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Abstract

In this thesis the problem of classification of birds and Unmanned Aerial Vehicles (UAVs) using
a model-based Bayesian approach is considered. The conventional way of discriminating between
birds and UAVs is based on the micro-Doppler signature which is induced by the micro motions
of the target, such as the motion of wings and rotor blades for birds and UAVs respectively.

The model-based Bayesian approach is able to automatically classify targets and learn from
experience. Hidden Markov models are developed based on the radar return model for the tar-
get and the associated class likelihood functions are derived. Maximum likelihood estimation
is performed to estimate unknown parameters, which are subsequently used for classification.
Unsupervised data are used to learn class dependent parameters by applying the learning tech-
nique called Maximum Likelihood Adaptive Neural System (MLANS). This approach does not
require any preprocessing of the radar return signals and can simultaneously learn and classify.
Moreover, the approach is robust with respect to uncertainties on parameter values, such as the
initial position of the blades. The classification algorithm is tested on synthetic data and is
shown to be capable to classify birds and UAVs with a 95% probability.

Keywords: UAV/Bird classification, Bayesian classification theory, Hidden Markov modelling,
Learning, Maximum Likelihood Adaptive Neural Systems.
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Chapter 1

Introduction

1.1 Motivation

Over the last years, mini Unmanned Aerial Vehicles (UAVs) also known as drones have become
more and more popular. Nowadays the prices are affordable, therefore accessability of the small
flying helicopters has increased [36]. The UAVs are used for different non-commercial or commer-
cial purposes. One might think of package delivery as a commercial purpose, but most UAVs that
occupy the airspace are used for non-commercial purposes. A few examples of non-commercial
usages of UAVs are UAVs equipped with cameras to get scenery videos of landmarks, UAVs used
for racing or just as a toy to play around with.

One concern of this increased popularity is violation of privacy when people remotely control
mini UAVs equipped with cameras. Another important concern is the abuse of UAVs for protests
or criminal acts. UAVs can cause serious harm when equipped with an explosive device or used
directly as an arm. Another concern is the usage of UAVs around airports. Lately there have
been a lot of near-miss incidents with UAVs around airports, where airplanes (almost) collided
with UAVs [13]. When considering UAVs as a potential threat for our security, suitable coun-
teractions need to be developed. Therefore detection and identification of UAVs in the air space
have become evermore important now threats are more serious due to the increase of accessibility
to mini-UAVs.

Identification and classification of aerial vehicles is done by radar. Targets like UAVs are illu-
minated by radio waves and information about the target is extracted from the reflected signals.
Even though the number of UAVs has increased over the past years, the most targets that are
detected by the radar remain flying birds. Flying birds are not of interest for the radar operator,
hence we want to filter out these detections and this is where automatic classification comes in.
Automatic classification is a system that classifies the target and makes a decision whether the
radar operator should be informed about this target or not. The classification between UAVs
and birds is essential for the security issues, but besides the ability to distinguish between UAVs
and birds it is also of interest to be able to classify the UAV in a specific subclass of UAVs. This
last classification ability is interesting for military purposes.

This thesis deals with automatic classification of UAVs and birds for which an approach is
presented.
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1.2 Literature and contributions

Although the classification of mini-UAVs is quite a novel topic, the classification of other aerial
vehicles using radar is not new. The conventional approach to extract information about a target
is done by frequency analysis of the radar return signal.

A moving target causes a frequency shift in the carrier frequency of the transmitted signal.
This is known as the Doppler effect [17]. If the target has any vibrating or rotating components,
like a rotating propeller, a rotor of a helicopter or flapping wings of the birds, this will also induce
a frequency modulation on the returned signal. These micro-motions cause micro-Doppler shifts.
Frequency analysis of the radar return signal can give information about these components on
a target which cause these micro-Doppler shifts. The micro-Doppler effect was originally intro-
duced in the field of laser technology [38]. Later it was also used for radar application in [19],
where the micro-motion of vibration was studied.

A more complete study of micro-Doppler effect in radar was done in [6]. Models for micro-
Doppler frequency shifts were derived for vibration, rotation, tumbling and coning motions and
were verified by simulation studies. The classification of helicopter by its micro-Doppler features
was first investigate in [24]. In all this research, micro-Doppler features were extracted by time-
frequency analysis tools, for instance the Short Time Fourier Transform (STFT). In the novel
topic of classification of mini-UAVs these techniques were also used [25].

These frequency analysis tools induce a relative high computational cost due to the time-
frequency transform and depend on the choice of parameters of this transform itself, for example
the window length. These parameters depend on the dynamics of the target. A disadvantage of
the time-frequency transform is loss of insight about how the parameters influence the classifi-
cation and how the unknown parameters can be estimated.

A more direct approach was demonstrated in [22], where the theoretical radar return time
signal was shown to depend on the number of blades, rotation speed and the length of the blades.
The classification of helicopters based on this theoretical return was recently done in [15].

In this thesis classification of (mini-)UAVs and birds is also done based on the theoretical re-
turns. To the best of our knowledge this is the first time that both (mini-)helicopters/UAVs and
birds are classified based on the theoretical return. An advantage of using the theoretical return
is that the model applies for all sensor settings/parameters, whereas the time-frequency based
classifiers are built for one specific sensor setting. So this approach is robust to different sensor
settings. The theoretical return classifier in [15] is built under the assumption that only measure-
ment noise is present and is not robust to any unmodelled radar returns. The approach presented
in this thesis is robust to possible unmodelled radar returns using a stochastic dynamical model.
A stochastic model for the theoretical radar return is developed and used for classification. To
our knowledge it is the first of its kind for this application. Another concept with this classi-
fication approach is that parameters in the underlying models are learned simultaneously with
classification, this concept isn’t used before in the field of UAV/bird classification.
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1.3 Outline thesis

The remainder of the thesis is organised as follows.

In Chapter 2 background knowledge relevant this research work is presented. Firstly the gen-
eral problem of classification is introduced. Several approaches solving the classification problem
are then presented. One of these approaches is based on the statistical classification theory. The
statistical classification theory is explained in more detail, in particular the Bayesian classifica-
tion theory. Next hidden Markov modelling is discussed to deal with sequential data. Finally
parameter learning and estimation techniques are investigated.

In Chapter 3 the main contribution of this thesis is presented. The received signal models for
a single point scatterer on a UAV and a single point scatterer on a bird are derived. Next the
associating stochastic dynamic class models and stochastic observation models are developed.
Subsequently the hidden Markov models that arise from these dynamical and observations mod-
els are used to build the classifiers. Next the UAV and bird are modelled using multiple scatterers
models, from which different hidden Markov models are derived and the corresponding classifier
is presented.

In Chapter 4 the numerical results are presented. The performance of the classifier based
on both single and multiple scatterer models is tested. Relaxations of assumptions are done
to investigate the impact on the performance and the performance of parameter learning and
estimations are discussed.

Finally, Chapter 5 concludes this thesis with the main conclusions from the analysis on the
results in Chapter 4 and discusses the limitations of this study and gives directions for future
research.
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Chapter 2

Background knowledge

In this section background knowledge about classification theory and estimation theory is dis-
cussed. The general idea behind classification is presented and techniques solving the classifica-
tion problem are investigated. The techniques that have more potential of solving the UAV/bird
classification problem are discussed in more detail. First we explain the general task in classifi-
cation.

The general task in classification is assigning a label/class/category to an object using the
available information about its properties. It is a general problem in a wide range of fields [34].
Several general problems which are classification problems are recognition and detection.

In the recognition problem one can think of recognising a license plate on a photo, i.e. recog-
nising the characters on the license plate. Ideally we want to assign each character on the photo
with one of multiple labels: ’A’, ’B’,..., ’0’, ’1’..’9’, such that a license plate can be reconstructed.

The problem of detection is a binary classification problem with only two classes: ’Yes’ and
’No’, which is answering the question whether or not we are observing a certain phenomenon or
object. For instance, we can detect targets in the air using a radar, hence the question is whether
or not we are observing a target in the radar.

Classification is often learned from experience [3]. Given the experience, a set of samples
for which the class is known, called labelled samples, the task is to learn how to classify new
samples. The sample y ∈ Y is a set of attributes or features of an object and lies in the sample
space Y. The set of observations we use to learn experience from we call the training set. In a lot
of classification problems the training samples/training set are a set of labelled observations so
the class c ∈ C from which the sample y is originating is known, hence the classification system
can be learned. Learning from such a training set can be done using different approaches or
techniques. Note that the word sample and observation share the same meaning here.

The classification problem is solved by a class assignment function called the classifier. This
classifier function maps from the sample space Y to the class space C and such a function can
be deterministic or non-deterministic. If the classifier function is deterministic the classifier
assigns one class to the sample y, whereas the non-deterministic classifier assigns to each class c
a probability for the sample y to originate from that class c.

One frequently used framework for classification is to divide the sample space into regions
that correspond to a class. The boundaries between these regions are called decision bound-
aries, these boundaries are usually a hyperplane or a combination of several hyperplanes. A lot
of classifiers are based on this concept, for instance the Support Vector Machine (SVM). This
geometric interpretation of the problem is illustrated in Figure 2.1, where the red line is the
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boundary between the regions corresponding to the two classes.
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Figure 2.1: Decision boundary

But this geometric approach is only one way of looking at the classification problem. There
are a lot of different approaches from a lot of different backgrounds, some of them are only
applicable in a certain field whereas other approaches are more general applicable. Below we will
discuss some of the most prominent methods.

� Case based methods

The case based methods are classifying new samples by comparing the similarity with the
training samples available. This similarity is measured by a metric, e.g. the Euclidean
distance. The Nearest Neighbour classifier is an example of a case based classifier [9]. The
classifier assigns the same class to the new sample as the class of the sample in the training
set of samples which has the minimum distance to the new sample. This case based method
does not need to learn, but for each new sample the algorithm has to find the sample in
the training set with minimum distance to this new sample. There are a lot of variations
on this approach of nearest neighbour technique.

� Logical inference

The logical inference classifiers infer from a set of rules to which class the new sample
belongs. The set of rules itself will be deduced from knowledge and will reduce the sample
to a set of logical variables. From this set of variables the class is deduced. For instance a
numerical feature can be reduced to a logical variable by setting the variable to true if the
numerical value lies in some interval and false otherwise.

In this framework the set of rules is usually designed by human experts discussed in [33]
and [29] but can also partly be trained using the training set. In logical conjunctions [5] a
certain combination of these logical variables (derived from the set of rules) is corresponding
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to a class. A Decision list for each class concludes if the sample belongs to that class or
not [30]. Another representation is the Decision tree, where all these different rules are
combined to have one classifier. In the decision tree a rule is attached to each node and
this rule will tell to which sub-tree the sample proceeds. At the end of the tree one class
is associated with the sample.

The rules, the order and structure of the tree can be trained using the examples in the
training set. Note that these rules in the tree can be interpreted as a division of the sample
space in several regions.

� Statistical classifiers

The previous types of classifiers assume a deterministic classifier, so each sample can belong
to only one class. But if the regions in the sample space of different classes are overlapping,
the sample has probabilities belonging to different classes and based on these probabilities
one can decide which class is chosen. The most common choice is to choose the most
probable class. Criteria for decision making will be discussed in more detail later.

To assign a class probability to a sample we need to have a probability distribution over the
sample space. This is the goal in this statistical classification approach: find the probability
distribution over the sample space for a certain class. The training set is used to find these
distributions. So instead of having deterministic decision boundaries the samples space is
covered by a probability density function, giving us information about the corresponding
class for each sample.

The statistical methods can be parametric or non-parametric. Parametric statistics assume
a certain model for the underlying probability distributions of the variables being assessed.
For example one can assume the class probability distributions to be Gaussian, hence there
are only two parameters to estimate for each class (mean and variance).

Unlike the parametric statistics, non parametric statistics make no assumptions about the
distributions of variables being assessed. The main difference between parametric and non
parametric statistics is that the former has a fixed number of parameters, while for the
latter the number of parameters grows with the size of the training set.

The Parzen Estimator [26] is an example of the non-parametric approach where the prob-
ability function for the whole sample space is built by a linear combination of Gaussian
density functions. For each sample in the training set we have Gaussian density with the
mean of the density function at the training sample. So when the training set contains
N training samples, the number of parameters (variance of each Gaussian and the weight
of each Gaussian in the linear combination) is twice the number of samples and therefore
equals 2N .

The Mixture Model [23] is an example of a model in between both approaches. The model
is a finite sum of (parametric) probability distributions where the number of probability
distributions is not increasing as the training set is increasing.

Statistical classification theory will be discussed in more detail below.

