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Chapter 1

Introduction

In this report, it will be shown how discontinuous Galerkin (DG) finite element methods
can be used to compute time-harmonic electric and magnetic fields in periodic media. A
periodic medium is a medium which consists of the same unit cell repeated infinitely many
times in all directions. For example, photonic crystals are periodic media which are used to
guide light. In practice, photonic crystals are made with finitely many unit cells, but with
enough cells that the behaviour is similar to the theoretical infinite case. Applications of
photonic crystals include lasers ([17]) and solar cells ([4]).

There are two kinds of problems that we would like to be able to solve in periodic media:
first, we would like to know the electric and magnetic field given a medium, a source and
the time-frequency. In the second problem, we do not have a source, but we want to know
for which time-frequencies the fields are evanescent in the medium and for which they are
extended. For the first problem, we have to solve the time-harmonic Maxwell equations
and for the second problem, we have to solve the time-harmonic Maxwell eigenproblem [16].
Both problems will be discussed in more detail in Chapter 2.

In order to solve these problems, one has to solve or approximate the time-harmonic
Maxwell equations. Since it is often impossible to solve these equations analytically, a
numerical method to approximate the solution is necessary.

A widely used numerical method is the finite difference method with the Yee scheme [24].
It is very popular due to the intuitivity of the discretization of the differential operators.
One can either first compute a solution in the time domain and use a Fourier transformation
to find the frequencies that are in the field, or directly discretize the time-harmonic Maxwell
equations. However, because of the simplicity of the discretization of the differential opera-
tors, the mesh is always dimension-by-dimension, so it cannot be adapted to the structure
of the media. An example of the implementation of the finite difference frequency domain
discretization is given in [25].

Another type of methods are spectral methods, which are based on writing the field as
a linear combination of sines and cosines, analogously to the Fourier series of a function
[13]. The main disadvantage of this method is that it always produces a continuous solution
and therefore converges rather slowly for media with discontinuous dielectric constants. A
description of the implementation of a spectral method for photonic crystals can be found
in [15].

A method that is similar, but more localized is the finite element method, in which the
solution is written as a linear combination of basis functions, typically low order polynomials.
These basis functions are non-zero on only a few elements, so they can enforce continuity
of (components of) the solution and the resulting matrix-system is sparse. It can handle
difficult geometries and can achieve high accuracy. Examples of the implementation of the
finite element method for photonic crystals are [6] and [8]. The disadvantage of the standard
(conforming) finite element method is that the basis functions should be chosen with care,
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otherwise it will always produce a continuous approximate solution, even if the solution is
discontinuous. Furthermore, if one wants to know which frequencies are extended in the
crystal, the finite element method does not always produce the correct results: one could
find eigenvalues of the time-harmonic Maxwell equations in the numerical approximation
that are not extended frequencies in the physical problem (spurious modes), see for example
[5].

The method that is considered in this report is the discontinuous Galerkin finite ele-
ment method, which is similar to the finite element method. The difference is that it uses
basis functions that are defined on only one element, which may lead to a discontinuous
approximate solution. To obtain a sensible solution, a flux is chosen to define the value
of the function on the faces between elements. This allows for grids with hanging nodes,
making the grid even more flexible. Furthermore, the boundary conditions do not have to
be incorporated in the finite element space, but can be enforced weakly through the flux
at the boundary. Also, the mass-matrix is block-diagonal, which is beneficial if one wants
to solve the eigenvalue problem or the time-dependent Maxwell equations. An overview of
discontinuous Galerkin methods for elliptic problems can be found in [3].

Discontinuous Galerkin methods are already successfully used for the time-harmonic
Maxwell problem, see for example [20] and [11]. In [7], Buffa and Perugia have given the
conditions under which a discontinuous Galerkin approximation gives a correct approxima-
tion of Maxwell’s eigenvalue problem, i.e. when there are no spurious modes, the spectrum
is complete and the eigenspace is not polluted and complete. They have also shown that
for the most common DG-methods these conditions are satisfied.

This report is structured as follows. First, the time-harmonic Maxwell equations are
described and modified such that they can be used for periodic media. Then the DG
discretization of the time-harmonic Maxwell equations on a bounded domain is given and
implemented. It is followed by the discretization of infinitely periodic media using a DG
method. This discretization is implemented for a simple test case. Finally, some conclusions
and recommendations are given.
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Chapter 2

Problem setting

In this section, the model for computing the electric and magnetic fields in periodic media
is described. Since we are working with electro-magnetism, a good place to start are the
normalized Maxwell equations in matter in a domain Ω ⊆ R3. They are given by [10]

∇×E =
∂B

∂t
in Ω,

∇ ·D = ρ in Ω,

∇×H =
∂D

∂t
+ J in Ω,

∇ ·B = 0 in Ω.

In these equations, E is the electric field, H is the magnetic field, D is the electric displace-
ment field, B is the magnetic induction and J and ρ are the electric current intensity and
the electric charge density. The operator ∇ is defined as ∇ = (∂/∂x, ∂/∂y, ∂/∂z)T . It is
assumed that the media are linear, so that constitutive relations can be used to eliminate
the electric displacement field D and magnetic induction B. These relations are given by

E = ǫD in Ω,

B = µH in Ω,

where the dielectric constant ǫ = ǫ(x) and electric permeability µ = µ(x) are symmetric
positive definite matrices. Furthermore, they are assumed to only depend on position x ∈ Ω.
The next step is to restrict ourselves to time-harmonic fields. Introduce the ansatz that the
electric and magnetic field are time-harmonic:

E(x, t) = Re(e−iωtE(x)) in Ω,

H(x, t) = Re(e−iωtH(x)) in Ω.

In the case of periodic media, the domain extends infinitely in all directions, so it is given
by Ω = R3 and there are no boundary conditions. Moreover, assume there is no electric
charge density, so ρ = 0. The resulting system is

∇× ǫ−1∇×H(x)− ω2µH(x) = J in R3, (2.1)

∇ · (µH(x)) = 0 in R3. (2.2)

When the magnetic field H(x) is computed, the electric field is given by E(x) = − i
ǫω∇ ×

H(x). Note that (2.2) holds globally if and only if ∇ · J = 0, so we will not discretize this
condition.
If one only wants to know which frequencies are extended in the medium, one can choose
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Figure 2.1: Example of a 2-dimensional periodic medium (left) and its Brillouin zone (right).
The dark area in the right figure denotes the irreducible Brillouin zone.

the source to disappear, J = 0, and solve the eigenvalue problem of finding (ω,H), such
that (2.1) has a non-trivial solution, i.e.
Find (ω,H) 6= (0,0) such that

∇× ǫ−1∇×H(x) = ω2µH(x) in R3.

Of course, it is impossible to compute an approximate solution numerically on an infinitely
large domain, so the domain somehow needs to be reduced to a finite domain. Fortunately,
the periodicity of the structure can be used to take only one unit cell as the domain if some
slight adaptations are made [8]. The periodicity can be expressed in terms of the dielectric
constant as

ǫ(x) = ǫ(x+ a), ∀x ∈ R3, (2.3)

in which the vector a is a linear combination of the primitive lattice vectors ai, i = 1, ..., d.
The primitive lattice vectors are the linearly independent vectors smallest in magnitude for
which (2.3) holds, see for example Figure 2.1. Note that the number of primitive lattice
vectors equals the dimension of the periodic medium. In case this dimension is smaller than
three, there are also dimensions in which the medium is homogeneous. In that case

ǫ(x) = ǫ(x+ a⊥), ∀x ∈ R3,

in which a⊥⊥ai, i = 1, ..., d is a vector in the direction of continuous translational symmetry.
We define the vectors a⊥j , j = 1, ..., (3 − d) such that ‖a⊥j ‖ = 1 and a⊥j ⊥ai for all i and j

and moreover, span(ai,a
⊥
j ) = R3.

The primitive cell Ω is the set

Ω = {x ∈ R3 | x =

d
∑

i=1

ℓiai +

3
∑

i=d+1

ℓia
⊥
4−i, 0 ≤ ℓi ≤ 1}.

This is the domain where all the computations will be performed.
It is possible to associate reciprocal lattice vectors bi to the primitive lattice vectors such
that

aibj = 2πδij ,
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in which δij is the Kronecker delta function.
The first Brillouin zone is now defined as the set of points which are closer to the origin
than to any other point of the reciprocal lattice [13]. The irreducible Brillouin zone B ⊂ Rd

is the subset of the Brillouin zone which has no symmetries.
Using Bloch/Floquet theory, it can be shown that the magnetic field can be expressed as
[13]

H(x) = eik·xuk(x), (2.4)

where k ∈ B and uk(x) is a periodic function in the primitive cell Ω. Then the curl of the
magnetic field is given by

∇×H = ∇× (eik·xuk)

= eik·x(∇× uk)− uk ×∇e
ik·x

= eik·x(∇× uk)− uk × (ikeik·x)

= eik·x((∇+ ik)× uk).

This gives a new operator ∇k = ∇ + ik. Inserting ansatz (2.4) into the time harmonic
Maxwell equations for the magnetic field (2.1) gives

∇× (ǫ−1∇×H)− ω2µH = J,

∇× (ǫ−1∇× (eik·xuk))− ω2eik·xµuk = J,

∇× (ǫ−1eik·x(∇k × uk))− ω2eik·xµuk = J,

eik·x∇k × (ǫ−1∇k × uk)− ω2eik·xµuk = J.

Since eik·x 6= 0 for all k and all x, the system that has to be solved can be written as

∇k × (ǫ−1∇k × uk)− ω2µuk = J̃ in Ω, (2.5)

where Ω is the primitive cell, k lies in the irreducible Brillouin zone and the boundary
conditions are periodic. If one wants to solve the eigenvalue problem, one has to find
(ω,uk) 6= (0,0) such that

∇k × (ǫ−1∇k × uk) = ω2µuk in Ω.

First, however, an auxiliary problem will be solved, namely the time-harmonic problem on
a bounded domain Ω ( R3:

∇× ǫ−1∇×H− ω2µH = J in Ω,

n×H = g on Γn ⊂ ∂Ω,

and with periodic boundary conditions on Γp = ∂Ω \ Γn. For both problems, an implemen-
tation is given for the homogeneous domain Ω = [0, 1]3 with ǫ = µ = 1.

7



Chapter 3

DG discretization of the

time-harmonic Maxwell equations

In this chapter, it will be described how the time-harmonic Maxwell equations in a cavity
will be discretized using an interior penalty discontinuous Galerkin (IP-DG) finite element
method. The first section is about the domain of computation and the reference tetrahedron,
which is crucial in computing the integrals resulting from the discretization. After that, the
basis functions are discussed. Then the discontinuous Galerkin scheme will be derived,
followed by some details on the implementation of this scheme. Finally, some results for a
homogeneous medium will be given to show that this scheme has indeed the desired order
of convergence.

