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Abstract

Reliable estimation of intracranial pressure can decrease the need for
invasive ways to measure it directly. A study was done on the usability of
blood pressure signals(primary arterial pressure and jugular venous pres-
sure and also central venous pressure) in intracranial pressure estimation.
Different ideas are applied to study interconnections in the data, using
mathematical techniques like frequency analysis and AR-modelling. Also,
an overview is given of recent attempts to construct a model of the in-
tracranial pressure system.
The main conclusion is that intracranial pressure estimation using only
blood pressure signals is not possible. Some minor positive results surfaced
when looking at the influence of intracranial pressure on the structure of
the jugular venous pressure signal.
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1 Introduction

1.1 Clinical context

The subject of this thesis is the estimation of intracranial pressure(ICP)1. After
acute brain trauma, this pressure plays an important role in critical care(the
reason for this will be given in subsection 1.2.2). Because of this, ICP is often
measured.
The most common way to measure ICP is visualized in figure 1. A hole is drilled
in the skull, a catheter is inserted through this hole and the brain matter into
the lateral ventricle2. Through this catheter, the pressure in the lateral ventricle
can be measured and this pressure is assumed to represent ICP in general cases.
This procedure is rather invasive and entails a large infection risk, certainly,
when the measurement continues for more than five days[Rebuck et al., 2000].
Because of this, less risky ways to measure or estimate ICP would be beneficial
to brain trauma patients. This report describes a search for ways to estimate
ICP.

1.2 Biomedical context

First, an outline of intracranial anatomy will be given. After this, the impor-
tance of intracranial pressure in neurological intensive care will be explained and
the issue of pressure homogeneity will be addressed. Finally, a short overview
will be given of relevant quantities for intracranial pressure estimation.

1.2.1 Intracranial anatomy

An schematic illustration of this outline is given in figure 2. A large part of
the intracranial space is occupied by fluids, namely blood and cerebrospinal
fluid(CSF). The blood supplies the brain with oxygen and other required sub-
stances and it removes carbon dioxide and cellular waste products from the
brain. From all these functions, oxygen supply is the most vital one, because
lack of oxygen can lead to brain damage in a matter of minutes. Blood is sup-
plied by the cerebral arteries and drained by the jugular veins.
The main function of CSF is protection of the brain matter. The brain matter
is floating in the CSF and this causes it to be less sensitive to sudden movement
of the head. CSF is generated mainly in the choroid plexus3 and drained in the
dural venous sinuses4, back into the blood stream. It’s dynamic nature gives it
the ability to adapt CSF volume.
When the amount of liquid(blood and CSF) inside the cranium rises, the ICP
will rise. The cranium itself is almost totally rigid, but the brain-matter is rather
elastic, causing the compartment of intracranial liquids(space in the brain oc-
cupied by blood en CSF) to be compliant. The relationship between pressure
and volume(blood and CSF) in the brain was already described by Marmarou

1Intracranial means within(intra) the cranium. The cranium is the top top part of the
skull, containing the brain.

2A cavity in the center of the brain which holds brain fluid.
3Tissue in the brain which transports fluid from the bloodstream into cavities which are

called ventricles.
4The dural venous sinuses are small veins, close to the skull. They drain blood from the

brain into the internal jugular vein, which in turn brings it back to the heart.
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Figure 1: In most cases, ICP is measured through a catheter inserted into the
lateral ventricle. Image from [Dugdale and Hoch, 2011].

in 1975[Marmarou et al., 1975].

1.2.2 Importance of ICP

Brain trauma can result in internal hemorrhaging(bleeding), causing the amount
of liquid in the brain to increase. Due to the rigidness of the skull, this will give
an increase in intracranial pressure. So after acute brain injury, patients have
an increased risk of elevated ICP. The blood supply to the brain is governed
by the difference between the arterial pressure and the ICP. This difference is
called the Cerebral Perfusion Pressure(CPP). To ensure adequate oxygen supply
to the brain, the blood supply should stay above a certain level and therefore,
the CPP should be sustained above a certain level. A process called cerebral
autoregulation will keep the cerebral blood flow(CBF) constant by adjusting
the vascular resistance5. This is done inducing vasodilation or vasoconstriction
and will respectively lower or heighten the vascular resistance. Of course, this
process will only work within a certain range of ICP, above which the blood
supply to the brain will decrease. Because of this, increased ICP is associated
with high mortality and high risk of neurological damage. This is why ICP
should be monitored if there is a significant chance that it will increase.

1.2.3 Pressure homogeneity

By using one pressure value to represent the ICP, it is implicitly assumed to be
homogeneous throughout the skull. Of course the ICP is not totally homoge-
neous, but in most cases the inhomogeneity of the ICP is not significant within
a clinical context. Therefore, ICP will be assumed to be homogeneous within

5Resistance of the blood vessels
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Figure 2: Schematic figure of brain anatomy.

the scope of this report6.

1.2.4 Measurement options

Relevant quantities available for measurements can be divided into three cate-
gories; pressures, flows and other quantities.
Pressure quantities are relatively easy to measure. An open connection be-
tween the measurement point and a pressure transducer7 can be created using
a catheter. This method is used to continuously measure arterial blood pres-
sure(ABP) of all ICU-patients. This signal is measured in the arm, but is
assumed to be approximately equal to arterial pressure in the common carotid
artery8 except for a time shift.
The jugular venous pressure(JVP)9 is not measured by default, but can be
obtained by inserting a catheter into the inner jugular vein. Because of the
influence of heartbeat dynamics on the JVP, central venous pressure(CVP)10

also is an interesting quantity. In some cases, this pressure can be measured
using an existing catheter, which is normally used to take blood samples.
The ICP is already measured and therefore it can also be easily obtained for re-
search purposes. The measurement method in the Radboud hospital is slightly
different from the one described in subsection 1.1. The pressure is not measured
in the ventricles, but in the brain matter, using a similar technique.

6In special cases, a local increase in pressure can cause problems while the pressure in
the lateral ventricle remains unchanged. In this case, local pressure measurements and/or
MRI-scans are used for monitoring.

7A device which generates a signal as a function of the imposed pressure.
8The artery which provides oxygenated blood to the head and the neck.
9Pressure in the veins which drain deoxygenated blood from the brain.

10The blood pressure where the veins enter the heart.
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Flow quantities are the most insightful quantities to work with. When
we measure in- and outflow, it should be relatively easy to detect volume
changes(and therefore pressure changes) in the brain. However, it is difficult
to measure them and even if it can be measured, accuracy is an issue. At the
moment, the only operational way to measure arterial blood flow is using flow
velocity measurements, because measuring velocity is easier than measuring
flow. Velocity can be measured using transcranial Doppler(TCD)[Aaslid et al.,
1982]. It is non-invasive, but rather operator dependent and mainly useful to
detect flow differences. To estimate blood flow, the artery diameter has to be
measured or estimated, which is also very difficult to do in an accurate way.
Because of the complexity of flow measurement, no flow measurements were
done in the context of this research.

Apart from blood flow and pressure, other quantities can also be interesting.
Brain matter oxygenation levels can be measured using non-invasive infrared
measurements(for examples using the INVOS system[INVOS, 2011]). One also
could measure carbon dioxide concentrations in the jugular vein to study brain
oxygenation.[Kuwabara et al., 1992]. These quantities have not been included
in this research, but could prove to be interesting.

1.3 Research goal and methods

We have seen that knowing the ICP is crucial for accurate diagnosis and mon-
itoring after acute brain injury. Measuring it directly is an invasive procedure,
which is not preferable when the patients health is critical. Therefore estimating
ICP using only non-invasively measured signals would give physicians a power-
ful tool for diagnoses without increasing the risk for the patient.

Available signals which are measured non-invasively, are arterial blood pres-
sure and jugular venous pressure. Our question is the following:

1. Is it possible to extract information about intracranial pressure from cere-
bral pressure signals(arterial and venous pressure)?

2. How can we extract this information?

To find answers to these questions, several approaches will be addressed. In
section 2 correlation techniques will be used to study the connection between
ICP and JVP. In section 3, the influence of CVP on JVP is studied using
frequency analysis. In section 4 the connection between ICP and JVP waveform
is examined and in section 5, the possibilities and limitations of models for ICP
estimation are explored. This results in an investigation on the use of estimated
model parameters in ICP estimation.

