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Abstract

The diagnosis of epilepsy heavily depends on the detection of epileptiform discharges
in interictal EEG, the EEG in between two seizures. By visual analysis a physician
wants to detect these epileptiform discharges (spikes). Due to the wide variety of
morphologies of epileptiform discharges, and their similarity to waves that are part
of normal EEG or to artifacts, this detection is far from straightforward. Moreover,
it is a time consuming task, holding back for the analysis of long-term recordings,
which would improve the detection of evidence of epilepsy [17, 18].

In this study a first step has been made towards automated detection. We would
like to find events with a heightened chance of being an epileptiform discharge. All
other parts of the EEG can then be neglected, resulting in a reduction of the time
needed to analyse a record.

In this study we investigated two methods: wavelet analysis and matched filter-
ing. The choice for wavelet analysis was motivated from literature. A big drawback
of wavelet analysis turns out to be the limited choice for templates with which to
correlate the signal. Therefore we propose to use matched filtering in which we are
not restricted in the choice for templates. Classically, mathed filtering considers an
event (spike) ‘detected’ if some correlation exceeds a certain threshold. We added a
power threshold, claiming that the template has to explain for a certain percentage
of the signal power before an event is considered to be of an epileptiform kind. This
resulted in a sensitivity (percentage of true spikes that are detected) of 86.41% with
0.1503 False Positives per Minute (FPM) if this threshold was set to 75%. This is
showed to be a lower bound for the data set, consisting of 10 EEG recordings, as we
were able to obtain a sensitivity of 95.63% with an FPM of 0.2002 as well for slightly
different threshold settings.

This approach is not suitable for automation. It requires the selection of a suitable
template before matched filtering can be applied, implying that the entire recording
needs to be scanned first. It, however, shows the strength of matched filtering and
the present with a library of spikes is therefore proposed for the goal of automated
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spike detection. Preliminary results, with a library of just 9 templates and a fairly
simple rules defining an event as epileptiform or not, show this to be promising as we
already reach sensitivities of around 80% with few false positives per minute.
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Preface

My parents often use the phrase

”Time flies when having fun!”

It is exactly that what pops into mind when I am writing this preface, knowing that
six years of study have almost come to an end. Six years that feel to have flown by. It
feels like only yesterday (well okay, maybe not yesterday, but you know what I mean)
that I came to Enschede, were I felt at home right away. Looking back, these six years
have brought me a lot. Not only did I find the desired challenge in the study, being
part of the board of W.S.G. Abacus and working on several jobs for the department
Applied Mathematics, I got the opportunity to develop myself even more. Being a
student in Enschede I also got the change to discover triathlon and knotsbal, fo fall
in love with Twente and make a lot of friends.

This is not to say that it was easy to reach this point. I had to work hard and
have had some difficult times, really not knowing why I ever wanted to be an applied
mathematician. It did not come easy, but I persisted though. This makes I can be
proud to be were I am now, on the verge of being an applied mathematician, looking
back with a smile on my face.
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CHAPTER 1

Introduction

This chapter introduces the reader to the world of automatic spike detection in elec-
troencephalography. It will become clear what a spike is, why we want to detect
it (Section 1.1) and what already has been done to automate this detection (Sec-
tion 1.2). In Section 1.3 the research goal of this master thesis regarding automatic
spike detection is formulated. Finally, Section 1.4 gives an overview of the structure
of the report.

1.1 Motivation

Epilepsy is a neurological disorder characterized by recurrent and unprovoked seizures.
The effects of seizures differ, ranging from absences (episodes of unresponsive star-
ing) up to uncontrolled muscle contractions throughout the entire body (probably
best known by the broad audience).

Epileptic seizures are the result of occasional, sudden and excessive electrical
discharge of the brain gray matter [12]. Electroencephalography (EEG), a clinical tool
that measures the electrical activity along the scalp, will clearly show this abnormal,
synchronized and excessive electrical activity in the brain as is clarified by Figure 1.1.

Seizures are unprovoked and months, or even years, can pass without a seizure
occurring. Therefore it is not practical (and unethical) to monitor a patient on EEG
and wait for a seizure to occur. However, interictal EEG, the EEG in between seizures,
of a patient with epilepsy is characterized by occasional epileptiform discharges. The
detection of these discharges (also referred to as spikes) is leading in the diagnosis of
epilepsy, diagnosis which is important to give a patient adequate medical support.

Electroencephalographers are to determine the presence of these spikes by visual
analysis. This is not only a task that requires expertise, it is also time-consuming,
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Figure 1.1: The classical evolution of a generalized seizure. There is abrupt onset
of generalized rapid spikes and we see post-icatal suppression when seizure discharges
come to an halt [15].
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especially in the case of long-term recordings. Therefore, automatic assistance, which
will reduce the analysing time, is desirable.

Automated interpretation software has been developed to offer this desired as-
sistance. Due to high numbers of false detection, however, they are hardly used in
practice [1, 10]. A complicating factor is that it is not unusual for two readers of the
same record to disagree on the nature of observed features [10]. Difficulties arise due
to the wide variety of morphologies of epileptiform discharges, and their similarity to
waves that are part of normal EEG (such as the vertex waves and K-complexes dur-
ing sleep) or to artifacts such as eyeblinks. This makes the detection of epileptiform
discharges far from straightforward.

1.2 Related Work

Automatic detection of interictal epileptiform discharges (IEDs) has been a research
goal since more than forty years. Many methods have been developed in these years,
but none of them proved to be as reliable as an experienced EEG-reader [10].

The methods can be classified by there mathematical approach. At first, mimetic
analysis will be discussed. Such an approach analyses the signal waveform in a way
similar to how humans would describe it. The morphological description used in
this approach turned out to be insufficient though, because many transients, normal,
abnormal or artifactual, fit the same definition.

In template matching, a spike is found when the cross-correlation between a chosen
template and the EEG record exceeds a certain threshold. This approach was mainly
used in the early years of research [6, 24] and it struggled with the same problem as
mimetic analysis.

The assumption that the background EEG is stationary, i.e. mean, variance,
and autocorrelation function do not change over time, forms the basis for parametric
methods. In such an approach, an IED is detected if the recorded behaviour differs
from the behaviour predicted by the model parameters. This method did not work
well, because IEDs turned out to be more stationary than expected.

Power spectral analysis describes how the power of a signal is distributed over its
frequency. If the frequency band corresponding to spikes is dominant, an epilepti-
form event is considered. Several transforms have been used to transform the signal
from the time domain to the frequency domain, among which the Fourier, Hilbert
and Walsh transforms. A drawback of these methods is their fixed time-frequency
resolution.

Wavelet analysis is an advanced matching technique. By scaling and translating
a mother wavelet (template) the fixed time-frequency resolution problems of power
spectral analysis can be overcome. Wavelet analysis comes with the price of a limited
choice for templates.

Finally, we have artificial neural networks that consist of ‘artificial neurons’, the
basic units of the network that can be trained to recognize patterns in ways similar
to humans [10]. Artificial neural networks need no specific rules, but are trained by
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examples. By providing the system classified examples of both spike and non-spike
events it can be trained in the recognition of IEDs.

1.2.1 Remarks

Two remarks about comparing the performance of different algorithms have to be
made. The first is that the comparison is difficult because each study uses its own
EEG dataset [10]. Secondly, the inter-reader sensitivity in a study with five expert
EEG readers was found to be 0.79 [27], i.e. there is no golden standard that can
be used in the evaluation of the peformance of algorithms. To overcome the first
problem, a standardized EEG dataset is being developed by the Clinical Neurophys-
iology department of the University of Twente, following the example of research in
computerized electrocardiogram interpretation [26, 10].

1.3 Research Goal

In this research we want to make a first step towards automated spike detection. The
goal is to develop a method that supports encephalographers in the visual analysis of
EEG recordings. At the moment every part of the recording is analysed, making it a
time-consuming task. By detecting the events with an heightened chance of being an
epileptiform discharge, we aim to reduce the time needed to analyse a record. This
also supports the analysis of longer records, which improves the detection of evidence
for epilepsy [17, 18].

1.4 Structure of the Report

Chapter 2 gives a theoretical framework, introducing the reader to, for example,
electroencephalography. Wavelet analysis as spike detection method is discussed in
Chapter 3. We propose to use matched filtering instead, a method treated in Chap-
ter 4. The results using this method can be found in Chapter 5. The report finishes
off with chapters 6 and 7 covering the conclusion and discussion of the presented
work.
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CHAPTER 2

Theoretical Framework

In this chapter some general background information is given. Section 2.1 introduces
the reader to electroencephalography (EEG) and Section 2.2 to EEG in diagnosing
epilepsy. Statistical measures such as sensitivity and specificity that are used in the
evaluation of the performance of algorithms are defined in Section 2.3 and finally,
preprocessing of the EEG record will be treated in Section 2.4.

