Cx̂))i = 0 , so the ith output component has no effect on the
correction. This is intuitive, because it is unclear how the ith component should
correct for the estimate. If all state elements are saturated with the same sign,
the observer actually turns into a predictor, letting the state estimate undergo the
same evolution as the state.

• At least one of the terms (Cx)i and (Cx̂)i is saturated, and (Cx)i 6= (Cx̂)i. The
beauty of the observer (4.34) is that the ith output component causes a correction
now. This is intuitive, since we know in which direction to steer the estimate. We
have to check whether a correction is done in the right direction. This is the case
if

sgn{(Ce)i} = sgn{σ((Cx)i)− σ((Cx̂)i)}. (4.35)
Without loss of generality we assume that (Cx)i ≥ 1 and (Cx̂)i < 1. Then
(Cx)i − (Cx̂)i > 0. Furthermore, σ((Cx)i)− σ((Cx̂)i) > 0. Hence, (4.35) is true.
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As we verified, the sign of the measurement error term in the observer is correct in
all possible situations. We are interested in the behaviour of the observation error
corresponding to the observer (4.34). Combining the state equation of (4.1) with (4.34),
the error dynamics

ė = Ae− CT (σ(Cx)− σ(Cx̂)) (4.36)

are derived. Stability of the error dynamics is desired. To investigate stability, we define
the candidate Lyapunov function

V2(e) = eT e. (4.37)

This function is strictly positive for all e 6= 0 and V2(0) = 0. Taking the time derivative
of V2 we obtain

V̇2(e) = eT [Ae− CT (σ(Cx)− σ(Cx̂))] + [Ae− CT (σ(Cx)− σ(Cx̂))]T e
= eT (A+AT )e− eTCT (σ(Cx)− σ(Cx̂))− (σ(Cx)− σ(Cx̂))TCe
= −2eTCT (σ(Cx)− σ(Cx̂))

= −2
p∑
i=1

(Ce)i(σ(Cx)− σ(Cx̂))i (4.38)

≤ 0

To see why the last step follows, note that either (σ(Cx)− σ(Cx̂))i = 0 or (4.35) holds.
V2 is continuously differentiable, so the dynamics (4.36) are stable according to theorem
9. Hence, the error can not increase with time. The error does not converge to zero
asymptotically. To explain this, note that the error dynamics become

ė = Ae (4.39)

if σ(Cx)− σ(Cx̂) = 0. Neutral stability implies that (4.39) is just stable.

Figure 4.4 visualises the observer design. The saturated measurements together with the
input are used to provide a state estimate. To attain global asymptotic stability of the
equilibrium point e = 0, an estimated state feedback desaturating the output is proposed
in the next section. This results in a closed-loop system where the observer (4.34) is
part of a controller. As we will show, the designed controller globally asymptotically
stabilises the system.

4.1.4 Global Asymptotic Stability of the Closed-Loop System

In this section, the feedback law and the state observer derived in the previous sections
are combined. Given some initial state and initial state estimate, the observer updates
the state estimate. A feedback utilising the estimated state generates an input for the
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ẋ = Ax + Bu
y = σ(Cx)

ˆ̇x = Ax̂ + Bu + CT (σ(Cx) − σ(Cx̂))

observer

u

y

x̂

Figure 4.4: Visualisation of the state observer (4.34)

plant. See Figure 4.5. After defining the closed-loop system, an intuitive explanation to
our approach is given. We conclude with a proof of global asymptotic stability for the
closed-loop system.

For the system (4.1), we restate the observer

ˆ̇x = Ax̂+Bu+ CT (σ(Cx)− σ(Cx̂)), (4.40)

and apply the feedback control
u = −BT x̂. (4.41)

Then the closed-loop dynamics are described by

ė = Ae− CT (σ(Cx)− σ(Cx̂)), (4.42)
ˆ̇x = (A−BBT )x̂+ CT (σ(Cx)− σ(Cx̂)), (4.43)
e = x− x̂. (4.44)

The idea is to define a Lyapunov function for the closed-loop dynamics, and use LaSalle’s
theorem to prove global asymptotic stability.

First an intuitive explanation to our approach is given, by looking at the error dynamics
(4.42) and the dynamics for the state estimate (4.43) independently. As we have shown
in Section 4.1.3, the error dynamics are stable. To see whether (4.43) is stable, we
propose the candidate Lyapunov function V3(x̂) = x̂T x̂. With some algebra, for the time
derivative we obtain

V̇3(x̂) = −2x̂TBBT x̂+ 2x̂TCT (σ(Cx)− σ(Cx̂)). (4.45)

The time derivative of V3 is not negative semidefinite, thus the separation principle
fails here. To tackle this problem, a different approach is required to prove stability of
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ẋ = Ax + Bu
y = σ(Cx)

ˆ̇x = Ax̂ + Bu + CT (σ(Cx) − σ(Cx̂))

observer

u

y

x̂

−BT

controller

Figure 4.5: The closed-loop system (4.42)-(4.44)

the closed-loop system. Despite of that, global asymptotic stability can be intuitively
explained. To see what happens, consider the case that σ(Cx)− σ(Cx̂) = 0 and e 6= 0.
Looking at (4.42), we see that the error remains constant in magnitude then. However,
looking at (4.43), the cross terms vanish. Hence the state estimate converges to zero
monotonically, due to Theorem 11. This leads to desaturation of the elements of Cx̂ at
some point in time. Two possible situations may occur:

• σ(Cx)− σ(Cx̂) becomes nonzero. This lets the norm of the error decrease mono-
tonically because V̇2 is strictly negative. This gives that σ(Cx̂)→ σ(Cx). Looking
at (4.43), the state estimate converges to zero. (4.44) yields that x(t)→ 0 then.

• σ(Cx)−σ(Cx̂) remains zero. Desaturation of the elements of Cx̂ lets the elements
of Cx desaturate. Thus, the observer dynamics become linear, and the error
dynamics locally behave according to (4.30). Theorem 12 guarantees that the norm
of the error decreases monotonically, such that σ(Cx̂) → σ(Cx). The dynamics
(4.43) let the state estimate converge to zero. Consequently, x(t)→ 0.

Intuitively, it is clear that this closed loop system is globally asymptotically stable. This
turns out to be correct. We state a theorem:

Theorem 13. Let (4.1) be a neutrally stable system, i.e. there is a basis choice
such that A+AT = 0. Furthermore, assume that (A,B) is controllable and (A,C) is
observable. Then (e, x̂) = (0, 0) is a globally asymptotically stable equilibrium point
of the closed-loop system (4.42)-(4.44).
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Proof. To prove that our intuition is correct, we define the function

V4(e, x̂) := eT e (4.46)

for the closed loop dynamics. When (e, x̂) = (0, 0), then x = 0 automatically follows.
For V4 we have

V4(0, 0) = 0 and V4(e, x̂) ≥ 0 for (e, x̂) 6= (0, 0). (4.47)

Notice that V4(e, x̂) is positive semidefinite, so V4 is not a candidate Lyapunov function.
However, V4 is continuously differentiable, and according to the first condition of The-
orem 10, V4 ≥ 0 is sufficient. Since the time derivative of V4 is negative semidefinite,
the second condition is also fulfilled. It remains to prove that the third and the fourth
condition of Theorem 10 hold.