1.4 Data acquisition

All data was acquired on the neuro-ICU in the Radboud hospital in Nijmegen.
The ICP and ABP are already measured. For JVP measurement, a catheter
was inserted into the jugular veins and connected to a pressure transducer. For
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CVP measurement, an existing catheter was connected to a pressure transducer
(this was only done for one patient). All signals were acquired using an AD-
converter which was connected to a laptop. Labview Signal Express software
was used to record the signals at a sample frequency of 200Hz.

In the report, 39 hours and 51 minutes of measurement data was used. The
data was acquired from three different patients on nine different days. Dur-
ing the last measurement sessions CVP was recorded alongside APB, ICP and
JVP. From the datasets, 76 10-minute samples were extracted for analysis. The
samples were selected manually, based on stationarity of the ICP signal. In
appendix A, an overview is given of the datasets and 10-minute samples.

Normally ICP varies between 7.5 and 15 mmHg. It is considered elevated if
it is above 20 mmHg. The mean ICP values in the samples of patient 1(n = 19)
range from average to high ICP. Samples from patient 2(n = 8) only give aver-
age ICP measurements(with one exception of an elevated reading). Mean ICP
values for patient 3(n = 49) range from very low to high.

For each sample the Pressure Reactivity index(PRx) was calculated. This
is the cross-correlation11 between ABP and ICP and it is assumed to give some
insight in autoregulation functionality[Smielewski et al., 1997]. A negative PRx
indicates functional autoregulation, while a positive PRx indicates impaired
autoregulation. The cross-correlation was calculated from a smoothened and
downsampled version of the signal. Note that the dataset is less extensive than
the datasets which are used in research concerning PRx and therefore, accuracy
might be a problem. The values indicate working autoregulation for patients 1
and 2 and impaired autoregulation for patient 3.

11Cross-correlation is a measure of similarity of two signals. Positive cross-correlation indi-
cates that the signals tend to increase and decrease simultaneously. Negative cross-correlation
indicates that the signals behave opposite to each other (if one increase, the other one de-
creases).
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2 Connection between ICP and JVP

2.1 The idea

When analyzing interconnection between different signals, the cross-correlation
between the signals plays an important role. The maximum of the cross-
correlation(maximized over time lag) between the blood pressure signals and
the intracranial pressure signal is rather high(0.69 ± 0.15 for venous pressure
and 0.77 ± 0.06 for arterial pressure). This appears to give opportunities for
ICP estimation. But careful examination is required to draw conclusions based
on (cross-)correlations.

If two signals from disconnected systems have similar structure(for example
a trend or periodical behavior), their cross-correlation will be very high. Based
on this fact, one could wrongly assume a connection between the systems. In
our case, both signals have a lot of structure and periodical behavior. This
could be the source of a lot of correlation.

To study the real interconnection between signals, they need to be corrected
for this. This can be done by looking for structure in the signal and subtracting
it from the signal. The remaining part is called noise. Systems which are really
interconnected should also show correlation between the noise signals, because a
disturbance in one of the systems should be observable in the other system (an
explanation of the mathematics behind this idea can be found in subsection 2.2)

2.2 The math

To correct the correlation for structure in the signals, the signals are modeled
by an autoregressive(AR)-model with an additive stochastic component:

p(t) =

k∑
i=1

αip(t− i) + w(t) (1)

p(t) is the pressure at time t, w(t) is the stochastic component at time t and
αi are the model parameters. Using a least-squares optimization, the model
parameters can be estimated. From the original signal and the model param-
eters, w(t) can be calculated for all signals. So now we have wjvp(t), wabp(t)
and wicp(t). Interdependency between ICP and JVP should be observable in
correlation between wjvp(t) and wicp(t).

The stochastic components were calculated for different model orders(2, 4
and 6). The resulting correlations are shown in table 1. This shows that the
correlation between the signals originates almost entirely from a mutual exter-
nal ’deterministic’ origin.

Because correlation only takes linear relationships into account, the squares
of the signals was also used to calculate cross correlations(between squared sig-
nals and between one signal and the square of the other signal). This resulted

6



2 4 6
ABP 0.046± 0.063 0.027± 0.066 0.017± 0.054
JVP 0.056± 0.033 0.023± 0.027 0.024± 0.024

Table 1: Mean of maximum cross correlation values between the stochastic parts
of ICP and the blood pressure signals for several model orders. The mean was
calculated over a set of 76 samples from three different patients.

in similar lower correlation coefficients(< 0.09) with the same inter-sample con-
sistency, indicating that a non-linear approach will not help.

2.3 Results

In table 1, maximum cross-correlation-values between ICP and the arterial and
venous blood pressure noise signals are shown. Maximum cross-correlation was
calculated for 76 10-minute samples. The model orders are the degree of com-
plexity of the model which was used to model the structure in the signals.

In chapter 3.4, it is shown that the connection between ICP and JVP is
less dominated by the heart at low frequencies. Because of this, and because
we are mostly interested in long range ICP behavior, it is interesting to look
for correlation at very low frequency. In order to do this, we look at the mean
pressure levels of the 10-minute samples. Figure 3 shows scatter plots of these
pressure levels. Within the same day, the samples show a great consistency in
arterial and venous pressure, while intracranial pressure varies a lot. No signif-
icant correlation can be found on the whole set or in the sets of separate days.
Any significant correlation in patient sets is due to clustering of values.

After correction for structure, the cross-correlation coefficients do not sig-
nificantly differ from zero and therefore, we can conclude that there is no clear
connection between the blood pressure signals and the ICP signal. Correlation
analysis in the very low frequency range also shows no clear correlation between
the signals.
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Figure 3: Scatter plot between blood pressure means and the ICP mean. The
mean is calculated over 10-minute samples
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3 Connection between JVP and CVP

3.1 The idea

Because of the blood flow direction, the JVP is the pressure signal which is
the most likely to contain information about ICP. ABP is mainly influenced by
cardiac and pulmonary activity and vascular bed resistance, while JVP should
be influenced by blood flow from the brain. However, it is generally believed that
pressure waves in the venous system mainly travel upstream12. To study if this is
indeed true, we first look at the time-difference in heartbeat waveforms between
the two signals. Figure 4 shows the CVP signal and the JVP signal. The mean
time difference from a CVP peak to a JVP peak for all sets is 0.32±0.07, giving a
pressure wave velocity of 0.78 m ·s−1. The mean time difference between a JVP
peak and the next CVP peak, it is 0.55± 0.13, which would require a pressure
wave velocity of 0.45 m·s−1. Upstream blood pressure wave velocities have been
reported to be approximately 1 m · s−1[Hellevik et al., 1999] while downstream
velocities are higher(arterial pressure waves normally have a velocity of around 8
m·s−1[Koivistoinen et al., 2007]). From this, we can conclude that the heartbeat
pressure wave is going upstream.
Frequency analysis tools will be used to study periodical behavior in the signals.
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Figure 4: Plotting the JVP and CVP together clearly shows that the CVP peaks
earlier than the JVP.

3.2 Frequency spectrum analysis

The signals which are studied are highly periodical. There is a very dominant
heartbeat and the respiratory cycle can also clearly be recognized in the signal.

12The JVP has actually been used in clinical context to estimate CVP.
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A mathematical technique, called the Fourier transform, can be used to study
periodical behavior. Applying the Fourier transform to a signal gives the inten-
sity of the signal in a range of frequencies.
In figure 5, an example of a Fourier spectrum is shown. The high peak at 1.25
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Figure 5: An example of a Fourier-spectrum of an arterial bloodpressure signal

Hz is representing the heartbeat(1.25 Hz or = 80 beats per minute). It is clearly
the most dominant peak in the spectrum. The peak at 2.5 Hz is also caused
by the heartbeat. It is called the second harmonic and it’s frequency is exactly
twice as high as the first harmonic(the peak at 1.25 Hz). This phenomenon
is well known in mathematics and physics. It is caused by the fact that the
heartbeat waveform is not a sine13. The heartbeat waveform also has higher
harmonics(for example at three times the frequency), but these are not in range
of this figure.
The respiratory function is also visible in the Fourier spectrum. It is a peak
at 0.25 Hz(respiratory rate of 15 breaths per minute) with a second harmonic
at 0.50 Hz. This peak is very narrow because the breathing frequency is very
constant due to mechanical ventilation. Compared to this, we see that the
heartbeat is more variable(the peak is wider).
Finally, we see a rise of the spectrum when going to the very low frequencies.
This represents very slow changes in the signal. In this part of the spectrum, a
small peak is present in most of the spectra(this is not clear in figure 5, but it
is in figure 6(a) at approximately 0.05 Hz). This periodic behavior appears to
be caused by the compression system which stimulates the venous blood flow in
the legs(it is documented to operate between 0.02 Hz and 0.05 Hz).
Next to visual examination of the spectra, it would be convenient to have a

13A well known example of higher harmonics are the harmonics of sound. When different
musical instruments play the same note, they sound different. This is due to a different
waveform of the sound wave(in the time-domain). In the frequency domain, the difference is
represented in a different relative magnitude of the harmonics.
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measure for correspondence between between two frequency spectra. Finding
such a measure is not self-evident. Within the context of this report a measure
was used which is based on correspondence of up and downward movement of
the spectrum:

Correspondence =
# Of matching up or downward movements

# Of movements
(2)

This measure is explained in more detail in 3.3.