2.1 Electroencephalography

Electroencephalography (EEG) is a clinical tool used for the evaluation of brain func-
tion of patients. The EEG measures the electrical activity along the scalp, and is
used in the diagnosis of, for example, coma, encephalopathy, brain death and plays
an important role in the diagnosis of epilepsy [15].

Electrical activity of the brain is measured by electrodes placed on the scalp, such
as shown in Figure 2.1. In this study the 10-20 electrode system is used, which is
based on the general strategy of measuring the distance between two fixed anatomical
points, such as the nasion (point where the bridge of the nose meets the forehead)
and the inion (prominent point on the occiput), and then placing electrodes at 10%
or 20% intervals along that line. Placement of electrodes in this system is shown in
Figure 2.1b. The names of the electrodes identify with the lobe or area of the brain
to which the electrode refers:

F: frontal

Fp: frontalpolar

T: temporal

C: central
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(a) Recording a user’s brain waves using EEG
[19].

(b) The 10-20 electrode system and the
nomenclature of the EEG electrodes in the sys-
tem. Note that the figure represents the head
from above, with the nose on top and the ear-
lobes on the left and right [19].

Figure 2.1: A typical EEG set up (top) and the 10-20 electrode system (bottom).

P: parietal

O: occipital

A: aurical (ears)

Localisation is further narrowed down by numbering the electrodes. Even numbers
stand for electrodes placed on the right side of the head, odd numbers for electrodes
on the left. At last, the label z refers to points on the midline of the head [15].

Looking at an EEG recording, we do not see the ‘raw’ voltages measured, be-
cause these signals would be too electrically contaminated by the building’s electrical
ground. We therefore use amplifiers which take two inputs, two electrodes for exam-
ple. The second input is substracted from the first and by that the contamination
is cancelled out. The result is amplified and serves as the output. The concept is
clarified by Figure 2.2.

The term montage refers to the order and choice of channels displayed on the
EEG page. Most used montages are the referential and the bipolar montage. A
referential montage compares each electrode to a reference point somewhere else on
the body, a point which is hoped to be neutral. Such a reference point can be an
electrode placed on the nose, chin, or earlobes, or is sometimes the common average
of all scalp electrodes. In a bipolar montage each channel represents the voltage
difference between two (adjacent) electrodes [15]. An example of an EEG page using
a referential montage is shown in Figure 2.3. The length of the page is 10 seconds,
which is typically used when analysing a record.
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Figure 2.2: Example of an EEG amplifier with two inputs and its output. If we
assume a bipolar montage, the two inputs could for example be the signals from elec-
trodes Fp1 and F3. The output signal is then referred to as Fp1 − F3. The figure
clearly demonstrates how electrical contamination is cancelled out using an amplifier
[15].

2.2 Interictal Epileptiform Discharges

EEG is characterized by rhythmic background activity and short transients. These
transients are not per definition signs of abnormal brain function. Transient features
such as vertex waves and sleep spindles are seen in the EEG during normal sleep.
Transients can also be caused by eyeblinks or movement of electrodes. Detection of
spikes and sharp waves, however, may support the diagnosis of epilepsy.

Between seizures, the EEG of a patient with epilepsy may be characterized by oc-
casional epileptiform transients, which consist of spikes or sharp waves having pointed
peaks and last for 20-70 ms and 70-200 ms respectively. The detection of interictal
epileptiform discharges (IEDs), also reffered to as spikes, is important since their
presence is predictive of recurrent seizure in patients after first seizure [25] and is
thus of use in making the diagnosis of epilepsy.

The first definition of a spike was introduced by Gloor in 1975 [7]. His definition
of a spike:

1. a restricted triangular transient clearly distinguishable from background activity
and having an amplitude of at least twice that of the preceding 5 seconds of
background activity in any channel of EEG;

2. having a duration of < 200 ms;

3. including the presence of a field, as defined by involvement of a second adjacent
electrode.

The International Federation of Societies for Electroencephalography and Clinical
Neurophysiology describes interictal discharges as ‘a subcategory of epileptiform pat-
tern, in turn defined as distinctive waves or complexes, distinguished from background
activity, and resembling those recorded in a proportion of human subjects suffering
from epileptic disorders’ [20]. The interictal discharges may be divided morpholog-
ically into sharp waves, spikes, spike-wave complexes and polyspike-wave complexes
.

The following definitions are used:
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Sharp wave; transient, clearly distinguishable from background activity, with
pointed peak at conventional paper speeds and a duration of 70 to 200 millisec-
onds (ms);

Spike; same as sharp wave, but with a duration of 20 to 70 ms;

Spike-wave complex ; pattern consisting of a spike followed by a slow wave;

Polyspike-wave complex ; same as spike-wave complex, but with two or more
spikes associated with one or more slow waves.

Figure 2.3 gives an impresion of how such a transient looks like on EEG. Some
examples of sharp waves and spike-wave complexes are given in figures 2.4 and 2.5
(page 9).

In practice, it is not important that the distinction between the morphological dif-
ferences of epileptiform discharge is made. The greatest challenge electroencephalog-
raphers face is to distinguish true epileptiform discharges from normal or nonspecific
sharp transients and artifacts. Normal variants in the EEG that look like IEDs are
for example vertex waves and K-complexes that occur randomly during sleep (Fig-
ure 2.6 on page 9). Artifacts or electrical disturbances can be caused by movements
or eyeblinks (Figure 2.8 on page 13).

Figure 2.3: This figure nicely illustrates the sudden appearance of an interictal
epileptiform discharge on EEG (recording a0009672). The colored band marks a poly-
spike-wave complex.
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Figure 2.4: Examples of sharp waves (taken from EEG recording a0006845).
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Figure 2.5: Example of spike wave complexes (taken from the EEG recording
a0009672).

Figure 2.6: K-complex; an EEG waveform that occurs randomly during sleep [21].

9



2.3 Performance Measures

The performance of tests or algorithms is often measured using the statistical mea-
sures sensitivity and specificity. In the context of this study, the sensitivity is a
measure of how likely the algorithms picks up an epileptiform discharge if present in
the signal. Specificity is a measure of how likely it ‘ignores’ non-epileptiform parts of
the signal. An ideal algorithm would have a sensitivity and specificity of 100 %; such
an algorithm would perfectly mark all epileptiform discharges and nothing else.

2.3.1 Sensitivy and FPM

The sensitivity and specifity of an algorithm follow from the number of True Positives
(TP), False Positives (FP), True Negatives (TN) and False Negatives (FN). Each
event that the algorithm correctly identifies as a spike is a true positive and each
event that the algorithm should have neglected but was marked as spike instead, is
a false positive. TN is the number of non-spike events in the recording that are
neglected by the algorithm (as it should). Finally, the false negatives are the spikes
in the recording that the algorithm did not detect as such. This classification is
illustrated by Table 2.1. Notice that TP + FN is the number of spikes known to be
present in the recording, whereas TN +FP is the number of non-epileptiform events.
Likewise we see that TP + FP is the number of events that the algorithm identifies
as epileptiform (positive outcomes), whereas FN + TN is the number of events the
algorithm states to be non-epileptiform (negative outcomes).

True state
IED non-IED

Algorithm says
IED TP FP

non-IED FN TN

Table 2.1: Classification of the outcomes of a spike detection algorithm in True
Positives (TP), False Positives (FP), True Negatives (TN) and False Negatives (FN).

The sensitivity follows as the probability of a positive outcome given an epilepti-
form discharge is present, i.e.

Sensitivity = P (identifies IED | IED present)

=
TP

TP + FN
(2.1)

Likewise the specificity follows as the probability of a negative outcome, given a
non-epileptiform event takes place:

Specificity = P (identifies non-IED event | IED not present)

=
TN

TN + FP
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For online applications it is useful to know how often the system gives a false
alarm. That is why the specificity is often replaced by the False Positive Rate (FPR)
defined as

FPR =
FP

FP + TN
= 1− specificity

. or the False Positives per Minute defined as

FPM =
FP

length file (min)
(2.2)

In this study we will mostly use the sensitivity and FPM as performance measures.

2.3.2 ROC curve

The Receiver Operator Charactistic (ROC) curve was introduced in World War II mil-
itary radar operations as a way to visualize the operators’ ability to identify friendly
or hostile aircraft based on a radar signal. The operators could not afford identifying
a hostile aircraft as friendly by mistake, but at the same time their resources were
limited; they were not able to intercept all aircraft. The ROC curve was introduced as
a graphical tool to explore the trade-offs between these two losses at various decision
thresholds when a quantitative variable is used to guide the decision [4].