To prove the third condition, we define E as the set of all points where V̇4 = 0:

E = {(e, x̂) | σ(Cx) = σ(Cx̂), e ∈ Rn, x̂ ∈ Rn}. (4.48)

For the closed-loop dynamics restricted to E we obtain

ė = Ae (4.49)
ˆ̇x = (A−BBT )x̂ (4.50)
e = x− x̂. (4.51)

The state estimate converges to zero by Theorem 11. Then Cx and Cx̂ simultaneously
desaturate, giving that there exists a T such that

Ce(t) = 0 ∀t > T. (4.52)

For the error dynamics we get

ė(t) = Ae(t) = (A− CTC)e(t) ∀t > T. (4.53)

A− CTC is Hurwitz by Theorem 12, hence the error converges to zero. Consequently

lim
t→∞

x(t) = lim
t→∞

e(t) + lim
t→∞

x̂(t) = 0, (4.54)

so x = 0 is an asymptotically stable equilibrium point for the dynamics restricted to E.

Now we prove the fourth condition. The error remains bounded because it is stable. To
see why the state estimate remains bounded, look at (4.43). Using that A − BBT is
Hurwitz together with the fact that CT (σ(Cx) − σ(Cx̂)) is bounded, we have that x̂
remains bounded.
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Rejection of Measurement Noise

An important feature of our observer design (4.34) is that it provides a certain immunity
to measurement noise. This is explained briefly now. Notice that measurement noise
can only influence the saturated measurement when the output is small. Therefore, the
observer behaves as a linear observer when measurement noise affects the closed-loop
dynamics. Since only integrations need to be performed in constructing the state esti-
mate, measurement noise is averaged over time. Thus, to some extent, the observer is
immune to noise.

4.1.5 Extension to Stabilisation of Stable LTI Systems

A controller design for stabilisation of continuous-time neutrally stable LTI systems is
finished now. For any initial state and any initial state estimate, global asymptotic sta-
bility of the desired equilibrium point is attained. The class of systems stabilised by the
controller described in Section 4.1.4 can actually be extended. Note that the class of
neutrally stable systems (i.e. A+ AT = 0 in some basis) does not include systems with
some states converging to zero asymptotically. In this section we show that the class of
stable LTI systems subject to output saturation is stabilised by the controller described
in Section 4.1.4. We prove that for a stable matrix A there exists a basis choice such
that A + AT ≤ 0. Recalling the Lyapunov functions (4.13) and (4.38), it is seen that
their derivatives with respect to time remain negative semidefinite then. Hence, stability
properties of the closed-loop system (4.42)-(4.44) do not change.

Every square matrix can be brought into Jordan normal form by a nonsingular trans-
formation matrix S, see Appendix B. Therefore

A = SJS−1, (4.55)

where J is a so-called Jordan matrix. Since every Jordan block only contains one eigen-
value (up to multiplicity), the A matrix of a stable system can be split up in two inde-
pendent parts:

A =
[
A1 0
0 A2

]
, (4.56)

where A1 is Hurwitz and A2 is neutrally stable. All eigenvalues of A1 have a negative
real part, and all eigenvalues of A2 lie on the imaginary axis. It is explicitly noted that
A1 is allowed to have Jordan blocks of dimension larger than 1× 1.

We use the following fact from [6]: If A1 is Hurwitz, there exists a P = P T > 0 such
that the Lyapunov inequality

AT1 P + PA1 < 0 (4.57)
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holds. A positive definite symmetric matrix has a unique positive definite symmetric
square root [3]. Therefore, P has a unique square root P 1/2. Since a positive definite
matrix is invertible, P−1/2 exists. Using this fact and elaborating on equation (4.57),
we get

P−1/2AT1 PP
−1/2 + P−1/2PA1P

−1/2 = P−1/2AT1 P
1/2 + P 1/2A1P

−1/2

= (P 1/2A1P
−1/2)T + P 1/2A1P

−1/2

= Ã1 + ÃT1

< 0.

In the last step we used that P 1/2 and P−1/2 are symmetric. This yields the similarity
transformation [

Ã1 0
0 A2

]
=
[
P−1/2 0

0 I

] [
A1 0
0 A2

] [
P 1/2 0

0 I

]
, (4.58)

which proves that there exists a basis such that A+AT ≤ 0.

In summary, a controller design for stable continuous-time LTI systems subject to output
saturation is done. This controller globally asymptotically stabilises the system. The
elegance of the controller is that system parameters are used in the gains of the observer
and the estimated state feedback. A similar theory for discrete-time LTI systems is de-
sired, to get rid of implementability issues. The next section describes how a controller
design for a stable discrete-time LTI system subject to output saturation can be done.

4.2 Solution for Deterministic Discrete-Time Systems

Stabilisation of discrete-time neutrally stable LTI systems with saturated output is con-
sidered in this section. We convert the theory for continuous-time systems to discrete-
time systems. The demand for implementable controllers makes this an important ex-
pansion. A similar technique as in the continuous-time case is exploited. After defining
the system, the definition of discrete-time Lyapunov functions is given. We proceed with
an introductory example to derive a feedback law, by assuming that the initial state is
given. Then an observer is designed and placed in closed-loop with a linear feedback
controller. For construction of both the feedback law and the observer, a scaling fac-
tor must be included to attain stability. Global asymptotic stability of the closed-loop
system is proved. The section concludes with an extension of the results to the class of
stable discrete-time LTI systems subject to output saturation.
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4.2.1 System Definition

The system is assumed to behave according to{
xk+1 = Axk +Buk
yk = σ(Cxk)

, k ∈ Z. (4.59)

The input u ∈ Rm, state x ∈ Rn and output y ∈ Rp depend on the discrete time
k ∈ Z. For ease of notation, we use subscripts instead of square brackets to indicate the
dependence on discrete time k. The saturation function σ(.) is defined as in Definition
13 on page 23. We assume that (4.59) is a neutrally stable system, which implies that
every eigenvalue λ of A is on the unit circle. Stated differently,

λλ̄ = 1. (4.60)

This is equivalent to the condition that A is a unitary matrix:

A∗A = AA∗ = I, A ∈ Cn×n. (4.61)

With some work, a similarity transformation can be found such that

ATA = AAT = I, A ∈ Rn×n (4.62)

in some basis. Without loss of generality, we assume that the basis choice is such that
(4.62) holds. Hence, A is invertible and A−1 = AT . Furthermore, controllability of
(A,B) and observability of (A,C) is assumed.