3.3 The math

A good measure for correspondence between Fourier spectra is hard to find. The
transfer function between strongly connected systems will almost never be 1 or
even constant, so matching the spectra themselves(for example in an MSE-way)
would be tricky. Because of this, a measure was developed which is based on a
match of derivative sign. Let Fω and Gω with ω ∈ {ωk | 1 ≤ k ≤ n∧ω1 < ω2 <
. . . < ωn} be two frequency spectra, then

M(F,G) =
| sgn(5G)− sgn(5F )|

n− 1
(3)

The choice for this measure is based on the assumption that the transfer func-
tion between the signals is smooth. In this case, local differences should be
dominant over the transfer function derivative. Because the measure was only
used to gain some initial insight, it was not fully tested or verified.

3.4 Results

ICP, JVP and CVP measurements have been acquired from one patient on two
different days. 49 10-minute samples were isolated. The heartbeat frequency
peak of the ICP, JVP and the CVP signal(a representative example can be
found in figure 6(a), in this figures, the spectra have been normalized to make
observations easier) do almost totally match. This indicates a very clear link
between the signals. Because the system, influencing the CVP is big (the whole
venous system and the heart), we can assume that this match is caused by a
dominant influence of heartbeat dynamics on the vein pressure and on ICP.
This behavior is visible in the whole frequency range except for very low fre-
quency(figure 6(b)). In this range(< 0.12 Hz), the ICP and JVP signal still
behave approximately the same, but the CVP behaves differently.
Using the measure described in subsection 3.3, the similarity between the spec-
tra at different frequencies was calculated. For high frequency, the range 1.1-1.4
Hz was selected, because of the heartbeat dynamics in this range. For low
frequency, the range 0.02-0.12 Hz was selected because this part of the spec-
trum contains slow changes in the signal. In figure 7, a boxplot is shown of the
similarity between the Fourier spectra at different frequency ranges for the 49
samples. At high frequency, similarity between all the signals is high. At low
frequency, it shows a significantly lower similarity between CVP and ICP. In
this frequency range, correspondence between JVP and ICP cannot totally be
explained by dominating heart dynamics influencing both signals. Therefore,
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it may be possible that JVP contains information about ICP in this frequency
range.
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Figure 6: Comparison between frequency spectra of ICP, JVP and CVP of a
representative 10-minute sample. The intensities are normalized.
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4 JVP Waveform analysis

4.1 The idea

It is thought that ICP influences the waveform of the JVP. Frequency analysis
can also be used to get information about waveform shapes of the two domi-
nant waves(heartbeat and breathing). Figure 8 illustrates how a difference in
waveform is reflected in the Fourier-spectrum of a signal. To the left, three time
signals are shown with the same period(2 seconds) and the same power14. Its
frequency spectrumis shown to the right. In this figure, the frequency spec-
tra of the block-wave and the sawtooth-wave are slightly shifted to be able to
distinguish between the different signals. They all have peaks at multiples of
1 Hz. The sine(blue) only has a peak at 1 Hz(it’s frequency) and no higher
harmonics15. On the other side, the block wave and the sawtooth wave have
clearly distinguishable peaks at multiples of 1 Hz in the frequency spectrum.
The difference between the signals is inner-wave symmetry of the signal. The
block wave is half-wave symmetric16, while the sawtooth-wave is not17.
This example shows that the magnitude of the higher harmonics gives informa-
tion about the shape of the signal. This can be used for analysis of the JVP
signal, but for this, some practical remarks have to be made. For accuracy rea-
sons, only the first few harmonics can be used(the peaks get smaller at higher

14power is a mathematical term, indicating the amount of energy in a signal per time unit.
15The concept of harmonics was explained in subsection 3.2
16Meaning the second half is equal to the first half, mirrored in the time axis.
17A mathematical explanation of this behavior can be found in subsection 3.3
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frequency). Because inner-wave symmetric changes will affect the odd harmon-
ics, while asymmetric changes will influence even harmonics, it is advisable to
study an odd and an even harmonic. Because of these reasons, the second and
the third peak will be studied. Peak magnitude can be measured by calculating
the area under the peak. In order to eliminate influence from a difference in sig-
nal energy, the peak magnitude should be normalized. This is done by dividing
it by the magnitude of the first harmonic(in the example the peak at 1 Hz). So

2e harmonic normalized magnitude =
2e harmonic magnitude

1e harmonic magnitude
(4)

The same holds for the third harmonic normalized magnitude. If there is a rela-
tion between ICP levels and JVP waveform, it could present itself in a relation
between ICP levels and second and/or third harmonic normalized magnitudes
of the JVP signal. An absence of this relation on the other hand, would indicate
that ICP levels do not influence JVP signal shape.
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Figure 8: Fourier-transform of several basic time-signals.

4.2 The math

Inner-wave symmetry is a property of a wave in a signal. Mathematically, it
means that

f(t) = −f(t+
T

2
) (5)

where f is the wave part of the signal and T is its frequency. Possible higher
harmonic components of a wave with fundamental frequency T will either be
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inner-wave symmetric at frequency T or not inner-wave symmetric at frequency
T:

− f(t+
k

2
T ) =

{
−(f(t)) k even

(f(t)) k odd
(6)

This explains why the even harmonic components do not contribute to an inner-
wave symmetric wave and illustrates the value of analyzing more than one higher
harmonic component of the wave.

4.3 Results

In section B.1, the calculated correlation values can be found. While respiratory
waveform harmonics do not show any significant correlation, heartbeat wave-
form harmonic intensities do highly correlate with ICP. The positive correlation
is consistent for all patients when one outlier is omitted from the patient 2 set18.
And except for the second harmonic intensity from patient 2, all correlations
are highly significant.
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Figure 9: Scatter plot of normalized third harmonic intensity(heartbeat wave-
form) vs. ICP.

The question can be posed if the two parameters carry the same information.
If this is the case, one of the two could be ommited without losing information.
To answer this question, we take a look at the relationship between the param-
eters.
Correlation between the second and the third harmonic intensity for the heart-
beat waveform is 0.79(0.92, 0.70 and 0.88 for individual patients). The partial

18Without outlier, patient 2 had correlations of 0.84(p = 0.009), 0.53(p = 0.172), 0.54(p =
0.163), 0.89(p = 0.003) respectively for the respiratory waveform 2nd and 3rd harmonic and
the heartbeat waveform 2nd and 3rd harmonic.
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correlations with ICP, 19 are not very consistent, but certainly not zero(0.44,
-0.70 and -0.05 for the second harmonic intensity and -0.42, 0.59 and 0.38 for the
third harmonic intensity for individual patients). So there could be a little extra
information in the combination of the two, but evidence is not overwhelming or
consistent20.
Figure 9 shows the connection between third harmonic relative intensity and
ICP. For each of the patients, the correlation is very clear. However, this does
not result in clear global correlation. The relation between higher harmonic
intensities and ICP values seems to be very patient-specific.

5 White-box model approach

The first part of this section will be an explanation of the concept of a white-box
model and the possible use of this concept within the scope of this research will
be explained. After this, an overview will be given of possible ways to model
the intracrial pressure system using white-box models. Finally, an analysis will
be given of the usefulness of white-box models for ICP estimation.

5.1 The concept

A white-box model is a description of a system using information about its
structure. The description results in a relationship between model input(for ex-
ample arterial blood pressure) and output(for example intracranial pressure). A
white-box model is composed using constitutive laws21, interconnection laws22

and parameters23.
The model will always be a simplification of reality. This is necessary because
reality is infinitely complex(even if we could model each molecule separately, we
would still have to simplify). The trick is to make the right simplications in view
of the purpose for which the model is designed. Because it is not always obvi-
ous what simplifications are right and also because the purpose of the models
is not always the same, different models can exist for the same physical system24.