The ROC curve found its way into signal detection studies and is still used a lot
in the evaluation of diagnostics systems. The sensitivity and false positive rate are
the conflicting interests; we want to maximize the sensitivity and at the same time
minimize the false positive rate. A typical ROC curve is shown in Figure 2.7.

ROC curves help us to compare different threshold settings or algorithms.

Figure 2.7: Left we see the ROC curve corresponding to the events described on
the right. t1-t5 represent thresholds for the variable y, which for example represents
the number of flu antibodies present in the blood. If the threshold is low (t1), we find
all true flu cased (light blob), but also many false flu detections (dark blob). If the
threshold is high (t5), none of the blood samples tests positive for flu. The optimal
point is the upper left star representing a sensitivity of 1 with an FPR of 0 [4].
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2.4 Preprocessing

2.4.1 Filtering

Epileptiform discharges are known to correspond to the frequency band of 4-32 Hz
[11]. Events corresponding to a frequency < 4Hz or > 32Hz are therefore not of inter-
est for us and we might as well leave them out of our analysis. We will therefore use a
bandpass filter that passes frequencies within a certain range and rejects frequencies
outside that range. The bandpass filter used is the 4th order Butterworth filter with
cut-of frequencies of 4 and 20Hz. The upper limit of 20Hz is chosen as to minimize
the presence of myogenic artifacts that are known to lie in the 20 − 30Hz frequency
band.

2.4.2 Eyeblinks

An EEG signal often contains eye-related artifacts such as eyeblinks. Eyeblinks are
characterized by positive deflections in the most anterior electrodes and are explained
by an upward rotation of the eyeball during the lid closure. The eyeball acts as a
dipole with a positive pole oriented anteriorly (cornea) and a negative pole oriented
posteriorly (retina). When the eye rotates, it generates a large-amplitude alternate
current field, which is detectable by any electrodes near the eye (usually electrodes
Fp1 and Fp2) [3]. An example of eyeblinks in the EEG is shown in Figure 2.8.

Typically an EEG recording not only contains signals from electrodes placed on
the head, but also an electrocardiography (ECG) signal (from the heart), reference
signals from electrodes placed on, for example, the earlobes and an electrooculography
(EOG) signal. This last signal is shown in Figure 2.8 (channel Cb2) and corresponds
to the resting potential of the retina. This signal thereby correlates well with eyeblink
events, which is illustrated in the figure. The EOG-channel can therefore be used to
filter the signal for eyeblink artifacts. The results of such a preprocessing operation
using the method of Lodder [16] are shown in Figure 2.9. This method uses Inde-
pendent Component Analysis (ICA) to find the correlation between the EEG signals
and the EOG-channel. The highest correlating component is removed and with the
reverse transform the signal is recovered, which is then assumed to be free of eyeblink
artifacts.
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Figure 2.8: Referential montage showing transients caused by eyeblinks (marked
parts). We clearly see a correlation between the transient behaviour in channels Fp1
and Fp2 and the EOG-channel (in this file named Cb2).

Figure 2.9: The EEG of Figure 2.8 after preprocessing on eyeblink artifacts. We
see the same 10 seconds of EEG are now free of transients.

13



14



CHAPTER 3

Wavelet Analysis

Fourier analysis has proven to be very successful in many signal processing applica-
tions. It describes a phenomenon (signal), x(t) as a superposition of harmonic basis
elements x̂(f)ei2πft. A note (as in musical notation), for example, is described as a
superposition of its fundamental frequency and its higher harmonics.

A drawback of Fourier is that these basis elements are not local in time and as
such are not useful if temporal change is important. Temporal change is for example
important in music; the music scores describe a song: they specify when, for how long
and at which pitch (frequency) a note should be played.

Another limitation of Fourier is that the time and frequency resolution, Tr and fr,
are the same throughout the time-frequency plane. We can improve the frequency res-
olution, but then the time resolution becomes worse and vice versa. This is illustrated
in Figure 3.1a.

A well known alternative to the harmonic basis elements are wavelets. Wavelets al-
low multiresolutional analysis, meaning that Tr and fr need not be the same through-
out the time-frequency plane (Figure 3.1b).

In wavelet analysis the concept scale is used, instead of frequency. It is a useful
property of signals and images. For example, we can analyse temperature data for
changes on different scale; day-to-day, year-to-year or decade-to-decade. Scale and
frequency are related though. On a small scale (the day-to-day temperature changes)
we look at details, which relates to a high frequency. On a large scale, slowly changing
features are examined, i.e., we analyse at a low frequency.

3.1 An introduction to wavelet analysis

In this section the basic idea of wavelet analysis is shown by working out an ex-
ample. The idea is that a signal x is repeatedly separated in what is called an
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(a) Fourier basis functions, time-
frequency tiles, and coverage of the
time-frequency plane.

(b) Daubechies wavelet basis functions,
time-frequency tiles, and coverage of the
time-frequency plane. Low frequency
events need a large time frequency resolu-
tion but have small frequency resolution.

Figure 3.1: Differences in time-frequency resolutions for Fourier and Wavelet anal-
ysis [8].

approximation component a(t) and a detail component d(t). By this, local behaviour
(detail) can be separated from long-term behaviour (approximation). It separates
the low-frequency from the high-frequency content. Take the example of temperature
measurements, where the high-frequency components represent day-to-day changes
and low-frequency components represent seasonal changes.

Suppose we have a discrete signal xn = [x0 x1 . . . xN−1] ∈ RN with N = 2L

samples as shown in Figure 3.2.
The approximation and detail coefficients are defined as the pairwise average and

difference:

a1n :=
1

2
[x0 + x1 x2 + x3 . . . xN−2 + xN−1] ∈ R

N
2 (3.1)

d1n :=
1

2
[x0 − x1 x2 − x3 . . . xN−2 − xN−1] ∈ R

N
2 (3.2)

Figure 3.3 shows the approximation a1n which roughly looks like the original signal
xn, and the detail coefficients, d1n. The detail coefficients reveal that the difference
between two consecutive points is small, except where xn jumps.

We have obtained a1n and d1n from xn by the following mapping:

xn ∈ RN → (a1n, d
1
n) ∈ (R

N
2 ,R

N
2 )

This mapping is invertible for all even N (note that then xn has as many samples as
(a1n, d

1
n)).
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xn

Figure 3.2: Discrete signal xn ∈ R32.

an
1

dn
1

Figure 3.3: First level approximation a1n (top) and detail coefficients d1n (bottom) of
the discrete function xn of Figure 3.2.

We can take the first-level approximation a1n, and decompose it in the same manner
to obtain the second-level approximation a2n and corresponding detail coefficients d2n:

a1n → (a2n, d
2
n)

We can continue this process upto (aLn , d
L
n) ∈ (R1,R1):

a2n → (a3n, d
3
n)

a3n → (a4n, d
4
n)

...

aL−1
n → (aLn , d

L
n)

17



Each mapping results in a coarser approximation of xn (each step the time res-
olution decreases, and the frequency resolution increases with a factor 2). As each
mapping is reversible, we can reconstruct xn uniquely from the final approximation
aLn and all detail levels:

(aLn , d
L
n , d

L−1
n , . . . , d1n) → xn

For xn ∈ RN (Figure 3.2) the total decomposition is shown in Figure 3.4 (page 18).

dn
1

dn
2

dn
3

dn
4

dn
5

an
2

an
5

an
4

an
3

an
1

xn

Figure 3.4: Complete decomposition of the discrete signal xn. On top we have xn
and underneath the approximation (left) and detail components (right) from scales 1
upto 5.

3.1.1 Preserving norm

The idea of the ‘size’ of a signal is important in many applications. We would like
to know how much electricity can be used in a defibrillator without ill effects, for
instance. It is also good to know if the signal driving a set of headpones is strong
enough to create a sound. For this reason, it is convenient to quantify this idea of
‘size’. The energy of a signal, defined as

Ex := ||x||2 (3.3)
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with || · || the Euclidean norm

||x|| :=

����
N−1�

n=0

|xn|2 (3.4)

is such a quantification. To be able to use this quantification in wavelet analysis, the
wavelet measure needs to preserve energy. This means we need

|xn|2 = |aLn(x)|2 +
L�

i=1

|din(x)|2

With the approximations and details defined as in (3.1) and (3.2) the norm is not
preserved. Suppose for example the signal is constant, implying all detail coefficients
to be zero. Then we have

|aLn(x)|2 +
L�

i=1

|din(x)|2 =
1

2
|xn|2

If we simply multiply the wavelet transformation xn → (aLn , d
L
n , d

L−1
n , . . . , d1n) by a

factor 1
2

√
2 the transformation from xn is norm preserving.