Example 8. Consider the autonomous discrete-time system

xk+1 = Axk =
[

cos(α) sin(α)
− sin(α) cos(α)

]
xk, α ∈ R. (4.63)

If α is an integral multiple of 2π, we have that A = I, hence relation (4.62) holds. On
the other hand, if α is not an integral multiple of 2π, the system describes a discrete-
time oscillator where the state trajectories have a constant amplitude. Indeed, (4.63) is
neutrally stable:

ATA =
[

cos(α) − sin(α)
sin(α) cos(α)

] [
cos(α) sin(α)
− sin(α) cos(α)

]
=
[

1 0
0 1

]
. (4.64)
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4.2.2 Introduction of the Solution Concept

For simplicity, we start with the assumption that the initial condition x0 is given. Then,
given the input on [0, k∗), xk is known for all k ∈ [0, k∗]. We decide to apply a state
feedback of the form

uk = Fxk, (4.65)

where F ∈ Rm×n is a parameter matrix of the system. The state equation of (4.59)
reduces to the autonomous system

xk+1 = (A+BF )xk. (4.66)

Notice that x = 0 is an equilibrium point of (4.67). Since (A,B) is controllable, there
exists a matrix F such that A+BF has its eigenvalues in the open unit circle, see Section
2.2.4. Unfortunately, a stabilising feedback cannot be chosen as convenient as for the
continuous-time system (4.7) defined on page 39. A scaling factor is introduced, which
is used in the definition of the feedback law. After defining a feedback law, Lyapunov
theory and LaSalle’s invariance principle help us to prove global asymptotic stability of
the equilibrium point x = 0.

For discrete-time autonomous systems, Lyapunov’s stability theorem is as follows.

Theorem 14 (Lyapunov Stability Discrete-Time Systems [10]). Let x = 0 be an
equilibrium point for the autonomous system

xk+1 = f(xk), (4.67)

where f is locally Lipschitz, and let D ⊂ Rn be a domain (open set) containing
x = 0. Let V : D → R be a continuous such that

V (0) = 0 and V (x) > 0 in D \ {0}, (4.68)

∆V (x) := V (f(x))− V (x) ≤ 0 in D. (4.69)

Then, x = 0 is stable. Moreover, if

∆V (x) < 0 in D \ {0}, (4.70)

then x = 0 is asymptotically stable.

Opposed to continuous-time Lyapunov functions, for which the criterion of a negative
semidefinite derivative is used, discrete-time Lyapunov functions are characterised by
the difference between two consecutive values of V .
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For the system (4.67), define the candidate Lyapunov function

V5(x) = xTx. (4.71)

This function is strictly positive for all x 6= 0, and V5(0) = 0, so the criteria for a
candidate Lyapunov function hold. For the difference ∆V5(x), we obtain

∆V5(x) = (Ax+Bu)T (Ax+Bu)− xTx
= xT (ATA− I)x+ xTF TBTBFx+ xTATBFx+ xTF TBTAx

= xTF TBTBFx+ 2xTATBFx. (4.72)

Now we select the feedback gain

F = −γBTA, γ > 0. (4.73)

Here γ is a scalar to be determined. As we will see, the scaling factor γ is necessary
to attain a negative semidefinite Lyapunov difference. To intuitively explain this, we
substitute (4.73) in equation (4.67). This gives the autonomous dynamics

xk+1 = (I − γBBT )Axk. (4.74)

Assume that the elements of B are large. Then the factor γ must be small to prevent
the state from blowing up. To derive a criterion for γ, we substitute (4.73) in (4.72).
This yields

∆V5(x) = γ2xTATB(BTB)BTAx− 2γxTATBBTAx

= γ
{
xTATB

(
γBTB − 2I

)
BTAx

}
. (4.75)

The aim is to choose γ such that the matrix 2I−γBTB is positive definite, since ∆V5 ≤ 0
then. Hence,

zT (2I − γBTB)z > 0, ∀z ∈ Rm \ {0},
⇔ 2‖z‖22 − γ‖Bz‖22 > 0, ∀z ∈ Rm \ {0},

⇔ sup
z 6=0

‖Bz‖2
‖z‖2

<

√
2
γ
,

⇔ ‖B‖2 <
√

2
γ
,

⇔ γ <
2
‖B‖22

. (4.76)

A useful relation is
‖B‖2 =

√
λmax(BTB), (4.77)

see Appendix A. This allows us to easily calculate an upper bound for γ:

γ <
2

λmax(BTB) . (4.78)
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Stability of the equilibrium point x = 0 can be concluded when (4.78) holds.

Investigation of (global) asymptotic stability requires the notion of positive invariant
sets, as in continuous-time. For discrete-time, the definition is quite similar. A set M is
positively invariant with respect to (4.67) if

x0 ∈M ⇒ xk ∈M, ∀k ∈ Z+. (4.79)

Here Z+ denotes the set of all positive integers. Now we state a theorem for global
asymptotic stability of autonomous systems, which uses LaSalle’s Invariance Principle.

Theorem 15 (Global Asymptotic Stability Discrete-Time Systems [8]). If there
exists a continuous function V : Rn → R+ satisfying

1. V (x) ≥ 0 for all x ∈ Rn and V (0) = 0,

2. ∆V (x) = V (f(x))− V (x) ≤ 0 for all x ∈ Rn,

3. Let M be the largest positively invariant set contained in

E = {x ∈ Rn | V (f(x))− V (x) = 0},

and let 0 ∈M . 0 is asymptotically stable for the dynamics restricted to M .

4. All the solutions of the system xk+1 = f(xk) are bounded,

then the origin is globally asymptotically stable.

Now we prove global asymptotic stability of the equilibrium point x = 0 of the au-
tonomous system (4.74), provided that (4.78) is true.

Theorem 16. Assume that (A,B) is controllable and ATA = I. Furthermore, take
γ < 2/λmax(BTB). Then x = 0 is a globally asymptotically stable equilibrium point
of the autonomous system

xk+1 = (I − γBBT )Axk. (4.80)

Proof. First of all, define V (x) = xTx. Then the first requirement of theorem 15 holds.
We already calculated that ∆V (x) ≤ 0 if (4.78) holds, so the second requirement is also
fulfilled. Now we prove that the third requirement holds. Analogous as in theorem 15,
we define

E = {x ∈ Rn | V (f(x))− V (x) = 0} = {x ∈ Rn | BTAx = 0}. (4.81)
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The last step follows from (4.75). Looking at (4.74), observe that the system dynamics
in M are given by

xk+1 = Axk. (4.82)
Take x0 ∈M . Since M is positively invariant, we have that

xk = Akx0 ∈M, ∀k ≥ 0. (4.83)

Therefore
BTAxk = 0, ∀k ≥ 0. (4.84)

In general, using that ATA = I and (4.84), we have

BT (AT )kxn = BT (AT )kAkxn−k = BTxn−k = BTAxn−k+1 = 0 (4.85)

for k = 0, . . . , n− 1. Thus 
BT

BTAT

...
BT (AT )n−1

xn = 0, (4.86)

or equivalently [
B AB · · · An−1B

]T
xn = 0. (4.87)

The controllability matrix has full rank, due to controllability of (A,B). Hence xn = 0.
This proves that x = 0 is an asymptotically stable equilibrium point for the dynamics
restricted to M . The fourth requirement is obvious, and global asymptotic stability of
the equilibrium point x = 0 can be concluded.