White-box models can be used to estimate ICP in two ways. Firstly, by
running the model using input from known sigals. The ICP value which results
from this simulation can be used as an estimate for the real ICP. In this case, ICP
is considered as a model variable. Secondly, the ICP could be considered as a

19Correlation after removing the effect of the other normalized harmonic intensity.
20Stepwise regression includes only the third harmonic
21A constitutive law describes the dynamic behavior of a system element. For example; the

flow through a rigid tube is proportional to the pressure difference.
22An interconnection law describes the interconnection between elements. For example;

when several blood vessels are connected at one point, the total incoming flows should be
equal to the total outgoing flow.

23Numbers which determine the exact behavior of a constitutive law. For example; The
normal parameter for a rigid tube is the resistance. Knowing the resistance and applying the
constitutive law will result in the ability the calculate the flow from the pressure difference.

24A slightly unrealistic example; if you want to know how fast the coffee in a coffee mug
will cool down, the model will focus on heat transfer and heat diffusion. If another researcher
wants to throw the mug as far as possible, he will make an aerodynamic model of the mug.
One physical reality, but two totally different models.
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model parameter, influencing the behavior of the model. In this case parameter
estimation of the model parameters using known signals should give an estimate
for ICP.
In literature, only the first approach is used. The next section gives an overview
of several model which were used to find ICP by simulation.

5.2 Possible models

Earlier research in this field [Hartman, 2011, Keizer, 2010] in UMC St. Rad-
boud was mainly based on white-box models. Using anatomical knowledge of
the human brain, a model was created to describe the relation between ABP,
ICP and JVP. Extensive work has already been done in this field, mainly by
Ursino[Ursino and Di Giammarco, 1991, Ursino and Lodi, 1997]. He included
autoregulation in his model and did a lot of verification work on the model. Sev-
eral others have proposed models, most of which are based on Ursino’s model.
The purpose of these models mainly is to increase understanding of phenomena
in ICP dynamics25. Hu uses the white-box model developed by Ursino to esti-
mate ICP or CBF[Hu et al., 2007]. Kashif does a similar thing, but with a lot
of simplifications [Kashif et al., 2008].
Figures 10 and 11 gives an overview of the models introduced above. In the
models, P denotes a pressure quantity, Q denotes a flow quantity, R denotes
as resistance parameter and C denotes a compliance parameter. The notation
is the same as in the mentioned papers and therefore, they can differ between
models.

Keizer’s model(figure 10(a)) consisted of the intracranial basin with five in-
and outputs; Supply and drain of blood, formation and uptake of CSF and a
fifth artificial connection which approximates the change in blood supply due
to autoregulation(the autoregulation part was not defined in the report).
Hartman’s model(figure 10(b)) proposal was more extensive. The blood flow is
modeled as a flow through a resistor, CSF is generated from and reabsorbed in
the blood and a compliance between the compartments is modeled. A distinc-
tion is also made between the brain matter and the ventricles. The model which
was implemented(figure 10(c)), is less complex and resembles Keizer’s model.
Compared to that model, it lacks CSF drainage and autoregulation modeling.
The two implemented models have a substantial drawback. A lot of artificial
processes are introduced (an extra input for modeling autoregulation, separate
modeling of CSF formation), making it very hard to estimate or identify pa-
rameters. This makes the models hard to work with in practice. But also from
a modeling point of view, it is a problem. Essentially, they are not a model of
intracranial pressure dynamics, but a list of factors which can influence ICP.

Ursino made an extensive model for ICP modeling(figure 11(b)), visualized
as an electronic network, which is common practice in this field). Later on, he
devised a simplification of this model to limit the number of parameters and in-
crease workability(figure 11(a)). The model consists of the following elements.
At the point where arterial blood flow enters the brain, autoregulation takes
place(modeled by a possible change in resistance and compliance of the smaller

25for example plateau waves
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arteries). Via the capillaries(Pc) and the small veins(Pv), it flows to the venous
system(Pvs). At the capillaries, CSF is generated from the blood stream, enter-
ing the intracranial compartment(Pic). It is reabsorbed into the venous system.
The intracranial compartment has some compliance(implemented as described
by Marmarou[Marmarou et al., 1975]) and there is a possibility of CSF injec-
tion/drainage.
A big difference with the previous models is the fact that cerebral blood flow(CBF)26

is considered an input in this model. In section 5.4, the advantage of this will
be explained.
To be able to estimate ICP, Kashif[Kashif et al., 2008] further simplified Ursino’s
model, only keeping autoregulation and blood supply to the intracranial com-
partment. The estimation scheme can actually estimate ICP without calibra-
tion, using the arterial blood flow, but the parameter estimation is based on two
assumptions. Firstly that during a sharp transition in ABP, the flow through
the arteries is neglectable compared to the change in volume in the cerebral
arteries. And secondly that ICP remains approximately constant within the
heartbeat cycle. These assumptions seem plausible, but were not tested in the
article.
Ursino’s models have been through a great deal of validation and testing. There-
fore, they can be considered valid for their purpose (modeling of intracranial
pressure dynamics). For estimation purposes however, this is less clear. Hu
concludes that his implementation does not work for ICP-estimation[Hu et al.,
2007] and Kashif only tests using simulated data[Kashif et al., 2008].

5.3 Mathematical model properties

Keizer’s model(figure 10(a)) is linear except for the autoregulation and the com-
pliance of the cranium, which are not defined in the report. The compliance is
the only dynamical part of the system. The rest of the model is static and the
whole model is time-invariant.
Hartman’s original model(figure 10(b)) is linear time-invariant and dynamic(because
of the compliance). The model he used for simulation(figure 10(c)) is linear if
the CSF pressure is considered an input. However, if it is considered as an in-
ternal time-varying parameter(as done in the report), the model becomes affine
and time-variant.
Ursino’s models(figure 11(b) and 11(a)) both contain a non-linear description
of autoregulation and cranium compliance, making the systems non-linear. The
systems are dynamic and time-invariant.

Non-linearity appears to be necessary to accurately model cerebral blood
flow, because the auto-regulatory system influences the resistance and compli-
ance of the arteries within the skull in a significant way. The system will also
have to be dynamic to accurately model compliant behavior.

26The total blood flow into the brain.
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(a) Keizer’s model (model constructed in [Keizer, 2010])

(b) Hartman’s original model[Hartman, 2011]

(c) Hartman’s implemented model[Hartman, 2011]

Figure 10: model schematics
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(a) model from Ursino and Lodi[Ursino and Lodi, 1997]

(b) electrical analogue of the extended model from Ursino[Ursino and Di Giammarco, 1991],
some capacitances and resistors actually are variable

(c) Kashifs simplification of Ursino’s model[Kashif et al., 2008]

Figure 11: Ursino model schematics and Kashifs simplification
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5.4 Analysis of estimation by simulation

The first question is if estimation by simulation is possible when all input signals
and parameters are perfectly known. First, the necessary elements for a model
with this purpose are discussed and secondly, the input of such a model will be
examined.
In the models, proposed in 5.2, cerebral autoregulation takes a prominent place.
This can be easily justified, because this process is closely related to ICP. Omit-
ting it in the model would make it a system which does not compensate for
abnormal ICP values. Therefore, cerebral autoregulation should be included
in the model. One could argue that this means that the model will inevitably
become non-linear, because it contains elements with state-dependent param-
eters. On the other side, one could argue that when autoregulation operates
within capacity, it behaves linear(flow is kept approximately constant). In-
cluding the possibility of failing autoregulation would result in a hybrid linear
model27, switching between constant flow(working autoregulation) and constant
resistance/compliance(impaired autoregulation) in the arteries. Modeling au-
toregulation as either being intact or defective is based on the assumption that
autoregulatory behavior is homogeneous, while this is often not the case.
Making an artificial distinction between normal flow and extra autoregulatory
flow(as in Keizer’s model) is not necessary. It does not add anything, but it
only increases complexity.
Intracranial compliance is known to be non-linear[Marmarou et al., 1975] and
because we are interested in relatively large ICP changes, linearization is not an
option. This non-linear compliance behavior should therefore also be included.
Specifying intracranial liquid flow(CSF generation and absorption) does not
seem to be very necessary, because it all happens in the cranial compartment(so
the ICP is not influenced). Moreover, because the veins collapse when the pres-
sure drops below ICP(in figure 11(a), this is denoted as Pv = Pic), the model
will degenerate to a single intracranial compartment with one inflow and one
outflow28.
Possible input variables are arterial and venous blood pressure and cerebral
blood flow(CBF).