3.1 Domain and tessellation

In this section, some notation concerning the domain and the tessellation will be given.
Some extra attention is given to the reference tetrahedron, since almost all computations
take place on this element.
As mentioned before, the domain is some Ω ( R3 with boundary ∂Ω. Consider a tessellation
Th that partitions Ω into a set of tetrahedra {K}. Assume that the mesh is shape-regular
and that each tetrahedron is straight-sided. Let Fh,F

i
h and Fn

h denote the set of all faces,
the interior faces and the boundary faces respectively, where faces on a boundary with
periodic boundary conditions are seen as interior faces.
It will be useful to define the tangential jump and average of a function u across a face f
with adjacent elements KL and KR. They are defined respectively as

JuKT = nL × uL + nR × uR, {u} = (uL + uR)/2,

in which uL and uR are the values of the trace of u at ∂KL and ∂KR, respectively, and nL

and nR are the outward pointing normal vectors of respectively KL and KR at the face f .
On the boundary faces, this notation denotes

JuKT = n× u, {u} = u.

The reference element

To simplify the computations of element and face integrals, it is useful to define a reference
element on which these integrals can be computed with standard quadrature rules. Define
this reference element as the tetrahedron

K̂ = {ξ ∈ R3;−1 ≤ ξ1, ξ2, ξ3 ≤ 1 and ξ1 + ξ2 + ξ3 ≤ −1}.
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Its vertices are v1 = (−1, 1,−1),v2 = (−1,−1,−1),v3 = (1,−1,−1) and v4 = (−1,−1, 1),
see Figure 3.1. For convenience, the numbering of the edges and the faces of a tetrahedron

ê2

ê6

ê3

ê5ê4

v1

v2

v4

v3

ê1

Figure 3.1: The reference tetrahedron

is given in Table 3.1. Note that all edges and faces of the reference tetrahedron are denoted
with a hat.

Edge/face vertices

ê1 v2,v3

ê2 v3,v1

ê3 v1,v2

ê4 v2,v4

ê5 v3,v4

ê6 v1,v4

f̂1 v2,v3,v4

f̂2 v1,v3,v4

f̂3 v1,v2,v4

f̂4 v1,v2,v3

Table 3.1: Numbering of edges and faces of a tetrahedron, numbering indicates direction
along edges

To map the reference tetrahedron to an arbitrary non-degenerate, straight-sided tetrahedron
K, define the map FK : K̂ → K [22] as

FK(ξ) =

4
∑

i=1

xiλi(ξ), (3.1)

with xi being the coordinates of the vertices of K and λi the barycentric coordinates of
the vertices of the reference tetrahedron. The details of transforming a function on the
reference tetrahedron to a function on an arbitrary straight-sided, convex, non-degenerate
tetrahedron can be found in Appendix A.
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3.2 Function spaces and basis functions

In this section, the function space H(curl) is introduced, since this is the space of which
the field must be an element of. Furthermore, we will define two different types of curl-
conforming finite elements that can be used: the Nédélec elements described in [19] and
hierarchic elements as described by Ainsworth in [2]. The advantage of the hierarchic
elements is that it is much easier to determine the basis functions and so they are easier to
implement. On the other hand, the Nédélec element will include less degrees of freedom,
which is beneficial for the computational time.

3.2.1 The space H(curl)

In Section 3.3.3 it will turn out that the DG scheme includes an integration over the curl
of the magnetic field, so a natural choice is to seek an approximation of the magnetic field
in the space H(curl; Ω). First define the space (L2(Ω))3 as

(L2(Ω))3 =

{

u = (u1(x), u2(x), u3(x))
T |

∫

Ω
|u · u| dx <∞

}

,

with its norm given by

‖u‖L2(Ω) =

(∫

Ω
|u · u| dx

)1/2

The space H(curl; Ω) is defined as

H(curl; Ω) =
{

u ∈ (L2(Ω))3 | ∇ × u ∈ (L2(Ω))3
}

. (3.2)

If there is no confusion possible, we may write H(curl) instead of H(curl; Ω). Its norm is
given by

‖u‖H(curl;Ω) =
(

‖u‖2L2(Ω) + ‖∇ × u‖2L2(Ω)

)1/2
. (3.3)

Because a discontinuous Galerkin finite element method is used, we would like to define
a norm which incorporates the jumps of the tangential components of the magnetic field.
This leads to the DG-norm

‖u‖DG =
(

‖u‖2L2(Ω) + ‖∇ × u‖2L2(Ω) + ‖h
− 1

2 JuKT ‖
2
L2(Fh)

)1/2
,

in which h = hf is the diameter of the circumscribed circle of face f .
Both types of finite elements discussed below are H(curl)-conforming, which means the

global finite element space is a subspace of H(curl) if one would use a standard finite
element setting (see [2] and [18]). However, we use a discontinuous Galerkin method, which
means that we do not require either the normal or tangential components to be continuous.
Nonetheless, it is still beneficial to use H(curl)-conforming finite elements, for it implies
that the average across any face is H(curl)-conforming and the stiffness matrix is sparser
for higher-order polynomials than with standard H1-conforming finite elements ([21]).

3.2.2 Nédélec elements

In this section, the finite elements as defined by Nédélec in [19] will be described. They are
defined on the reference domain K̂, which is the tetrahedron with vertices v1 = (−1, 1,−1),v2 =
(−1,−1,−1),v3 = (1,−1,−1) and v4 = (−1,−1, 1), see Section 3.1. Let Pp(K) be the func-
tion space which consists of all real polynomials up to degree p. Then the finite element
space is given by

Rp(K̂) = (Pp−1(K̂))3 ⊕ Sp(K̂),
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with
Sp(K̂) = {p ∈ (Pp(K̂))3 | p is homogeneous and ξ·p = 0}.

There are three types of degrees of freedom, namely those associated with edges ê of K̂,
those associated with faces f̂ of K̂ and finally degrees of freedom associated with K̂ itself.
The total number of degrees of freedom equals dim(Rp) =

1
2(p + 3)(p + 2)p.

Let a degree of freedom be given by Mi(φ) and the basis elements of Rp by {φj}. Then
one can find the basis functions by solving Mi(φj) = δij , in which δij is the Kronecker delta
function.
First, it is described how one can find a basis for Sp, then the degrees of freedom are given
and the section is concluded with an example of these concepts in case of p = 1. The basis
functions for p = 2 are given in Appendix B.

Finding a basis for Sp

The first challenge when using Nédélec elements is to find a basis for the function space Sp.
We will follow the approach of Gopalakrishnan in [9] for a 3-dimensional space.
Let α ≡ (α1, α2, α3), define ξ

α = ξα1
1 ξα2

2 ξα3
3 . Furthermore, introduce the following notation:

I(p) = {α : 0 ≤ αi ∈ Z,
3

∑

i=1

αi = p},

Ij(p) = {β ∈ I(p) : exactly j components of β are non-zero.}.

For a β ∈ Ij(p + 1), define the permutation ℓ such that βℓ(m) > 0 for m ≤ j and βℓ(m) = 0
for m > j. Then we can define for j > 1

Bβp =
{

ξβ−eℓ(m)eℓ(m) − ξ
β−eℓ(m+1)eℓ(m+1) : m = 1, 2, ..., j − 1

}

,

B(j)p =
⋃

β∈Ij(p+1)

Bβp ,

in which e1, e2 and e3 are the standard basis vectors in R3. Then a basis of Sp is given by

Bp ≡ B
(2)
p

⋃

B
(3)
p . The implementation of these basis elements is straightforward: first all

combinations (β1, β2, β3) are determined in which
∑

i αi = p + 1 and either 2 or 3 αi are

non-zero. For all these combinations, compute Bβp . These are the basis elements of Sp.

Degrees of freedom

For Nédélec elements, there are three types of degrees of freedom. The degrees of freedom
of the first type are those associated with edges. They are given by

Mê(ϕ) =

{
∫

ê
ϕ · τ̂q dŝ for each edge ê of K̂ and for all q ∈ Pp−1(ê)

}

,

in which τ̂ is the tangent unit vector associated with edge ê in the direction of the edge as
given in Table 3.1.
The second type is associated with faces. The degrees of freedom are given by

Mf̂ (ϕ) =

{∫

f̂
(n×ϕ) · r(q) dÂ for each face f̂ of K̂ and for all q ∈ (Pp−2(T̂ ))

2

}

,

in which T̂ is the reference triangle with vertices (−1,−1), (1,−1) and (−1, 1) and r : T̂ → f̂
is the transformation from the reference triangle to face f̂ of the reference tetrahedron, see

11



Appendix A.
Finally, there are the degrees of freedom associated with the reference tetrahedron itself:

MK̂(ϕ) =

{∫

K̂
ϕ · q dξ for all q ∈ (Pp−3(K̂))3

}

.

In total there are 6p degrees of freedom associated with edges, 4p(p− 1) degrees of freedom
associated with faces and p(p− 1)(p− 2)/2 degrees of freedom associated with the reference
tetrahedron. In total this gives p(p + 2)(p + 3)/2 degrees of freedom, which is also the
dimension of the space Rp(K̂). In Table 3.2 one can see which degrees of freedom should
used when and how many there are.

Function type Use when Number of

degrees of freedom

Edge p ≥ 1 6p
Face p ≥ 2 4p(p− 1)
Interior p ≥ 3 p(p− 1)(p − 2)/2

Table 3.2: Number and type of degrees of freedom needed for Nédélec curl-conforming
elements

Example

As an example, the above theory will be shown for the case p = 1.

To find a basis for S1, first determine an expression for B
(2)
1 and B

(3)
1 :

B
(2)
1 =

⋃

β∈I2(2)
Bβ1

= B
(1,1,0)
1 ∪ B

(1,0,1)
1 ∪ B

(0,1,1)
1

= {ξ(0,1,0)e1 − ξ
(1,0,0)e2} ∪ {ξ

(0,0,1)e1 − ξ
(1,0,0)e3} ∪ {ξ

(0,0,1)e2 − ξ
(0,1,0)e3}

=











ξ2
−ξ1
0



 ,





ξ3
0
−ξ1



 ,





0
ξ3
−ξ2











.

B
(3)
1 is empty, since it is impossible to sum 3 positive integers and get a value of 2. So a

basis for S1 is given by B
(2)
1 . This leads to a basis for R1 as follows:

R1 = S1 ⊕ (P0)
3

= span











ξ2
−ξ1
0



 ,





ξ3
0
−ξ1









0
ξ3
−ξ2



 ,





1
0
0



 ,





0
1
0



 ,





0
0
1











.