3.1.2 Orthogonality

The wavelet transformation x → (a1, d1) can also be looked at as a the expansion of
x in the orthonormal basis φ0,k, ψ0,k with k = 0, . . . , N

2 − 1 (see Figure 3.5). That
is to say

d1k = �x,ψ0,k�
a1k = �x,φ0,k�

For every ψ0,k, φ0,k we have two neighbouring nonzero entries, all of its other entries
being zero. Moreover, the ψ0,k do not overlap, which is also the case for the φ0,k.

ψ0,0 ψ0,1 ψ0,7

.............φ0,0 φ0,1 φ0,7

Figure 3.5: An orthonormal basis φ0,k (top), ψ0,k (bottom).
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Therefore, it is clear that these are orthogonal to each other. The same holds for
the wavelet functions corresponding to the transformations from a1 → (a2, d2) upto
aL−1 → (aL, dL) .

The ψ0,0 is the socalled mother wavelet, φ0,0 the scaling function and the numbers
dmk the wavelet coefficients.

3.2 Continuous-time wavelet transform

The previous section actually introduces one of the well known mother wavelets,
namely the Haar wavelet. The continuous-time version is

ψ(t) :=






1 t ∈ [0, 12)
−1 t ∈ (12 , 1]
0 else

with scaling function

φ(t) :=

�
1 t ∈ [0, 1)
0 else

The basis functions that are used in wavelet analysis are all scaled and translated
versions of the chosen mother wavelet and scaling function. They are obtained as
follows

ψj,k(t) :=
1√
2j

ψ

�
t− k

2j

�
, j = 0, 1, . . . , k = 0, 1, . . . , 2j − 1

φj,k(t) :=
1√
2j

φ

�
t− k

2j

�
, j = 0, 1, . . . , k = 0, 1, . . . , 2j − 1

where j stands for the scale and k for the translation. The functions obtained form an
orthonormal sequence. A part from the Haar wavelet sequence is given in Figure 3.6
(page 21).

At each scale j, the expansion of xn will be determined in the orthonormal basis
φj,k, ψj,k. The results of this expansion are the approximation (derived via the
expansion in the scaling function or averaging filter φj,k) and the wavelet coefficients
dkj (via the expansion in the wavelet ψj,k).

The Haar wavelet is one of many wavelet transforms. Figure 3.7 (page 21) shows
the mother wavelets of some other well known ones.

3.3 Applications of wavelet analysis

Wavelet analysis is used in many fields. To get an idea: astronomy, acoustics, nu-
clear engineering, sub-band coding, signal and image processing, neurophysiology,
music, magnetic resonance imaging, speech discrimination, optics, fractals, turbu-
lence, earthquake-prediction, radar, human vision, and in pure mathematics applica-
tions such as solving partial differential equations [9]. A few of them are discussed in
the following.
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Figure 3.6: Haar wavelet sequence for scales j = {0, 1, 2} and corresponding trans-
lations k.

Haar Daubechie 4 Symlet 2 Morlet

Figure 3.7: From left to right: the Haar, Daubechie 4, Symlet 2 and Morlet mother
wavelet.
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3.3.1 Data reduction

Wavelet analysis is a very effective data reduction tool and is succesfully used in for
example the storage of finger prints [9]. In the years 1924-1995 the FBI collected
about 30 million fingerprints. These were almost all inked impressions on paper
cards. Digitalizing these cards was an issue, since one set of finger prints would need
about 0.6 MB to store. In total the FBI had about 200 TB of data to store which
was very expensive; data compression was needed. Wavelet analysis was used to do
so. Decomposition the picture (the fingerprint), and storing the last approximation
coefficients with all detail coefficients would almost decrease the storage capacity
needed by a factor two. If besides that also the smallest detail coefficients are put
to zero, much less data is needed to store a single fingerprint. The difference in the
actual fingerprint and the one reconstructed from the left-over wavelet coefficients
could only be seen by experts.

3.3.2 Denoising

Wavelet analysis can also be used to denoise signals. In Figure 3.8 we see an example
taken from the MATLAB wavelet GUI. On the left we see a noisy signal, on the right
the result of wavelet reconstruction after putting almost 95% of the smallest detail
coefficients to zero.

Figure 3.8: Wavelet example taken from the MATLAB GUI demonstrating the
strength of wavelet analysis in denoising signals.

3.3.3 Feature extraction

Wavelet analysis is a good tool in feature extraction, provided that a suitable mother
wavelet can be found. For this extraction, again, the value of the wavelet coefficients
is important. The higher the wavelet coefficient dkj , the better the signal (locally)

looks like the scaled and dilated wavelet ψk
j . The Haar wavelet can, for example, be

used to detect a discontinuity as in Figure 3.2. The Daubechie 4 wavelet is used in
the detection of epileptiform spikes [11], because the wavelet kind of looks like one
(Figure 3.9).
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Figure 3.9: Daubechie 4 mother wavelet (left) and a true epileptiform spike taken
from EEG recording a0006845 (right).

3.4 Wavelet analysis in spike detection

Wavelet analysis was used in several studies in which automatic spike detection was
the main goal [11, 5, 14, 22, 13, 23]. In almost al the studies the sensitivity is high,
sometimes even above 90%. Kalayci and Ozdamar [13] combined wavelets and neural
networks and obtained a sensitivity of 90.8% and a specificity of 93.2%. Senhadji
et al. [23] combined a parametric approach with wavelet analysis and obtained a
sensitivity of 86%.

Most recent is the study from Indiradevi et al [11]. To get a feeling for wavelet
analysis in spike detection we implemented their approach ourselves. Their approach
will be explained in Section 3.4.1 and Section 3.4.2 reports on our findings after
implementation of the approach.

3.4.1 The approach of Indiradevi et al. [11]

The data used in this research were 256 Hz sampled EEG signals, which were band
pass filtered (as explained in Section 2.4), using the [0.5 − 100] Hz frequency band.
The signal consisted of 18 channels from a referential montage, namely Fp1, Fp2,
F3, F4, C3, C4, P3, P4, F7, F8, T1, T2, T3, T4, T5, T6, O1 and O2.

The wavelet transform used was the Daubechie 4 wavelet (Figure 3.9). This
wavelet was chosen from all wavelet candidates (the wavelets available in the MAT-
LAB toolbox) as it scored highest in cross-correlation with a known epileptic dis-
charge.

Actual detection of spikes was based on the fact that the optimal resolution to
analyse IEDs corresponds to the frequency band 4-32 Hz. Therefore a discrete wavelet
decomposition was performed upto level 6. The wavelet coefficients of levels 4 and 5,
corresponding to a frequency band of 4-16 Hz, are chosen in the analysis so as to min-
imize the contribution of non-epileptiform high frequency events partly overlapping
in the 20-30 Hz frequency band.
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An epileptiform event is looked for in every channel and is considered found if
the squared reconstructed detail coefficients at scale 4 or 5 exceed a threshold. This
threshold is an adapted threshold defined as

Tj := T · 2j (3.5)

Here j stands for the scale and T is defined as:

T :=
C ·Hj,k

∆ψ
, with:

C := the average value of standard deviation of 18 channels

Hj,k := reconstructed wavelet coefficients for scale j

∆ψj := max(ψj)−min(ψj)

We should think of Tj as a kind of ‘moving’ threshold. Tj is an array of thresholds:
each time instance n has its own threshold.

Results

Indiradevi et al. obtained a senstivity of 91.7% and a specificity of 89.3% following
this approach. The reported limitations of the method: it has difficulties detecting
small amplitude spikes, picks up quite some artifacts and fails to detect spikes when
the amplitude of the slow wave that follows the spike exceeds the spikes amplitude
[11] .

3.4.2 Own implementation, results and conclusion.

We implemented the method of Indiradevi et al. [11] and tested it on the 250 Hz
sampled file a0009672, using the 19 channels Fp1, Fp2, F3, F4, C3, C4, P3, P4, F7,
F8, T3, T4, T5, T6, O1, O2, Fz, Cz and Pz that were at our disposal. We tried to
visualise the approach in figures 3.10a and 3.10b (page 25). To obtain these figures
we had to replace the squared reconstructed wavelet coefficients, that were originally
used by Indiradevi et al., by the squared detail coefficients. Figure 3.10 shows the
results for a 30s part of the file. We see that the squared detail coefficients (in black)
in most cases exceed the threshold (red) at the point were a spike is known to be
present (green). In Figure 3.10b we see the results for the complete file.