If we have this model and enough input variables are known, it should be
possible to give a good estimate of ICP. But even if this is possible, there are
still some major problems, which might cause this approach to be infeasible.
Firstly, the problem of parameter estimation. Model parameters are generally
not known and differ between patients. They can be found using an existing
ICP-measurement data as done in [Hu et al., 2007]. This would mean that esti-
mation can only been done after invasive measurement of the signal. And even
then, estimation of autoregulatory function is difficult, because it is a complex
phenomenon and it is often disturbed after acute brain injury.29. For an ac-

27A model which changes behavior when a certain value crosses a boundary. For example:
if something falls into the sea, the behavior(fall acceleration) changes when it falls into the
water.

28Anatomically, this distinction is still useful. CSF drainage obstruction is more intuitively
modeled using the whole structure.

29In the past decades, a lot of research was dedicated to classify autoregulatory behavior us-
ing ICP measurements. This gives an indication of the challenge in estimating autoregulatory
parameters
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curate estimation of it’s behavior, measurements from a broad ICP range are
needed, which can usually not be obtained in a short calibration session.
Secondly, not all the inputs are easily measured. CBF can not be measured
directly and therefore, it has to be estimated using flow velocity measurements.
This gives an additional source of uncertainty. CBF is an important input
variable, because it gives much information. Actually, it can be considered an
output. When a certain arterial pressure is imposed on the system, CBF will
give information about system properties, especially resistance.30 Availability
of accurate CBF measurements makes ICP estimation much more feasible.
And finally, a more fundamental problem arises when looking at the reasons for
ICP monitoring. It is measured to be able to intervene when it increases above
certain levels. Increased ICP is often caused by a change in the intracranial
pressure system. For example; an infection in the ventricular system or internal
hemorrhaging can partially block CSF drainage. This would mean that a model
parameter(in this case the resistance to CSF drainage flow) changes. When us-
ing the model to estimate ICP, the model will fail to give a right estimate when
this estimate is needed to detect a dangerous situation. This is illustrated by
the fact that Hu’s ICP estimation starts to deteriorate after a propofol injection.
[Hu et al., 2007]
A similar argument holds for black-box models31 Although it does not describe
the structure in a direct way, it still tries to capture this structure and will there-
fore not be able to give right estimates by simulation when there is a change in
structure which did not occur during calibration. Therefore, using a black-box
model simulation to estimate ICP cannot accurately cope with new pathologies
and therefore, it is of equally limited use in this case.

5.5 Changing model approach

As mentioned in the last section, modeling the brain for the purpose of ICP
estimation is difficult, because many relevant factors in ICP change will be
alterations of the model. It may be possible to use this. If we construct a
model in which ICP influences the parameters, the estimated parameters of
the model should give some information about ICP(figure 12 illustrates this
idea). In our case, ABP and JVP can be used as input and output to estimate
parameters a black-box ARX-model. Another approach would be to take the
CVP into account as an input variable. If we find correlation between the mean
ICP of the set and the model parameters we may be able to use this for ICP
classification or estimation. A modeling downside to this method is that it was
earlier observed that JVP is not only influenced along the bloodstream but also
in the other direction. For this reason, a CVP-JVP blackbox model is also
considered.

30Low resistance of will result in a high flow and vice versa.
31A black-box model is a model which describes the relation between in and outputs of

a system without and a-priori assumption on system structure. It can be specified using
measurements with known output
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Figure 12: Mean intracranial pressure as a parameter in intracranial dynamics

5.5.1 The math

To model the JVP and the influence of ABP and CVP on this signal, we use an
ARX-model:

y(k) + a1y(k − 1) + . . .+ any(k − na) =

b0u(k − nk) + b1u(k − nk − 1) + . . .+ bnb−1u(k − nk − nb + 1) + e(k)
(7)

where y(k) is the JVP signal, u(k) the input signal(ABP or CVP), na and
nb are the model orders and nk is the input delay. The input delay is calculated
by calculating the mean distance between the heartbeat peak in the different
signals.
Mathematical software(like MATLAB) can estimate the model parameters(ai
and bi) using least-squares estimation techniques. This can be done for differ-
ent samples. For each of these samples, we can also calculate the mean ICP.
Using these mean ICP values, we can calculate ρx,ICP and p(ρx,ICP 6= 0) for
x ∈ a1, . . . , ana

, b1, . . . , bnb
.

5.5.2 Results

After mean subtracting, model coefficients were calculated for orders 1 to 6.
The a-coefficients(describing the autoregressive part) were much bigger than
the b-coefficients(input part). After compensating for the difference in signal
amplitude32, the difference between the contribution of the autoregressive part
an the input part is in the order of magnitude of 10. This means that the model
can be considered as an autonomous model with some external influence.
Tables 6 and 5 in appendix B.2 show the correlations between the model param-
eters for different model orders. The correlation is calculated for each patient
and for the global set. The second number is the chance that the hypothesis

32the arterial pressure signal has an amplitude of around 70 mmHg, while the JVP has an
amplitude of approximately 7 mmHg.
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Hypothesis 5.1. The correlation between the estimated parameter xi of a k
th

order model and the mean ICP is zero.

is true. Interpretation of this amount of p-values has to be done in a careful
way. Small enough p-values will always arise when enough of them are calcu-
lated. Therefore, setting a threshold for significant correlation would not suffice
in this case. Furthermore, the data is dominated by a relatively big set of mea-
surements from one person, making it difficult to give any general statement.

Results from patient 1 and 2 do not give any indication for correlation be-
tween model parameters and mean ICP value. Without any extra information,
low p-values for a1 and b1 at order 1, b6 at order 6(patient 1) and b5 at order
6(patient 2) can be considered coincidental. Results from patient 3 seem to be
more structurally significant. a1, a2 and b3(despite the low contribution of the
input part to the model) have p-values below 0.05 for every order(except a1 at
order 3, which is slightly higher) and have the same sign. b3 also shows relatively
high correlations and sign consistency for patient 1 but not for patient 2(this
could be due to the low amount of samples and low variation in ICP values).
Results from model parameters when CVP is considered as an input(table 5) do
no show any real significance in correlation. This is in accordance with results
from section 3.

Because there are significant results from the autonomous part of the ARX-
model33, estimated parameter values for an AR-model(a black-box model with-
out any input) for the JVP are also analyzed(table 7 in appendix B.2). The
results for patient 3 are quite surprising. All correlations except one are signif-
icant. However, unlike the model with input, these results are not reflected in
data from patients 1 and 2.
These are unexpected results. We were looking for the influence of the mean
ICP value on the interconnection between ABP and JVP. In stead, the strongest
result is the influence of ICP on the behavior/waveform of the JVP signal.

Based on the results, one could try to classify samples in the categories
low ICP and high ICP, using one or two estimated model parameters. Figure
13(a) shows the values of the estimated parameter b3 in a 5th order model for
high(> 20 mmHg) and low(< 20 mmHg) ICP samples. This parameter was
chosen because of good correlation values at different orders and consistency
of correlation for patients 1 and 3. The boxplot shows that there is a clear
distinction between the two categories(p = 0.025). This is also true for the b3
parameter for lower orders(p=0.015 for order 4 and p=0.025 for order 3), but it
is less clear for order 6(p=0.111). This observation suggests that the ICP level
influences the connection between the ABP and the JVP signal. However, it
should again be noted that the samples are dominated by a large set of samples
from one patient.
Figure 13(b) shows a scatter plot of the estimated a1 parameter for a 3rd

order AR-model and again the estimated b3 parameter(from the 3rd order
ARX-model) for one patient(patient 3). Because the low number of high ICP
samples(n = 5), an intermediate group(10 ≤ ICP < 20 mmHg) was formed

33The part which is not influenced by the input signal.
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to get some more insight. The scatter plot shows a clear difference in distribu-
tion between the groups. The high ICP group and the intermediate group are
located to the bottom left. The individual p-values for the two-sample t-test
are not significant for high versus medium/low icp(p = 0.374 for a2 and b3 for
p = 0.077), but they are for high/medium versus low icp(p = 0.005 for a2 and
b3 for p = 0.012). However, these figure also make clear that ICP classifica-
tion(into the classes high and normal ICP) based on these variables is not very
accurate.
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6 Detection of increased ICP