Substituting this basis into the degrees of freedom associated with edges of the reference
tetrahedron and setting Mei(ψj) = δij , one arrives at the system

















−2 −2 0 2 0 0
0 2 −2 −2 2 0
−2 0 2 0 −2 0
0 2 2 0 0 2
2 0 2 −2 0 2
−2 2 0 0 −2 2

































a1
a2
a3
b1
b2
b3

















= ej .
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Solving this system leads to the functions

ψê = λi∇λj − λj∇λi,

in which ê is the directed edge ê = (vj ,vi) and the barycentric coordinates λi are defined
such that λi(vj) = δij .
Finding higher order basis functions can be done similarly by first finding a basis for Sp,
computing the integrals described by the degrees of freedom and then finding the inverse of
the resulting matrix.
The second order basis functions are given in Appendix B.

3.2.3 Hierarchic curl-conforming elements

In this section, the hierarchic curl-conforming elements of Ainsworth [2] will be given. The
finite element space is the space

X̂curl
p =

(

Pp(K̂)
)3

.

This space has dimension (p + 1)(p + 2)(p + 3)/2.
The basis functions are again defined on the reference element, see Section 3.1. Before the
expressions for the basis functions are given, some auxiliary functions will be defined.
The first building blocks are the barycentric coordinates. They are defined as

λ1 =
ξ2 + 1

2
,

λ2 = −
1 + ξ1 + ξ2 + ξ3

2
,

λ3 =
ξ1 + 1

2
,

λ4 =
ξ3 + 1

2
.

Note that these functions are chosen such that λj disappears on face f̂j for each j.
There will also be need of a scalar orthogonal basis in 1D. In this case, Legendre polynomials
are chosen. They can be defined recursively as

L0(ξ) = 1,

L1(ξ) = ξ,

Lp(ξ) =
2p− 1

p
ξ Lp−1(ξ)−

p− 1

p
Lp−2(ξ), p ≥ 2.

The first four Legendre polynomials are given by

L0(ξ) = 1,

L1(ξ) = ξ,

L2(ξ) =
3

2
ξ2 −

1

2
,

L3(ξ) =
1

2
ξ(5ξ2 − 3).

Lastly, we need unitary normal vectors for faces and tangential vectors for edges. They are
defined respectively as

n̂i = −
∇λi

|∇λi|
, i = 1, .., 4,
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τ̂ êℓ = vj − vi, l = 1, .., 6,

in which êℓ = (vi,vj) is a directed edge as given in Table 3.1. Note that n̂ denotes the
outward unit normal vector. Also, following [2], we do not normalize the tangential vectors.
As will be seen later, we will need the curl of all basis functions. To compute these, we use
the following identities from the vector calculus [10]:

∇× (fA) = f∇×A−A×∇f, (3.4)

∇(fg) = f∇g + g∇f, (3.5)

in which f and g are scalar functions and A ∈ R3 is a vector function.
Now we can define the basis functions. These are divided into edge functions, edge-

based face functions, face bubble functions, face-based interior functions and interior bubble
functions. Each type will be discussed separately.

Edge functions

For every edge, there will be defined p + 1 edge functions, with p the maximal polynomial
order of the basis functions on the element. These are constructed such that their tangential
components equal the Legendre polynomials (up to a minus sign) on the corresponding edges
and the tangential components disappear on the other edges. For the edge ê = (vA,vB)
and λA(vA) = λB(vB) = 1, the edge functions are defined recursively as

ψê
0 = λB∇λA − λA∇λB,

ψê
1 = λB∇λA + λA∇λB,

ψê
l =

2l − 1

l
Ll−1(λB − λA)ψ

ê
1 −

l − 1

l
Ll−2(λB − λA)ψ

ê
0, 2 ≤ l ≤ p− 1.

The first three edge functions for edge ê1 = (v2,v3) are given by

ψê1
0 =

1

4





ξ2 + ξ3
−1− ξ1
−1− ξ1



 ,

ψê1
1 =

1

4





−2− 2ξ1 − ξ2 − ξ3
−1− ξ1
−1− ξ1



 ,

ψê1
2 =

1

16





(6 + 6ξ1 + 3ξ2 + 3ξ3)(−2− 2ξ1 − ξ2 − ξ3)− 2ξ2 − 2ξ3
(6 + 6ξ1 + 3ξ2 + 3ξ3)(−ξ1 − 1) + 2ξ1 + 2
(6 + 6ξ1 + 3ξ2 + 3ξ3)(−ξ1 − 1) + 2ξ1 + 2



 .

The curl of the basis functions can be computed with (3.4) and (3.5) by observing that
∇×∇λi = 0 for all i = 1, .., 4. The expressions that follow are

∇×ψê
0 = 2(∇λB ×∇λA),

∇×ψê
1 = 0,

∇×ψê
l =−

2l − 1

l

dLl−1

dξ
(λB − λA) ((λB∇λA + λA∇λB)×∇ (λB − λA))

−
2(l − 1)

l
Ll−2(λB − λA) (∇λB ×∇λA)

+
l − 1

l

dLl−2

dξ
(λB − λA) ((λB∇λA − λA∇λB)×∇(λB − λA)) .
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Edge-based face functions

For every face, there will be defined 3(p − 1) edge-based face functions, p − 1 for every

edge. For an edge ê, the corresponding basis functions ψf̂ ,ê
j are constructed such that they

disappear on all edges except ê. Furthermore, the functions equal zero on all faces except
for the corresponding face and the face which also has edge ê, on which the tangential
components disappear. For the face f̂ = (vA,vB ,vC), the edge ê = (vA,vB) and λA(vA) =
λB(vB) = λC(vC) = 1, the functions are given by

ψ
f̂ ,ê
l = λAλBLp−2(λB − λA)n̂C , 2 ≤ l ≤ p.

For example, take edge ê1 of face f̂4. Then λA = λ2, λB = λ3 and λC = λ1 and the first two
edge-based face functions are given by

ψ
f̂4,ê1
0 = −λ2λ3

∇λ1

|∇λ1|

= −
1

4





0
(1 + ξ1 + ξ2 + ξ3)(1 + ξ2)

0



 ,

ψ
f̂4,ê1
1 = −λ2λ3L1(λ3 − λ2)

∇λ1

|∇λ1|

= −
1

4





0
(1 + ξ1 + ξ2 + ξ3)(1 + ξ1)(2 + 2ξ1 + ξ2 + ξ3)

0



 .

The curl of these basis functions can easily be computed with (3.4) and (3.5) by observing
that the normal vectors are constant vectors and thus ∇ × n̂i = 0 for all i = 1, .., 4. It
follows that

∇×ψf̂ ,ê
l =− n̂C ×

(

λAλB
dLl−2

dξ
(λB − λA)∇(λB − λA)

+ λALl−2(λB − λA)∇λB + λBLl−2(λB − λA)∇λA

)

.

Face bubble functions

For every face, one can also define basis functions that are zero on all faces and edges, except
for the interior of the corresponding face. These functions are called face bubble functions,
and there are (p − 2)(p − 1) of these functions for each face. For a face f̂ = (vA,vB ,vC)
and λA(vA) = λB(vB) = λC(vC) = 1, the face bubble functions are given by

ψf̂ ,1
n1,n2

= λAλBλCLn1(λB − λA)Ln2(λA − λC)τ̂ (A,B),

ψf̂ ,2
n1,n2

= λAλBλCLn1(λB − λA)Ln2(λA − λC)τ̂ (C,A),

with 0 ≤ n1, n2, n1 + n2 ≤ p − 3. For face f̂4 = (v1,v2,v3), the first four face bubble
functions are given by

ψ
f̂4,1
0,0 = λ2λ3λ1τ̂ ê1

= −
1

8





(1 + ξ1 + ξ2 + ξ3)(1 + ξ1)(1 + ξ2)
0
0



 ,
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ψ
f̂4,2
0,0 = λ2λ3λ1τ̂ ê2

=
1

8





0
(1 + ξ1 + ξ2 + ξ3)(1 + ξ1)(1 + ξ2)

0



 ,

ψ
f̂4,1
1,0 = λ2λ3λ1L1(λ2 − λ1)τ̂ ê1

= −
1

16





(1 + ξ1 + ξ2 + ξ3)(1 + ξ1)(1 + ξ2)(2 + 2ξ1 + ξ2 + ξ3)
0
0



 ,

ψ
f̂4,1
0,1 = λ2λ3λ1L1(λ1 − λ3)τ̂ ê1

=
1

16





(1 + ξ1 + ξ2 + ξ3)(1 + ξ1)(1 + ξ2)(2 + ξ1 + 2ξ2 + ξ3)
0
0



 .

The curl of these basis functions can be computed with (3.4) and (3.5) by observing that
the tangent vectors are constant vectors and thus ∇× τ̂ ê = 0 for all ê = ê1, .., ê6. It follows
that

∇×ψf̂ ,1
n1,n2

=− τ̂ (A,B) ×
(

λAλBλCLn1(λB − λA)
dLn2

dξ
(λA − λC)∇(λA − λC)

+ λAλBλCLn2(λA − λC)
dLn1

dξ
(λB − λA)∇(λB − λA)

+ λAλBLn1(λB − λA)Ln2(λA − λC)∇λC

+ λAλCLn1(λB − λA)Ln2(λA − λC)∇λB

+ λBλCLn1(λB − λA)Ln2(λA − λC)∇λA

)

,

∇×ψf̂ ,2
n1,n2

=− τ̂ (C,A) ×
(

λAλBλCLn1(λB − λA)
dLn2

dξ
(λA − λC)∇(λA − λC)

+ λAλBλCLn2(λA − λC)
dLn1

dξ
(λB − λA)∇(λB − λA)

+ λAλBLn1(λB − λA)Ln2(λA − λC)∇λC

+ λAλCLn1(λB − λA)Ln2(λA − λC)∇λB

+ λBλCLn1(λB − λA)Ln2(λA − λC)∇λA

)

.

Face-based interior functions

Face-based interior functions must disappear on all faces except one, and on that face the
tangential component must disappear. There are (p−1)(p−2)/2 of these functions for each
face. For a face f̂ = (vA,vB ,vC) and λA(vA) = λB(vB) = λC(vC) = 1, they are given by

ψb,f̂
n1,n2

= λAλBλCLn1(λB − λA)Ln2(λA − λC)n̂f̂ ,

with 0 ≤ n1, n2, n1+n2 ≤ p−3. For face f̂4 = (v1,v2,v3), the first three face-based interior
functions are given by

ψ
b,f̂4
0,0 = λ2λ3λ1n̂4

= −
1

8





0
0

(1 + ξ1 + ξ2 + ξ3)(1 + ξ1)(1 + ξ2)



 ,
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ψ
b,f̂4
1,0 = λ2λ3λ1L1(λ3 − λ2)n̂4

= −
1

16





0
0

(1 + ξ1 + ξ2 + ξ3)(1 + ξ1)(1 + ξ2)(2 + 2ξ1 + ξ2 + ξ3)



 ,

ψ
b,f̂4
0,1 = λ2λ3λ1L1(λ2 − λ1)n̂4

=
1

16





0
0

(1 + ξ1 + ξ2 + ξ3)(1 + ξ1)(1 + ξ2)(2 + ξ1 + 2ξ2 + ξ3)



 .