No performance measures were determined. The figures seem to imply satisfactory
results, but the fact that the choice for a template is bounded by wavelets is not. The
Daubechie 4 wavelet looks like an epileptiform discharge, but that is a lucky coinci-
dence. Besides that, its form is not like all epileptiform discharges known. Moreover,
orthoganility and invertibility of wavelets are necessary for the interpretation of the
value of the detail coefficients, but are intuitively of no relevance for the presence
or absence of a spike. Correlation and the fact that we work with discrete wavelets
(discrete in time/scale), are relevant features though. These features, however, are
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also captured by matched filtering. A big advantage of matched filtering is the free-
dom in the choice of templates. Moreover, the time resoltion in wavelet analysis is
still bounded by the frequency resolution. The matched filter is a moving average
convolution filter. This makes we have a correlation coefficient at our disposal at each
time instance (sample) n. Chapter 4 discusses matched filtering and how it can be
used in spike detection.

620 625 630 635 640 645 650

Scale 4

620 625 630 635 640 645 650

Scale 5

Time (s)

(a) Results for a 30s part of file a0009672.

0 200 400 600 800 1000 1200

Scale 4

0 200 400 600 800 1000 1200

Scale 5

Time(s)

(b) Results for file a0009672.

Figure 3.10: Results of the implementation of the method of Indiradevi on file
a0009672 for a 30s part of the record. The top part of each figures gives the results
for level 4, below the results for level 5. In black we have the squared detail coefficients,
in red the adapted threshold and in green the annotations.
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3.5 Summary

Fourier analysis has proven its worth over the years, but has the disadvantage that
it has a fixed time-frequency resolution and is not local in time. Wavelet analysis
overcomes these problems; it is multiresolutional and local in time as is clarified by
Figure 3.11.

An expansion of x is determined for the orthornormal bases ψj,k and φj,k, which
are scaled (j = 0, 1, . . .) and dilated (k = 0, 1, . . . , 2j − 1) versions of the mother
wavelet ψ0,k and the scaling function φ0,k. At each scale this results in an approxi-
mation (via the expansion in φj,k) and the wavelet coefficients dkj (through ψj,k).

There are a lot of different mother wavelets ψ0,n. The choice for a particular
wavelet should be based on the intended application. The Daubechie 4 wavelet is for
example used in the detection of spikes in EEG [11].

Indiradevi et al. [11] used wavelet analysis for automated detection of spikes in
EEG, which led to a sensitivity of 91.7% and a specificity of 89.3%. Matched filtering,
however, seems to have the potential to perform better. This will be investigated in
Chapter 4.

Figure 3.11: The Fourier basis elements are local in frequency, but give no local
information (when is a certain frequency present?). In wavelet analysis we can do
both, as can be seen on the right for the Meyer wavelet.
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CHAPTER 4

Matched Filtering

Matched filtering is used to detect the presence of known signals, templates, in a signal
that is contaminated by noise. An example is radar, where we want to determine
the distance of an object by reflecting a known signal off it. The received signal is
assumed to be a scaled and phase-shifted form of the transmitted signal, with added
noise. To determine the distance of the object, the received signal is correlated with
a matched filter which is a copy of the transmitted signal. When the correlation
coefficient exceeds a certain threshold we can conclude with high probability that the
transmitted signal has been reflected off the object (Figure 4.1 on page 28). Since we
know the speed of propagation and the time between transmitting and receiving we
can estimate the distance of the object.

This chapter will discuss the theory of matched filtering and shows how matched
filtering can be used for the detection of epileptiform discharges in EEG.

4.1 Theory of Matched Filtering

Suppose we have a time series {un}n∈(1,...,N), which for example is a single channel
EEG signal. We assume the data is a superposition of background xn and spike
waveform wn, i.e. un = xn + wn. At each time n we would like to explain the data
over the preceding (M + 1) samples,

Un := (un−M , un−M+1, . . . , un) ∈ R1×(M+1)

as much as possible by a given spike template

V := (v0, . . . , vM ) ∈ R1×(M+1)

which we can do by choosing θn ∈ R such that

Un = θnV +Xn
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Figure 4.1: The pulse y reflects off a target and returns to the antenna as signal
x. Matched filtering, with y as template, gives us z and allows us to determine the
distance of the target [2].

with minimal contribution of the background Xn ∈ R1×(M+1).
One way to do this is by solving

θ∗n = arg min
θn∈R1

||Un − V θn||

with || · || the Euclidean norm as defined by (3.4).
It is a classic result that θ∗n satisfies (4.1) if and only if θ∗n satisfies the normal

equations V V T θ∗n = UnV T with V T the transpose of V . Since V V T is invertible this
yields

θ∗n =
V

||V ||2 UT
n (4.1)

This is the classic matched finite impulse response (FIR) convolution filter with input
Un and output θ∗n,

θ∗n = h0un + h1un−1 + . . .+ hMun−M , with h := V

We see that the best approximation of Un is given by: U∗
n = θ∗nV . This best ap-

proximation is unique and we think of it as the part of Un that is explained by the
template. The remaining background follows as

�Xn = Un − θ∗nV
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4.1.1 Expectation and Variance of θ∗n

Under the assumption that un = wn + xn with xn zero mean white noise and wn

a known deterministic signal (the ‘spike behaviour’), we will derive the expectation
and variance of θ∗n. These numbers will give us an idea of the performance of the
matched filter. We can find out for example, how big an influence the white noise or
the number of samples of the template has. The expectation of θ∗n, E(θ∗n), equals

E(θ∗n) = E
�

V

||V ||2 UT
n

�

=
V

||V ||2 W T
n (4.2)

=

�
1 if Wn = V
0 if Wn = 0

We see E(θ∗n) = 1 if the spike behaviour Wn and the template V are equal to each
other and E(θ∗n) = 0 if no spike behaviour is present. It also follows that E(θ∗n) = 2
if the spike behaviour equals twice the template V . We can therefore think of θ∗n as
a linear correlation coefficient.

With known E(θ∗n) we can derive the variance of θ∗n follows as

var(θ∗n) = E[(θ∗n − E(θ∗n))2]

= E
��

V

||V ||2 UT
n − V

||V ||2 W T
n

�2
�

= E
��

V

||V ||2 XT
n

�2
�

=
σ2
x

||V ||2

=
σ2
x

(M + 1)PV
(4.3)

with σ2
x the variance of the white noise Xn, and PV the power of the template, which

is the time average of the energy (Definition (3.3)), i.e.

PV =
||V ||2

(M + 1)

We see that the white noise influences the variance of θ∗n. The noisier the signal
(> σ2

x), the larger the variance of θ∗n. We also see that the more samples in the
template (> M), the smaller the variance. This seems logical: suppose that for
template A, M = 2 and for template B, M = 200. The probability that white noise
will resemble template A at some time t is significantly larger than the possibility
that it will resemble template B. Finally we can remark that an increase in the power
of the template, decreases the variance of θ∗n.
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4.2 Ratio of Powers

The vector θ∗n that follows from the matched filter gives us an indication for the
presence of the template V . If θ∗n = 1, it seems that we have found the presence of
the event we are looking for. However, θ∗n does not give information on how much
of the signal power is explained by the template. For θ∗n = 1 we may at the same
time find only 20% of the signal power being explained by the template, for example
when σ2

x � ||V ||2 . If we know how much of the signal power can be explained by
the template, this helps us in the decision whether or not we have found a spike
candidate.

We will therefore take the difference of the signal power and the power of the
‘template part’ into account as well. We define this difference, P rest

n , as

P rest
n :=

||Un − θ∗nV ||2

(M + 1)
=

||Un||2 − (θ∗n)
2||V ||2

(M + 1)

The expected value of P rest
n is follows as

(M + 1) E(P rest
n ) = E

�
||Un||2 − (θ∗n)

2||V ||2
�

= E
�
||Xn +Wn||2 − (θ∗n)

2||V ||2
�

= E
�
||Wn||2 + ||Xn||2

�
− E

�
(θ∗n)

2 ||V ||2
�

=
�
||Wn||2 + (M + 1)σ2

x

�
− ||V ||2

�
var(θ∗n) + E(θ∗n)2

�

=
�
||Wn||2 + (M + 1)σ2

x

�
−

�
σ2
x +

(VW T
n )2

||V ||2

�

= M σ2
x + ||W ||2 − (VW T

n )2

||V ||2

Now if Wn is equal to (a scaled version of) V , i.e. Wn = αV we get

E(P rest
n ) = σ2

x

�
1− 1

M + 1

�
(4.4)

We remark that a noisy signal (large σ2
x) makes it difficult to explain the power of

the signal with the template; more power remains unexplained. Notice also that the
expected value does not depend on the power of the template, but on the number
of samples in the template. The more samples, the smaller the probability that the
noise resembles the template. Notice also that E(P rest

n ) < σ2
x. The template thus

always matches with a part of the noise as well. At last we see that if M = 0, i.e. our
template exists of just one sample, E(P rest

n ) = 0. This makes perfect sense because
every signal sample is then equal to the (scaled) template.