4.2.3 State Observation

Given the initial state, we proved that a stabilising controller exists for discrete-time
neutrally stable systems. We seek a controller globally asymptotically stabilising the
system (4.59) for unknown initial state. In this section an observer design is discussed
which improves the state estimate with time. Thereafter, in the next section, the state
observer is combined with the static feedback derived in the previous section to globally
asymptotically stabilise the system (4.59). In analogy with the continuous-time case,
see 4.1.3, we denote the state estimate at time k by x̂k. Then the interesting quantity
to investigate is the estimation error defined as

ek := xk − x̂k. (4.88)

We desire a decrease in the error as time progresses. To achieve this, we define an
observer of the form

x̂k+1 = Ax̂k +Buk︸ ︷︷ ︸
copy plant

+K (σ(Cxk)− σ(Cx̂k))︸ ︷︷ ︸
measurement error

, (4.89)
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including the saturation function in the observer dynamics. K ∈ Rn×p is the observer
gain to be defined. K must be such that the observer dynamics are at least stable, and
preferably asymptotically stable where possible.

To derive a gain matrix K, we focus on the region where both Cxk and Cx̂k are not
saturated first. Obviously, in this region asymptotic stability of the equilibrium point
e = 0 is desired. For the error dynamics we have

ek+1 = (A−KC)ek. (4.90)

We propose the observer gain

K = ηACT , η > 0. (4.91)

Thus the error dynamics become

ek+1 = A(I − ηCTC)ek. (4.92)

Comparing (4.92) with (4.74) shows great resemblance. The dynamics (4.92) are in fact
globally asymptotically stable, provided that the system (4.59) is observable, neutrally
stable and the bound

η <
2

λmax(CCT ) (4.93)

is satisfied. The derivation of (4.93) can be done in a similar manner as the derivation
of (4.78), by defining the Lyapunov function V6(e) = eT e.

Theorem 17. Assume that (A,C) is observable and ATA = I. Furthermore, take
η < 2/λmax(CCT ). Then e = 0 is a globally asymptotically stable equilibrium point
of the autonomous system

ek+1 = A(I − ηCTC)ek. (4.94)

Proof. Take η such that (4.93) holds. Then ∆V6(e) ≤ 0 and stability of (4.94) can be
concluded. The duality property gives that

(A,C) observable ⇔ (AT , CT ) controllable. (4.95)

Due to neutral stability, application of theorem 16 to the controllable pair (AT , CT )
gives that the system

ek+1 = (I − ηCTC)AT ek (4.96)
is globally asymptotically stable. This implies that the matrix (I − ηCTC)AT is Schur,
hence its transpose

[(I − ηCTC)AT ]T = A(I − ηCTC)T = A(I − ηCTC) (4.97)

is also Schur. This proves global aymptotic stability of (4.94).
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We select K = ηACT for the observer (4.89), pursuing global asymptotic stability in the
linear region where Cx and Cx̂ are not saturated. The observer dynamics become

x̂k+1 = Ax̂k +Buk + ηACT (σ(Cxk)− σ(Cx̂k)). (4.98)

We have to investigate stability of (4.98) in the saturated regions, and distinguish be-
tween two different cases. Those cases are similar as for the continuous-time case. For
convenience we restate them here.

• (Cx)i and (Cx̂)i are saturated and have the same sign. In this case we have
that (σ(Cx) − σ(Cx̂))i = 0 , so the ith output component has no effect on the
correction. This is intuitive, because it is unclear how the ith component should
correct for the estimate. If all state elements are saturated with the same sign,
the observer actually turns into a predictor, letting the state estimate undergo the
same evolution as the state.

• At least one of the terms (Cx)i and (Cx̂)i is saturated, and (Cx)i 6= (Cx̂)i. The
beauty of the observer (4.98) is that the ith output component causes a correction
now. This is intuitive, since we know in which direction to steer the estimate. We
have to check whether a correction is done in the right direction. This is the case
if

sgn{(Ce)i} = sgn{σ((Cx)i)− σ((Cx̂)i)}. (4.99)

Without loss of generality we assume that (Cx)i ≥ 1 and (Cx̂)i < 1. Then
(Cx)i − (Cx̂)i > 0. Furthermore, σ((Cx)i)− σ((Cx̂)i) > 0. Hence, (4.99) is true.

We have shown that the sign of the measurement error term in the observer (4.98) is
always correct, i.e. (4.99) holds. However, we still need to prove stability for the general
observer (4.98). In full generality, error dynamics for the observer are

ek+1 = Aek − ηACT (σ(Cxk)− σ(Cx̂k)). (4.100)

To investigate stability, we define the candidate Lyapunov function

V6(e) = eT e. (4.101)
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This function is strictly positive for all e 6= 0 and V6(0) = 0. For ∆V6(e) we obtain
∆V6 = [Ae− ηACT (σ(Cx)− σ(Cx̂))]T [Ae− ηACT (σ(Cx)− σ(Cx̂))]− eT e

= eT (ATA− I)e− 2ηeTATACT [σ(Cx)− σ(Cx̂)]
+η2[σ(Cx)− σ(Cx̂)]TCATACT [σ(Cx)− σ(Cx̂)]

= −2ηeTCT [σ(Cx)− σ(Cx̂)]
+η2[σ(Cx)− σ(Cx̂)]TCCT [σ(Cx)− σ(Cx̂)]

= η
{
−2eTCT [σ(Cx)− σ(Cx̂)]

+η[σ(Cx)− σ(Cx̂)]TCCT [σ(Cx)− σ(Cx̂)]
}

= η

{
− 2

p∑
i=1

(Ce)i[σ(Cx)− σ(Cx̂)]i

+η[σ(Cx)− σ(Cx̂)]TCCT [σ(Cx)− σ(Cx̂)]
}

(4.102)

In the third step we used the relation ATA = I. To show that ∆V6 is negative semidef-
inite, note that the following implications hold:

[σ(Cx)− σ(Cx̂)]i > 0 ⇒ (Ce)i > [σ(Cx)− σ(Cx̂)]i , (4.103)
[σ(Cx)− σ(Cx̂)]i < 0 ⇒ (Ce)i < [σ(Cx)− σ(Cx̂)]i . (4.104)