Based on results from previous sections, we can try to find a good measure
for the detection of increased ICP(ICP > 20 mmHg). To do this, stepwise
regression34 is applied to estimate the ICP value. This estimate is used to clas-
sify the measurement as indicating normal ICP or indicating increased ICP. As
possible prediction values, we take the second and third harmonic relative inten-
sities from the heartbeat waveform(see section 4). The values will be denoted
as h2 and h3) and the 4th order model coefficients from section5.5 (denoted as
a1-a4,b1-b4(arx-model) and aa1-aa4(ar-model)). The model coefficients for the
CVP-JVP model are not included, because of their lack of correlation with ICP.
Firstly, an analysis will be done of ICP level classification for patient 3, because
of the available amount of data. Including only linear terms results in an es-
timation of ICP based on h3, a1 and b3(R2 = 0.60). This is consistent with
correlation results from 5.5. The estimation is shown in figure 14. The figure
shows that estimation for patient 3 is rather good, but the regression coefficients
cannot be used for the other patients(ρ = 0.21 for the global set). The ROC-
curve gives an overview of the possibility to use this estimate to detect increased
ICP. In this dataset, increased ICP can be classified with a sensitivity35 of 88%
with a specificity36 of 84%. The classifying power of the estimate is significant,
but it has been used on the same dataset as the one used to do the regression
analysis, so this result can only be considered indicative.
Adding non-linear terms to the regression analysis(such as h23 or a1b3) only gives
a marginal improvement(R2 = 0.65). Based on the scatter-plot, one could argue
that the regression only seems to be working when the actual ICP is between 0
and 15 mmHg. This could indicate peacewise linear behavior37.

Estimation of the global set gives the picture shown in figure 16(a)(R2 =
0.35, coefficients h2,b1 and b3 are used). Again, the scatterplot(figures 16(a)
and 16(b)) shows signs of peacewise linearity. The estimate seems to saturate
between 10 and 20 mmHg. The distinction becomes even clearer when adding
the square of the coefficients to the regression procedure(figure 16(b), b24 aa

2
2

aa24 are used as estimating variables, R2 = 0.44). The break-point seems to be
12 mmHg. A ROC-curve of identification of slightly increased ICP(ICP > 12
mmHg) is shown in figure 15. Stepwise regression analysis on the high ICP
set(ICP> 12 mmHg) does not lead to any meaningful results(R2 = 0.17 in the
linear case, R2 = 0.32 when adding quadratic terms and cross products, which
is very low for estimation with so many variables(119 in total)).

Including only samples with ICP < 12 mmHg, gives the scatterplot in figure
17(a)(R2 = 0.49 with parameters h2 and a2). A lot of improvement occurs when

34A procedure in which explaining variables are added or removed based on their explana-
tory value in the presence of the other included variables. The result is an estimation formula
for ICP based on the previously included explaining variables.

35Percentage of the samples with ICP > 20 mmHg which are correctly identified as having
increased ICP.

36Percentage of the samples with normal ICP which are correctly identified as having normal
ICP. It’s complement is the percentage of normal ICP samples which are wrongly defined as
having increased ICP

37A system is peacewise linear is it if it has different behaviour for different ranges of a
certain variable and for each range, the behavior is linear.
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Figure 14: Patient-specific estimation and classification of ICP.
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Figure 15: ROC-curve of identifying ICP > 12 mmHg

quadratic terms are added(figure 17(b)). h2 and a2 are still included, but the
algorithm adds b2, b3 and aa2. This could indicate non-linear behavior for low
ICP(< 5 mmHg).
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Figure 16: Global(patient-aspecific) estimation of ICP
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(a) ICP estimation using waveform and
ARX-model parameters for ICP<12 mmHg
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Figure 17: Global(patient-aspecific) estimation of ICP for ICP < 12 mmHg.
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7 Conclusion

Because of the low amount of data and the high number of different techniques
which were exercised, all conclusions from this section are only preliminary.
They can only be used to give directions for further research.

Based on anatomical knowledge, it seems obvious ABP will not be a very
good indicator of ICP. It has an influence on the ICP, but will not be influenced
by it. Based on this assumption, the ABP is not measured near the head, but
in the arm, so based on the findings in this report, this assumption cannot be
verified.
Correlation analysis did not show any interdependence between the JVP and
the ICP signal(after correction for a mutual external source). The similarity
between the ICP, JVP and CVP signal was studied. High similarity between
CVP, JVP and ICP at high frequency(>0.3 Hz) was found. This indicates in-
fluence of ICP and JVP by CVP, because reverse influence would mean that a
relatively small part of the venous system would dominate CVP dynamics. At
low frequency(<0.3 Hz), the similarity between CVP and JVP weakens while
the similarity between JVP and ICP stays the same. This indicates that there
may be some ICP-influence on the JVP-signal at low frequency.

Using a model of the intracranial pressure system to estimate ICP has been
tried before, but has some drawbacks which make it not very useful in clinical
context. Due to parameter estimation, an estimation model will almost always
have to be calibrated before use. And system changes due to pathologies could
cause estimation errors when a good estimate is most important.

The influence of intracranial pressure could possibly influence the heartbeat
waveform of the JVP signal. Second and third harmonic relative intensities of
the JVP were calculated, and did correlate with mean ICP values. Another
indication of ICP influence on the JVP is the correlation between ICP and es-
timated AR-model coefficients of the JVP-signal. However, the connection is
very patient specific and not very strong. Therefore, on its own, it is not enough
for reliable ICP estimation or increased ICP detection.

8 Discussion

We have seen that some information about ICP can be extracted from cerebral
blood pressure signals, but reliable ICP estimation or classification is not pos-
sible.

One could wonder if there should not be more possibilities for ICP estima-
tion using pressure signals. Physically, the lack of connection could be explained
by the fact that ICP and JVP only have an indirect link. In figure 18, the way
ICP influences JVP is shown in a schematic way. When pressure increases, it
has an immediate influence on flow. Of course, other processes could influence
this behavior(autoregulation plays an important role). Pressure in other com-
partments(for example JVP) is influenced by a change in flow over a certain
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timespan38. This process can also be influenced by external factors(in our case
high compliance of the veins and a relatively low resistance connection to the
heart). It may well be possible that a weak connection is all that is left after
these steps of influence.

ICP change CBF change JVP change

Compensatory mecha-
nisms(autoregulation)

Compensatory mecha-
nisms(venous compli-
ance,heart connection)

Figure 18: ICP influence on JVP

A lot of research in ICP estimation uses arterial flow velocity measurements
measured by either doppler[Czosnyka et al., 1998, Aaslid et al., 1986, Belfort
et al., 2000,Schmidt et al., 1997,Schmidt and Klingelhfer, 2002,Schmidt et al.,
2003, Xu et al., 2010, Chacon et al., 2010] or MRI[Raksin et al., 2003, Alperin
et al., 1996]. Some of this research shows promising results(for example [Cha-
con et al., 2010]). Estimating flow from flow velocity is still a challenge, but the
usefulness of CBF estimates for ICP estimation is obvious; Flow into a certain
compartment is directly influenced by the pressure within this compartment.
Of course, because of mechanisms like cerebral autoregulation, this influence is
not easily described. But still it can be expected to reveal more information
about ICP than pressure signals.

Other approaches have also been introduced in literature. Some research has
been done on the estimation of the ICP from IOP(intraocular pressure) and the
behavior of the central retinal veins[Salman, 1997, Querfurth et al., 2004, Wu
et al., 2009]. This results in a simple model, but it did not lead to any results
yet. Czarnik[Czarnik et al., 2009] states that there is no significant correlation
between IOP and ICP. Another possible approach is the use of MRI or other
measurement devices to precisely measure the inner width of the skull. This
distance should give some information about the pressure in the skull. This
method is not suitable for continuous measurements and can therefore not be
seen as a replacement for an intracranial probe.

The amount of possible parameters is a serious issue in this research. Study
enough of them and some results will always surface. To counter this, extra
attention was paid to consistency in results. Ideally, several decent sized sets
of samples are used for this. Consistency in results for different sets indicates

38Pressure changes because volume is added to the compartment.
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structural behavior. Because of the limited amount of available data, this could
not be done to it’s full extend.