The curl of these basis functions can be computed with (3.4) and (3.5) by observing that
the normal vectors are constant vectors and thus ∇ × n̂i = 0 for all i = 1, .., 4. It follows
that

∇×ψb,f̂
n1,n2

=− n̂f̂ ×
(

λAλBλCLn1(λB − λA)
dLn2

dξ
(λA − λC)∇(λA − λC)

+ λAλBλCLn2(λA − λC)
dLn1

dξ
(λB − λA)∇(λB − λA)

+ λAλBLn1(λB − λA)Ln2(λA − λC)∇λC

+ λAλCLn1(λB − λA)Ln2(λA − λC)∇λB

+ λBλCLn1(λB − λA)Ln2(λA − λC)∇λA

)

.

Interior bubble functions

The last set of basis functions are the interior bubble functions, which are zero everywhere
at the boundary of the reference tetrahedron. There are (p − 3)(p − 2)(p − 1)/2 of these
basis functions, and they are given by

ψb
d,n1,n2,n3

= λ1λ2λ3λ4Ln1(λ1 − λ2)Ln2(λ3 − λ2)Ln3(λ4 − λ2)ed,

in which d ∈ 1, 2, 3 and 0 ≤ n1, n2, n3, n1 + n2 + n3 ≤ p− 4.
The curl of these basis functions can be easily computed with (3.4) and (3.5) by observing
that the standard basis vectors are constant vectors and thus ∇× ed = 0 for all d = 1, .., 3.
It follows that

∇×ψb
d,n1,n2,n3

=− ed ×
(

λ1λ2λ3λ4Ln1(λ1 − λ2)Ln2(λ3 − λ2)
dLn3

dξ
(λ4 − λ2)∇(λ4 − λ2)

+ λ1λ2λ3λ4Ln1(λ1 − λ2)Ln3(λ4 − λ2)
dLn2

dξ
(λ3 − λ2)∇(λ3 − λ2)

+ λ1λ2λ3λ4Ln2(λ3 − λ2)Ln3(λ4 − λ2)
dLn1

dξ
(λ1 − λ2)∇(λ1 − λ2)

+ λ1λ2λ3Ln1(λ1 − λ2)Ln2(λ3 − λ2)Ln3(λ4 − λ2)∇λ4

+ λ1λ2λ4Ln1(λ1 − λ2)Ln2(λ3 − λ2)Ln3(λ4 − λ2)∇λ3

+ λ1λ3λ4Ln1(λ1 − λ2)Ln2(λ3 − λ2)Ln3(λ4 − λ2)∇λ2

+ λ2λ3λ4Ln1(λ1 − λ2)Ln2(λ3 − λ2)Ln3(λ4 − λ2)∇λ1

)

.

Together, all the basis functions of this section form a hierarchic basis for the spaces X̂curl
p

for p ∈ N [2]. In Table 3.3 it is mentioned which functions are used when, and how many
functions of that kind there are.

17



Function type Use when Number of

basis functions

Edge p ≥ 1 6(p + 1)
Edge-based face p ≥ 2 12(p − 1)
Face bubble p ≥ 3 4(p − 2)(p − 1)
Face-based interior p ≥ 3 2(p − 2)(p − 1)
Interior bubble p ≥ 4 (p− 3)(p − 2)(p − 1)/2

Table 3.3: Number and type of basis functions needed for hierarchic curl-conforming ele-
ments

3.3 Interior penalty discretization of the time-harmonic Maxwell

equations

Consider the system

∇× ǫ−1∇×H− ω2µH = J, in Ω, (3.6)

n×H = g, on Γn ⊆ ∂Ω, (3.7)

and with periodic boundary conditions on Γp = ∂Ω \ Γn. In this section, the system
(3.6)-(3.7) will be discretized by an interior penalty discontinuous Galerkin (IP-DG) finite
element method, analogously to the IP-DG discretization in [21]. First, the system will be
written as a first order system. It will be integrated by parts over each element and summed
over all elements. Then, with the help of properly defined lifting operators, the auxiliary
variable can be eliminated. Finally, the IP-fluxes will be inserted to complete the IP-DG
discretization.

3.3.1 Weak formulation

First, rewrite system (3.6) as a first order system:

∇× ǫ−1q− ω2µH = J in Ω,

q = ∇×H in Ω,

in which ǫ = ǫ(x) and µ = µ(x), so the material is assumed to be either homogeneous or
inhomogeneous. Let Σh be the finite element space, so either

Σh =
{

u ∈
(

L2(Ω)
)3
| u is a hierarchic basis function

}

,

or
Σh =

{

u ∈
(

L2(Ω)
)3
| u is a Nédélec basis function

}

.

Then, multiply both these equations with arbitrary test functions φ,π ∈ Σh, integrate over
each element in the domain and sum over the elements. The resulting system is

∫

Ω
(∇h × ǫ−1qh) · φ dx− ω2µ

∫

Ω
Hh · φ dx =

∫

Ω
J · φ dx,

∫

Ω
qh · π dx =

∫

Ω
(∇h ×Hh) · π dx,

in which the operator ∇h is defined as the element wise application of the operator ∇. Now
use the following identities [10]:

∇ · (A×B) = B · (∇×A)−A · (∇×B),
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(∇×A) ·B = ∇ · (A×B) + (∇×B) ·A,

A · (B×C) = B · (C ×A).

After applying Gauss’ theorem the following integrals can be written as
∫

Ω

(

∇h × ǫ−1qh

)

· φ dx =

∫

Ω
∇h ·

(

ǫ−1qh × φ
)

+ ǫ−1qh · (∇h × φ) dx

=

∫

Ω
ǫ−1qh · (∇h × φ) dx+

∑

K∈Th

∫

∂K

(

(ǫ−1qh)
∗ × φ

)

· dA

=

∫

Ω
ǫ−1qh · (∇h × φ) dx+

∑

K∈Th

∫

∂K

(

(ǫ−1qh)
∗ × φ

)

· n dA

=

∫

Ω
ǫ−1qh · (∇h × φ) dx+

∑

K∈Th

∫

∂K

(

n× (ǫ−1qh)
∗) · φ dA,

∫

Ω
(∇h ×Hh) · π dx =

∫

Ω
∇h · (Hh × π) +Hh · (∇h × π) dx

=

∫

Ω
Hh · (∇h × π) dx+

∑

K∈Th

∫

∂K
(H∗

h × π) · n dA

=

∫

Ω
−∇h · (Hh × π) + π · (∇h ×Hh) dx+

∑

K∈Th

∫

∂K
(H∗

h × π) · n dA

=

∫

Ω
(∇h ×Hh) · π dx+

∑

K∈Th

∫

∂K
((H∗

h −Hh)× π) · n dA

=

∫

Ω
(∇h ×Hh) · π dx+

∑

K∈Th

∫

∂K
(n× (H∗

h −Hh)) · π dA.

In the expressions above, a ∗ denotes the trace of the entity at the boundary of an element.
Since the magnetic field H and auxiliary variable q may be discontinuous at faces, they do
not have well-defined traces and one needs to define the value of these traces as a function
later on. At this point, the weak formulation of (3.6) becomes:
Find (Hh,qh) ∈ Σh × Σh, such that for all functions (φ,π) ∈ Σh × Σh
∫

Ω
ǫ−1qh · (∇h ×φ) dx− ω2µ

∫

Ω
Hh · φ dx+

∑

K∈Th

∫

∂K
(n× (ǫ−1q∗

h)) · φ dA =

∫

Ω
J · φ dx,

(3.8)
∫

Ω
(∇h ×Hh) · π dx+

∑

K∈Th

∫

∂K
(n× (H∗

h −Hh)) · π dA =

∫

Ω
qh · π dx. (3.9)

3.3.2 Primal formulation

To get to the primal formulation, combine (3.8)-(3.9) with the identity

∑

K∈Th

∫

∂K
(n× u) · v dA = −

∫

F i
h

{u} · JvKT dA+

∫

F i
h

JuKT · {v}dA +

∫

Fn
h

(n× u) · v dA,

which can be obtained by direct evaluation of the sums over the faces. Note that all the
faces on a boundary with periodic boundary conditions are interior faces, and the other
boundary faces have the boundary condition n × H = g. The results are the following
integrals

∑

K∈Th

∫

∂K

(

n× ǫ−1q∗
h

)

· φ dA =−

∫

F i
h

{

(ǫ−1qh)
∗} · JφKT dA+

∫

F i
h

J(ǫ−1qh)
∗KT · {φ} dA
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+

∫

Fn
h

(

n× (ǫ−1qh)
∗) · φ dA,

∑

K∈Th

∫

∂K
(n× (H∗

h −Hh)) · π dA =−

∫

F i
h

{H∗
h −Hh} · JπKT dA+

∫

F i
h

JH∗
h −HhKT · {π} dA

+

∫

Fn
h

(n× (H∗
h −Hh)) · π dA.

Then the following forms are obtained:

∫

Ω
ǫ−1qh · (∇h × φ) dx− ω2µ

∫

Ω
Hh · φ dx−

∫

F i
h

{

(ǫ−1qh)
∗} · JφKT dA

+

∫

F i
h

J(ǫ−1qh)
∗KT · {φ} dA+

∫

Fn
h

(

n× (ǫ−1qh)
∗) · φ dA =

∫

Ω
J · φ dx,

∫

Ω
(∇h ×Hh) · π dx−

∫

F i
h

{H∗
h −Hh} · JπKT dA+

∫

F i
h

{π} · JH∗
h −HhKT dA

+

∫

Fn
h

(n× (H∗
h −Hh)) · π dA =

∫

Ω
qh · π dx.

(3.10)

In order to express qh in terms of Hh, define the lifting operators
L : [L2(Fh)]

3 → Σh and R : [L2(Fh)]
3 → Σh as

∫

Ω
L(u) · v dx =

∫

F i
h

u · JvKT dA, ∀v ∈ Σh,

∫

Ω
R(u) · v dx =

∫

Fh

u · {v} dA, ∀v ∈ Σh.