� Artificial Neural Networks

The Artificial Neural Networks (ANNs) as a classification mechanism is highlighted here,
although it can be seen as statistical method. The ANN was studied in detail during this
study. Like in the other statistical classifiers the ANN assigns probabilities to each class
given some new sample. The approach for the ANN to assign these probabilities to each
class is explained below.
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The ANN consists of multiple layers, where each layer generally consists of three sublayers,
an input layer, a hidden layer and an output layer. The input layer represents the inputs and
these inputs are linearly combined by the hidden layer. Subsequently the linear combination
of inputs is activated by an activation function [3] and the output of the activation function
is represented in the output layer. These layers are used to build the architecture/structure
of the neural network.

A simple ANN is shown in Figure 2.2. The arrows represent a layer of weights. The input
layer has three features and one bias and is connected to the hidden layer by the weights.
This linear combination is activated by an activation function. In classification setup this
activation function is chosen such that the output is interpretable as a probability, meaning
that it fulfils some of the probability properties. The outputs are a vector of probabilities
over classes, hence the outputs sum up to one and lie between zero and one.

Input #1

Input #2

Input #3

Bias

Bias

Output #2

Output #3

Output #1

Hidden
layer

Input
layer

Output
layer

Figure 2.2: Simple graphical representation of the ANN where a vector of three inputs is classified
into one of the three classes.

The ANN is learned using a labelled training set. The desired output is a vector of 1’s and
0’s, with a 1 for the corresponding output class of the training sample and 0’s for the other
outputs. Given the training set y and corresponding classes c, the neural network output
is given by NN(y, w), where w is the vector of all weights used in the different layers. An
error function E is defined and is minimised with respect to the weights w such that the
optimal weights are found,

ŵ = arg min
w

E(c, NN(y, w))

This search for the optimal weights is done during the learning process. Learning is done
by Error Back-Propagation [31], where the weights are initialised randomly and are up-
dated each iteration in the direction where the error function decreases (gradient descent
method), until the error function attains a (local) minimum value. Getting stuck in a local
minimum is a familiar problem with gradient descent methods.

� Trade-off bias/variance
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Learning from experience (training set) will always be a trade-off. In a non parametric
model with a lot of parameters, like the ANN, overfitting is a general problem [4]. An
over-fitted model will not perform well on new samples, hence it is important that a model
shows good generalisation, i.e. the ability to classify new samples correctly. This is the
trade off between bias and variance. A model which is overfitted to the training samples
will have a small bias, but a high variance. Vice versa a model which is under-fitted will
have a small variance but a high bias. Regularisation prevents a model to be over-fitted.
Regularisation encourages smoothness of the model by penalising complexity of the model
[4].
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2.1 Statistical classification theory

In this section we state the statistical classification theory in more detail, as a brief introduction
was given above.

Statistical classification consists in solving a classification problem via statistical inference.
The underlying probability distributions and statistical methods are used to find the class prob-
ability for an observed sample, i.e. the probability of belonging to a certain class. Statistical
classification theory is built upon four basic elements [2] given below.

� In statistical classification there is a underlying unknown, called truth, which is represented
by a class c in the class space C. The goal is to find this truth c.

� The problem of finding the truth arises due to the fact that we do not observe the truth,
but we do observe observation y in the sample space Y. The observations depend on the
truth since the observations are often quantifying a feature or properties of the object, but
measuring these features is distorted by noise, which are assumed to be random in the
statistical framework. These relations are described in an observation model which models
the dependency of the observation on the features of the truth. The noise assumption
introduces random variables in the model and this is where statistical methods come in
to help us answering questions like: what is the probability of observing y assuming that
it originates from class c? This question is answered by the likelihood function or class
conditional probability function pY(y|c) and arises out of the observation model. Using
this likelihood function one concludes about the class.

� Based on these observations we have to decide which state c is the ’best’ fit, this decision
is made by a decision rule δ : Y → C, where δ is an allowed decision rule in the set D.
In classification theory this decision rule is called a classifier, which is a function from the
sample space Y to the truth space C, such a decision rule/classifier is usually an optimal
choice in a optimisation problem, e.g. minimising the risk of over all decision rules in D.

� As mentioned above the optimal classifier is optimal in the sense that it minimises an
objective function, also called loss function L(δ(·), c). In classification theory the loss
function penalises a misclassification. An example of a loss function is ”0/1” Loss Function,
which will be discussed in section 2.2.

Thus the four basic elements are the truth/class space, the observation model, the decision rule
and the loss function. As in statistics, statistical classification knows two different approaches,
the classical statistics approach and the Bayesian statistics approach. Both of the statistics and
their differences are discussed below.

2.1.1 Classical vs Bayesian statistics

The field of statistical decision/classification theory is divided in two different schools, the classi-
cal and the Bayesian school, hence statistical classification theory can be taught in two different
ways. The statistical inference can be either the classical inference, also known as the frequentist
inference, or the Bayesian inference.

One difference between both views is the modelling assumptions about the parameters of
distributions. For instance, assume random variable Z normally distributed with mean µ and
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variance σ2. In the classical view these parameters are estimated and represented by a confi-
dence interval, whereas in in the Bayesian approach these parameters are represented as random
variables, containing more information than a confidence interval [18]. For example mean µ is
assumed to be normally distributed with hyper parameters mean mµ and variance sµ.

In classical inference the accuracy of the techniques e.g. confidence intervals, unbiased estima-
tors, are in terms of its long term repetitive accuracy. Classical statisticians consider probabilities
as an objective property of nature, which can be measured accurately by sufficient repetitions
of an experiment [1]. Even though in maximum likelihood estimation (MLE) this idea is not
present and is also used by the classical statisticians. Classical statisticians maximise the prob-
ability of getting the data D given a certain set of hypotheses H , e.g. model assumptions and
the likelihood function P (D|H).

While classical theory views the probability as an objective property, the Bayesian theory
considers probabilities as subjective to the evidence/observations/information [10]. The term
subjective refers to the fact that probabilities for identical events are different when different
information is available [1]. In the Bayesian view the class is considered to be random, therefore
the prior information is taken into account. The Bayesian statistician maximises the probability
a certain set of hypotheses given the data,

P (H|D) ∝ P (D|H)P (H),

where P (H) is the prior probability for this set of hypothesis to be true. P (H|D) is called the
posterior probability, after observing data D.

Having briefly introduced both schools above, we argue why the Bayesian view is adopted in
the remainder of the thesis. First, the Bayesian approach takes into account a prior information
about classes which plays important role in the classification problem dealt with in this thesis.
Secondly the classical frequency-based interpretation of probability seems not appropriate for
classification. The probability for an observation originating from a certain class does not have
this frequency interpretation, since there is no sequences of outcomes for a certain class for one
observation. The Bayesian classification theory is discussed in detail in the next section.
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2.2 Bayesian classification theory

In this section the Bayesian classification theory is discussed using the work from Berger [1].
In Bayesian classification a priori knowledge about the truth c is used, by assuming a certain

probability function PC(c) for the state space C. This element PC(c) together with the basic
elements, as given in section 2.1, defines the Bayesian classification problem, which can be rep-
resented by 6-tuple (C,Y,D, L(δ(·), c), pY(y|c), PC(c)). Given loss function L we want to find the
optimal δ ∈ D such that the optimality criteria holds.

Actually the notation of the probability functions can be done more rigorously. Both the
prior and the likelihood function are developed under a set of modelling assumptions A. So
the notation of these probability functions should be pY(y|c,A), PC(c|A), PC|Y(c|y,A). There
are modelling assumptions in all problems we deal with and thus there are no unconditional
probabilities. Although this is the correct notation, the notation including A will not be used,
since these assumptions hold throughout the whole thesis.

Bayesian classification is named after Bayes, known for the famous Bayes’ formula in (2.1).
Bayes’ formula is the solution in the following problem: we want to update the prior class prob-
ability PC(c) into the posterior class probability PC|Y(c|y), i.e. the probability of class c is the
truth given that we observed y. The prior probability function combined with the likelihood
function PY(y|c) which arises out of the observation model will gives us the posterior class prob-
ability via Bayes’ theorem (2.1).

We consider a discrete class space C with a finite number of classes and assume this space
is collectively exhaustive, i.e. for all observations there is a class from which the observation
originates. Since we assume class c to be a discrete random variable, we denote the prior and the
posterior class probability mass functions by PC(c), PC|Y(c|y), probability density functions of
continuous random variables are denoted by p. According to Bayes’ theorem the posterior class
probability equals,

PC|Y(c|y) =
pY(y|c)PC(c)

pY(y)
, (2.1)

where the normalising constant is

pY(y) =
∑
c∈C

pY(y|c)PC(c).

Example

An example to indicate the influence of Bayes’ formula is stated below. The example is in line
with the problem of classification of UAVs/Birds.

Suppose there are two classes. There is the measurement device which is not perfect but it
classifies correctly with probability 0.99. Further assume that UAVs are quite rare: one of out of
10000 flying objects is an UAV, the rest of them are birds (collectively exhaustive). What is the
probability of an object being an UAV given that the measurement device classifies the object
as an UAV.
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Intuitively, one might think that due to the high accuracy of the measurement device this
probability is large.

We want to classify an object being an UAV (c = 1) or a bird (c = 0). So we have C = {0, 1},
and the outcome of the measurement device is the outcome of the sample space, UAV (y = 1)
or bird (y = 0), so Y = {0, 1}. The likelihood function is also given in the introduction of this
problem

pY(y = 1|c = 1) = 0.99,

pY(y = 0|c = 0) = 0.99,

and thus by the law of total probability we have that

pY(y = 1|c = 0) = 0.01,

pY(y = 0|c = 1) = 0.01.

A priori information gives us the prior probabilities

PC(c = 1) = 0.0001,

PC(c = 0) = 1− 0.0001 = 0.9999.

All information is now available to calculate the posterior probability by (2.1)

PC|Y(c = 1|y = 1) =
pY(y = 1|c = 1)PC(c = 1)

pY(y = 1)
,

=
0.99 · 0.0001

0.99 · 0.0001 + 0.01 · 0.9999

= 0.0098,

which is quite low, different than one might intuitively think.

A posteriori expected loss

In the Bayesian framework, the optimal classifier is based on the conditioning on the event of
observing observation y, not conditional on all other possible observations which did not occur.
The loss function is averaged over the state space C conditioned on the observation y. This is
a fundamental difference between the frequentist and the Bayesian approach, the frequentist is
averaging over all possible observations. So in the Bayesian approach the loss function is weighted
by the posterior class probability,

EC|Y [L(c, δ(y))|y] =
∑
c∈C

L(c, δ(y))PC|Y(c|y).

Bayes’ optimal classifier δ̂(·) is derived by minimising the a posteriori expected loss,

δ̂(y) = arg min
δ(y)∈D

[
EC|Y [L(c, δ(y))|y]

]
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Classification under the 0/1 Loss function

A frequently used loss function is the 0/1 loss function. The 0/1 loss function penalises a
misclassification with unit cost and a correct classification with zero cost,

L(c, δ(y)) =

{
1 if c 6= δ(y),

0 if c = δ(y).

If we find the optimal classifier for the a posterior expected loss and with the 0/1 loss function
we have that the corresponding Bayes’ classifier is,

δ̂(y) = arg min
δ(·)∈D

[
EC|Y [L(c, δ(y))|y]

]
,

= arg min
δ(·)∈D

[∑
c∈C

L(c, δ(y))PC(c|y)

]
,

= arg min
δ(·)∈D

 ∑
c6=δ(y)

PC(c|y)

 ,
= arg min

δ(·)∈D

[∑
c∈C

(PC(c|y))− PC(δ(y)|y)

]
,

= arg min
δ(·)∈D

[1− PC(δ(y)|y)] ,

= arg max
c∈C

PC(c|y). (2.2)

This classifier is called the maximum a posteriori (MAP) classifier. Note that the posterior class
probability is proportional to pY(y|c)PC(c), therefore maximising this entity over all classes is
equivalent to maximising the posterior class probability over all classes.

An example where we assume two classes C = {0, 1} and both posterior class probability are
plotted in Figure 2.3.
The classifier we use is the MAP classifier, therefore for all y ∈ R1 where, R1 = {y|y > ŷ} we
have that δMAP (y) = 1 and for all y ∈ R0 where, R0 = {y|y ≤ ŷ} we have that δMAP (y) = 0.
The total probability of misclassification is minimised by this classifier and equals,

Pmin(error) = P (y ∈ R0, c = 1) + P (y ∈ R1, c = 0),

=

∫
R0

pY(y|c = 1)PC(c = 1)dy +

∫
R1

pY(y|c = 0)PC(c = 0)dy.