In this study we will use the Ratio of Powers (notation Rn), a normalised version

30



of P rest
n :

Rn : =
||Un − θ∗nV ||2

||Un||2

= 1− (θ∗n)
2 ||V ||2

||Un||2
(4.5)

It follows that Rn ∈ [0, 1], with Rn = 0 if the signal power can fully be explained
by the template part and Rn = 1 if the template can not explain for the signal power
at all.

4.3 Academic Example

To support the theoretical framework in the previous part, we will show an academic
example. We will use the template shown in Figure 4.2.

10 20 30 40 50 60 70 80

Sample number

Figure 4.2: Template for academic example of Section 4.3 (M = 80).

Ideally, the signal being analysed is free of noise, i.e., only the epileptiform wave-
form pops up once in a while. In practice we also observe other transients, such
as artifacts or events belonging to the EEG of sleep. Figure 4.3a shows a signal in
which we want to detect the first and third events as scaled versions of the template
(respectively with a factor one and two). The second, fourth and last transients are
‘non-epileptiform’. Figure 4.3c shows the output of the matched filter, θ∗n. We see
that θ∗n peaks when the template has just passed and that the height of the peaks is
proportional to the signals amplutide. Using only θn as feature for spike detection,
however, also the other transients could be marked as events. That is exactly why
we will add Rn as decision variable, shown in Figure 4.3e. Notice that Rn = 1 when
we have the zero signal, and Rn = 0 when a (scaled version of a) spike is detected.
θ∗n and Rn together allow us to distinguish true spikes from other transients.
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Figures 4.3b, 4.3d and 4.3f show the plots in case we add white noise to the signal.
Again we see that the combination of θ∗n and Rn allow for a succesfull distinction
between spikes and other transients, although we need to find correct thresholds now.
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(c) Output θ∗n of the matched filter.
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(d) Output θ∗n of the matched filter.
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Figure 4.3: Comparison of θ∗n and Rn for a noise-free signal (left) and the same
signal with added white noise (on the right).
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4.4 Summary

Matched filtering is used to detect the presence of templates in signals contaminated
by noise and can for example be used in spike detection in EEG. The output of the
matched filter can be interpreted as a linear correlation coefficient.

The academic example of Section 4.3 supports our decision to add the Ratio of
Powers (Rn) (Definition (4.5)) as decision variable. Figure 4.3 clearly shows that a
decision based on the two variables θ∗n and Rn allows for a better distinction between,
for example, true epileptiform events and artifacts. That is more than desirable since
this is one of the big challenges in spike detection.

The derivations of E(θ∗n), var(θ∗n) and E(P rest
n ) (see derivations (4.2), 4.3) and (4.4)

show the influence of the noise in the signal and the power and size of the template
on the performance of the filter. Most important conclusion is that the number of
samples should be large enough to deal with the negative influence of the noise.

Chapter 5 explains in more detail how the matched filter can be used to detect
epileptiform events. In this chapter we also find the results of matched filtering in
spike detection.
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CHAPTER 5

Matched Filtering in Practice

This chapter explains more specific how matched filtering, discussed in Chapter 4, is
used to detect interictal epileptiform discharges in EEG. Section 5.1 discusses how the
matched filter is applied. Section 5.2 shows the results we have obtained applying the
method on 10 EEG recordings. The chapter finishes with Section 5.3, which shows
the preliminary results when using a library of templates. Using such a library might
be the approach to take for the automation of spike detection in EEG.

5.1 Implementation

Figure 5.1 (page 36) shows the main process of our algorithm, from the EEG recording
being given as input up to the candidate epileptiform discharges that are returned as
output. The first step of the algorithm is the preprocessing of the the EEG recording.
We then apply the matched filter, resulting in θ∗ and R, the arrays constaining all
θ∗n and Rn. After thresholding on these parameters, the candidate spikes follow.
Sections 5.1.1 to refsection:thresholding discuss these steps in more detail.

5.1.1 EEG Recordings

The EEG recordings provided for testing contain information on the electrodes used,
the voltages measured at these electrodes, the sample rate (in our case all files were
sampled at a rate of 250 Hz), the length of the record, the annotations and many
others. Annotations are notes in the EEG file made by an electroencephalographer
during analysis of a file and are for example added when a spike or eyeblink is detected.
The annotations are essential in the evaluation of the performance of the algorithm.
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Figure 5.1: Block diagram showing the main process of matched filter to detect
interictal epileptiform discharges.

5.1.2 Preprocessing

In the preprocessing step, the EEG-file is band passed filtered, eyeblinks are removed
(both explained in Section 2.4) and a montage is chosen. In the study we used the
[4 − 20]Hz band for the bandpass filter and opted for the referential montage. The
channels that are used in the analysis are the 19 channels Fp1, Fp2, F3, F4, C3, C4,
P3, P4, F7, F8, T3, T4, T5, T6, O1, O2, Fz, Cz and Pz. In the preprocessing step
we also choose the template to be used. This is done per file, after visual inspection
of the spikes in the EEG-file (using the annotations). The epileptiform event that we
consider the best representative of all the epileptiform discharges in the file is chosen
as template.

5.1.3 Matched Filter

Using the referential montage, we obtain U ∈ R19×N , with N the number of sam-
ples per channel, that serves as input for the matched filter. The matched filter
is fixed by our choice for the template V ∈ R1×(M+1) and allows us to determine
θ∗ ∈ R19×N (Equation (4.1)). U , V and θ∗ together allow to determine R ∈ R19×N

(Equation (5.2)).

5.1.4 Thresholding

Now that all θ∗n and Rn have been calculated, we have to determine if candidate spikes
have been found. To this end we will set the thresholds Tθ and TR and a candidate
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spike is found at time n if in at least one of the 19 channels

Tθ ≤ θn ≤ 1

Tθ
and (5.1)

Rn ≤ TR (5.2)

with Tθ, TR ∈ [0, 1].
In the study we required a candidate spike to explain for at least 75% of the signal

power and by that fixed TR to 0.25, a somewhat arbitrary choice. We can justify this
choice, however, by the fact that TR = 0.25 demands a significant part of the signal
power is being explained. Moreover it builds in some freedom which the results of
Section refsection:academicexample show to be desirable.

The output of the method is an array, containing the times at which both the
requirements (5.1) and (5.2) hold, i.e. an array containing all the times at which a
candidate spike is found. In the case that candidate spikes are found within a range
of 0.25 s of each other we assume them to correspond to the same EEG event. Such
events are therefore clustered into a single event and instead of storing all indivudual
time instances n, we store the mean time.

5.2 Results

In this section the results using matched filtering, as described in Section 5.1, are
given. We will use the Sensitivity and False Positives per Minute (FPM) (Defini-
tions (2.1) and (2.2)) as performance measures, where we count a candidate spike as
True Positive if the event lies within a range of one second of an annotated spike,
and as False Positive otherwise.

We tested the approach on 10 different EEG files and used the ROC-curve to find
the ‘optimal’ threshold Tθ per file. The theoretical optimum is reached when we have
a sensitivity of 1 and an FPM of 0, i.e., when we are in the upper left corner. This
point is not always in reach of an algorithm and it is a natural choice to define the
point on the curve closest to the corner as optimal. We call the minimial distance
from this point to the corner. Since we think it is more rewarding to find an extra
spike than it is inconvenient to find an extra false positive event, we will use a slightly
different definition of α, somewhat arbitrarily set to

α :=

�

(1− sensitivity)2 +
FPM

2

2

(5.3)

The sensitivities and FPMs summarized in Table 5.1 are the values corresponding to
that Tθ minimizing α. In this the table we find the name of the file being analysed,
the length of the file, the number of annotated spikes, the ‘optimal’ Tθ and of course
the sensitivity and FPM.

The templates with which these results are obtained can be found in Appendix .
We see that we can distinguish 3 types of templates; the spike and slow wave complex
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of file a0009672, the group of sinusoid templates and the group of halve sines. In all
tests we used the template as shown, except in the case of file b0006701 where the
template was scaled by a factor 1.5.

In Table 5.2 some extra results are given. It shows that, as assumed, the morphol-
ogy of eyeblink artifacts is quite similar to that of epileptiform discharges as removing
them results in an improved α. It also shows that some of the templates are quite a
like. TR = 0.25 shows not to be optimal in all cases, as can be seen for file a0009369.
Setting TR to 0.1, the sensitivity of 1 remains, but we find a FPM of 0.2002. We also
see that if we take Tθ = 0.375 for file a0009672, the sensitivity increases to 0.9563. If
we use these two results instead of the ones in Table 5.1, the total sensitivity increases
to 95.12% with a FPM of 0.2113.