Note that by the definition of {u} and JuKT at the boundary, it holds that

∫

Ω
R(JH∗

h −HhKT ) · π dx =

∫

F i
h

{π} · JH∗
h −HhKT dA+

∫

Fn
h

(n× (H∗
h −Hh)) · π dA.

Substitution of these lifting operators into (3.10) leads to the following expression for qh:

qh = ∇h ×Hh − L({H
∗
h −Hh}) +R(JH

∗
h −HhKT ).

Substitution of this last expression then results in the formulation

∫

Ω
ǫ−1 (∇h ×Hh − L({H

∗
h −Hh}) +R(JH

∗
h −HhKT )) · (∇h × φ) dx

− ω2µ

∫

Ω
Hh · φ dx−

∫

F i
h

{(ǫ−1qh)
∗} · JφKT dA+

∫

F i
h

J(ǫ−1qh)
∗KT · {φ} dA

+

∫

Fn
h

(

n× (ǫ−1qh)
∗) · φ dA =

∫

Ω
J · φ dx.

Finally, we arrive at the primal formulation:
Find Hh ∈ Σh, such that for all φ ∈ Σh,

B(Hh,φ) = (J,φ)Ω,

in which (·, ·)Ω denotes the standard inner product in [L2(Ω)]2 and the bilinear form
B(Hh,φ) is given by
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B(Hh,φ) =

∫

Ω
ǫ−1(∇h ×Hh) · (∇h × φ) dx− ω2µ

∫

Ω
Hh · φ dx

−

∫

F i
h

{H∗
h −Hh} · Jǫ

−1∇h × φKT dA+

∫

F i
h

JH∗
h −HhKT · {ǫ

−1∇h ×φ} dA

−

∫

F i
h

{(ǫ−1qh)
∗} · JφKT dA+

∫

F i
h

J(ǫ−1qh)
∗KT · {φ} dA (3.11)

+

∫

Fn
h

(

n× (ǫ−1qh)
∗) · φ dA+

∫

Fn
h

(n× (H∗
h −Hh)) · (∇h × φ) dA.

In this expression, the numerical fluxes q∗
h and H∗

h still have to be chosen.

3.3.3 Numerical fluxes

In order to complete the discontinuous Galerkin discretization, we still need to define the
numerical fluxes. For the interior penalty method, choose the numerical fluxes q∗

h and H∗
h

on each interior face and face with a periodic boundary condition, f ∈ F i
h, as

H∗
h = {Hh},

(ǫ−1qh)
∗ = {ǫ−1∇h ×Hh} − αf Jǫ

−1HhKT ,

in which αf is a face-dependent penalty parameter, which depends on the mesh size and
polynomial order of the finite element space. Optimal choices for this parameter are given
in [21].
The interior face integrals in (3.11) now equal

∫

F i
h

{H∗
h −Hh} · Jǫ

−1∇h × φKT dA = 0,

∫

F i
h

JH∗
h −HhKT · {ǫ

−1∇h × φ} dA =−

∫

F i
h

JHhKT · {ǫ
−1∇h × φ} dA,

∫

F i
h

{(ǫ−1qh)
∗} · JφKT dA =

∫

F i
h

{ǫ−1∇h ×Hh} · JφKT dA−

∫

F i
h

αf Jǫ
−1HhKT · JφKT dA,

∫

F i
h

J(ǫ−1qh)
∗KT · {φ} dA = 0.

At boundaries with boundary conditions n×H = g, choose the numerical flux as

n×H∗
h = g,

(ǫ−1qh)
∗ = ǫ−1∇h ×Hh − αf ǫ

−1(n×Hh) + αf ǫ
−1g.

The boundary face integrals in (3.11) are now equal to

∫

Fn
h

(

n× (ǫ−1qh)
∗) · φ dA =−

∫

Fn
h

(n× φ) · ǫ−1 (∇h ×Hh) dA

+

∫

Fn
h

αf (n× φ) · ǫ
−1 (n×Hh) dA

−

∫

Fn
h

αf ǫ
−1g · (n×φ) dA,
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∫

Fn
h

(n× (H∗
h −Hh)) · (∇h ×φ) dA =

∫

Fn
h

(g − (n×Hh)) · (∇h × φ) dA.

The interior penalty discontinuous Galerkin method is now given by:
Find Hh ∈ Σh, such that for all φ ∈ Σh,

BIP (Hh,φ) = J
IP (φ), (3.12)

in which the bilinear form BIP (Hh,φ) is given by

BIP (Hh,φ) =

∫

Ω
ǫ−1(∇h ×Hh) · (∇h × φ) dx− ω2

∫

Ω
µHh · φ dx

−

∫

Fh

JHhKT · {ǫ
−1∇h × φ} dA−

∫

Fh

{ǫ−1∇h ×Hh} · JφKT dA

+

∫

Fh

αf Jǫ
−1HhKT · JφKT dA

and the linear form J IP (φ) by

J IP (φ) =

∫

Ω
J · φ dx+

∫

Fn
h

αf ǫ
−1g · (n× φ) dA

−

∫

Fn
h

g · (∇h × φ) dA.

3.4 Implementation

In this section, it will be discussed how the IP-DG scheme of last section can be implemented
for a domain Ω = [0, 1]3. Let either be Γn = ∂Ω or Γn = ∅, so the boundary conditions are
either all of the type n×H = g or there are only periodic boundary conditions.
To implement the IP-DG scheme, the following steps should be taken:

1. Make a tessellation of the domain Ω,

2. Convert the integrals of (3.12) to a linear system,

3. Solve the resulting linear system.

These points will be treated in the rest of this section. At the end of the section, a more
detailed overview of the algorithm will be given.

3.4.1 Construction of the mesh

For the basic tests of the numerical discretization we first consider a cubic domain of size
[0, 1]× [0, 1]× [0, 1]. To generate a tetrahedral mesh for this cube, first divide the cube into
(nx × ny × nz) bricks, which are divided in (2 × 2 × 2) smaller bricks, which all have the
same size. Then each of these small bricks is divided into five tetrahedra, as is done in [20],
p. 52, such that the faces match exactly (a zigzag-pattern).

The first step is to define the positions of all vertices. Since all vertices are corners of
the small bricks, this can be done with three for-loops over the coordinates x, y and z. This
leads to a (nver × 3) array, where nver is the number of vertices. On every row i, there are
the x, y and z-coordinates of vertex i in the first, second and third column, respectively.

Then the elements are generated. Compute for every tetrahedron the coordinates of
the vertices and determine the indices of the vertices with the help of the array of vertex
coordinates. This results into a (Nelt × 4) array, where Nelt is the number of elements. On
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every row i, the vertex numbers of Element i are put in the first, second, third and fourth
column. For example, if element 1 consists of Vertices 2, 5, 10 and 1, then the first row of
this array is given by [2 5 10 1].

The last step is computing the faces. To do this, loop over the elements and over the
faces of the specific element and then first compute the sum of the coordinates of these
vertices. If the coordinates are not on the list of faces yet, add this face to the list of
faces, this element is KL. If the coordinates are already on the list, then this face already
exists and this is element KR of this particular face. If there are only periodic boundary
conditions, one should take the coordinates modulo 1 to make sure that the elements that
are next to each other across the boundary, are also next to each other in the list of faces.

It is also useful to save the relative position of the face on the tetrahedron, for example
the face with the first three vertices of an element has relative position 4 (see Table 3.1).
Finally, save the orientation and reflection flag of both adjacent elements, which are defined
in [22], p.171. So in the end, the faces are represented in two arrays, one for the interior
faces and one for the boundary faces. The one for the interior faces has size (nint × 11),
where nint is the number of interior faces. The first three columns of the array contain
the vertex numbers of the face, the next four columns are for the ”left” element KL: first
the element number, then the relative position and finally two columns for the orientation
flag. The last four columns are for the ”right” element KR, with the same division as with
the left element. The array for the boundary faces has size (nbound × 7), where nbound is
the number of boundary faces. Again, the first three columns are the vertex numbers, the
fourth column contains the element number, the fifth column contains the relative position
of the face and the last two columns contain the flag.

So in the end, the mesh is represented in four arrays: one that connects the vertex
numbers to the vertex coordinates, one that connects the element numbers to the vertex
numbers and two arrays with information about the faces.

3.4.2 Computation of transformations

In this step, the transformations FK are computed for every element. This can be done
with the barycentric coordinates λi of the reference tetrahedron (see Section 3.2.3) and the
coordinates of the vertices of element K, call them xi. The transformation is given by

FK(ξ) =

4
∑

i=1

xiλi(ξ).

However, it is more beneficial to express the transformation as FK(ξ) = BKξ + bK , since
it is easier to determine the inverse transformation and to determine the Jacobian matrix.
Fortunately, it is not difficult to express the transformation as a linear system:

FK

(

(0, 0, 0)T
)

=bK ,

FK

(

(1, 0, 0)T
)

=B1
K + bK ,

FK

(

(0, 1, 0)T
)

=B2
K + bK ,

FK

(

(0, 0, 1)T
)

=B3
K + bK ,

in which Bj
K is the jth column of BK .

The Jacobian matrix is now given by BK and the inverse transformation is given by

F−1
K (x) = B−1

K x−B−1
K bK .
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3.4.3 Computation of local matrices

The next step is to compute the local matrices that will in the end be assembled into a global
matrix. In order to do that, first the solution will be expressed as a linear combination of
the basis functions, then (3.12) will be expressed as a linear system in the coefficients and
finally the local matrices can be computed with Gauss quadrature.

Substitution

To determine the linear system for (3.12), we substitute for each element K ∈ Th

Hh(x)|K =

np
∑

j=1

uj,Kψj,K(x),

in which uj,K ∈ R are coefficients and ψj,K(x) =
[

(dFK)−Tψj

]

◦F−1
K are the basis functions

transformed from the reference element K̂ to element K (see Section 3.1 and Appendix A).
A simple substitution shows that the curl is a linear operator, so

∇h ×Hh(x)|K =

np
∑

j=1

uj,K∇h ×ψj,K(x).

If one also substitutes φ(x) = ψi,K(x), the contributions to (3.12) that integrate over the
elements become

∫

Ω
ǫ−1(∇h ×Hh) · (∇h × φ) dx =

np
∑

j=1

uj,K

∫

K
ǫ−1(∇h ×ψj,K) · (∇h ×ψi,K) dx

= SKuK ,
∫

Ω
µHh · φ dx =

np
∑

j=1

uj,K

∫

K
µψj,K · ψi,K dx

=MKuK .