The optimal Bayesian classifier is actually not in line with the Bayesian view. The general
Bayesian approach stops after arriving at the posterior probability density, but the optimal
Bayesian classifier decides one class using the posterior density. The most information is held
in the posterior densities and degrading this density to one value, e.g. MAP classifier, is a huge
loss of information. In classification we are ”forced” to decide a class, therefore we will use a
classifier.
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ŷ

pY(y|c = 1)PC(c = 1)
pY(y|c = 0)PC(c = 0)

P (y ∈ R0, c = 1) P (y ∈ R1, c = 0))

y

Figure 2.3: Decision boundary
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2.3 Classification through hidden Markov modelling

In classification problems the truth is not directly observable, instead we observe a noisy version
of features/properties of the truth, denoted by y ∈ Y [34], [7]. The features/properties (without
noise), denoted by state x ∈ X , depend on the class c, environment parameters and other
circumstances that influence the state x. The observation model, one of the basic elements of
statistical classification gives the relation between the sample/observation y and the state x. In
the statistical framework the observation model introduces some random variable(s), hence we
can apply the statistical /Bayesian paradigm to this modelling approach.

In many applications the features of the truth, the state x is evolving over time and there-
fore the model describing the state is dependent on time t. To extract information about this
dynamics a sequence of observations is needed. The observation at timestep k is done at time
tk and is denoted by yk. From K sequential observations {y1, y2, ..., yK} we obtain information
about the class it is originating from. For instance when classifying if a object is moving or not,
one observation about its position is not enough to conclude if the object is moving. Therefore in
classification of sequential data we model the evolution of the state xk at time tk by a dynamical
model, describing the evolution of the state. The dynamic model and an observations model
can be put together in a model called the hidden Markov model, a specific type of a Bayesian
Network [16].

The word observation might be ambiguous. To be clear, we will use the word observation
for a set of K sequential measurements {y1, y2, ..., yK} , shortly denoted by y1:K . This one
observation y1:K is originating from one (unknown) class. When more observations are discussed
the nth observation is denoted by yn1:K or yn.

A hidden Markov model is a partly observed stochastic dynamical model, it can be regarded
as a Markov chain observed with noise [14]. The dynamical model for the state evolution is
modelled as a hidden Markov chain denoted by {xk}k≥1. The general form of a dynamical model
for the state xk at time k is

xk = f ck(xk−1, wk−1), (2.3)

(2.4)

where wk−1 is process noise. The Markov chain is hidden since the Markov chain is not observed.
The stochastic process {yk}k≥1 is observed and depends on the Markov chain {xk}k≥1 via the
observation model

yk = gk(xk, vk), (2.5)

where vk is the measurement noise. This dependency structure can be described in a graphical
model as shown in Figure 2.4.

This dependency structure is assuming the Markov property. A stochastic process possesses
the Markov property if the conditional probability distribution of the future states only depends
on the present state such that for time k > n we have

P (xk|xn, ..., x1) = P (xk|xn).

So we have that the conditional probability of xk given the past values of the states xk−1, ..., x1

and past values of the sequential measurements yk−1, ..., y1 depends only on the value of the state
xk−1. The conditional probability of yk given the past values of the states xk, ..., x0 and past
values of the sequential measurements yk−1, ..., y1 depends only on the past value of the state
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xk−1 xk xk+1 ......

yk−1 yk yk+1

fk

gk

fk+1

gk+1

Figure 2.4: The graphical representation of a hidden Markov model, where the arrows represent
dependencies between state xk and observations yk.

xk.

The hidden Markov chain is a stochastic process originating from a certain class, since the
function f c in the dynamic model is class dependent. Given observation y1:K a class is inferred by
the optimal Bayes’ classification rule also known as the MAP classifier (2.2) [16]. The posterior
class probability for class c equals

PC(c|y1:K) =
pY|C(y1:K |c)PC(c)∑M
c=1 pY|C(y1:K |c)PC(c)

. (2.6)

The likelihood function pY|C(y1:K |c) is the entity of interest in equation (2.6). Applying the
definition of the conditional probability gives,

pY|C(y1:K |c) = p(yK |y1:(K−1), c)p(y1:(K−1)|c),

applying the conditional probability definition K − 1 times gives,

p(y1:K |c) =

K∏
k=1

p(yk|y1:(k−1), c),

=

K∏
k=1

∫
X
p(yk|xk, c)p(xk|y1:k−1, c)dxk,

using the Chapman-Kolmogorov equation we have

p(xk|y1:k−1, c) =

∫
X
p(xk|xk−1, c)p(xk−1|y1:k−1, c)dxk−1,

The density p(yk|xk, c) arises from the observation model (2.5) while the density p(xk|xk−1, c)
arises from the dynamic model (2.3). The density p(xk−1|y1:k−1, c) depends on both models and
is not always tractable. There is an analytical expression for the linear Gaussian models which
can be computed as a recursive update.

The framework for classification is now complete. In the next section the learning process of
parameters is discussed.

16



2.4 Learning parameters

A model is a representation of the ’world’, but a perfect match between world and model cannot
be attained because there are too many uncertainties in the measured ’world’, data. In the
classification problem the main goal is to find the corresponding class for an observation. The
dynamical models and the observation models have a lot of parameters and not all parameters
are known. The unknown parameters need to be learned or estimated. In essence learning and
estimation are the same, but we use the words to indicate different parameters. The param-
eters that have to be learned are parameters that have a common value for a certain class or
all objects. One might think of the variance of the process noise for a certain class. These
parameters can be learned from a set of observations. Next to the parameters that need to be
learned, there are parameters that need to be estimated. The estimation of these parameters
is done based on one observation since the parameter value can be different for every observation.

The set of observations can also be used to learn the structure of models (hidden Markov
models, dynamic model) or learn hyper-parameters, which are parameters of the distribution of
model parameters.

To learn we need experience. The experience comes from observations and in classification
theory we have unlabelled observations and labelled observations. For an unlabelled observation
y the class it is originating from is unknown, whereas for a labelled observation the class is
known. For labelled observations the estimation of the parameters is ’easier’, since the class is
already known and therefore there is less uncertainty in play. A labelled set of observations can
be used to learn general model parameters or their distributions (parameters), but also can learn
specific class parameters. The unknown model parameters in the model for class c are denoted
by χc and χ contains all unknown model parameters of all classes. When learning with labelled
observations the process is called supervised learning. Although supervised learning is more ac-
curate and a better approach because there is less uncertainty about the observations, the cost
of acquiring the supervised observations are high. The high costs arise due to the labelling of the
observations, which has to be done by humans. For instance in the case of UAVs, a human must
identify that a UAV is flying in the sight of the radar and thus the observations that are acquired
can be labelled with the UAV class. We assume that we don’t have labelled observations, so we
will focus on unsupervised learning with non-labelled observations. These unsupervised learning
techniques are regarded to be more general and can easily be adapted to the supervised learning
with labelled observations.

The prior class probabilities denoted by P (c) may also be assumed unknown. In the case of
labelled observations one can estimate these prior probabilities using the number of observations
for each class.

We state below the technique called Maximum Likelihood Adaptive Neural Systems (MLANS)
for simultaneous classification and learning of model parameters is stated [27]. It is an off-line
learning technique and it learns from a static dataset, i.e. all observations are presented simulta-
neously [21]. The technique is quite similar to the Expectation-Maximisation algorithm. There
is a slight difference in the objective function both techniques try to optimise.
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2.4.1 MLANS algorithm

The Maximum Likelihood Adaptive Neural System is designed for a set of unlabelled observa-
tions, which is used to learn the parameters and to classify all observations [27]. The model
parameters are learned, such that the similarity between the feature models (in this thesis the
hidden Markov models) and observations is maximised. The similarity measure is the likelihood
function. This likelihood function is a function of the model parameters we want to learn and
the probability density function for the observations given the model parameters.

Let us specify this likelihood function l(χ|yi) for an unlabelled observation yi,

l(χ|yi) : = p(yi|χ), (2.7)

=
∑
c∈C

p(yi, c|χ),

=
∑
c∈C

p(yi|c, χ)P (c).

For a set of N unlabelled independent observations y = (y1, y2, ..., yN ) the total likelihood l
equals,

l(χ|y) = p(y|χ),

=

N∏
i=1

p(yi|χ),

=

N∏
i=1

∑
c∈C

p(yi|c, χ)P (c).

The log-likelihood is used in this thesis, since the log-likelihood is more convenient to work
with for numerical reasons. Also since the log-likelihood function is monotonically increasing, it
attains its maximum value at the same points as the likelihood function.

ll(χ|y) : = log (l(χ|y)) ,

= log

(
N∏
i=1

∑
c∈C

p(yi|c, χ)P (c)

)
,

=

N∑
i=1

log

(∑
c∈C

p(yi|c, χ)P (c)

)
.

Maximisation of the log-likelihood is achieved by differentiating with respect to parameters χ.
In addition, if the prior probabilities P (c) are assumed to be unknown and need to be estimated,
the prior class probabilities are required to sum up to one,∑

c∈C
P (c) = 1. (2.8)

To account for this constraint a Lagrange multiplier is added, such that the semi log-likelihood
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function becomes

ll′(χ|y) : = ll(χ|y) + µ

(∑
c∈C

P (c)− 1

)
,

=

N∑
i=1

log

(∑
c∈C

p(yi|c, χ)P (c)

)
+ µ

(∑
c∈C

P (c)− 1

)
. (2.9)

The semi-log likelihood gradient with respect to the model parameters χc̃ for class c̃ is given by

∂ll′(χ|y)

∂χc̃
=

N∑
i=1

P (c̃|yi, χ)
∂

∂χc̃
log
(
p(yi|c̃, χ)P (c̃)

)
, (2.10)

where ∂
∂χc̃

log
(
p(yi|c̃, χ)P (c̃)

)
depends on the model assumptions for class c̃. The derivation of

this gradient can be found in Appendix B.1.
The semi log-likelihood in (2.9) is also maximised with respect to the prior class probabilities

and the derivation can be found in Appendix B.1,

∂ll′(χ|y)

∂P (c̃)
=

N∑
i=1

P (c̃|yi, χ)

P (c̃)
+ µ,

Equating to zero gives

P (c̃) = −
N∑
i=1

P (c̃|yi, χ)

µ
,

and satisfying constraint (2.8) gives µ = −N and thus

P (c̃) =

N∑
i=1

P (c̃|yi, χ)

N
, (2.11)

where the posterior probability is

P (c̃|yi, χ) =
p(yi|c̃, χ)P (c̃)∑
c∈C p(y

i|c, χ)P (c)
. (2.12)

Since the parameters, which may include the prior probabilities, are unknown an two step itera-
tive scheme is employed. Starting with initial parameter values the posterior probabilities (2.12)
are computed. Next the prior probabilities and other parameters are updated using (2.11) and
(2.10) respectively. The updating of the parameters is done by the gradient ascent method or
directly if an analytical optimal solution is tractable. The pseudo code of this scheme is written
in Algorithm 1. The method is proven to converge to a local maximum, [28].

2.4.2 Expectation Maximisation algorithm

The Expectation-Maximisation (EM) algorithm is another iterative method to compute maxi-
mum likelihood estimates for a set of parameters if the observations are unlabelled. Whereas the
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Data: dataset of independent unlabelled observations yi

initialisation;
initialise χ̂0 and ll′(χ̂0);
it=0;
while |ll′(χit+1)− ll′(χit)| < ε do

ll′(χ|χ̂it)← PC|Y(c|y, χit) ;
χ̂it+1 ← arg maxχ ll

′(χ|χ̂it) ;

it = it+ 1 ;

end
return χ̂it ;

Algorithm 1: The MLANS algorithm

MLANS algorithm optimises for the sum of class log likelihoods, the EM algorithm optimises
the a posterior expected log-likelihood [12],

EC|Y,χ̂ [ll(χ|y, C)] =
∑
c∈C

ll(χ|y, c)P (c|yi, χ̂), (2.13)

The EM algorithm consists of two steps, the Expectation step and the Maximisation step and
aims to find the true values for the set of parameters. In the expectation step (2.13) the posterior
probabilities are calculated using the current estimates for the parameters. This expectation is
then maximised with respect to the set parameters in the Maximisation step, giving us a new
estimate for the set of parameters. Both steps are iterated and this iterative method is shown
to converge to a local maximum for a family of exponential densities, including the Gaussian
density [37].