Figure 5.2 shows the ROC curve for the three different TR settings used for the
detection of candidate spikes in file a0009672. It shows that the curve corresponding
ot TR = 0.25 lies ‘closest’ to the upper left corner, implying this threshold setting to
result in the smallest α.

Filename Length (min) Nr. spikes Tθ Sensitivity FPM
a0006732 16:20 11 0.8 1 0
a0006735 22:30 10 0.85 0.9 0.2224
a0007223 20:00 5 0.95 1 0
a0009369 20:00 3 0.45 1 0.5505
a0009672 19:50 206 0.6 0.835 0.2019
a0010617 20:00 8 0.9 1 0.05
b0005801 20:00 14 0.6 0.9286 0
b0006701 20:00 10 0.8 0.8 0.2467
b0007441 21:00 14 0.65 0.9286 0.0477
o0002133 20:00 6 0.7 1 0
Total: 179:40 287 - 0.8641 0.1503

Table 5.1: Detection results for 10 EEG files using the matched filter algorithm with
a single file-specific template per file and fixed TR.
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Filename TR Tθ Sensitivity FPM Remark
a0006732 0.25 0.8 1 0

0.25 0.8 1 3.4934 eyeblinks not removed
a0009369 0.25 0.45 1 0.5505

0.1 0.45 1 0.2002 < TR

1 0.45 1 1.0509 > TR

a0009672 0.25 0.6 0.8350 0.2019
0.25 0.375 0.9563 1.1102 < Tθ

0.1 0.6 0.6553 0.0505 < TR

1 0.6 0.8495 0.4037 > TR

0.25 0.95 0.8350 2.4727 using template b0007441
a0010617 0.25 0.9 1 0.05

0.25 0.8 1 0.05 using template b0007441
b0007441 0.25 0.65 0.9286 0.0477

0.25 0.5 0.8571 0.143 using template a0010617

Table 5.2: Some additive results on the results given in Table 5.1. In all cases we
give the original results with fixed TR and ‘optimal’ Tθ. Then some additive results
are given in case one variable, the input U , one of the thresholds or the template V ,
has changed. In case a different template is chosen the thresholds correspond to the
setting that minimizes the (adapted) α (Definition (5.3)).
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5.3 Library of Templates

The ultimate goal in this area of research is to completely automate the detection of
(candidate) spikes in EEG. Therefore we need a different approach than the method
showed using file-specific templates. We need a general approach, capable of analysing
arbitrary EEG recordings. An idea for such an approach is to form a library of
templates that together cover all spike events that are known to occur. Running all
templates over the file, it has to be decided if events found are of an epileptic kind or
not. The fact that in a single EEG recording it is not uncommon that the epileptic
discharges shown can be classified into more than one group, if classified on their
morphology [26], supports the choice of working with a library.

To get an idea of the performance of such an approach, a library is formed,
containing 9 of the 10 templates that were obtained previously. The template of file
b0006701 is left out as its amplitude is significantly smaller than the other ones and
is assumed to result in many false positives. For each template, Tθ is chosen as the
value in Table 5.1) with TR = 0.25. We say a (candidate) spike is found if two or
more templates indicate an epileptiform event is found, which is an arbitrary choice.

We used two files, not used before, to test the algorithm of matched filtering
with a library of templates. For file a0007908, 21:40 minutes long and containing 23
epileptiform events, this resulted in a sensitivity of 78.26% and 0.2309 false positives
per minute. For file a0008921, 22:30 minutes long and containing 75 epileptiform
events, a sensitivity of 82.67% was found with 2.8021 false positives per minute. The
high FPM in the last is, at least partially, explained by the fact that the EEG record
was not free of eyeblink artifacts (the eyeblink filtering failed).
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CHAPTER 6

Conclusion

This research aimed to make a first step towards the automated detection of interictal
epileptiform discharges in EEG. We wanted to develop a method that will support
encephalographers in the visual analysis of EEG recordings by detecting candidate
epileptiform discharges.

Indiradevi et al. [11] obtained a sensitivity of 91.2% using wavelet analysis to de-
tect epileptic spikes. Preliminary results obtained after implementing their approach
show wavelet analysis to be quite powerful in detecting spikes. The fact that the
choice for a template is not free and the non-intuitive threshold made us propose a
different method.

This method is based on the theory of matched filtering. Candidate spikes are
detected if the match of a chosen template with the EEG signal is significant. More-
over the template has to be able to explain for a significant part of the signal power.
In our approach file-specific templates are used, with a fixed power threshold of 75%.
Optimizing the corresponding correlation coefficient results in a sensitivity of 86.41%
with 0.1503 False Positives per Minute (FPM). This is a lower bound for our data
set (containing 10 EEG recordings), as we have shown a sensitivity of 95.12%, with
a FPM of 0.2122, can be obtained as well.

This method, however, is not a time-reducing approach. A suitable template has
to be selected, requiring the entire file to be scanned in advance. We propose the
use of matched filtering with a library of templates as approach for automated spike
detection. Preliminary results were obtained on two new EEG recordings. A library
of just 9 templates and fairly simple rules that define an event as epileptiform or not,
were used. The results are promising as we obtained sensitivities of around 80%, with
few false positives per minute.
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CHAPTER 7

Discussion and Recommendations

The proposed method uses the matched filter, the optimal filter maximizing the
signal-to-noise ratio in the presence of additive noise. The EEG signal, however, is a
very complex signal. Up to now, no proper model has been found to explain for it.
The results in this study show that modelling the EEG signal as the superposition of
spike behaviour and additive white noise works, as a sensitivity of above 95% can be
obtained with just 0.2122 false positives per minute. This might be explained by the
fact that epileptiform discharges are assumed to be individual events, interrupting
the ongoing activity and not being influenced by it [26].

The choice of α as optimal point on the ROC curve is an important point of
discussion. One encephalographer might prefer as few false positives as possible,
where another EEG-er might want all true spikes to be found even if this is at the
expense of more false positives. A proper definition of ‘optimal’ does not exist. We
saw that for file a0009672 a sensitivity of 83.50% could be found with 0.1503 false
positives per minute. It might however be preferred to obtain a sensitivity of 95.63%
with 0.2113 false positives per minute, implying that α should be defined differently.

In this study a fixed TR was used, with Tθ set such that α is optimized. Optimizing
α for the combination of TR and Tθ would probably result in even better, or at least,
similar results. This, however, is computationally hard and the results obtained are
thought to be convincing enough to support the choice for matched filtering. The
same remarks can be made in regard of the somewhat arbitrary choice for templates.

The results of Table 5.2 show the big influence threshold settings have. For file
a0009369, decreasing TR decreases the FPM as well, at the same time holding on
to a sensitivity of 1. The same effects are partly seen in case of file a0009672. De-
creasing TR results in a decreased FPM as well, but also in a decreased sensitivity.
An explanation might be found in the fact that the (background) activity in two
recordings can differ significantly. It might therefore be an idea to take, for example,
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the standard deviation of the signal into account when threshold settings are chosen.
The template of file b0006701, with its significantly smaller amplitude in comparsion
to the other 9 templates used, also advocates for such a consideration.

Our approach, with the file-specific templates, differs on several points with the
approach of electroencephalographers when analysing an EEG record. The first dif-
ference is that electroencephalographers take the spatial distribution of an EEG event
into account; in which channels is an event found? This information is used to dis-
tinghuis epileptiform events from artifacts. In case of an epileptiform event, this
information is also used to localize the epileptic foci and by that classifying the type
of epilepsy shown. In our approach, a candidate spike is detected if the thresholds
Tθ and TR are exceeded in one of the EEG channels. Which channel this is does
not matter. Electroencephalographers also take the physical state of the patient into
account, which is not implemented in our approach. If the patient has his eyes open
or shut, is asleep or is possibly in a state of hyperventilation (this technique is used to
provoke epileptiform discharges), this can be found in the annotations. An electroen-
cephalographer can thereby ascribe events to an expected cause (sleep for example)
instead of to an epileptiform cause. At last electroencephalographers can use several
montages to ensure themselves they have found an epileptiform event when in doubt,
whereas our approach only works on the referential montage. All the above points
could be taken into account in the development of a spike detection programme, as
to support electroencephalographers the best as possible.