Elaborating on (4.102), we get

∆V6 ≤ η
{
−2[σ(Cx)− σ(Cx̂)]T [σ(Cx)− σ(Cx̂)]

+ η[σ(Cx)− σ(Cx̂)]TCCT [σ(Cx)− σ(Cx̂)]
}

= η[σ(Cx)− σ(Cx̂)]T
(
−2I + ηCCT

)
[σ(Cx)− σ(Cx̂)]. (4.105)

If the bound (4.93) holds, the matrix 2I − ηCCT is positive definite. Recalling theorem
14, this proves stability of the error dynamics for suitable η. Hence, the error dynamics
are stable. To explain that the error does not converge to zero asymptotically, note
that

ek+1 = Aek (4.106)
if σ(Cx) − σ(Cx̂) is equal to zero. Obviously, (4.106) is neutrally stable. This shows
that the error dynamics are stable. In the next section we tackle this problem, by com-
bining the observer with an estimated state feedback. This will let the error, and hence
the state, converge to zero.

4.2.4 Global Asymptotic Stability of the Closed-Loop System

In this section we will combine the feedback law and the state observer derived in the
previous sections, and prove global asymptotic stability of the resulting closed loop
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system. For the system (4.59), we restate the observer

x̂k+1 = Ax̂k +Buk + ηACT (σ(Cxk)− σ(Cx̂k)). (4.107)

By applying the feedback control

uk = −γBTAx̂k, (4.108)

the closed-loop dynamics become

ek+1 = Aek − ηACT (σ(Cxk)− σ(Cx̂k)), (4.109)
x̂k+1 = (I − γBBT )Ax̂k + ηACT (σ(Cxk)− σ(Cx̂k)), (4.110)
ek = xk − x̂k. (4.111)

Furthermore it is assumed that

γ <
2

λmax(BTB) and η <
2

λmax(CCT ) . (4.112)

See Figure 4.6 for an intuitive interpretation of the closed-loop system.

Before proving global asymptotic stability, we first intuitively explain the behaviour of
the closed-loop dynamics (4.109)-(4.111). Assume that initially σ(Cx) − σ(Cx̂) = 0
and e 6= 0. Looking at (4.109), we see that the error remains constant then. However,
looking at (4.110), the cross terms vanish. Hence the state estimate converges to zero,
due to Theorem 16. This leads to desaturation of the elements of Cx̂ at some point in
time. Two possibilities arise:

• σ(Cx)−σ(Cx̂) becomes nonzero. This yields that the norm of the error decreases
monotonically. In other words, the quality of the estimate can only increase.
Looking at (4.110), the state estimate converges to zero, since σ(Cx)−σ(Cx̂)→ 0.
(4.111) yields that xk → 0 then.

• σ(Cx) − σ(Cx̂) remains zero. If Cx̂ desaturates, then Cx desaturate as well.
Thus, the observer dynamics become linear, and the error dynamics locally behave
according to (4.94). Theorem 17 guarantees that the error decreases monotonically,
such that σ(Cx̂)→ σ(Cx). The dynamics (4.110) let the state estimate converge
to zero. Consequently, xk → 0.

We prove the following theorem:

Theorem 18. Let (4.59) be a neutrally stable system, i.e. there is a basis choice
such that ATA = I. Take γ < 2/λmax(BTB) and η < 2/λmax(CCT ). Furthermore,
assume that (A,B) is controllable and (A,C) is observable. Then (e, x̂) = (0, 0) is
a globally asymptotically stable equilibrium point of the closed-loop system (4.109)-
(4.111).
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observer

u

y

x̂

controller

x̂k+1 = Ax̂k + Buk + ηACT (σ(Cxk) − σ(Cx̂k))

−γBT A

xk+1 = Axk + Buk

yk = σ(Cxk)

Figure 4.6: The closed-loop system (4.109)-(4.111)

Proof. To prove global asymptotic stability of the equilibrium point (e, x̂) = (0, 0), we
define the candidate Lyapunov function

V7(e, x̂) := eT e. (4.113)

When (e, x̂) = (0, 0), then x = 0 automatically follows. For V7 we have

V7(0, 0) = 0 and V7(e, x̂) ≥ 0 for (e, x̂) 6= (0, 0). (4.114)

Notice that V7(e, x̂) is only positive semidefinite, so V7 is not a candidate Lyapunov
function. However, the Lyapunov difference is negative semidefinite. Looking at theorem
15, it is seen that a positive semidefinite function is also allowed. Selecting the function
V7(e, x̂) = eT e, the first and second condition of theorem 15 are satisfied. To check the
third condition, we define the set E as the set of all points where ∆V7 = 0:

E = {(e, x̂) | σ(Cx) = σ(Cx̂), e ∈ Rn, x̂ ∈ Rn}.

The last step is derived from (4.102). We denote the largest positive invariant set in E
byM . Since (0, 0) is an equilibrium point, (0, 0) ∈M . The dynamics inM are governed
by

ek+1 = Aek (4.115)
x̂k+1 = (I − γBBT )Ax̂k (4.116)
ek = xk − x̂k. (4.117)

Global asymptotic stability of the equilibrium point x̂ = 0 follows from Theorem 16. So,
at some point in time, all elements of Cx̂ desaturate. Together with σ(Cx) = σ(Cx̂),
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we obtain that Cx = Cx̂ then. Consequently, Theorem 17 implies a decrease of the
error. For the dynamics restricted to M , both the error and the state estimate converge
to zero. Hence, from (4.111) we have that

lim
k→∞

xk = 0 (4.118)

for the dynamics restricted toM . This proves the third condition of theorem 15. Due to
stability, the error dynamics (4.109) are bounded. Furthermore, since ηACT (σ(Cxk)−
σ(Cx̂k)) is bounded and (I−γBBT )A is Schur, the dynamics (4.110) are also bounded,
proving the last condition of Theorem 15. This proves global asymptotic stability of the
closed-loop system (4.109)-(4.111).

4.2.5 Extension to Stabilisation of Stable LTI Systems

As for the continuous-time case, a stabilising controller for discrete-time neutrally sta-
ble LTI systems is obtained. The desired equilibrium point is globally asymptotically
stabilised for any initial state and any initial state estimate. In a similar manner as
for continuous-time systems, the class of systems stabilised by the controller proposed
in Section 4.2.4 can be extended to the class of stable discrete-time systems, i.e. A is
a Schur matrix. To do this, we prove the existence of a basis choice for A such that
ATA ≤ I. Taking a close look at the Lyapunov differences (4.75) and (4.102) reveals
that stability properties of the closed-loop system (4.109)-(4.111) do not change.