The contributions with integrals over the faces become
∫

Fh

JHhKT · {ǫ
−1∇h × φ}+ {ǫ

−1∇h ×Hh} · JφKT dA

=
∑

f∈∂K

∫

f
JHKT · {ǫ

−1(∇h × φi,K)}+ {ǫ−1(∇h ×H)} · Jφi,KKT dA

=
∑

f∈∂K,
K=KL

∫

f

(

(nL ×HL) + (nR ×HR)
)

·
1

2

(

(

ǫ−1
)L

(∇h ×φi,K)
)

dA

+
∑

f∈∂K,
K=KR

∫

f

(

(nL ×HL) + (nR ×HR)
)

·
1

2

(

(

ǫ−1
)R

(∇h × φi,K)
)

dA

+
∑

f∈∂K
K=KL

∫

f

1

2

(

(

ǫ−1
)L

(∇h ×HL) +
(

ǫ−1
)R

(∇h ×HR)
)

·
(

nL × φi,K

)

dA

+
∑

f∈∂K
K=KR

∫

f

1

2

(

(

ǫ−1
)L

(∇h ×HL) +
(

ǫ−1
)R

(∇h ×HR)
)

·
(

nR ×φi,K

)

dA

=
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KL

∫

f

1

2
(nL × φj,KL

) ·
(

ǫ−1
)L

(∇h × φi,K) dA
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+
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KL

∫

f

1

2

(

ǫ−1
)L

(∇h × φj,KL
) · (nL × φi,K) dA

+
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KR

∫

f

1

2
(nR × φj,KR

) ·
(

ǫ−1
)L

(∇h × φi,K) dA

+
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KR

∫

f

1

2

(

ǫ−1
)R

(∇h × φj,KR
) · (nL × φi,K) dA

+
∑

f∈∂K,
K=KR

np
∑

j=1

uj,KL

∫

f

1

2
(nL × φj,KL

) ·
(

ǫ−1
)R

(∇h ×φi,K) dA

+
∑

f∈∂K,
K=KR

np
∑

j=1

uj,KL

∫

f

1

2

(

ǫ−1
)L

(∇h × φj,KL
) · (nR × φi,K) dA

+
∑

f∈∂K,
K=KR

np
∑

j=1

uj,KR

∫

f

1

2
(nR × φj,KR

) ·
(

ǫ−1
)R

(∇h × φi,K) dA

+
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KR

∫

f

1

2

(

ǫ−1
)L

(∇h × φj,KR
) · (nR × φi,K) dA.

∫

Fh

αf Jǫ
−1HhKT · JφKT

=
∑

f∈∂K,
K=KL

∫

f
αf

(

(

ǫ−1
)L

(nL ×HL) +
(

ǫ−1
)R

(nR ×HR)
)

· (nL × φi,K) dA

+
∑

f∈∂K,
K=KR

∫

f
αf

(

(

ǫ−1
)L

(nL ×HL) +
(

ǫ−1
)R

(nR ×HR)
)

· (nR × φi,K) dA

=
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KL

∫

f
αf

(

ǫ−1
)L

(nL × φj,KL
) · (nL × φi,K) dA

+
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KR

∫

f
αf

(

ǫ−1
)R

(nR × φj,KR
) · (nL × φi,K) dA

+
∑

f∈∂K,
K=KR

np
∑

j=1

uj,KL

∫

f
αf

(

ǫ−1
)L

(nL ×φj,KL
) · (nR × φi,K) dA

+
∑

f∈∂K,
K=KR

np
∑

j=1

uj,KR

∫

f
αf

(

ǫ−1
)R

(nR × φj,KR
) · (nR × φi,K) dA.

In the expressions above, KL and KR are the elements adjacent to face f .
Define the matrices SK ,MK ,ACD and BCD, C,D ∈ {KL,KR} as

SijK =

∫

K
ǫ−1(∇h ×ψj,K) · (∇h ×ψi,K) dx,
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Mij
K =

∫

K
µψj,K · ψi,K dx,

Aij
CD =

1

2

∫

f

(

ǫ−1
)C

(nD ×ψj,KD
) · (∇h ×ψi,KC

) dA,

BijCD =

∫

f

(

ǫ−1
)D

(nD ×ψj,KD
) · (nC ×ψi,KC

) dA,

and define the right-hand side vectors

Gf =

∫

f
ǫ−1g · (n× φ),

Hf =

∫

f
ǫ−1g · (∇h × φ).

At the end of this section it will be shown how these matrices and vectors can be incorporated
in the global matrices.

Gauss quadrature

Both on the reference tetrahedron K̂ and the reference triangle T̂ , which has vertices
(−1, 1), (1,−1) and (−1, 1), Gauss quadrature is used to compute the integrals over this
domain. Let wℓ be the Gauss weights and ξℓ the Gauss quadrature points, then any inte-
gral can be approximated with

∫

K̂
f(ξ) dξ ≈

∑

ℓ

f(ξl)wℓ,

∫

T̂
f(ξ) dξ ≈

∑

ℓ

f(ξl)wℓ.

The number and location of the quadrature points depend on domain type and the desired
accuracy. A list of Gauss quadrature points ξℓ and weights wℓ can be found in [22], Chapter
4. The main advantage is that Gauss quadrature can compute integrals over polynomials
exactly using less points than for example Newton-Cotes quadrature. For example, if one
wants to integrate a fourth order polynomial exactly over the reference triangle, one would
need 15 points using Newton-Cotes quadrature, but only 6 points in Gauss quadrature.

Computing the integrals

In this paragraph, it will be discussed how the integrals discussed earlier in this section
can be computed. Generally, the integrands should first be expressed in terms of the basis
functions on the reference element and the transformation FK : K̂ → K, for details see
Appendix A. After that, these integrals can be computed with Gauss quadrature.
Define the Jacobian matrix dFK of the transformation FK : K̂ → K as

(dFK)lm =
∂(FK)l
∂ξm

.

In practice, this is the matrix BK , see Section 3.4.2. The entries of the matrices MK and
SK can be expressed as

Mij
K =

∫

K̂
µ(FK)(dFK)−Tψj · (dFK)−Tψi|det(dFK)| dξ

=
∑

ℓ

µ(FK(ξℓ)
(

(dFK)−T
ψj(ξℓ)

)

·
(

(dFK)−T
ψi(ξℓ)

)

|det(dFK)|wℓ,
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SijK =

∫

K̂
ǫ−1(FK)

(

1

det(dFK)
dFK∇̂ ×ψj

)

·

(

1

det(dFK)
dFK∇̂ ×ψi

)

|det(dFK)| dξ

=

∫

K̂
ǫ−1(FK)

sign(det(dFK))

det(dFK)
(dFK∇̂ ×ψj) · (dFK∇̂ ×ψi) dξ

=
∑

ℓ

ǫ−1(FK(ξℓ))
1

|det(dFK)|

(

dFK∇̂ ×ψj(ξℓ)
)

·
(

dFK∇̂ ×ψi(ξℓ)
)

wℓ,

where we used the transformations as described in Appendix A. An expression for the face
integrals ACD and BCD can be found by

Aij
CD =

1

2

∫

T̂

(

(dFKD
)−T n̂D

|(dFKD
)−T n̂D|

× (dFKD
)−Tψj(rD(η))

)

·

(

1

det(dFKC
)
dFKC

∇̂ ×ψi(rC(η))

)

ǫ−1(FKC
(rC(η)) |det(dFKL

)||(dFKL
)−T n̂L||rL,η1 × rL,η2 | dη,

BijCD =

∫

T̂

(

(dFKD
)−T n̂D

|(dFKD
)−T n̂D|

× (dFKD
)−Tψj(rD(η))

)

·

(

(dFKC
)−T n̂C

|(dFKC
)−T n̂C |

× (dFKC
)−Tψi(rC(η))

)

ǫ−1(FKD
(rD(η)) |det(dFKL

)||(dFKL
)−T n̂L||rL,η1 × rL,η2 | dη,

in which the transformation rj(η) : T̂ → f̂j is defined in Appendix A. The vectors GK and
HK can be computed as

Gif =

∫

T̂
ǫ−1(FK(r(η))) g(FK(r(η))) ·

(

(dFK)−T n̂

|(dFK)−T n̂|
× (dFK)−Tψi(r(η))

)

|det(dFK)||(dFK)−T n̂||rη1 × rη2 | dη,

Hi
f =

∫

T̂
ǫ−1(FK(r(η))) g(FK(r(η))) ·

(

1

det(dFK)
dFK∇̂ ×ψi(r(η))

)

|det(dFK)||(dFK)−T n̂||rη1 × rη2 | dη.

At last, we have to compute the entries of the right-hand side J i
K = (J,ψi,K) for every

element K. This can be done by

J i
K =

∫

K̂
(J(FK(ξ))) ·

(

(dFK)−Tψi

)

|det(dFK)| dξ.

3.4.4 Overview of the algorithm

Standard problem

In order to implement the IP-DG method for the standard problem, the following steps
should be taken:

1. Generate a mesh,

2. Define the basis functions on the reference tetrahedron and compute their value at
Gauss points,

3. Compute the element matrices MK ,SK ,ACD and BCD for C,D ∈ {L,R} for every
element K ∈ Th and face f ∈ Fh,

4. Compute JK ,Gf and Hf for every element K ∈ Th and face f ∈ Fn
h ,
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5. Assemble the global matrix [M ] and the righthand side [F ] with a loop over the
elements and a loop over the faces as below,

6. Solve the linear system [M ]u = [F ] with Matlab’s \-operator,

7. For every element, extract the solution Hh(x)|K =
∑np

j=1 uj,Kψj,K(x),

8. Plot and post-process the solution Hh(x).

The assembly of the global matrix can be summarized as:
initialize [M ] = zeros(np ·Nelt, np ·Nelt) and [F ] = zeros(np ·Nelt, 1). Then loop over the
elements, and update

[M ]KK ← SK − ω2MK

[F ]K ← JK .

Next, loop over the interior faces and the faces with periodic boundary conditions and
update

[M ]LL ← −ALL −A
T
LL + αfBLL,

[M ]LR ← −ALR −A
T
RL + αfBLR,

[M ]RL ← −ARL −A
T
LR + αfBRL,

[M ]RR ← −ARR −A
T
RR + αfBRR.

Finally, loop over the boundary faces f ∈ Fn
h and update

[M ]KK ← −AKK −A
T
KK + αfBLL,

[F ]K ← αFGf −Hf .

Solving the resulting system leads to the desired coefficients uj,K . The approximate solution
Hh then can be found using the expression

Hh(x) =

np
∑

j=1

uj,Kψj,K(x).