The amount of data which was used to find estimators for ICP was limited.
A lot of data was gathered from one patient(49 samples) with a lot of variation in
ICP values. With this data, a decent analysis could be done for patient-specific
ICP estimation. As mentioned earlier, the consistency of inner-patient results
could not be checked fully because of this. Also, because of the low amount
of samples from other patients(27 samples), general(not patient specific) ICP
estimation could not be done properly. The reason for this is the dominance of
the big set.
To properly analyze the methods proposed in this report, extensive measure-
ment datasets(> 24 hours, preferable measured on several different days) should
be acquired from multiple patients(≤ 4 for patient-specific ICP estimation, ≤
10 for general ICP estimation). For general ICP estimation, shorter datasets
could be used from more patients.

Estimation of ICP using waveform parameters resulted in an interesting
observation. When the ICP is above 12 mmHg, the connection between ICP
and JVP waveform parameters seems to disappear. A possible explanation for
this is that the JVP waveform is influenced by the part of the time that the
smaller veins collapse. Once ICP is above a certain threshold level(for example
12 mmHg), the part of the time in which the veins are open reaches a minimum
to preserve blood flow.

In general, one could say that this research shed some light at the possi-
bilities and problems of ICP estimation using pressure measurements. There
certainly is a possibility of ICP estimation using pressure measurements, specif-
ically using the heartbeat waveform of the JVP. But this estimate appears to
be rather patient specific, so for each patient, calibration would be needed(for
which ICP measurements are required). Also, the accuracy of the estimation
is low, compared to the requirements for ICP measurement devices(error < 2
mmHg). Some methods using arterial blood flow velocity measurements, are
much more accurate [Chacon et al., 2010,Xu et al., 2010]. It could be possible
to use waveform parameters to refine the estimates of these methods.
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A Datasets and samples

In table 2, the datasets which were used in this report are described. In table
3, the 10-minute samples which were used for analysis are shown.

Name Patient Code Date Start time End time Remarks
DatasetA1 2 01-12-2010 14.49u 15.53u
DatasetA2 2 02-12-2010 11.00u 13.00u
DatasetB1 1 20-12-2010 12.30u 15.30u
DatasetB2 1 21-12-2010 9.30u 15.00u
DatasetB3 1 22-12-2010 9.15u 15.30u
DatasetB4 1 23-12-2010 8.30u 11.30u
DatasetC1 3 04-04-2011 15.35u 16.10u CVP also recorded
DatasetC2 3 04/05-04-2011 16.15u 0.15u CVP also recorded
DatasetC3 3 05-04-2011 0.15u 7.50u CVP also recorded
DatasetC4 3 08-04-2011 14.53u 17.36u CVP also recorded

Table 2: Dataset information.
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Mean heartbeat Mean breath
Sample number Dataset Start time(sec) Mean ICP frequency(Hz) frequency(Hz) PRx

1 datasetB1 2000 13.2 1.10 0.40 -0.04
2 datasetB1 7600 20.4 1.04 0.45 -0.09
3 datasetB2 4000 15.5 1.09 0.42 -0.23
4 datasetB2 11600 16.2 1.03 0.42 -0.21
5 datasetB2 19400 13.2 1.09 0.42 -0.29
6 datasetB3 100 27.3 1.18 0.42 0.01
7 datasetB3 3800 25.6 1.15 0.42 -0.19
8 datasetB3 7400 19.6 1.22 0.47 -0.12
9 datasetB3 11000 22.3 1.17 0.47 -0.35
10 datasetB3 13300 24.3 1.11 0.47 -0.28
11 datasetB3 16800 9.3 1.16 0.47 -0.48
12 datasetB4 350 19.1 1.20 0.47 -0.49
13 datasetB4 1100 25.5 1.20 0.47 0.00
14 datasetB4 2050 21.9 1.16 0.47 -0.04
15 datasetB4 4200 14.8 1.08 0.47 -0.21
16 datasetB4 6700 16.6 1.14 0.47 -0.34
17 datasetB4 8000 18.4 1.10 0.47 -0.04
18 datasetB4 9800 20.1 1.10 0.47 -0.30
19 datasetA1 200 12.0 1.03 0.27 0.17
20 datasetA1 1900 11.2 0.94 0.27 0.12
21 datasetA1 3200 10.6 0.97 0.27 0.13
22 datasetA2 2460 14.5 0.98 0.27 -0.11
23 datasetA2 3060 14.6 0.98 0.27 0.34
24 datasetA2 3660 13.9 0.95 0.27 -0.06
25 datasetA2 5300 14.8 0.92 0.27 0.31
26 datasetA2 5900 15.0 0.94 0.27 0.13
27 datasetA2 7700 20.9 1.00 0.27 0.30
28 datasetC1 970 7.3 1.19 0.25 0.09
29 datasetC2 1500 22.6 1.23 0.25 0.70
30 datasetC2 2100 22.4 1.23 0.25 0.35
31 datasetC2 3400 10.3 1.21 0.25 0.25
32 datasetC2 4200 10.6 1.21 0.25 0.12
33 datasetC2 5400 6.3 1.21 0.25 0.22
34 datasetC2 8600 13.5 1.17 0.25 0.08
35 datasetC2 9600 16.2 1.15 0.25 0.17
36 datasetC2 10800 15.2 1.17 0.25 0.15
37 datasetC2 11900 16.2 1.14 0.25 0.13
38 datasetC2 14500 17.2 1.12 0.25 0.15
39 datasetC2 15700 24.6 1.08 0.25 0.21
40 datasetC2 16800 16.7 1.14 0.25 0.39
41 datasetC2 17600 19.1 1.13 0.25 0.16
42 datasetC2 18300 18.4 1.13 0.25 0.30
43 datasetC2 19000 19.4 1.13 0.25 0.17
44 datasetC2 19700 20.9 1.14 0.25 0.33
45 datasetC2 21600 4.9 1.28 0.25 0.06
46 datasetC2 22200 5.8 1.29 0.25 0.20
47 datasetC2 22850 5.5 1.30 0.25 -0.16
48 datasetC2 24400 14.4 1.21 0.25 0.30
49 datasetC2 25300 10.4 1.21 0.25 -0.26
50 datasetC2 26200 13.0 1.20 0.25 0.26
51 datasetC2 27900 17.6 1.14 0.25 0.35
52 datasetC3 300 20.0 1.24 0.25 0.39
53 datasetC3 2500 1.0 1.38 0.25 0.49
54 datasetC3 3150 0.4 1.36 0.25 0.58
55 datasetC3 3800 -0.7 1.36 0.25 0.55
56 datasetC3 4450 -0.6 1.33 0.25 0.58
57 datasetC3 5400 -1.8 1.29 0.25 0.49
58 datasetC3 7500 -0.5 1.22 0.25 0.42
59 datasetC3 10500 1.5 1.13 0.25 0.28
60 datasetC3 11200 2.7 1.15 0.25 0.29
61 datasetC3 12000 3.2 1.13 0.25 0.36
62 datasetC3 12900 4.6 1.12 0.25 0.22
63 datasetC3 16600 6.8 1.12 0.25 0.21
64 datasetC3 17350 6.3 1.11 0.25 0.17
65 datasetC3 18500 6.2 1.12 0.25 0.34
66 datasetC3 19900 8.5 1.17 0.25 0.21
67 datasetC3 21000 3.8 1.18 0.25 0.13
68 datasetC3 23900 3.7 1.17 0.25 0.31
69 datasetC3 24600 2.2 1.15 0.25 0.30
70 datasetC4 800 -0.3 0.98 0.28 -0.05
71 datasetC4 2100 1.3 0.97 0.28 -0.01
72 datasetC4 4600 3.9 0.94 0.28 0.22
73 datasetC4 6400 1.1 1.01 0.28 -0.07
74 datasetC4 7000 0.5 0.98 0.28 -0.11
75 datasetC4 8200 1.1 0.89 0.28 -0.27
76 datasetC4 9000 2.6 0.87 0.28 0.11

Table 3: 10-minute samples information. Start times are relative to the start of
the dataset
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B Tables and figures

B.1 Higher harmonics correlations

Respiratory wave Heartbeat wave

2nd harmonic 3rd harmonic 2nd harmonic 3rd harmonic

patient 1(n = 18)
0.01
(0.960)

0.25
(0.325)

0.55
(0.019)

0.59
(0.009)

patient 2(n = 9)
0.37
(0.009)

0.77
(0.014)

-0.42
(0.263)

0.14
(0.712)

patient 3(n = 49)
0.16
(0.259)

-0.17
(0.232)

0.52
(0.000)

0.61
(0.000)

global(n = 76) 0.11 0.10 0.44 0.32

Table 4: Correlation coefficients between normalized 2nd and 3rd harmonic in-
tensities and mean ICP values with P (ρ = 0)(the chance that there is no cor-
relation). p-values for the total set are not given, because the samples are not
independent.