Using the Jordan normal form, it is obvious that a Schur matrix A can be divided in
two independent parts:

A =
[
A1 0
0 A2

]
, (4.119)

where A1 is Schur and A2 is neutrally stable. Thus, all eigenvalues of A1 have modulus
strictly smaller than one, and all eigenvalues of A2 lie on the unit circle.

To prove that ATA − I ≤ 0 in some basis, we use the discrete-time Lyapunov equa-
tion

AT1 PA1 − P < 0. (4.120)

If A1 is Schur, there exists a P = P T > 0 such that the linear matrix inequality (LMI)
(4.120) holds. P has a unique positive definite square root [3], which we denote by
P 1/2. Due to the invertibility of a positive definite matrix, P−1/2 exists. Exploiting the
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existence and the symmetry of P−1/2, we find

P−1/2(AT1 PA1)P−1/2 − P−1/2PP−1/2 = (P−1/2AT1 P
1/2)(P 1/2A1P

−1/2)− I
= (P 1/2A1P

−1/2)T (P 1/2A1P
−1/2)− I

= ÃT1 Ã1 − I
< 0.

In fact, the corresponding similarity transformation is given by[
Ã1 0
0 A2

]
=
[
P−1/2 0

0 I

] [
A1 0
0 A2

] [
P 1/2 0

0 I

]
. (4.121)

This proves the existence of a basis such that ATA− I ≤ 0 when A is Schur.

4.3 Simulation

To verify the theory developed in the previous sections, simulation of some examples
of stable discrete-time LTI systems subject to output saturation is done in this section.
We use the Simulink package of Matlab to implement the closed-loop system and ob-
tain plots. For the Simulink model and its corresponding code, we refer to Appendix D.

4.3.1 SISO Neutrally Stable System

First of all we consider the neutrally stable LTI system{
xk+1 = Axk +Buk
yk = Cxk

, k ∈ Z. (4.122)

with

A =

 cos(π/5) sin(π/5) 0
− sin(π/5) cos(π/5) 0

0 0 1

 , B =

 1
0
1

 , C =
[

1 0 1
]
. (4.123)

The measured output is given by σ(yk), where σ(·) denotes the saturation function. It
may be checked that ATA = I, and that this system is both controllable and observable.
Looking at matrix A, the upper left 2×2 sub-matrix serves as the oscillating part of the
system. The lower right identity element is independent of this oscillation, and describes
the constant part. Depending on the initial condition, Cxk has a certain initial phase,
amplitude and mean. We show by simulation that the system can be stabilised for some
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Figure 4.7: Saturated output, actual output and input of the neutrally stable system
(4.122) in closed-loop with the stabilising controller.

arbitrary initial condition.

Provided that γ < 2/λmax(BTB) and η < 2/λmax(CCT ), x = 0 is a globally asymptot-
ically stable equilibrium point of (4.122) according to theorem 18. To this extent we
select

γ = 1
2 , η = 1

2 . (4.124)

Furthermore, we specify the initial conditions

x(0) =
[

1 2 10
]T

and x̂(0) =
[

0 0 0
]T

(4.125)

for the plant and the observer respectively. Simulation results of the closed-loop system
(4.109)-(4.111) are plotted in Figure 4.7. The first two plots display the saturated output
σ(yk) and the actual output yk respectively. The input uk is depicted in the third plot.
It is seen that the output converges to zero asymptotically. Moreover the input remains
bounded and converges to zero as expected.

For completeness we add a simulation with measurement noise. The same parameters as
above are used, giving us the opportunity to compare the result to the noise free results.
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Figure 4.8: Saturated output, actual output and input of the neutrally stable system
(4.122) in closed-loop with the stabilising controller and added measurement noise.

A normally distributed random number with mean zero and variance 0.01 is added to
each measurement. The results are depicted in Figure 4.8. The simulation shows that
the controller indeed has a certain noise rejection.

4.3.2 MIMO Neutrally Stable System

To verify that our controller also works for MIMO LTI systems, we propose to simu-
late {

xk+1 = Axk +Buk
yk = σ(Cxk)

, k ∈ Z. (4.126)

with

A =


cos(1/2) sin(1/2) 0 0
− sin(1/2) cos(1/2) 0 0

0 0 1 0
0 0 0 1

 , B =


0 0
1 0
1 0
0 1

 , C =
[

1 0 0 1
0 0 1 1

]
.

(4.127)
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The input and the output of this neutrally stable system both have dimension two.
Furthermore (A,B) is controllable and (A,C) is observable. We use theorem 18 to
derive appropriate values for γ and η:

γ = 1
2 , η = 1

3 . (4.128)

Simulating the system (4.126) with initial conditions

x(0) =
[

4 4 10 12
]T

and x̂(0) =
[

0 0 0 0
]T
, (4.129)

we obtain the results depicted in Figure 4.9. As for the SISO system, both the input
and the output nicely converge to zero. Especially for the second element of the output
vector it takes a while before it desaturates. This is due to the large initial conditions.
Global asymptotic stability of the closed-loop system is verified. Figure 4.10 depicts the
response of the closed-loop system with added measurement noise. To each measurement
a random number with mean zero and variance 0.01 is added. This verifies the claimed
noise immunity.

In summary, a solution for stabilisation of both continuous- and discrete-time stable LTI
systems subject to output saturation is given. This is achieved by finding Lyapunov
functions and using Lasalle’s Invariance principle. In continuous time the structure is
more beautiful, while more technical details are required to prove stability. For discrete-
time systems, this is exactly the opposite. The discrete-time solution opens the door to
implementable controllers. Implementability is verified by simulation of both SISO and
MIMO neutrally stable LTI systems subject to output saturation. The next step is to
extend the theory, and find stabilising controllers for (a class of) unstable systems.
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Figure 4.9: Saturated output, actual output and input of the neutrally stable system
(4.126) in closed-loop with the stabilising controller.
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Figure 4.10: Saturated output, actual output and input of the neutrally stable system
(4.126) in closed-loop with the stabilising controller and added measurement noise.

68



Chapter 5

Conclusions and
Recommendations

In this chapter the important conclusions regarding this thesis are discussed. Thereafter,
recommendations for future research are suggested.

Within this thesis, insight into dynamical systems subject to output saturation is given.
The main difficulties are explained, together with the results so far from [4, 12]. This
has given a good understanding of the bottlenecks to be tackled. Additionally, elegant
stabilising controllers are designed for the class of stable LTI systems with output satu-
ration. The proposed controllers have a certain immunity to measurement noise. Since
we found a stabilising controller for the discrete-time system, the implementability issue
is also resolved. Stable LTI systems arise in a variety of applications, that can now be
controlled in a proper manner.

However, we are not there yet. It has proved to be a major challenge to stabilise discrete-
time unstable LTI systems subject to output saturation. Considering discrete-time sys-
tems, the most difficult tasks are to guarantee desaturation of the output, and to attain
stable error dynamics while the output is saturated. Further research in this direction
is suggested.