The two steps in the EM algorithm are iterated till the difference between expected values
in two successive iteration steps is smaller than threshold ε. The two steps at each iteration are,

Q(χ|χ̂it) := EC|Y,χ̂it [ll(χ|y, C)] , (2.14)

χ̂it+1 = arg max
χ

Q(χ|χ̂it),

where it is the number of iterations and Q(χ|χ̂) denotes the expected value of the log likelihood
given y. The gradient for the EM algorithm is given by,

EC|Y,χ̂ [ll(χ|y, C)] =

N∑
i=1

EC|Y,χ̂ [log(p(yn, C|χ))] ,

=

N∑
i=1

∑
c∈C

[
log(p(yn, c|χ))P (c|yi, χ̂)

]
,

and thus we have,

∂ EC|Y,χ̂ [ll(χ|y, C)]

∂χc̃
=

N∑
i=1

[
P (c̃|yi, χ̂)

∂ log(p(yn, c̃|χ))

∂χc̃

]
. (2.15)

Maximising (2.9) and (2.14) results in equal optimal parameters since the gradients in the
MLANS algorithm (2.10) and EM algorithm (2.15) are actually equivalent. The prior prob-
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ability update is also equivalent. The gradient (2.15) with respect to P (c̃) is

∂ EC|Y,χ̂ [ll(χ|y, C)]

∂P (c̃)
=

N∑
i=1

[
P (c̃|yi, χ̂)

∂ log(p(yn, c̃|χ))

∂P (c̃)

]

=

N∑
i=1

[
P (c̃|yi, χ̂)

1

P (c̃)

]
. (2.16)

Gradient (2.16) with constraint (2.8) gives equation (2.11), hence we will find the same solution
given the same initial estimates for the parameters and the prior probabilities.

Data: dataset of independent unlabelled observations yi

initialisation;
initialise χ̂0 and priors P 0(c) ;
it = 0;
while |Q(χ̂it|χ̂it)−Q(χ̂it−1|χ̂it−1)| < ε do

Q(χ|χ̂it)← PC|Y(c|y, χ̂it) (E-step) ;
χ̂it+1 ← arg maxχQ(χ|χ̂it) (M-step) ;

it = it+ 1 ;

end
return χit ;

Algorithm 2: The EM algorithm

The intuition of this learning is as follows. The parameter is estimated for each observation
and is then weighted by the posterior probability of that observations. By this concept the
observations with a high certainty, i.e. high posterior probability for one of the classes are
weighted more, since these observations are likely to give us a good estimate for the parameter
for that class.

2.4.3 Maximum likelihood estimation

For the model parameters that differ for each observation maximum likelihood estimation is
used, but now these estimates solely depend on one observation. These parameters χc in the c
class model are estimated by the maximum likelihood estimate for the particular class. For the
maximum likelihood estimator we compute,

χ̂c̃ = arg max
χc̃

p(y1:K |χ),

= arg max
χc̃

∑
c∈C

p(y1:K , c|χ),

= arg max
χc̃

p(y1:K , c̃|χ).

Although the estimation seems straightforward, the estimation can be costly due to the dimension
of the parameter space since the computation time increases exponentially with the parameter
space dimension, this phenomena is called the curse of dimensionality. Estimating d parameters
each having a partition of M points, the computation of the maximum likelihood needs to be
done Md times.
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Chapter 3

Classification of UAVs and birds

In this chapter the main contribution of this thesis is stated. First we model the UAV and birds
by a single point scatterer. We build up the dynamical class model and corresponding obser-
vation model for the received radar signal of a UAV and bird. This developed hidden Markov
model is used in the Bayesian statistical framework to classify and simultaneously learn model
parameters. Secondly the UAV and birds are modelled by multiple point scatterer models upon
which the classifier is based.

In Chapter 2 we have presented background knowledge that will be used to build the classifier.
First we justify and explain the approach we use to build the classifier. Next the UAV and bird
signal models are developed using the background knowledge on radars. Subsequently we develop
corresponding hidden Markov models and finally present the classifier.
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3.1 Classification approach

The main goal of this project is to construct a classifier to differentiate between UAVs and birds
and this classifier should be robust to different radar parameter values and environment param-
eter values.

From the different approaches to build a classifier, we choose to build a statistical classifier.
We model the noises in the signal models as random variables, therefore a statistical approach
is more appropriate.

The statistical classifier can be either based on a parametric model or a non-parametric
model. The non-parametric approach doesn’t exploit any prior knowledge. It assumes no a priori
specific structure, but a very general structure and the number of parameters is increasing if more
observations are available. An example of the non-parametric approach is the Parzen Estimator
[26]. To learn a specific model from the general structure the non-parametric approach needs a
lot of observations. If no prior knowledge is available about the phenomena which is modelled,
this non-parametric approach is a powerful technique and can model the phenomena well, since
a lot of these techniques can approximate a large number of functions up to arbitrary accuracy.
For example, the ANN can approximate the continuous functions on compact subsets of Rn with
arbitrary precision [11], hence the ANN is frequently used in classification problems where the
underlying model is not known. So the non-parametric approach is a powerful tool, but it has its
limitations. The general structure of these non-parametric classifiers is trained on a specific set
of labelled observations. For new observations lying outside of the domain in the sample space
Y which is covered by the training data extrapolation is needed. The non-parametric techniques
have to extrapolate, but when no knowledge is available about the underlying model in the new
domain this extrapolation is poor [20]. So these techniques are expected to perform poor in
extrapolation, since no observations are available in these domains we want to extrapolate over.

The parametric approach is depending on a finite and smaller number of parameters and is
built upon prior knowledge which leads to a specific model structure. Since models are never
perfect, data is used to make the model fits reality better.

In our approach to tackle the problem we take the parametric approach, two arguments will
support the choice for this approach.

Firstly, in our problem the radar parameters and environment parameters can take an infinite
number of distinct values, since these are continuous parameters, e.g. carrier frequency, aspect
angles, hence the non-parametric approach needs infinite amount of labelled observations to learn
a model. Labelled observations are scarce, specially the observations on UAVs.

Secondly, this phenomena of radar waves reflecting on a target is a physical phenomena and
therefore can be described by physical laws so there is a lot of a priori knowledge, hence a proper
underlying model with the radar parameters and environment parameter arises naturally.

Though the performance of this approach is liable to the correctness of the structure of model
and model parameters, this approach has still some flexibility in it. The model structure can
be adapted and model parameters can be learned from observations. Adaptive learning is an
important aspect of the approach, because it will make the approach more robust to observations
that are not in line with the models.

In section 2.3 it was shown how to compute the classifier based on a hidden Markov model.
The likelihood p(y1:K |c) depends on the product of p(yk|y1:k−1, c) terms. These conditional
densities are analytically tractable and therefore the likelihood is tractable, as given in Appendix
B.2, but likelihood gradients are harder to work with since they become analytically complex.
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Therefore we use the approximation

p(yk|y1:k−1, c) ≈ p(yk|yk−1, c),

such that the likelihood is approximately,

p(y1:K |c) ≈
K∏
k=1

p(yk|yk−1, c),

for which the gradient can be calculated exactly.

As we shall see below our hidden Markov model for class c of the form

xk+1 = F ckxk + wk,

yk+1 = xk+1 + vk+1. (3.1)

where vi, wi are assumed to be independent zero mean circular complex Gaussian noise with
variance Cv and Cw respectively for i = 1, ..,K. Complex circular complex Gaussian noise is
explained in Appendix B.3.

Under these assumptions, the approximating conditional density is given by

p(yk|yk−1, c) = CN (yk

∣∣∣F ck−1yk−1, |F ck−1|2Cv + Cw + Cv)

and the approximation log likelihood is given by,

ll =

K∑
k=1

ln

(
1

π(|F ck−1|2Cv + Cv + Cw)

)

+

K∑
k=1

[
−|yk|2 − |yk−1|2 + 2Re

(
ykF ck−1yk−1

)
(|F ck−1|2Cv + Cv + Cw)

]
, (3.2)

where Re(z) gives the real part of z and z gives back the complex conjugate of z.

Throughout the rest of this thesis this approximating log likelihood is used.
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3.2 Radar return signal

Before the UAV/bird signal models are developed, the common modelling part for both UAVs
and birds is done. We will start with a model for the radio waves the radar is transmitting.

A radar transmits a radio frequency electro magnetic signal sT which can be modelled as a
complex sinusoid [6]

sT (t) = A(t)e−j[2πfdt+Φ0], (3.3)

where A(t) is a time varying amplitude, initial phase Φ0, carrier frequency fd and imaginary unit
j.

We assume that the receiver is located in the same place as the transmitter. The received
signal sR travels twice the distance R(t) at time t between the transmitter/receiver and the
point scatterer and is dependent on the reflectivity ρ of the scatterer, The transmitted signal is
reflected by a point scatterer P and the reflected signal is received by the radar [6]

sR(t) = ρA(t)e−j[2πfd(t−τ)+Φ0], (3.4)

where it takes time τ to travel back and forth to the scatterer. First we discuss some simplifying
assumptions and argue why they are reasonable.

A.1 The source and the receiver of the radio signal share the same location.

Such a radar is called a monostatic radar [8] and it is a conventional configuration for a
radar.

A.2 The point scatterer is in the far field.

This assumption is a common one in the field of radar modelling [19]. Since the target is
in the far field we can approximate the incident wave and the reflected wave by a plane
wave, hence the radar can be represented by a point source and receiver, which simplifies
the model significantly. The far field region is dependent on the size of the radar and the
carrier frequency.

A.3 c� v where c is the speed of light and v the speed of the point scatterer.

This assumption implies that the distance to the point scatterer at the moment of reflection
can be approximated by the distance to the point scatterer R(t) at receiving time t and thus
we have

τ =
2R(t)

c
, (3.5)

therefore the received signal (3.4) can be written explicitly. The assumption is realistic and
if this assumption is not made the model would be implicitly defined, which makes it a lot
harder to work with.

A.4 The translation velocity of the target is zero.

This assumption is purely made for simplification. The distance model described below
could easily be extended with a translational velocity., but extra parameters come in and
this increases the parameters space exponentially, leading to parameter estimation problems,
e.g. computation time, hence we made this assumption.
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A.5 The amplitudeA(t) and reflectivity ρ are assumed te be non random and constant,A(t) = A, ∀t.
First we can assume A(t) to be constant, since this is a sensor parameter which can be set.
The reflectivity parameter ρ is in general not known and can vary over time. But for the
sake of simplicity we make this assumption.

A.6 The length of the blade or bird wing is small compared to the range of the centre of rotation.

To get a simplified expression for the distance of the point we need this assumption which is
a reasonable assumption to make since the length of a wing or blade of a mini UAV will not
be larger than one meter and the range will most likely be larger than at least 10 meters.

These are the basic assumptions throughout the rest of the thesis. More assumptions will be
made throughout the extension of the model. Now we derive the model for the distance RP (t)
to the single point scatterer P .

Given a coordinate frame with the center at the source/receiver of the radar. Under assump-
tions A.1-A.6 we have that point scatterer P is rotating around a fixed center O at range R0

with azimuth angle α and elevation angle β. The Cartesian coordinates (xO, yO, zO) of the point
O in the radar coordinate frame are then related as

xO = R0 cos(β) cos(α),

yO = R0 cos(β) sin(α), (3.6)

zO = R0 sin(β).

The coordinate frame (x, y, z) are illustrated in Figure 3.1.

O

x

y

z

α

β

x̂

ŷ

ẑ

ϕ0

.

Figure 3.1: The fixed center O is placed at range R0 and with azimuth angle α and elevation
angle β in the radar coordinate system. There is a local coordinate frame (x̂, ŷ, ẑ) with center O
in which the point scatterer P is expressed with respect to origin O.
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3.3 Single point scatterer model for a UAV

In this section we exploit prior knowledge so that we can model the reflected radar signal for a
Unmanned Aerial Vehicle (UAV). We start by modelling one rotating point scatterer as a repre-
sentation of a point of a blade of the UAV.

The location of point P is expressed in the local coordinate frame with origin O and without
loss of generality we can assume that this local coordinate frame has the same orientation as the
radar coordinate frame. The Cartesian coordinates (xP , yP , zP ) of the rotating point P in the
local coordinate frame at time t are

xP (t) = lP cos(ϕ0 + ωct),

yP (t) = lP sin(ϕ0 + ωct),

zP (t) = z0,

with initial azimuth angle ϕ0 , distance lP between ẑ-axis and point P , rotation (rotor) speed
ωc and the fixed height of the point is z0.

The distance between the point scatterer P and the radar source as a function of time t is,

RP (t) =
√

(xO + xP )2 + (yO + yP )2 + (zO + zP )2

=
[
R2

0 + l2P + 2R0lP cos(β) cos(α− (ϕ0 + ωct)) + 2R0z0 sin(β)
]1/2

(3.7)

≈ R0 + lP cos(β) cos(α− ωct− ϕ0) + z0 sin(β). (3.8)

A justification of the approximation step going from equation (3.7) to equation (3.8) is given in
Appendix B.4.

Next we derive the expression for the received signal (3.4) given the distance expression (3.8).