B.2 ARX-model parameter correlations

a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6
Patient 3(n = 49)

1
-0.36
(0.013)

0.15
(0.311)

2
-0.16
(0.265)

0.15
(0.293)

0.38
(0.009)

-0.26
(0.082)

3
-0.16
(0.276)

-0.15
(0.336)

0.16
(0.275)

0.33
(0.022)

0.06
(0.701)

-0.23
(0.118)

4
-0.21
(0.150)

-0.25
(0.082)

0.27
(0.065)

0.24
(0.091)

0.17
(0.246)

0.15
(0.305)

0.13
(0.384)

-0.24
(0.098)

5
-0.31
(0.030)

-0.28
(0.054)

0.15
(0.364)

0.20
(0.170)

0.29
(0.040)

-0.04
(0.802)

0.08
(0.577)

0.27
(0.061)

-0.01
(0.941)

0.00
(0.990)

6
-0.29
(0.042)

-0.28
(0.052)

-0.02
(0.900)

0.21
(0.148)

0.24
(0.094)

0.14
(0.358)

-0.12
(0.437)

0.01
(0.927)

0.17
(0.261)

-0.07
(0.626)

-0.03
(0.838)

0.26
(0.083)

Table 5: Correlation coefficients between estimated ARX model parameters
with CVP input and mean ICP values with P (ρ = 0)(the chance that there is
no correlation). p-values for the total set are not given, because the samples are
not independent.
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a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6
Patient 1(n = 18)

1
0.82
(0.000)

-0.58
(0.011)

2
-0.24
(0.339)

0.25
(0.312)

-0.32
(0.214)

0.29
(0.250)

3
0.11
(0.673)

-0.12
(0.635)

0.14
(0.596)

-0.27
(0.272)

0.24
(0.334)

0.18
(0.481)

4
-0.17
(0.541)

-0.31
(0.220)

0.22
(0.379)

-0.25
(0.309)

-0.12
(0.649)

0.26
(0.325)

-0.29
(0.247)

0.36
(0.142)

5
0.04
(0.889)

-0.43
(0.085)

0.18
(0.473)

0.05
(0.846)

-0.04
(0.889)

-0.08
(0.746)

0.22
(0.408)

-0.42
(0.087)

0.23
(0.362)

0.40
(0.104)

6
0.31
(0.226)

-0.52
(0.033)

0.20
(0.425)

0.08
(0.763)

-0.03
(0.895)

-0.14
(0.582)

-0.04
(0.866)

0.35
(0.179)

-0.36
(0.142)

0.29
(0.251)

0.34
(0.171)

0.36
(0.184)

Patient 2(n = 9)

1
-0.14
(0.723)

0.20
(0.662)

2
0.31
(0.454)

-0.37
(0.361)

0.03
(0.931)

-0.01
(0.981)

3
0.23
(0.581)

-0.23
(0.583)

0.23
(0.592)

-0.33
(0.383)

-0.08
(0.837)

0.39
(0.304)

4
-0.10
(0.834)

-0.01
(0.978)

0.03
(0.942)

0.24
(0.539)

-0.38
(0.311)

-0.40
(0.292)

0.12
(0.765)

0.57
(0.110)

5
0.11
(0.795)

0.07
(0.877)

-0.07
(0.848)

0.53
(0.138)

-0.49
(0.219)

0.12
(0.768)

-0.28
(0.460)

-0.03
(0.936)

0.61
(0.081)

-0.56
(0.115)

6
0.48
(0.189)

-0.16
(0.699)

-0.05
(0.903)

0.48
(0.189)

0.04
(0.916)

-0.41
(0.267)

-0.22
(0.596)

-0.20
(0.611)

-0.06
(0.887)

0.64
(0.061)

-0.82
(0.007)

-0.11
(0.778)

Patient 3(n = 49)

1
-0.41
(0.003)

0.10
(0.491)

2
-0.67
(0.000)

0.54
(0.000)

-0.45
(0.001)

-0.39
(0.005)

3
-0.27
(0.075)

0.31
(0.042)

-0.30
(0.045)

-0.26
(0.077)

-0.34
(0.017)

-0.34
(0.018)

4
-0.38
(0.010)

0.30
(0.037)

-0.22
(0.144)

0.06
(0.689)

-0.21
(0.163)

-0.16
(0.285)

-0.31
(0.030)

-0.06
(0.706)

5
-0.59
(0.000)

0.35
(0.018)

-0.05
(0.726)

-0.19
(0.185)

0.21
(0.147)

-0.15
(0.312)

-0.13
(0.371)

-0.37
(0.010)

-0.08
(0.567)

0.09
(0.527)

6
-0.57
(0.000)

0.36
(0.014)

0.01
(0.958)

-0.13
(0.374)

-0.03
(0.836)

0.12
(0.401)

-0.26
(0.077)

-0.11
(0.456)

-0.38
(0.007)

-0.09
(0.552)

-0.03
(0.822)

0.25
(0.088)

Global(n = 76)

1 -0.50 -0.13

2 0.03 -0.13 -0.54 -0.49

3 0.26 -0.26 0.27 -0.42 -0.43 -0.44

4 0.23 -0.18 -0.17 0.30 -0.36 -0.26 -0.44 -0.07

5 0.16 -0.16 -0.11 0.04 0.09 -0.20 -0.21 -0.43 -0.16 -0.03

6 0.15 -0.15 -0.11 0.06 0.02 -0.02 -0.30 -0.14 -0.41 -0.12 -0.09 0.12

Table 6: Correlation coefficients between estimated ARX model parameters
with CVP input and mean ICP values with the P (ρ = 0)(the chance that there
is no correlation). p-values for the total set are not given, because the samples
are not independent.
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a1 a2 a3 a4 a5 a6

Patient 1(n = 18)

1
-0.83
(0.000)

2
-0.07
(0.783)

0.03
(0.915)

3
-0.08
(0.760)

-0.04
(0.885)

0.07
(0.781)

4
-0.10
(0.702)

-0.56
(0.020)

0.02
(0.923)

0.18
(0.463)

5
-0.10
(0.701)

-0.52
(0.032)

-0.06
(0.828)

0.05
(0.848)

0.38
(0.117)

6
-0.06
(0.816)

-0.32
(0.199)

-0.09
(0.715)

-0.05
(0.838)

0.15
(0.553)

0.22
(0.377)

Patient 2(n = 9)

1
0.28
(0.504)

2
0.07
(0.867)

-0.05
(0.897)

3
0.14
(0.741)

0.15
(0.716)

-0.23
(0.587)

4
0.14
(0.734)

0.19
(0.648)

-0.35
(0.390)

-0.08
(0.828)

5
0.13
(0.760)

0.16
(0.701)

-0.30
(0.465)

-0.40
(0.330)

0.07
(0.874)

6
0.19
(0.648)

0.13
(0.767)

-0.32
(0.433)

-0.74
(0.034)

-0.30
(0.438)

0.34
(0.403)

Patient 3(n = 49)

1
-0.50
(0.000)

2
-0.51
(0.000)

0.52
(0.000)

3
-0.53
(0.000)

-0.26
(0.082)

0.54
(0.000)

4
-0.46
(0.001)

-0.55
(0.000)

0.40
(0.004)

0.50
(0.000)

5
-0.46
(0.001)

-0.57
(0.000)

0.50
(0.000)

0.47
(0.001)

0.56
(0.000)

6
-0.43
(0.002)

-0.58
(0.000)

-0.60
(0.000)

0.43
(0.002)

0.51
(0.000)

0.60
(0.000)

Global(n = 76)

1 -0.25

2 -0.45 0.46

3 -0.41 -0.33 0.43

4 -0.47 -0.48 0.43 0.49

5 -0.50 -0.53 0.04 0.50 0.49

6 -0.49 -0.56 -0.44 0.42 0.53 0.42

Table 7: Correlation coefficients between estimated ARX model parameters
with CVP input and mean ICP values with P (ρ = 0)(the chance that there is
no correlation). p-values for the total set are not given, because the samples are
not independent.
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