Matched filtering with file-specific templates (sensitivity of 95.12%, FPM of 0.2122)
outperforms the many methods reviewed by Halford [10]. These methods, however,
were developed for the goal of automated spike detection. Using a library of 9 tem-
plates, with fairly simple rules defining an event as epileptiform or not, showed to be
promising for automated spike detection as well. To truely outperform the previous
methods though, some important issues have to be dealt with. The first is setting up
a library that contains templates covering all of the epileptiform events known. Most
important is the question which rules are required to truely be able to distinghuish
epileptiform discharges from other EEG activity.
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Templates

This appendix shows the templates used to obtain the results of Table 5.1 (using
TR = 0.25 and Tθ such that α is optimized). The figures shows part of the signal
the template originates from, and the actual template that was used. Based on
the morphologies, the templates can be classified into three groups; the spike-wave
complex of Figure 1, the half sines of Figures 2 to 6 and the sines of Figures 7 to 10.
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Figure 1: Template - file a0009672.
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Figure 2: Template - file a0006732.

777.5 778 778.5 779 779.5 780 780.5 781
−150

−100

−50

0

50

100

150

Time (s)

Vo
lta

ge
 (m

V)

0 50 100 150 200
−150

−100

−50

0

50

100

150

Time (ms)

Vo
lta

ge
 (m

v)

Figure 3: Template - file a0007223.
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Figure 4: Template - file a0010617.
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Figure 5: Template - file b0005801.
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Figure 6: Template - file o0002133.
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Figure 7: Template - file a0006735.
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Figure 8: Template - file a0009369.
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Figure 9: Template - file b0006701.
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Figure 10: Template - file b0007441.
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Matlab Scripts

In this appendix we find the two main scripts used in this study. The first is Matlab
script matchfilter.m in which matched filtering is applied to detect the epileptiform
discharges in a given signal. The output of this script was evaluated using the script
quality.m. At last we added the file wavelet.m, which was used to produce the figures
of the implementation of Indiradevi et al [11].

function [IEDs] = matchfilter(file,template,T,R)

% matchfilter − uses matched filtering to find specified events

% (in this case epileptiform discharges)

%

% Syntax: [IEDs] = matchfilter(file,template,T,R)

%

% Inputs:

% file − preprocessed EEG−file (.mat)

% template − template of an epileptiform discharge

% T − threshold for theta (in [0,1])

% R − threshold for R n (in [0,1])

%

% Output:

% IEDS − array with times were candidate spikes are found

%

%%−−−−−−−−−−−−−−−−−−Begin code−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

u = file; u2 = u.ˆ2;

N = length(u); fs = 250;

%% Spike−template
V = flipud(template);

M = length(V); normV = norm(V)ˆ2;

g = (V’*V)\V’;

%% Matched filter
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tg = filter(g,1,u); tg = abs(tg);

tg2 = tg.ˆ2;

%% Power template part

PowerT = normV .* filter(ones(1,1),M+1,tg2);

%% Thresholding

detected = zeros(N,2);

PowerU = [];

for i = 1:19

PowerU = filter(ones(1,M+1),M+1,u2(:,i));

PRest = PowerU − PowerT(:,i);

RatioP(:,i) = PRest./PowerU;

for j = 1:length(RatioP)

if RatioP(j,i) ≤ R && tg(j,i) ≥ T && tg(j,i) ≤ 1/T

detected(j,1) = detected(j,1) + 1;

end

end

end

%% Array with hits and # of consecutive hits

IEDs = [0 0]; k = 0;

for i = 2:N

if detected(i,1) �= detected(i−1,1)
if detected(i,1) == 1; %new hit

k = k + 1;

IEDs(k,1) = i;

end

else

if detected(i,1) == 1; %consecutive hit

IEDs(k,2) = IEDs(k,2) + 1;

end

end

end

%% Determining times of hits in (s)

for i = 1:k

if IEDs(i,2) �= 0

IEDs(i,1) = IEDs(i,1)/fs + mean(1:IEDs(i,2))/fs ...

− size(template,1)/fs;

else

IEDs(i,1) = (IEDs(i,1)/fs − size(template,1))/fs;

end

end

%% No IEDs found?

if IEDs(1,1) == [0 0];

disp(’No IEDs found!’)

IEDs = [];
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return

end

%% Joining hits corresponding to the same event

gr = length(IEDs(:,1));

equals = zeros(gr,1);

if gr > 1

for i = 1:gr−1
if IEDs(i+1,1)−IEDs(i,1) < 0.25

equals(i) = 1;

end

end

end

for i = 1:length(equals)

if equals(i) == 1

IEDs(i,1) = 0;

end

end

%% Ouput

IEDs = unique(IEDs(:,1));

if IEDs(1,1) == 0

IEDs = IEDs(2:end,1);

end

end

function [sensitivity FPM] = quality(IEDs,pgs,N)

% function IEDs missed = quality(IEDs,pgs,N)

% function IEDs false = quality(IEDs,pgs,N)

%

%

% Input: − IEDs: array of times (s) were spikes are found

% − pgs: array with times (s) of annotated spikes

% − N: length of signal (number of samples)

%

% Outputs: (i) sensitivity and FPM

% (ii) array with times of false negatives

% (iii) array with times of false positives

%

%%−−−−−−−−−−−−−−−−−−−−Begin code−−−−−−−−−−−−−−−−−−−−−−−−−−−−

nr correct = 0;

indexes correct = []; indexes false = [];

IEDs missed = pgs; IEDs correct = []; IEDs false = [];

fs = 250;

k = size(IEDs,1);

n = length(pgs);
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%% FP’s and FN’s

% Loop through all hits to see if it matches an annotation,

% hit within one second of annotation: True Positive.

for i = 1:k

start = 1; k = 0;

for j = start:n

m = abs( IEDs(i,1) − ...

[pgs(j,1) : 0.025 : pgs(j,1)+pgs(j,2)] );

if min(m) < 1

nr correct = nr correct + 1;

indexes correct = cat(2,indexes correct,j);

start = j;

k = 1;

end

end

if k == 0

indexes false = cat(2,indexes false,i);

end

end

indexes correct = unique( sort(indexes correct,’ascend’) );

for i = indexes correct(1:end)

IEDs missed(i) = 0;

IEDs correct = cat(2,IEDs correct,pgs(i));

end

IEDs missed = sort(unique(IEDs missed(:,1)));

if IEDs missed(1) == 0;

IEDs missed = IEDs missed(2:end);

end

for i = indexes false

IEDs false = cat(2,IEDs false,IEDs(i));

end

%% Sensitivity and FPM

sensitivity = length(unique(IEDs correct)) / length(pgs);

FPM = (length(IEDs false) / N) * (250*60);

end

function wavelet(seg,pgs)

% detectIED − performs a discrete wavelet transform (Db4) on

% the input signal and determins if the value of the

% squares of reconstructed wavelet coefficients at

% levels 4 and 5 exceed a treshold.

% If the treshold is exceeded, an IED is detected.

% [ Inspired by Indiradevi et al. (2008).]

%
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% Syntax: [IEDs] = wavelet(seg,pgs,stdev)

%

% Inputs: − seg: signal in .mat−extension
% − pgs: array with times (s) of annotated spikes

%

% Output: − plot of squared reconstructed detail coefficients,

% corresponding thresholds and annotated spikes

%

%

%%−−−−−−−−−−−−Begin code−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

N = length(seg);

fs = 250;

%% Standard deviation of 19 channels used

stdev = std(seg); stdev = mean(stdev);

%% Wavelet decomposition

[C,L] = wavedec(seg(:,3),6,’db4’); % select one channel

%% Extracting detail coefficients at all scales

[D4,D5] = detcoef(C,L,[4 5]);

%% Reconstruct detail coefficients

Y4 = upcoef(’d’,D4,’db4’,4,N); Y5 = upcoef(’d’,D5,’db4’,5,N);

%% Plot signal, squared detail coefficients and thresholds

grwav = 2.2580;

gw4 = grwav/4; gw5 = grwav/(4*sqrt(2));

t = 0: (1/250) : (N−1)/250;
t4 = 0: (1/250)*16 : (N−1)/250;
t5 = 0: (1/250)*32 : (N−1)/250;

figure()

subplot(2,1,1)

plot(t4,D4(4:18503).*D4(4:18503),’k’); hold on

for i = 1:size(pgs)

for k = pgs(i,1):0.025:pgs(i,1)+pgs(i,2)

plot(k,1*10ˆ5,’g.’); hold on

end

end

plot( (1:length(Y4))/250, (stdev/gw4) * abs(Y4) * 2ˆ4 , ’r’ )

title(’Scale 4’)

subplot(2,1,2)

plot(t5,D5(4:9253).*D5(4:9253),’k’); hold on

for i = 1:size(pgs)

for k = pgs(i,1):0.025:pgs(i,1)+pgs(i,2)

plot(k,5*10ˆ5,’g.’); hold on

end

end

plot( (1:length(Y5))/250, (stdev/gw5) * abs(Y5) * 2ˆ5 , ’r’ )
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title(’Scale 5’)

end
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