Eigenvalue problem

In order to implement the IP-DG method for the eigenvalue problem, the following steps
should be taken:

1. Generate a mesh,

2. Define the basis functions on the reference tetrahedron and compute their value at
Gauss points,

3. Compute the element matrices MK ,SK ,ACD and BCD for C,D ∈ {L,R} for every
element K ∈ Th and face f ∈ Fh,

4. Compute Gf and Hf for every element K ∈ Th and face f ∈ Fn
h ,

5. Assemble the global matrices [S] and [M ] with a loop over the elements and a loop
over the faces as below,

6. Solve the generalized eigenproblem [S]u = λ[M ]u with Matlab’s ”eigs”-function and
remove eigenvalues with value zero,
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7. Display and post-process the eigenfunctions λh.

To construct the matrices [S] and [M ], first initialize [S] = zeros(np · Nelt, np · Nelt) and
[M ] = zeros(np ·Nelt, np ·Nelt). Then loop over the elements and update

[S]KK ← SK ,

[M ]KK ←MK .

Next, loop over the interior faces, and update

[S]LL ← −ALL −A
T
LL + αfBLL,

[S]LR ← −ALR −A
T
RL + αfBLR,

[S]RL ← −ARL −A
T
LR + αfBRL,

[S]RR ← −ARR −A
T
RR + αfBRR.

Finally, loop over the boundary faces f ∈ Fn
h and update

[S]KK ← −AKK −A
T
KK + αfBLL.

Some results of both the standard problem and the eigenvalue problem will be given in next
section.

3.5 Results

In this section, some results will be presented. First we will present the results of the
standard time-harmonic Maxwell problem in a homogeneous medium, then the results of
the eigenvalue problem are presented.

3.5.1 Standard problem

Consider the time-harmonic Maxwell equations with ω2 = 1. As test case, the homogeneous
unit cube Ω = [0, 1]3 with ǫr = µr = 1 is chosen. All matrices are computed with the
hierarchic elements as described in Section 3.2.3.
Assume that the field at the boundary satisfies n×H = 0 at ∂Ω. The source term is chosen
to be

J1(x, y, z) = (2π2 − 1)





sin(πy) sin(πz)
sin(πz) sin(πx)
sin(πx) sin(πy)



 ,

so that the exact solution is given by

H(x, y, z) =





sin(πy) sin(πz)
sin(πz) sin(πx)
sin(πx) sin(πy)



 .

The optimal convergence rate for this problem is O(hp+1) in the L2-norm and O(hp) in the
DG-norm [12]. From [21], we know that the optimal penalty parameter αf,0 equals

αf,0 =
1

2hf
+

2

3
(p+ 1)(p + 3)

(

S(f)

V (KL)
+

S(f)

V (KR)

)

,

in which hf is the diameter of the circumscribed circle of the face, p is the maximum
polynomial order of the basis functions, S(f) is the area of the face and V (K) is the volume
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of element K. Since the expressions for computing the optimal penalty parameter for each
face is rather involved and the parameter can be changed a bit without influencing the
stability ([21]), the penalty parameter is chosen to be

αf =
2(p + 1)(p + 3)

min(dx, dy, dz)
.

The computations are performed in Matlab, in which solving the linear system is done with
Matlab’s \-operator. The results for the first four hierarchic elements are displayed in Table
3.4. As can be seen in the table, the convergence results are of the optimal order. It can
also be seen in the table that higher order polynomials are more efficient than lower order
polynomials for this problem.

To test the problem with periodic boundary conditions, we look at

J2(x, y, z) = (8π2 − 1)





sin(2πy) sin(2πz)
sin(2πz) sin(2πx)
sin(2πx) sin(2πy)



 ,

so that the exact solution is given by

H(x, y, z) =





sin(2πy) sin(2πz)
sin(2πz) sin(2πx)
sin(2πx) sin(2πy)



 .

The results are displayed in Table 3.5. Again, the convergence results are of the correct
order. The errors are a bit larger for this problem, since we now have a full period of the
sines instead of only half a period. The results for source J2 with boundary conditions
n×H = 0 are similar to the results with the periodic boundary conditions.

3.5.2 Eigenvalue problem

As a test case, we again consider the homogeneous unit cube Ω = [0, 1]3 with ǫ = µ = 1 and
the hierarchic elements of Section 3.2.3. The eigenvalues ω2 can be written as [21]

ω2 = π2(l2 +m2 + n2),

where l,m, n ∈ N\{0} and lm+ ln+mn > 0. If l,m and n are all non-zero, the eigenvalue
has multiplicity 2. All the eigenfunctions are smooth. From [7] we know that the optimal
convergence rate for the eigenvalues equals O(h2p), since the solution is smooth and the
IP-DG method is a hermitian method.
The penalty parameter is chosen the same as before, so

αf =
2(p + 1)(p + 3)

min(dx, dy, dz)
.

To find the eigenvalues, Matlab’s iterative eigenvalue solver ”eigs” is used. The results are
displayed in Tables 3.6 - 3.9. As can be seen in these tables, the convergence order seems
to converge to 2p, except for the finest grid of p = 4. However, the error in the eigenvalues
are so small that rounding errors due to working at double precision (ǫ =2.22e-16) and the
rounding errors in the Gauss-quadrature rules are relevant. Therefore we believe that this
method works correctly.
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‖H−Hh‖L2 Order ‖H−Hh‖DG Order DOFs

p = 1
Nelt = 5 5.2230e-01 3.5999e+00 60
Nelt = 40 1.6789e-01 1.64 1.8115e+00 0.99 480
Nelt = 320 5.0805e-02 1.72 9.4992e-01 0.93 3840
Nelt = 2560 1.3575e-02 1.90 4.8244e-01 0.98 30720
Nelt = 20480 3.4829e-03 1.96 2.4253e-01 0.99 245760

p = 2
Nelt = 5 1.5189e-01 1.4179e00 150
Nelt = 40 2.8098e-02 2.43 4.9225e-01 1.53 1200
Nelt = 320 3.8554e-03 2.87 1.3069e-01 1.91 9600
Nelt = 2560 4.9803e-04 2.95 3.3236e-02 1.98 76800
Nelt = 20480 6.3073e-05 2.98 8.3513e-03 1.99 614400

p = 3
Nelt = 5 6.9848e-02 8.4323e-01 300
Nelt = 40 4.3311e-03 4.01 9.8644e-02 3.10 2400
Nelt = 320 2.8585e-04 3.92 1.2857e-02 2.94 19200
Nelt = 2560 1.8143e-05 3.98 1.6236e-03 2.99 1228800

p = 4
Nelt = 5 2.7999e-03 1.3739e-01 525
Nelt = 40 5.6767e-04 2.30 1.5582e-02 3.14 4200
Nelt = 320 1.8830e-05 4.91 1.0171e-03 3.94 33600
Nelt = 2560 6.0128e-07 4.97 6.4228e-05 3.99 268800

Table 3.4: Convergence of IP-DG method on tetrahedral meshes with source J1 and bound-
ary conditions n×H = 0 at ∂Ω.

‖H−Hh‖L2 Order ‖H−Hh‖DG Order

p = 1
Nelt = 40 6.0205e-01 7.1879e+00
Nelt = 320 1.9396e-01 1.63 3.6752e+00 0.97
Nelt = 2560 5.3682e-02 1.85 1.9196e+00 0.94
Nelt = 20480 1.3796e-02 1.96 9.7027e-01 0.98

p = 2
Nelt = 40 1.8277e-01 2.9173e+00
Nelt = 320 3.0013e-02 2.61 9.9472e-01 1.55
Nelt = 2560 3.9812e-03 2.91 2.6285e-01 1.92

p = 3
Nelt = 40 8.5117e-02 1.6541e+00
Nelt = 320 4.5800e-03 4.22 1.9650e-01 3.07
Nelt = 2560 2.9255e-04 3.97 2.5690e-02 2.94

p = 4
Nelt = 40 1.4872e-02 2.7565e-01
Nelt = 320 5.8974e-04 4.66 3.0982e-02 3.15
Nelt = 2560 1.9182e-05 4.94 2.0287e-03 3.93

Table 3.5: Convergence of IP-DG method on tetrahedral meshes with source J2 and periodic
boundary conditions at ∂Ω.
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Analytical |λ− λh|
Nelt = 40 Nelt = 320 Order Nelt = 2560 Order Nelt = 20480 Order

2π2 2.1693e+00 7.8772e-01 1.46 2.1519e-01 1.87 5.5713e-02 1.95
2π2 2.1693e+00 7.8772e-01 1.46 2.1519e-01 1.87 5.5713e-02 1.95
2π2 2.1693e+00 7.8772e-01 1.46 2.1519e-01 1.87 5.5713e-02 1.95
3π2 6.3406e+00 1.7056e+00 1.89 4.6926e-01 1.86 1.2180e-01 1.95
3π2 6.3406e+00 1.7056e+00 1.89 4.6926e-01 1.86 1.2180e-01 1.95
5π2 5.1191e+00 4.6910e+00 0.13 1.3150e+00 1.83 3.4025e-01 1.95
5π2 5.1191e+00 4.6910e+00 0.13 1.3150e+00 1.83 3.4025e-01 1.95
5π2 5.1191e+00 4.6910e+00 0.13 1.3150e+00 1.83 3.4025e-01 1.95
5π2 2.4528e+01 4.6918e+00 2.39 1.3152e+00 1.83 3.4026e-01 1.95
5π2 2.4528e+01 4.6918e+00 2.39 1.3152e+00 1.83 3.4026e-01 1.95

Table 3.6: Convergence of the IP-DG method with p = 1 and n×H = 0 at ∂Ω.

Analytical |λ− λh|
Nelt = 40 Nelt = 320 Order Nelt = 2560 Order

2π2 2.1142e-01 1.5778e-02 3.74 1.0696e-03 3.88
2π2 2.1142e-01 1.5778e-02 3.74 1.0696e-03 3.88
2π2 2.1142e-01 1.5778e-02 3.74 1.0696e-03 3.88
3π2 2.0040e-01 5.2232e-02 1.94 3.5881e-03 3.86
3π2 2.0040e-01 5.2232e-02 1.94 3.5881e-03 3.86
5π2 1.3339e+00 2.1779e-01 2.61 1.5320e-02 3.83
5π2 1.3339e+00 2.1779e-01 2.61 1.5320e-02 3.83
5π2 1.3339e+00 2.1779e-01 2.61 1.5320e-02 3.83
5π2 2.6659e+00 2.1782e-01 3.61 1.5320e-02 3.83
5π2 2.6659e+00 2.1782e-01 3.61 1.5320e-02 3.83

Table 3.7: Convergence of the IP-DG method with p = 2 and n×H = 0 at ∂Ω.