To start with, one could consider the problem of stabilising a discrete-time double inte-
grator subject to output saturation. Such a system may grow linearly without application
of an input. The first task is to find a control law steering the output towards the region
where it can be measured correctly. However, if the state is not observed adequately,
this results in unstable behaviour. Information about the state can be deduced by look-
ing at the time instants the output changes sign, in case it does not desaturate. We
suggest to improve the state estimate, by taking into account this information. Once
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a stabilising controller is found, the methodology can possibly be expanded to stabilise
the class of systems exhibiting polynomial growth. Those systems intrinsically have the
same structure as a double integrator. Eventually, a stabilising controller for the entire
class of discrete-time LTI systems subject to output saturation is desired.

In summary, we have shown that stabilising controllers exist for the class of stable LTI
systems subject to output saturation. This is proved using quadratic Lyapunov functions
in combination with LaSalle’s invariance principle. The resulting closed-loop system is
globally asymptotically stable. The implementability issue is resolved by finding a solu-
tion for discrete-time LTI systems. It is discussed how a continuous- time system can
be discretised, and under which conditions an implementable controller design can be
achieved. Finally simulations of a discrete-time LTI system with output saturation are
done, and verify the theoretical results.
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Appendix A

Matrix Norm

The definition is taken from [3]. f : Rm×n → R is a matrix norm if the following three
properties hold:

f(A) ≥ 0, A ∈ Rm×n, (f(A) = 0 if and only if A = 0)
f(A+B) ≤ f(A) + f(B), A,B ∈ Rm×n,
f(αA) = |α|f(A), α ∈ R, A ∈ Rm×n.

We denote the matrix norm by ‖A‖ = f(A).

A.1 Vector p-Norms

An important subclass of matrix norms are the so-called vector p-norms defined by

‖x‖p := (|x1|p + · · ·+ |xn|p)
1
p , p ≥ 1. (A.1)

The 2-norm is used extensively throughout this thesis. The 2-norm is given by

‖x‖2 =
√
x2

1 + · · ·+ x2
n =
√
xTx. (A.2)

A.2 Matrix p-Norms

The matrix p-norms are induced by the vector p-norms:

‖A‖p := sup
x 6=0

‖Ax‖p
‖x‖p

= max
‖x‖p=1

‖Ax‖p. (A.3)

71



Appendix A. Matrix Norm

In fact, the p-norm of some matrix is a measure on how much this matrix can amplify
a vector. It may be verified that (A.3) agrees with the definition. The most important
p-norm for us is the 2-norm. The matrix 2-norm can conveniently be calculated using
the relation (see [13])

‖A‖2 =
√
λmax(ATA), (A.4)

where λmax(ATA) denotes the largest eigenvalue of ATA.
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Jordan Normal Form

Every square matrix can be brought into Jordan normal form by a nonsingular trans-
formation matrix [15]. Hence, there exists a nonsingular matrix S such that

A = SJS−1, (B.1)

where J is a so-called Jordan matrix

J =

 J1 0
. . .

0 Jr

 . (B.2)

All sub-matrices J1, . . . Jr are Jordan blocks, and have the form

Jk =


λk 1 0

. . . . . .
. . . 1

0 λk

 , (B.3)

where λk is an eigenvalue of matrix A. (If all Jordan blocks are 1×1, then J is a diagonal
matrix and A can be diagonalised.)

73



74



Appendix C

LaSalle’s Theorem

The following result is from [10]:

Theorem 19 (LaSalle’s Theorem Continuous-Time Systems [10]). Let Ω ⊂ D be a
compact set that is positively invariant with respect to ẋ = f(x). Let V : D → R be
a continuously differentiable function such that V̇ (x) ≤ 0 in Ω. Let E be the set of
all points in Ω where V̇ (x) = 0. Let M be the largest invariant set in E. Then every
solution starting in Ω approaches M as t→∞.

For consistency, we use a specific version of the above theorem:

Theorem 20 (LaSalle’s Theorem Continuous-Time Systems). If there exists a con-
tinuously differentiable function V : Rn → R+ satisfying

1. V (x) ≥ 0 for all x ∈ Rn and V (0) = 0,

2. V̇ (x) ≤ 0 for all x ∈ Rn,

3. For the dynamics restricted to E∗, 0 ∈ E∗ is asymptotically stable, where E∗
is the largest positively invariant set contained in

E = {x ∈ Rn | V̇ (x) = 0},

4. All solutions of the system ẋ = f(x) are bounded,

then the origin is globally asymptotically stable.

To prove that theorem 20 follows from 19, we need a couple of theorems first:
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Theorem 21 (The Closure of a positively Invariant Set). The closure of a positively
invariant set is also positively invariant.

The proof is stated, and is analogous to the proof for invariant sets stated in [5].

Proof. Let Ω be a positively invariant set, and let Ω̄ denote its closure. Ω̄ is the union of
Ω and the set of all accumulation points of Ω. Let x(0) ∈ Ω̄. If x(0) ∈ Ω, then x(t) ∈ Ω
for all t ≥ 0 by the definition of a positively invariant set. Hence, x(t) ∈ Ω̄ for all t ≥ 0.
Now suppose that x(0) /∈ Ω, and choose a sequence xn(0) ∈ Ω such that xn(0) → x(0).
Then xn(t)→ x(t), implying that x(t) ∈ Ω̄ for all t ≥ 0.

Theorem 22. For all x(0) ∈ Rn there exists a positively invariant compact set Ω
such that x(0) ∈ Ω if and only if for all x(0) ∈ Rn, x(t) is bounded as a function of
t.

Proof. ’⇒’: Since x(0) in Ω and Ω is positively invariant, x(t) ∈ Ω, ∀t ≥ 0. The
compactness of Ω implies that it is a bounded set. Boundedness of x(t) follows.
’⇐’: x(t) is bounded, hence there exists a bounded set Ω0 such that x(t) ∈ Ω0, ∀t ≥ 0.
By definition Ω0 is positively invariant. According to theorem 21, the closure of Ω0,
denoted by Ω̄0, is a positively invariant set. Since Ω̄0 is closed and bounded, it is
compact. Now define Ω := Ω̄0.

Now we are ready to prove that theorem 19 implies theorem 20. To start with, we sub-
stitute D = Rn and M = 0 in theorem 19. For this specific choice we obtain:

Theorem 23. Let Ω ⊂ Rn be a compact set that is positively invariant with respect
to ẋ = f(x). Let V : Rn → R be a continuously differentiable function such that
V̇ (x) ≤ 0 in Ω. Let E be the set of all points in Ω where V̇ (x) = 0. Let {0} be the
largest invariant set in E. Then every solution starting in Ω approaches 0 as t→∞.