The received signal at time t depends on the signal sent from the source at time t − τ and
the distance at time t by assumption A.3. The distance expression (3.8) combined with equation
(3.5) are substituted into the returned signal (3.4). The received signal is now a function of the
class dependent variables: rotation speed ωc and radius lP , and as a function of radar/sensor
variables: initial phase Φ0, amplitude A, angular carrier frequency ωd = 2πfd and wavelength
λ = c

fd

sRP (t) = ρAe−j[ωdt+Φ0]ej
4π
λ [R0+z0 sin(β)]e

j4π
λ lP cos(β) cos(α−ωct−ϕ0). (3.9)

Since the observations are samples we discretise the signal. At time tk the received signal is

sk : = sR(tk)

= ρA(t)e−j[ωdtk+Φ0]ej
4π
λ [R0+z0 sin(β)]e

j4π
λ lP cos(β) cos(α−ωctk−ϕ0)

= Ãe−jBe−j[ωdtk]ejG cos(α−ωctk−ϕ0),

where for notational convenience we have introduced the constants

Ã = ρA,

B = Φ0 −
4π

λ
[R0 + z0 sin(β)] ,

G =
4π

λ
lP cos(β).
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At time tk+1 = tk + ∆t, where ∆t is the sampling time of the receiver, the state sk+1 can be
written as a function of the previous state sk

sk+1 = ejΦ
c
ksk,

where

Φck = −ωd∆t+G cos(α− ωctk+1 − ϕ0)−G cos(α− ωctk − ϕ0)).

Next we add to this evolution of state xk the process noise which is zero mean circular complex
Gaussian noise. The process noise makes the dynamic model more robust to possible unmodelled
dynamics.

For k = 1

x1 = s1 + w1,

and for k > 1,

xk+1 = ejΦ
c
kxk + wk. (3.10)

Together with the observation model (3.1) this gives a hidden Markov model. This hidden
Markov model is dependent on the class parameters, so the underlying class models are hidden
Markov models. The class dependent parameters for the single point scatterer model are defined
as the rotation speed ωc and the radius lP .

The approximation of the log likelihoods can now be computed by (3.2) and subsequently
the approximation of the class posterior probabilities.
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3.4 Multiple point scatterers model for a UAV

In the previous section we assumed that the UAV can be modelled as a single point scatterer.
In this section the UAV is modelled by multiple point scatterers, a line of scatterers. The signal
model for a rotating blade is stated in[32].

The blade model is evaluated under the same assumptions as before, so the blade will rotate
around the ẑ axis at height z0. The one end of the blade is located L1 unit away from the ẑ-axis
and has length L. The point scatterer signal model (3.9) is used to derive the blade model.
Further we make the assumption,

A.7 The blade can be modelled as a continuous line of point scatterers. It is a homogeneous
linear rigid antenna [22].

This assumption makes the model less complex, i.e. fewer parameters are used. Further, it
is reasonable to assume that a blade is made of homogeneous material such that all point
scatterers have the same reflectivity ρ.

The model for a blade arises when the model for a single point scatterer is integrated over a line
starting at L1 to the tip of the blade located at L2 = L1 + L,

sblade(t) =

∫ L2

L1

sRP (lP )dlP ,

= ρAe−j[ωdt+Φ0]ej
4π
λ [R0+z0 sin(β)] · Le

j4π
λ

L1+L2
2 cos(β) cos(α−ωct−ϕ0)

· sinc

(
4π

λ

L

2
cos(β) cos(α− ωct− ϕ0)

)
,

where the sinc function is defined as,

sinc(x) =
sin(x)

x
.

Notice that the power of the reflected signal |sblade(t)|2 attains it maximum when the orientation
of the blade is perpendicular to the direction of the incident wave. In fact the ’sinc’ term equals
one if the blade is perpendicular to the incident wave.

The blade model can easily be extended to a rotor model as done in [22] by making the
following assumption,

A.8 The rotor has Nb blades and these blades are uniformly separated in angle, e.g. for a rotor
with 3 blades the angle between two successive blades is 2π

3 .

This assumption is realistic since all rotors have the blades separated by a uniform angle,
but the number of blades attached to the rotor can differ. The most common number of
blades are two, three or four blades per rotor.

A.9 No shielding occurs, meaning that we assume that all blades are visible for the radar at all
times.

Although shielding can occur at some orientations of the rotor with respect to the radar,
the assumption leads to a good theoretical model.
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So the initial angle of the nth blade is ϕn = ϕ0 + 2π(n−1)
Nb

. The signal of the multiple blades can
be modelled as the sum of the blade signals and therefore we have the rotor signal,

srotor(t) = LρAe−j[ωdt+Φ0]ej
4π
λ [R0+z0 sin(β)] ·

Nb∑
n=1

e
j4π
λ

L1+L2
2 cos(β) cos(α−ωct−ϕ0− 2π(n−1)

Nb
)

· sinc

(
4π

λ

L

2
cos(β) cos(α− ωct− ϕ0 −

2π(n− 1)

Nb
)

)
. (3.11)

Now we derive the dynamical model for the signal model (3.11).
At time tk the received signal is of the form,

sk : = srotor(tk)

= LÃe−jBe−j[ωdtk]
Nb∑
n=1

e
j
L1+L2

2 M cos(α−ωctk−ϕ0− 2π(n−1)
Nb

)

· sinc

(
M
L

2
cos(α− ωctk − ϕ0 −

2π(n− 1)

Nb
)

)
,

where for notational convenience we have introduced the constants

Ã = ρA,

B = Φ0 −
4π

λ
[R0 + z0 sin(β)] ,

M =
4π

λ
cos(β).

At time tk+1 = tk + ∆t, where ∆t is the sampling time of the receiver, the state sk+1 can be
written as a function of the previous state sk if |sk| > 0 ,

sk+1 = Γcksk,

where

Γck = e−j[ωd(∆t)]

∑Nb
n=1 e

j
L1+L2

2 MΛck sinc
(
M L

2 Λck
)∑Nb

n=1 e
j
L1+L2

2 MΛck sinc
(
M L

2 Λck
) , (3.12)

where

Λck = cos(α− ωctk − ϕ0 −
2π(n− 1)

Nb
).

If |sk| = 0 we can simply add a small positive number ε > 0 to the denominator in (3.12) to
prevent dividing by zero.

Similarly to the single point scatterer model we assume additive zero mean circular complex
Gaussian noise on the dynamic model with variances Cw.

For k = 1,

x1 = s1 + w1,

and for k > 1

xk+1 = Γckxk + wk+1, (3.13)

Under this hidden Markov model for class c the approximation of the log likelihood can be
computed using equation (3.2).
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3.5 Single and multiple point scatterers model for a bird

Let us now focus on the signal model for a bird, starting with a single point scatterer like we did
in the UAV case and then we extend the model to a multiple point scatterer model, where both
wings are modelled as lines of point scatterers. Once this model is derived we state the hidden
Markov model and the likelihood function, which we need for the classifier.

To build the signal model for the bird we need to make assumptions that will simplify the
modelling part. Assumptions A.1-A.6 still hold and additional assumptions are made.

A.10 The bird has a fixed orientation with respect to the radar and the orientation of the bird
is parallel to the ground surface of the radar coordinate system, but the orientation in the
x− y plane is unknown, e.g. we do not know in which direction the bird’s beak is pointing.

A.11 The angular wing position or elevation angle with respect to the bird is oscillating over time
and is sinusoidal .

In literature this is the most common way of modelling the wing’s movement [35].

A.12 The bird is flying, meaning flapping its wings.

For simplification we assume that the bird is only in flying mode, since gliding mode would
be modelled differently.

Under assumptions A.1-A.6 and A.10-A.12 we have that point scatterer Q on the wing is mainly
moving up and down with respect body of the bird. The wings are attached at center O located
at (xO, yO, zO) as given in (3.6). The location of point Q on the wing is expressed in the local
coordinate frame with origin O and the same orientation as the radar coordinate frame, see
Figure 3.2. The location of the rotating point in the local coordinate system is denoted by
(xQ, yQ, zQ) where

xQ(t) = lQ cos(α1) cos(Aw cos(
2πt

Tc
+ ϕ0)),

yQ(t) = lQ cos(α1) sin(Aw cos(
2πt

Tc
+ ϕ0)),

zQ(t) = lQ sin(Aw cos(
2πt

Tc
+ ϕ0)),

with initial elevation angle Aw cos(ϕ0), range lQ, i.e. the distance from the center O to the
point scatterer Q, the duration of one wing stroke Tc, wing stroke amplitude Aw, which is the
maximum angle the wing makes with respect to the surface and time t. The elevation angle of
the point scatterer Aw cos( 2πt

Tc
+ ϕ0) is now oscillating over time between Aw and −Aw.

Now the distance between the point Q and radar as a function of time t is,

RQ(t) =
√

(xO + xQ)2 + (yO + yQ)2 + (zO + zQ)2

≈ R0 + lQ (cos(β) cos(α− α1) cos(Λck) + sin(β) sin(Λck)) , (3.14)
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Figure 3.2: The fixed center O is placed at range R0 and with azimuth angle α and elevation
angle β in the radar coordinate system. There is a local coordinate frame (x̂, ŷ, ẑ) with center O
in which the point scatterer Q is expressed with respect to origin O.

where

Λck = Aw cos(
2πt

Tc
+ ϕ0).

The justification for the approximation in (3.14) is similar to the approximation in 3.3 and is
given in Appendix B.4.

Next we can make the signal model. Substituting (3.14) into (3.4) gives us the received signal
for a bird as a function of the class dependent variables: duration of one wing stroke Tc and
length of wing Lw and amplitude of wing stroke Aw and as a function of radar/sensor variables:
initial phase Φ0, amplitude A(t), angular carrier frequency ωd = 2πfd and wavelength λ = c

fd

sRQ(t) = ρA(t)e−j[ωdt+Φ0]ej
4π
λ [R0]e

j4π
λ lQ(cos(β) cos(α−α1) cos(Λck)+sin(β) sin(Λck)). (3.15)

This is model for the received signal at time t. Similarly as we have done with the previous signal
model we build a hidden Markov model using the model (3.15). This hidden Markov model is
used to calculate the log likelihood.

This single point scatterer model for a bird is the base for the full wing model, where we
assume that the wing of a bird can be modelled as a wire of point scatterers as in Assumption
A.7. The wing starts at length L1 from the center of body O and has length Lw, hence if we
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integrate over the full wing i.e. from L1 to L2 = L1 + LW we get,

swing(t) =

∫ L2

L1

sRQ(lQ)dlQ,

= ρA(t)e−j[ωdt+Φ0]ej
4π
λ [R0] · LW e

j4π
λ

L1+L2
2 (cos(β) cos(α−α1) cos(Λck)+sin(β) sin(Λck))

· sinc

(
4π

λ

LW
2

(cos(β) cos(α− α1) cos(Λck) + sin(β) sin(Λck))

)
.

For the full bird we assume two wings having the same elevation angle all the time and second
wing is located and the opposite side of the center O so the local azimuth angle is shifted π rad
with respect to the other wing. Adding the two wing models together gives us the double wing
model

sbird(t) = LW ρA(t)e−j[ωdt+Φ0]ej
4π
λ [R0] ·

2∑
n=1

e
j4π
λ

L1+L2
2 (cos(β) cos(α−α1−nπ) cos(Λck)+sin(β) sin(Λck))

· sinc

(
4π

λ

LW
2

(cos(β) cos(α− α1 − nπ)) cos(Λck) + sin(β) sin(Λck))

)
.

The double wing model is most extended model for the bird we will use in this thesis. Next the
hidden Markov model is derived for the double wing model.

If |sk| > 0 the hidden Markov model is of the form,

x1 = sc1 + w1,

and for k > 1

xk+1 = Γckxk + wk, (3.16)

where,

Γck =
sbird(tk+1)

sbird(tk)
.

If we have |sk| = 0, we will add a small positive number ε to the denominator to prevent dividing
by zero.

Further we assume additive zero mean circular complex Gaussian noise on the dynamic model
with variances Cw.

For this type of hidden Markov model as seen in the UAV model, we can compute the log
likelihood using equation (3.2) which is used to build the classifier.

In the next chapter we investigate the performance of the classifier for the single and multiple
point scatterers model and see what the limitations of these classifiers are.
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Chapter 4

Numerical results

In this section we test the classifier based on the models developed in section 3.3, 3.4 and 3.5 and
find the limitations. We test the performance of the classifier under different levels of noise and
see how sensitive the classifier is to biases in the underlying dynamic models. The performance
of estimation and learning of parameters is also investigated. For the numerical analysis we make
the following assumption.

A.13 The range R0, azimuth angle α, elevation angle β and fixed height z0 are known.

The range R0, azimuth angle α and elevation angle β are parameters that can accurately be
determined by existing radar techniques e.g. parallel tracking, therefore these parameters
are assumed to be known. The parameter z0 is an offset in the z-axis which can be assumed
known without loss of generality.

We start by analysing the classifier which is based on the single point scatterer models as derived
in section 3.3 for a UAV and in section 3.5 for a bird. Finally we analyse the classifier which is
based on the multiple point scatterers models, the rotor model, derived in section 3.4, and the
double wing model, derived in section 3.5, for the UAV and bird respectively. Recall that the
classifier is using the likelihood function of all classes that arise from the hidden Markov models.
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4.1 Single point scatterer models

We generate synthetic data according to the hidden Markov models derived in sections 3.3 and
3.5. The corresponding classifier classifies the observations into one class, which is represented
by the class dependent variables.

Each class is characterised by a set of class dependent parameters. For example we consider
two subclasses of UAVs distinguished by different values of rotations speed ωc and rotation ra-
dius lP . Similarly we consider two subclasses of birds identified by the unique combination of
radius lQ and length of period for one stroke Tw. See Table 4.1 and Table 4.2. We consider four
classes, two UAVs and two birds such that we can compare how the classification between birds
and UAVs is performing and to what extent the classifier can distinguish between birds or UAVs
themselves.

c Name Tw lQ
1 Bird 1 0.3 s 0.3 m
2 Bird 2 0.1 s 0.2 m

Table 4.1: Bird dependent parameters where c is the number of the class.

c Name ωc lP
3 UAV 1 500 rad/s 0.2 m
4 UAV 2 300 rad/s 0.3 m

Table 4.2: UAV dependent parameters where c is the number of the class.

We assume that all parameters are known with parameter values as in Table 4.3 and 4.4 and
we generate 100 observations for each class using the hidden Markov models. The performance
of the classifier is given in a confusion matrix in Figure 4.1.

Parameter Value Unity
A 5 m
fd 108 (1/s)
Φ0 (1/2)π rad
Cv 0.1 -
fs 50000 1/s
Ttot 0.1 s

Table 4.3: Sensor parameter values

The interpretation of these results are as follows. The rows correspond to the predicted class
(Output Class), and the columns show the true class (Target Class). The diagonal cells show
for how many and what percentage of the observations are classified correctly. The off diagonal
cells show where the classifier has made misclassification. The column on the far right of the plot
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Parameter Value Unity
ρ 1 -
R0 10 m
β (1/3)π rad
α (1/4)π rad
z0 0.1 m
Cw 0.01 -

Table 4.4: Other parameters
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 Confusion Matrix

Figure 4.1: This confusion matrix is the result of the classification under the parameter values
in the Tables 4.1, 4.2, 4.3 and 4.4.

shows the performance for each predicted class, while the row at the bottom of the plot shows
the performance for each true class. The cell in the bottom right of the plot shows the overall
performance. From all observations that are classified in class 1 (97+7=104) , 97

104 ≈ 93.3% is
classified correctly and from all observations from target class 1 97

100 = 97% is classified correctly.
The overall correct classification percentage is 97+93+100+100

400 = 97.5% (bottom right cell) , which
is also the average percentages of correctly classified observations.

UAVs are classified completely correctly including the subclasses. On the other hand, though
the birds are classified as birds, there are misclassification within the subclasses.
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4.1.1 Sensitivity to measurement noise variance Cv

The results in Figure 4.1 were found for Cv = 0.1. In this section we look at the performance
for different values of measurement noise variance Cv. In Figure 4.2 the overall performance,
the percentage of correctly classified observations, is plotted over the different values of the
measurement noise variance Cv. For each value of Cv we did ten iterations, to give a notion of
the variance of performance for the same set of parameter values. In Figure 4.2 we see that even
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Figure 4.2: This figure shows the degradation of the performance if the measurement noise
variance Cv increases. The observations originate from the 4 classes and the corresponding one
point models as described above. For each value of Cv ten iterations are done to indicate the
variance in the performance of the classifier for the same set of parameter values.

for large values of variance the overall performance is above 80%. In the corresponding confusion
matrix (see Figure A.0.1 in Appendix A) we observe that in between UAVs misclassification
occurs and between birds, but no bird is classified as an UAV or vice versa. In Figure 4.3 we see
4 observations y1:K of the four classes. For example all the red dots are sequential measurements
of class Bird 2. The previous remark that UAVs are not misclassified as birds is not surprising if
we look at Figure 4.3, since there is almost no overlap between the birds and UAV observations.
Although the observations of the two different birds overlap, the classifier can classify them (in
at least 80% of the observations) correctly using the underlying hidden Markov model.

4.1.2 Unknown initial phase ϕ0

In the last section we assumed all parameters to be known, but in reality there are a few un-
known parameters. One of unknown parameters is the initial phase of the single point scatterer
with respect to the local coordinate frame and for the bird the initial phase is expressed as
Aw cos(ϕ0) where ϕ0 is the unknown parameter. In this section we assume that all parame-
ters are known except for the initial phase. This parameter can be estimated by the maximum
likelihood estimation as discussed in section 2.4.3

ϕ̂c0 = arg max
ϕ0∈[0,2π]

p(y1:K |ϕ0, c), (4.1)
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Figure 4.3: Four observations of the four classes are plotted. We see that the observations
originating from the birds are almost separable from the UAV observations.

where we use the grid space [0 : 0.01 : 2π] for estimation.

If we estimate the initial phase and classify using these estimates we observe an overall per-
formance of 70% for Cv = 0.1. One of the confusion matrices is shown in Figure 4.4. Compare
this result with the result in the previous situation where the initial phase was known, Figure
4.1. We see that introducing an extra uncertainty results in a significant decrease in overall
performance (right bottom cell) of roughly 30% point (from 97.5% to 67.0%).

Investigation of the performance of the MLE shows that MLE is also not performing well for
the initial phase. The likelihood has often a maximum at two different values. This is due to
the symmetry of the cosine function in the model. This often leads to a large error between true
and estimated value.

4.1.3 Learning process noise variance Cw

In the previous section a parameter was estimated for each observation y1:K . In this section we
assume the process noise variance to be unknown. This parameter is not observation dependent
and can therefore be learned by the MLANS algorithm as described in section 2.4.1. This learning
is done under two different assumptions. First we assume that the process noise variance is
identical for all classes and secondly we assume that the process noise variance is class dependent.
The underlying truth is that the process noise variance is class dependent. The prior probabilities
are assumed to be known.

We generate unsupervised observations according to the above parameters, where Ccw is dif-
ferent for each class.

The results discussed below are presented in Table 4.5.
Under the assumption that the process noise variance Cw is a feature of all small flying ob-

jects, meaning it is identical for all classes, we see that the estimated is close to the mean Ccw
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Figure 4.4: This confusion matrix is the results of classification after estimation of the unknown
initial phase.

over all classes given in the third column of Table 4.5. The corresponding average overall perfor-
mance of 95.9%, which is almost equal to the performance when all parameters are known and
the process noise variance was identical for all classes. Again we observe no misclassifications
between UAVs and birds, see Figure A.0.2 in the Appendix A.

Next we assume a different process noise variance for each class. The approximating likelihood
gradient (4.2) with respect to Ccw is

dll

dCcw
=

N∑
n=1

P (c|yn1:K , C
c
w)
( −(K − 1)

(Ccw + 2Cv)
−

K∑
k=2

[
|ynk |2 + |ynk−1|2 − 2Re

(
ynk y

n
k−1e

−iΦck−1
)

(Ccw + 2Cv)2

]

+
1

Ccw + Cv
+

yn1 − sc1
Ccw + Cv

)
. (4.2)

In Table 4.5 we see the estimates for the process noises variance (fifth column) that are estimated
in iterative MLANS algorithm 1 where classification is improved significantly to 98.7% with
respect to the case where was assumed that the process variance was identical for all classes
(95.9%). This increase of performance with respect to the identical process noise variance is due
to extra feature to distinguish between classes, namely process noise variance. We see that the
estimates for the process noise variances are good, i.e. the estimates are deviating less than 4%
from the true values.
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Identical Cw Different Ccw
Parameter True value Estimate Cw Performance Estimate Ccw Performance

C1
w 0.10

0.0655 95.9%

0.1013

98.7%
C2
w 0.03 0.0291

C3
w 0.05 0.0485

C4
w 0.08 0.0791

Table 4.5: The estimates and truth values for Cw using the MLANS algorithm.
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4.2 Multiple point scatterers models

In the previous section the classifier was based on the single point scatterer models. In this
section and the rest of this thesis the multiple point scatterers model are used: the rotor model
(3.13) and the double wing model (3.16) are used for UAVs and birds respectively. The classifiers
are based on the corresponding hidden Markov models. In this section we see how the classifiers
are performing under different levels of noise and we investigate how sensitive the classifiers are
to other uncertainties/biases on parameters in the hidden Markov model. First we define the
class dependent parameters in the hidden Markov models and the rest of the parameter values.

In addition to the parameters that are present in the single point scatterer models, the rotor
model includes the number of blades of the rotor Nb. Some of the parameters in the model are
known such as the sensor parameters as given in Table 4.8. All class dependent parameters are
assumed to take a finite number of values, since we consider a discrete class space and the space
is assumed to be collectively exhaustive. Again we assume four classes, two UAVs and two birds.
The UAV dependent parameters are given in Table 4.7, the bird dependent parameters in Table
4.6. So to be clear if we observe an UAV the length of the rotor blades is either 0.2 m or 0.3 m,
there are no other UAVs observable.

c Name Tw LW
1 Bird 1 0.3 s 0.3 m
2 Bird 2 0.1 s 0.2 m

Table 4.6: Bird dependent parameters where c is the class number.

c Name ωc L Nb
3 UAV 1 500 rad/s 0.2 m 4
4 UAV 2 300 rad/s 0.3 m 3

Table 4.7: UAV dependent parameters where c is the class number.

Parameter Value Unity
A 5 m
fd 108 (1/s)
Φ0 (1/2)π rad
Cv 0.1 -
fs 50000 1/s
Ttot 0.01 s

Table 4.8: Sensor parameter values

The rest of the parameters values are given in Tables 4.8 and 4.9 where the initial phase
parameter ϕ0 and the orientation of the bird α1 are drawn randomly out of the uniform distri-
bution on [0, 2π] for each generated observation, but assumed known during the classification
process. An observation for each class is plotted in Figure 4.5. Observe that three observations
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Parameter Value Unity
ρ 1 -
R0 10 m
β (1/3)π rad
α (1/4)π rad
z0 0.1 m
Cw 0.01 -
Aw (1/3)π rad
ϕ0 U(0, 2π) rad
α1 U(0, 2π) rad

Table 4.9: Other parameters

have a lot of overlap and the observation from Bird 1 does not have much overlap with the other
observations.
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Figure 4.5: Four observations y1:K of the four different classes as described above. The observa-
tions lie in the complex plane and are generated using the hidden Markov models.

Given the parameters in Table 4.7, 4.8 and 4.9 we generate 100 observations with the hidden
Markov model for each class. Next we classify the observations assuming that all parameter val-
ues are known. The overall performance of this classification is on average 84.3%. One confusion
matrix is given in Figure 4.6. These results compared to the previous classification results based
on the single point scatterer models lead to some remarks.

Under the multiple point scatterer models identifying the subclasses of UAVs becomes harder.
Whereas in the single point scatterer case the classification of UAVs was perfect the classification
of UAVs decreases to an average performance of 68.6%. In the confusion matrix in Figure 4.6
the performance of the classification of UAVs is 68+61

200 = 64.5%. On the other hand we observe
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that the performance of bird classification has increased slightly.

The decrease in performance of the UAV classification is justifiable. In the single point scat-
terer we received a signal that was only given information about this one point scatterer, in the
rotor model the information of infinite point scatterers are reduced to one number. From this
received signal it is harder to extract information about the scatterer from this signal.
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Figure 4.6: This confusion matrix is the result of the classification under the parameter values
in the Table 4.6, 4.7, 4.8 and 4.9. All parameters are assumed to be known.

4.2.1 Sensitivity of measurement noise Cv

Next we investigate the sensitivity of the performance of the classifier with respect to the mea-
surement noise variance Cv and observe the performance of the classifier under different variances.

The overall performance is plotted for different values of measurement noise in Figure 4.7. We
observe from the confusion matrices (one confusion matrix is plotted in Figure A.0.4 in Appendix
A for one confusion matrix) that for small values Cv < 1 the classifier is still able to distinguish
between UAVs and birds, but as Cv ≥ 1 the classifier is misclassifying birds as UAVs and vice
versa.

Actually the value of the measurement noise variance should be compared to amplitude of
the signal model to get a notion of relative noise. This can done by the signal to noise ratio
(SNR). Since the signal amplitude remains constant we work with the absolute numbers for the
noise variance. The amplitude of the signal is equal to LρA = 1, so the SNR ( for example, LρACv

43



is 10 for a variance of 0.1 or 10 log10(LρACv ) = 10 dB).

Further analysis of the results in Figure 4.7 shows that the performance is more sensitive
to change in noise variance compared to the classification performance under the single point
scatterer models in Figure 4.2. The curve decreases faster as the noise variance increases. Mainly
due to misclassifications of UAVs the performance curve is lower than the performance curve in
Figure 4.2.
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Figure 4.7: This figure shows the degradation of the performance if the measurement noise
variance Cv increases. The observations originate from the four classes and the corresponding
rotor and double wing models as described above. For each value of Cv ten iterations are done
to indicate the variance in the performance of the classifier. The ten iterations are plotted in the
same color.