We have to prove that the conditions in theorem 23 are equivalent to the conditions in
theorem 20. This is proved now.

Proof. ’⇒’ (From theorem 23 to theorem 20): Ω is positively invariant and compact
with respect to ẋ = f(x). Therefore, we have from theorem 22 that x(t) is bounded as
a function of t. So requirement 4 of theorem 20 holds. Since V is continuous on the
compact set Ω, V is bounded from below. Without loss of generality, we can assume
that V is bounded from below by 0 and V (0) = 0. Requirement 1 and 2 are fulfilled.
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Lastly, 0 being the largest invariant set in E = {x ∈ Ω | V̇ (x) = 0} implies that 0 is the
only equilibrium point for the dynamics restricted to E. This implies requirement 3.

’⇐’ (From theorem 20 to theorem 23): All solutions of the system ẋ = f(x) are bounded.
Using theorem 22 again, the existence of a compact set Ω that is positively invariant with
respect to ẋ = f(x) is clear. Looking at conditions 1 and 2 of theorem 23, there exists
a continuously differentiable V : Rn → R such that V̇ (x) ≤ 0 in Ω. 0 is asymptotically
stable for the dynamics restricted to the largest positively invariant set contained in
E = {x ∈ Ω | V̇ (x) = 0}, so the unique equilibruim point. Therefore, 0 is the largest
invariant set in E. This finishes the proof.

77



78



Appendix D

Simulink Model for Stable LTI
Systems

79



Appendix D. Simulink Model for Stable LTI Systems

D.1 Matlab Code

% simulation of discrete−time neutrally stable system in
% closed−loop with the stabilising controller.

%% Model Parameters
A = [cos(pi/5) sin(pi/5) 0; −sin(pi/5) cos(pi/5) 0; 0 0 1];
B = [1; 0; 1];
C = [1 0 1];
D = [0];

x0 = [1; 2; 10];
xhat0 = [0; 0; 0];

Contr = [B A*B A^2*B];
Obs = [C; C*A; C*A^2];
rank(Contr);
rank(Obs);

gamma = 1/max(eigs(B'*B));
eta = 1/max(eigs(C*C'));

%% Numerical Simulation
tStart=0;
tFinal=200;

sim('neutrally_stable',[tStart tFinal]);

%% Plots of the results
figure(1)
SUBPLOT(3,1,1)
stem(tout,saty)
ylabel('sat(y_1)')
SUBPLOT(3,1,2)
stem(tout,y,'r')
ylabel('y_1')
SUBPLOT(3,1,3)
stem(tout,input)
xlabel('discrete time k')
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Discretised Algorithm of
Kreisselmeier

%This .m−file computes the response of an LTI system as
%described in Kreisselmeier (1996). An initial state X0
%is assumed. The system response using the control law
%as described in section 3 of Kreisselmeier is plotted.

clear all;

%define linear system x' = Ax + Bu, y = cx
A = [0 1; 0 0];
b = [0; 1];
c = [1 0];
sys = ss(A,b,c,[]);

%time vector
T = 10e−3; %interval length
dtau = T*10e−5; %step size
tau = 0:dtau:T−dtau; %vector tau
Ltau = length(tau);
N = 99; %#intervals

%control parameters
B = [0 −T; −T 1]; %B(T)
alpha = exp(2*T*norm(A));
h = [1;0]; %h s.t. c*h > 0
eAT = expm(A*T); %exp(AT)

%initial conditions
y0 = 0;
yd0 = 0.0001;
x0 = [y0 ; yd0]; %initial state
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%input on [0,T) (also when |y0|<1)
U0 = (B\[alpha.*h − eAT*h])*sat(y0);
u(1:Ltau) = −abs(b'*U0)*sign(y0);

%simulate for interval [0,T)
[y, t, x] = lsim(sys,u(1:Ltau),(1:Ltau),x0);

%construct input for interval [kT,(k+1)T)
%using output of interval [(k−1)T,kT)
for k=1:N %for every interval of length T

%determine sigma(k)
sigma(k) = Ltau − sum(abs(sat(y(((k−1)*Ltau+1):(k*Ltau)))));
%determine new input
if sigma(k) == 0 %if y saturated in [(k−1)T,kT)

%determine U_k (vector)
U(:,k) = (alpha^k).*(B\(alpha.*h−eAT*h)).*sat(y(length(y)));
%determine u(kT+tau)
u((k*Ltau+1):((k+1)*Ltau)) ...

= −abs(b'*−eAT'*U(:,k)).*sign(y(k*Ltau));
else %if y is not completely saturated

k
%determine D(k) and xi(k)
D11(k) = sum(1−abs(sat(y(((k−1)*Ltau+1):(k*Ltau)))));
D12(k) = 0;
D21(k) = 0;
D22(k) = 0;
xi(:,k) = zeros(2,1);
for i=1:Ltau

D12(k) = D12(k) + tau(i)*(1−abs(sat(y((k−1)*Ltau+i))));
D21(k) = D21(k) + tau(i)*(1−abs(sat(y((k−1)*Ltau+i))));
D22(k) = D22(k) + tau(i)^2*(1−abs(sat(y((k−1)*Ltau+i))));
if k == 1 %exception for U0

xi(:,k) = xi(:,k) + [1 0; tau(i) 1]*c'.*...
(sat(y((k−1)*Ltau+i)) + c*[0 −tau(i); −tau(i) 1]*...
(B\[alpha.*h − eAT*h]).*sat(y0)).*...
(1−abs(sat(y((k−1)*Ltau+i))));

else
xi(:,k) = xi(:,k) + [1 0; tau(i) 1]*c'.*...
(sat(y((k−1)*Ltau+i)) + c*[0 −tau(i); −tau(i) 1]*...
U(:,k−1)).*(1−abs(sat(y((k−1)*Ltau+i))));

end
end
%determine U_k vector
if k == 1

U(:,k) = B\(eAT*(eAT*([D11(k) D12(k);D21(k) D22(k)]\xi(:,k))))...
− U0;

else
U(:,k) = B\(eAT*(eAT*([D11(k) D12(k);D21(k) D22(k)]\xi(:,k))))...

− U(:,k−1);
end
%u(kT+tau)
u((k*Ltau+1):((k+1)*Ltau)) = −abs(b'*−eAT'*U(:,k))*sign(y(k*Ltau));

end
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%simulate
[y2, t2, x2] = lsim(sys,u((k*Ltau+1):((k+1)*Ltau)),...

(k*Ltau+1):((k+1)*Ltau),...
x(length(x),:));

%augment vectors y,t,x
y = [y; y2];
t = [t; t2];
x = [x; x2];

end
%plot results
subplot(3,1,1);
plot(t/Ltau,y)
subplot(3,1,2);
plot(t/Ltau,sat(y))
subplot(3,1,3);
plot(t/Ltau,u,'r')
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