4.2.2 Estimating initial phase ϕ0

In the above section it was assumed that the initial phase of the wing or the rotor is known, but
in reality this parameter is unknown since it depends on the moment of measuring. So in this
section we assume that the initial phase is unknown and needs to be estimated.

If the estimation of the initial phase is done poorly, for example, when estimates are drawn
randomly, we observe a significant drop in the performance with respect to the case where all
parameters are known, see Figure A.0.5 in Appendix A for one of the confusion matrices. The
decrease is roughly 25% point (from 84.3% to 60.1% performance).

In general the initial phase is different for each observation y1:K . The observation y1:K is
known prior to the estimation, so we estimate this parameter using the information y1:K and
the maximum likelihood estimate as we have done before in section 4.1.2. The classification
performance of this approach is given in the confusion matrix in Figure 4.8.

The average overall performance is decreasing to 75.3% (compare to the 84.3% when all pa-
rameters are known and the 60.1% when poor estimation is done) , but remarkable is the fact
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Figure 4.8: This confusion matrix is the result of the classification under the parameter values
in the Tables 4.7, 4.8 and 4.9, where initial phase ϕ0 is estimated using maximum likelihood
estimation.

that the performance of UAV classification is not decreasing. Since the overall performance is
decreasing we conclude that the bird classifications is accountable for this decrease in overall
performance. Comparing the decrease in performance due to estimation of the initial phase be-
tween the single point scatterer model and extended models we see that the decrease is smaller
for the latter model, namely only 10% point (from 84.3% to 75.3%) versus almost 30% point
from 97.5% (Figure 4.1) to 67.0% (Figure 4.4) .

4.2.3 Learning process noise variance Cw and prior probabilities Pc

Previously we focussed on estimation of parameters that depend on one observation, so the values
of these parameters are unknown and different for every observations. In this section we will
apply the learning techniques as we did in section 4.1.3 for learning parameters which are class
dependent. The parameter that is assumed unknown is again the process noise variance. The
underlying truth is that the process noise variance is class dependent.

In the single point scatterer models classification we found an analytical solution for the
optimal parameter value for Ccw by equating the approximated likelihood gradient in (4.3) equal
to zero. However, for the hidden Markov models developed from the extended models there are
no tractable analytical solutions. Therefore the optimal solution can be found by a numerical
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method, the gradient ascent method with gradient

dll

dCcw
=

N∑
n=1

P (c|yn1:K , C
c
w)
( K∑
k=2

−1

(Ccw + Cv + |Γck−1|2Cv)
−

K∑
k=2

[
|ynk |2 + |ynk−1|2 − 2Re

(
ynk y

n
k−1Γck−1

)
(Ccw + Cv + |Γck−1|2Cv)2

]

+
−1

(Ccw + Cv)
+
−|yn1 |2 − |sc1|2 + 2Re

(
yn1 s

c
1

)
(Ccw + Cv)2

)
. (4.3)

If we assume the process noise to be identical for all classes and start with initial guess for
the process noise variance Ĉw = 0.1 and for the prior probabilities P̂c = [0.35 0.35 0.1 0.2] we
find that the estimate is close to the average of the true class process noises variances as given
in Table 4.10 (third column), the estimate for the prior probabilities are given in Table 4.11
(third column). The average performance decreases to 80.9% from the 84.3% in the case all pa-
rameters where known. One of the confusion matrix is shown in Figure A.0.6 in the Appendix A.

For the case where we assume that the process noises variances are different for each class
where we start with as initial guess for the process noise variance Ĉcw = [0.1 0.1 0.1 0.1] and for
the prior probabilities P̂c = [0.35 0.35 0.1 0.2], we find the process noises variances and the prior
probabilities given in Table 4.10 (fifth column) and Table 4.11 (fourth column) respectively.

Identical Cw Different Ccw
Parameter True value Estimate Cw Performance Estimate Ccw Performance

C1
w 0.05

0.0522 80.9%

0.1013

90.7%
C2
w 0.03 0.0271

C3
w 0.1 0.1081

C4
w 0.2 0.2076

Table 4.10: Estimates of the process class noise Ccw under the assumption of identical variances
(third column) and different variances (fifth column) using the MLANS technique given the
parameters in Table 4.7,4.8 and 4.9

Identical Cw Different Ccw
Parameter True value Estimate Pc Estimate Pc

P1 0.25 0.2540 0.2521
P2 0.25 0.2460 0.2480
P3 0.25 0.2346 0.2444
P4 0.25 0.2654 0.2555

Table 4.11: Estimates of the prior probabilities Pc under the assumption of identical variances
(third column) and different variances (fourth column) using the MLANS technique.

The average performance of classification over ten runs is 90.7%, compared to the case where
we assume that all classes have identical process noise variance we see an increase with 10%
point (from 80.9% to 90.7%). This high percentage of correct classifications is caused by the
different value of Ccw for each class. Note that in the previous simulations we assumed equal
process variance for all classes. The different variances makes it easier to distinguish between
models, since the likelihoods are more distinct.
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For ten observations we have plotted the evolution over the number of iterations in Figure
4.9. The influence of the estimates for the prior probabilities and noise variances is observable.
Initially (iteration 1), a few observations have a posterior probability smaller than 0.5, but as the
parameters are learned we notice that initial misclassified observations are eventually classified
correctly.
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Figure 4.9: The evolution of the posterior probabilities for a few observations for one class c.

4.2.4 Estimating ϕ0 and learning Cw and prior probabilities Pc

In last section we assumed the initial phase ϕ0 to be known. In this section a more realistic
approach is taken, where we assume the initial phase to be unknown. We combine the estima-
tion and learning techniques to estimate values for parameters and see how this estimation and
learning effects the classification performance.

The initial phase is estimated by maximum likelihood estimation over a fine grid, as we did
before. The process variance is learned by the MLANS-technique are used in the classification.
However, in general these approaches can not be taken separately, since the likelihood functions
are dependent on the initial phase and the process variance. Therefore we will compute the MLE
for the initial phase for each iteration in the MLANS-algorithm.

In the simulation results we observe that the estimates for the initial phase are not changing
over the iterations in the MLANS algorithm as given in Figure 4.10. Therefore in the rest of the
simulations both approaches were done separately, for the sake of computation time.

Again we generate observations according to the parameter values as given above, but we
assume different process noises Ccw for each class c. We want to learn these parameters with
unlabelled observations. In Figure 4.11 we see the final classification performance of one sim-
ulation run, the learning process for the parameters Ccw and Pc is shown in Figure 4.12 and
Figure 4.13 respectively. The estimates of the prior probabilities are wrong for the UAVs. The
prior probabilities do not converges to the true values, since there are still misclassifications as
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Figure 4.10: The maximum likelihood estimates are not changing over the iterations of the
MLANS-algorithm. Each line represents the estimate for one observations.

one can see in Figure 4.13. The average performance is 72.3% over ten simulations runs and
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Figure 4.11: Classification results of 400 observations, where one unknown parameter is estimated
and subsequently the process noise variance is learned.

is ranging from 45% to 90%. The performance is highly dependent on the estimates for the
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Figure 4.12: Convergence of the process noise variance. The true values are Ccw plotted as dashed
lines and the estimates Ĉcw are the solid lines. The common initial value for the estimates is 0.1
and from there the estimates convergence are not close to the true values.
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Figure 4.13: Convergence of the process noise variance. The true prior distribution is the discrete
uniform distribution. The initial guess is P̂c = [0.35 0.35 0.1 0.2] from which the estimates
convergence towards values not close to the true value 0.25

process noise variance and prior probability estimates. The MLANS-technique does not always
find the correct estimates for the process noise variances nor the prior probabilities, resulting
in misclassification. Since the MLANS algorithm is an optimisation algorithm it can get stuck
local maxima. The confusion matrices show that there are rarely misclassifications between the
birds and UAVs, which is reassuring since the main goal is to differentiate between UAVs and
birds. If the estimates are good the performance is high (80− 90%) compared to the case where
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all parameters are known.
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4.2.5 Estimation of biases at other levels

The classifier is based on the models developed in section 3, but to test if the classifier is robust
we assume more uncertainty in the hidden Markov models. This uncertainty is introduced by
incorporating biases on parameter at different levels in the hidden Markov model. These biases
are assumed to differ for every observation, but for every observation we assume them constant
over time. We consider two biases, a bias on the amplitude parameter and a bias on the length
of the blade/wing. First we will consider the bias on the amplitude parameter.

First we assume a bias δnA on the amplitude of the signal LρA of the n-th observation such that
the modelled amplitude becomes LρA+ δA, all other parameters are assumed to be known. The
bias δnA is assumed to be normally distributed with zero mean and variance εcA for the observation
yn1:K originating from class c. We compute the maximum likelihood estimates on a large grid. The
variance of the bias εcA equals 0.05 in the simulations. The performance of classification under
these assumptions are shown in Figure 4.14 and we observe that the average overall performance
over ten simulation runs is 74.0%, which is almost equal to the case where we assume the initial
phase to be unknown (75.3%). We observe that a few UAVs are classified as birds and vice versa.
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Figure 4.14: Classification performance under assumption that there is a bias on the amplitude
parameter which is estimated. We now observe misclassification between UAVs and birds.

From Figure 4.15 we observe from these histograms that the estimation of the biases on
the amplitude is performing poorly. If the biases were estimated correctly the histogram would
show a more normal distribution alike shape. However, the poor performance of estimation is
not affecting the classification performance, which can be explained as follows. The classifier is
based on the approximation likelihood, where the difference between two successive measurement
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is compared, it is not taking the amplitude into account for these successive measurements since
the amplitude is assumed to be constant over time. Only the amplitude of the first measurement
is compared to the amplitude of the underlying model, hence we can explain the poor performance
of estimation. Conversely the performance of classification is not affected significantly due to the
same reason, i.e. the classifier is classifying based on relative differences between measurements
in the observation y1:K .
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Figure 4.15: Histograms of estimates of the bias δnA. One histogram for each class c with all
observations that are classified into class c. The underlying true density function is also plotted.

The second bias is considered to be a bias on the length of the blade or wing. The bias,
denoted by δnL, is again at a different level of the model and we assume that the distribution
of this bias is class dependent: δnL ∼ N (0, εcL). First we will estimate this parameter value for
each observation and see how this estimation influences the performance of the classifier. Subse-
quently we will see how the estimation is performing.

Again we assume all other parameters to be known with values given in Tables 4.6, 4.7, 4.8,
4.9 and εcL = 0.05. The biases δnL are estimated and these estimates are then used in the classifier.

The performance of classification is averaged over ten simulation runs and equals an average
performance of 70.5%. Again we observe that estimation of the biases is performing poorly.
There is no significant difference between the error |δ̂nL − δnL| of the misclassified observations
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and the error of the correctly classified observations. On the other hand if we classify under
random estimates for the biases the performance is dropping to 40%, so although the estimates
are not close the true values, it does improve the performance compared to a poor estimation,
e.g. randomly generated estimates.

Compared to the case where all parameters are assumed to be known and the process vari-
ance was known and identical for all classes, the performance has decreases from 84.3% to 70.5%.

Next we assume biases on all three parameters we have investigated earlier, so a bias on the
amplitude, length of the blade/wing and a bias on the initial phase. The biases on the amplitude
and length will be normally distributed with variances εcA = 0.05 and εcL = 0.05 respectively and
the initial phase will be uniformly distributed over [0, 2π]. Further we assume the parameter
in Tables 4.6, 4.7, 4.8 and 4.9. Due to the larger parameter space the computation time has
increased significantly and we observe that the performance decreases again to an average of
61.3%, where misclassifications are also in between UAVs and birds. But on average only 5%
UAVs and birds are misclassified, meaning UAV classified as birds or vice versa. Decreasing the
measurement noise variance from 0.1 to 0.01 increases the average overall performance to 70%.
So the decrease in performance due to estimation of three unknowns is not equal to the sum of
the decreases in performance separately.

4.2.6 Multiple classes

We introduce more classes as given in Tables 4.12 and 4.13 to investigate on which class dependent
parameters the classifier can best distinguish between the classes and investigate its limitations
in differentiation. Again under the assumption that all parameters are known as given in Table
4.6, 4.7, 4.8 and 4.9 and the process variance is identical for all classes.

c Name Tw lW
1 Bird 1 0.1 s 0.3 m
2 Bird 2 0.1 s 0.4 m
3 Bird 3 0.1 s 0.8 m
4 Bird 4 0.2 s 0.3 m
5 Bird 5 0.3 s 0.3 m

Table 4.12: Bird dependent parameters where c is the class number.

The parameters are chosen such that the influence of the parameters can be easily detected.
The performance results in Figure 4.16 show that the classification based on a difference in ro-

tation speed is hard, since a lot of observations from UAV 1, UAV 6 and UAV 7 are misclassified
in between these classes. For UAVs we observe that classification based on a difference in blade
length or number of blades is easier. Another remarkable observation is that UAV 8 with two
blades is sometimes misclassified into a bird class and vice versa. This might be due to the fact
that two blades are quite similar to two wings.

We notice that discriminating between birds with a small difference in wing length is hard,
since Bird 1 and Bird 2 are misclassified mutually. A larger difference between Bird 1 and Bird
3 can be used by the classifier to distinguish between both classes. Bird 1 and Bird 4 are often
misclassified mutually, indicating that a small difference between stroke period of the wing Tw
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c Name ωc lP Nb
6 UAV 1 500 rad/s 0.2 m 4
7 UAV 2 500 rad/s 0.2 m 3
8 UAV 3 500 rad/s 0.2 m 2
9 UAV 4 500 rad/s 0.3 m 4
10 UAV 5 500 rad/s 0.5 m 4
11 UAV 6 450 rad/s 0.2 m 4
12 UAV 7 300 rad/s 0.2 m 4

Table 4.13: UAV dependent parameters where c is the class number.
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Figure 4.16: Classification performance with multiple classes as described in Table 4.12 and
Table 4.13 under the assumption that all parameters are known.

cannot be detected by the classifier. For the results we see that it is easier to distinguish between
Bird 1 and Bird 5 due to a larger difference in period of wing stroke.

Note that these results are found under the parameters as given in Tables 4.12, 4.13, 4.8 4.9.
For example, the small difference in stroke period is detectable when the total measurement time
Ttot is larger, e.g. one second.
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The above observations are emphasized by the likelihood functions for these class parameters
given in Figure 4.17. Where both rotation speed and one period stroke length show periodicity
and the length and number of blades the likelihood decreases if the variable is further away from
maximiser. The likelihood function over the length of the wing is not shown here, because the
shape is similar to the likelihood function over the length of the blade.
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Figure 4.17: Likelihood function over different class dependent variables.

Mainly due to time constraints the sensitivity analysis was done for a few parameters. The
parameters that were chosen were in our view the most interesting. The conclusions of the results
presented in this chapter are summarised in the next chapter.
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Chapter 5

Conclusions and Future work

In this thesis an automatic classification algorithm for birds and (mini-)UAVs was presented.
The approach to build this classifier is a Bayesian approach where the underlying class models
are assumed to be hidden Markov models. The MLANS algorithm is able to learn parameter
values using unlabelled observations and can classify these unlabelled observations after learning.

The analysis of the performance and limitations of the classifier is performed with synthetic
observations, generated from the models developed in Chapter 3, hence the conclusions are based
on a synthetic set of data and it is not clear how the approach is relating to reality. Nevertheless
there are a few conclusions that can be drawn from this analysis.

We have observed that classification under the assumption that underlying models are based
on single point scatterers performs better than under the assumption that underlying models
are multiple point scatterers models. In the latter case information of the multiple scatterers is
reduced to one number at each moment in time.

The rest of the conclusions are given for the classifier based on the multiple point scatterers
models, since most of the results were done under these multiple point scatterers models.

First we conclude that even under the assumption that we have to estimate biases on three
different parameters in the model we are able to classify 61.3% of the observations correctly (in
the case of the four given classes), where only 5% of the misclassifications are between UAVs
and birds. Therefore the classification under the assumption with three uncertainties on the
parameters classifies a bird or UAV correctly in 95% of the observations. Further we observed
that even under a high level of measurement noise the classifier is able to distinguish between
birds and UAVs, which is based on the different underlying dynamics both objects have.

Secondly we have concluded that although the classification was performing good under es-
timation of biases on parameters, the estimation itself was performing poor under high levels of
noise. As expected estimation is performing well when the noise variance is small. This poor
estimation might have been avoided if no approximation of the likelihood function was made.
The approximation likelihood function does not take into account all information, what can have
caused the poor estimation.

Thirdly we have worked with the unsupervised learning technique MLANS. Unsupervised
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learning is beneficial since obtaining supervised observations is expensive. We can conclude that
the MLANS algorithm is highly dependent on the initial estimates for the process noise variances
and prior probabilities, just like other non convex optimisation problems. The algorithm often
gets stuck in local maxima and this causes a decrease in performance. On the other hand if the
initial estimates are good the MLANS approach does work and converges to the true underlying
parameter values. The problem of avoiding local maxima is not within the scope of this project,
but can help to improve the performance of the classifier.

Further, we have conclusions about the limitation of this classifier on classification of UAVs
into subclasses of UAVs and birds into subclasses of birds. We can conclude from the results that
the classification of UAVs based on the rotation speed is performing poor, especially when the
observations is done in a small time window. On the contrary, we observed that it is more easy
to discriminate between UAVs if the UAVs have a different number of blades or different length
of blades. The limitations of distinguishing between class dependent variables is also strongly
related to the likelihood function. When the analytical likelihood function is used, we can expect
that the classifier is able to distinguish more easily between class dependent variables, meaning
that the likelihood function is a more spiky function.

For birds we can conclude that it is hard to discriminate between birds based on both class
dependent parameters: the period of one wing and the length of the wings. A small difference
in wing length is not enough to distinguish between two birds. By observing a bird for a longer
time, we see that discrimination based on the period of one wing stroke is going well.

Next we will discuss two direction of future work.

The first direction of future work should first focus on the verification of this approach with
(expensive) real data. The classifiers is based on the theoretical return model, but we need to
investigate how this model is relating to the reality, real data. The most extended model for a
UAV in this thesis is the rotor model, but a UAV usually exist of multiple rotors and a body.
Assumptions that are made to develop this model are not all realistic. For example the assump-
tion that no shielding occurs is does not always hold. Hence the real data might be not similar to
the synthetic data of one rotor as generated in this thesis. So it would be good to first check the
model assumptions by comparing the real data with the synthetic data. Further we expect that
an extension of the model will be a better fit with the real data, but an extension also means that
information of more point scatterers is projected onto one number. Therefore we expect that
the classification performance decreases if the underlying dynamic models become more complex.

The second direction of future work should focus on the improvement of performance of the
parameter estimation. In this thesis the parameter estimation is performing poorly and this
might be due to the approximation of the likelihood. First we recommend to compute maximum
likelihood estimates using the exact likelihood, which can be calculated. Subsequently, if the
estimation is performing better, we need to study the effect on the performance of classification.
We have seen that if all parameters are known that the performance is 84.3%. The performance
in the case of three unknowns was 61.3%, so there is a potential 20% performance to gain, which
can be achieved by better parameter estimation.
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Appendix A

Confusion matrices

In this Appendix some of the exemplary confusion matrices are plotted to justify the claims that
are made in Chapter 4. The captions of the figures below describe under what conditions the
results were obtained.
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Figure A.0.1: This confusion matrix is the results of classification using underlying single point
scatterer models and under the assumption that all parameter values are known with for Cv = 4
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Figure A.0.2: This confusion matrix is the results of classification under learning Cw under the
assumption that the process noise variance is identical for each class. These results are for the
case where the underlying models are based on the single point scatterers.
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Figure A.0.3: This confusion matrix is the results of classification learning under the assumption
that the process noise variance is different for each class with underlying single point scatterer
models.
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Figure A.0.4: This confusion matrix shows the results of classification using underlying multiple
point scatterers model, where all parameters are known with Cv = 2.
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Figure A.0.5: This confusion matrix shows the results of classification using underlying multiple
point scatterers model, where the initial phase is estimated by a randomly drawn estimate in
[0, 2π].
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Figure A.0.6: This confusion matrix is the results of classification learning Cw and Pc under the
assumption that the process noise variance is identical for all classes. The underlying models are
the multiple point scatterer models.
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Appendix B

Derivations

B.1 Derivation of the semi log-likelihood gradient

The semi-log-likelihood gradient is

ll′(χ|y) =

N∑
i=1

log

(∑
c∈C

p(yi|c, χ)P (c)

)
+ µ

(∑
c∈C

P (c)− 1

)
.

Differentiation of the semi-log-likelihood with respect to the model parameters χc̃ for class c̃
gives

∂ll′(χ|y)

∂χc̃
=

N∑
i=1

∂

∂χc̃
log

(∑
c∈C

p(yi|c, χ)P (c)

)

=

N∑
i=1

∂
∂χc̃

∑
c∈C p(y

i|c, χ)P (c)∑
c∈C p(y

i|c, χ)P (c)

=

N∑
i=1

∂
∂χc̃

p(yi|c̃, χ)P (c̃)∑
c∈C p(y

i|c, χ)P (c)
.

Using identity ∂x = x · ∂ log(x) we have

∂ll′(χ|y)

∂χc̃
=

N∑
i=1

p(yi|c̃, χ)P (c̃)∑
c∈C p(y

i|c, χ)P (c)

∂

∂χc̃
log
(
p(yi|c̃, χ)P (c̃)

)
=

N∑
i=1

P (c̃|yi, χ)
∂

∂χc̃
log
(
p(yi|c̃, χ)P (c̃)

)
.

For the prior probability P (c̃) we can use the above result to find

∂ll′(χ|y)

∂P (c̃)
=

N∑
i=1

P (c̃|yi, χ)
∂

∂P (c̃)
log
(
p(yi|c̃, χ)P (c̃)

)
+ µ

=

N∑
i=1

P (c̃|yi, χ)

P (c̃)
+ µ,
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B.2 Likelihood function

In this section we compute the likelihood of the observations given hidden Markov model for
class c,

xk+1 = Γckxk + wk, yk+1 = xk+1 + vk+1,

where w and v are circular zero mean complex Gaussian noise with variance Cw and Cv respec-
tively.

p(y1:K |c) =

K∏
k=1

p(yk|y1:k−1, c)

=

K∏
k=1

∫
p(yk|xk, c)p(xk|y1:k−1, c)dxk

=

K∏
k=1

∫
CN (yk|xk, Cv, c)CN (xk|x̂k|k−1,c, Pk|k−1, c)dxk (B.1)

=

K∏
k=1

CN (yk|x̂k|k−1, Pk|k−1 + Cv, c), (B.2)

We have,

p(xk|y1:k−1, c) = CN (xk|x̂k|k−1, Pk|k−1, c), (B.3)

since all noises are circular complex Gaussians. Therefore the real part and imaginary part are
independent distributed and both parts can be modelled separately as linear Gaussian models.
The Kalman scheme (B.4)computes the mean and variances for the corresponding Gaussian
distributions. The real and imaginary part have identical variances if the noise is circular complex
Gaussian and there we can add both parts together in one circular complex density function as
given in (B.3)

Going from (B.1) to (B.2), we use again the fact that the real part and the imaginary part
are both independently normal distributed and since vk is independent from all other random
components we can write (B.2).

B.2.1 Kalman filter

Given the linear Gaussian model

xk = Fkxk−1 +Bkuk + wk,

yk = Hkxk + vk,
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where Gaussian noises wk, vk have a zero mean normal distribution with variances Qk and Rk
respectively, the Kalman updating scheme is given by,

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk,

Pk|k−1 = FkPk−1|k−1F
T
k +Qk,

ỹk = yk −Hkx̂k|k−1,

Sk = HkPk|k−1H
T
k +Rk, (B.4)

Kk = Pk|k−1H
T
k S
−1
k ,

x̂k|k = x̂k|k−1 +Kkỹk,

Pk|k = (I −KkHk)Pk|k−1.

B.3 Circular zero mean complex Gaussian noise

Circular complex Gaussian noise is complex noise for which the real and imaginary part are in-
dependently normally distributed with variance σ2

w, mean µ and the probability density function
is denoted by,

CN (w|µ,Cw) =
1

πCw
e−(w−µ)C−1

w (w−µ)

=
1

πCw
e−
|w−µ|2
Cw ,

where w, µ ∈ C , Cw = 2σ2
w ∈ R, |w| the modulus of w and w is the complex conjugate of w.

B.4 Approximation of distance model

To justify the approximation (3.8) we show that

R2
P (t) ≈ R2

app(t),

:= [R0 + lP cos(β) cos(α− ωct− ϕ0) + z0 sin(β)]
2
.

which implies that the squared error (RP (t)−RA(t))2 is small. The absolute difference is,

|R2
P (t)−R2

app(t)| = |l2P (1− cos2(β) cos2(α− ωct− ϕ0))

+ 2z0 sin(β)lP cos(β) cos(α− ωct− ϕ0)− z2
0 sin2(β)|,

≤ (lP + z0)2.

Since z0 is a parameter that can be set to zero without loss of generality and lP
R0

is small we have
that the relative error is also small.
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