Analytical |λ− λh|
Nelt = 40 Nelt = 320 Order Nelt = 2560 Order

2π2 8.3182e-03 1.6457e-04 5.66 2.7419e-06 5.91
2π2 8.3182e-03 1.6457e-04 5.66 2.7422e-06 5.91
2π2 8.3182e-03 1.6457e-04 5.66 2.7433e-06 5.91
3π2 7.1576e-02 8.2898e-04 6.43 1.4109e-05 5.88
3π2 7.1576e-02 8.2898e-04 6.43 1.4109e-05 5.88
5π2 2.5029e-01 5.5273e-03 5.50 9.6445e-05 5.84
5π2 2.5029e-01 5.5273e-03 5.50 9.6445e-05 5.84
5π2 2.5029e-01 5.5273e-03 5.50 9.6445e-05 5.84
5π2 2.6950e-01 5.5303e-03 5.61 9.6456e-05 5.84
5π2 2.6950e-01 5.5303e-03 5.61 9.6456e-05 5.84

Table 3.8: Convergence of the IP-DG method with p = 3 and n×H = 0 at ∂Ω.
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Analytical |λ− λh|
Nelt = 40 Nelt = 320 Order Nelt = 2560 Order

2π2 2.4102e-04 1.0756e-06 7.81 4.3582e-08 4.63
2π2 2.4102e-04 1.0758e-06 7.81 4.3582e-08 4.63
2π2 2.4102e-04 1.0768e-06 7.81 4.3618e-08 4.63
3π2 2.1587e-04 7.2257e-06 4.90 2.9534e-07 4.61
3π2 2.1587e-04 7.2263e-06 4.90 2.9534e-07 4.61
5π2 1.3896e-02 8.3946e-05 7.37 3.4878e-06 4.59
5π2 1.3896e-02 8.3946e-05 7.37 3.4878e-06 4.59
5π2 1.3896e-02 8.3946e-05 7.37 3.4878e-06 4.59
5π2 1.5931e-02 8.3981e-05 7.57 3.4885e-06 4.59
5π2 1.5931e-02 8.3981e-05 7.57 3.4885e-06 4.59

Table 3.9: Convergence of the IP-DG method with p = 4 and n×H = 0 at ∂Ω.

33



Chapter 4

Discretization of

Maxwell-equations for periodic

media

Now that it is known how to use discontinuous Galerkin methods for the time-harmonic
Maxwell problem in a cavity, we will continue to the goal of this project, namely how to
approximate the magnetic field/eigenvalues in a periodic medium. Since the magnetic field
is expanded in Bloch-modes, it will be beneficial to adapt the basis functions accordingly.
This will be done in Section 4.1. After that, the IP-DG discretization will be derived in
Section 4.2, followed by some details on how to implement that discretization in Section 4.3.
Finally, in Section 4.4, some results will be given for the simplest case, namely an infinite
homogeneous domain.

4.1 Modified basis functions

In this section, it will be discussed how to modify the basis functions in order to approximate
uk instead of H. To do that, first observe that H(x) = eik·xuk(x). Let {ψ} form a basis
for Hh, in this case the hierarchic basis functions as described in Section 3.2.3, and let {φ}
form a basis for ukh. Then we can express the fields in terms of a linear combination of
their basis functions:

Hh(x) =
∑

j

uj,Kψj,K(x),

ukh(x) =
∑

j

uj,Kφj,K(x).

If one now uses H(x) = eik·xuk(x), then the relation between the basis functions is

φj,K = e−ik·xψj,K .

Note that this adaption takes place on the tetrahedra in physical space.
A second step in modifying the basis functions is shifting the exponential with some function-
dependent shift, [8]

φj,K = e−ik·(x−s)ψj,K ,

in which the shifts s can be chosen as one wants. The values for the shifts used in this
project will be given in Section 4.3.6. These shifts make it easier to find a solution if one
already knows the solution for the same problem with slightly different k. Note that

∇k ×φj,K = ∇× (e−ik·(x−s)ψj,K) + (ik× (e−ik·(x−s)ψj,K)
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= e−ik·(x−s)(∇×ψj,K),

so these functions are convenient if one wants to use the operator ∇k. Normally, we would
like to write the basis functions in terms of the coordinates of the reference tetrahedron, but
it will turn out that this is not needed for the computations later on. In the next section,
Maxwell’s equation for periodic media will be discretized.

4.2 DG discretization of photonic crystals

As with the time-harmonic Maxwell’s equations in Chapter 3, the equation

∇k × (ǫ−1(∇k × uk))− ω2µuk = J̃ in Ω,

with periodic boundary conditions has to be discretized in order to find an approximate
solution. In order to discretize the system, start again by writing the system as a first order
system:

∇k × ǫ−1q− ω2µuk = J̃ in Ω,

∇k × uk = q in Ω.

Formulate this as an integral problem by taking the inner product of both functions with
test functions (φ,π):

∫

Ω
(∇k × (ǫ−1qh)) · φ dx− ω2

∫

Ω
µukh · φ dx =

∫

Ω
J̃ · φ dx, (4.1)

∫

Ω
(∇k × ukh) · π dx =

∫

Ω
qh · π dx. (4.2)

The next step is to use Equation (4.2) to find an expression for qh in terms of ukh and its
flux uk

∗
h, then manipulate Equation (4.1), such that this qh can be inserted again. Insert

this q and choose the fluxes q∗
h and uk

∗
h. The resulting bilinear form in ukh and φ can then

be used for the computations.
Start with manipulating the left-hand side of (4.2) by integrating by parts twice as in Section
3.3.1:

∫

Ω
(∇k × ukh) · π dx =

∫

Ω
(∇h × ukh) · π + (ik× ukh) · π dx

=

∫

Ω
(∇h × ukh) · π

+ (ik× ukh) · π dx+
∑

K∈Th

∫

∂K
(n× (uk

∗
h − ukh)) · π dA

=

∫

Ω
(∇k × ukh) · π dx−

∫

Fh

{uk
∗
h − ukh} · JπKT dA

+

∫

Fh

Juk
∗
h − ukhKT · {π} dA.

Define the lifting operators
L : [L2(Fh)]

3 → Σh and R : [L2(Fh)]
3 → Σh as

∫

Ω
L(u) · v dx =

∫

F i
h

u · JvKT dA, ∀v ∈ Σh,
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∫

Ω
R(u) · v dx =

∫

Fh

u · {v} dA, ∀v ∈ Σh.

Then q can be expressed as

qh = ∇k × ukh − L({uk
∗
h − ukh}) +R(Juk

∗
h − ukhKT ). (4.3)

Now we will look again at Equation (4.1). We want to manipulate it such that (4.3) can
be inserted easily. In order to do that, integrate by parts and recall the manipulations of
Section 3.3.1.

∫

Ω
(∇k × ǫ−1qh) · φ dx =

∫

Ω
(∇h × ǫ−1qh) · φ+ (ik× ǫ−1qh) · φ dx

=

∫

Ω
ǫ−1qh · (∇k × φ) + (φ× ik) · ǫ−1q dx

+
∑

K∈Th

∫

∂K

(

n×
(

ǫ−1qh

)∗)
· φ dA

=

∫

Ω
ǫ−1qh · (∇k × φ) + ǫ−1qh · (ik×φ) dx

+
∑

K∈Th

∫

∂K
(n×

(

ǫ−1qh

)∗
· φ dA

=

∫

Ω
ǫ−1qh · (∇k × φ) dx−

∫

Fh

{
(

ǫ−1qh

)∗
} · JφKT dA

+

∫

Fh

J
(

ǫ−1qh

)∗
KT · {φ} dA.

In this expression, q can be substituted easily. The resulting system is
∫

Ω
(∇k × ukh) · (∇k × φ) dx

−

∫

Fh

{uk
∗
h − ukh} · Jǫ−1∇k × φKT dA+

∫

Fh

Juk
∗
h − ukhKT · {ǫ−1∇k × φ} dA

−

∫

Fh

{
(

ǫ−1qh

)∗
} · JφKT dA+

∫

Fh

J
(

ǫ−1qh

)∗
KT · {φ} dA− ω2

∫

Ω
µukh · φ dx =

∫

Ω
J̃ · φ dx.

The following fluxes will be used on any face f ∈ Fh:

u∗
kh = {ukh},

(

ǫ−1qh

)∗
= {ǫ−1∇k × ukh} − αf Jǫ

−1ukhKT ,

in which αf is a face-dependent penalty parameter which depends on the mesh size and
polynomial order. The interior penalty discontinuous Galerkin method is then given by:
Find ukh ∈ Σh, such that for all φ ∈ Σh,

sk(uk,φ)− ak(uk,φ) + bk(uk,φ)− ω2m(uk,φ) = j(φ), (4.4)

in which

sk(uk,φ) =

∫

Ω
ǫ−1(∇k × ukh) · (∇k ×φ) dx,

ak(uk,φ) =

∫

Fh

JukhKT · {ǫ−1(∇k × φ)}+ {ǫ
−1(∇k × ukh)} · JφKT dA,
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bk(uk,φ) =

∫

Fh

αf Jǫ
−1ukhKT · JφKT dA,

m(uk,φ) =

∫

Ω
µukh · φ dx,

j(φ) =

∫

Ω
J̃ · φ dx.

4.3 Implementation

In this section, some implementation details for the IP-DG method for periodic media will
be given. Since the problem is very similar to the problem without Bloch-modes, we only
describe the parts that are different. So the mesh-generation and numerical integration
will not be discussed in this section. Instead we start with writing system (4.4) as a linear
system. After that, some details with respect to the adapted basis functions will be given.
Finally, the implementation in a homogeneous medium is discussed.

4.3.1 Substitution

The first step to rewrite system (4.4) as a linear system is to substitute

uk|K =

np
∑

j=1

uj,Kφj,K(x,k)

in system (4.4). Next, we construct a linear system of equations for the DG discretization,
so we would like to have a square matrix [S], in which every row stands for a test function
and every column stands for a basis function, and a vector [J ], such that in the end we
have to solve [S]u = [J ], in which u is the vector of coefficients uj,K. If we are solving the
eigenvalue problem, we would like to have matrices [S] and [M ] such that [S]u = ω2[M ]u.
Since we have np basis functions for every element, the matrices will consist of Nelt ×Nelt

blocks of size np × np. As before, with a block [S]CD we mean the Cth block of matrix [S]
vertically and the Dth block of [S] horizontally. In the rest of the section, the bilinear forms
from the last section will be converted to a matrix-system.

Bilinear forms for the elements

In this section, the bilinear forms that include element integrals will be expanded for every
test function φi,K , so that these can be written as a linear combination of the coefficients
uj,K. The entries for the mass- and stiffness matrix can be computed by

m(uk,φi,K) =

∫

K
µuk · φi,K dx

=

∫

K





np
∑

j=1

uj,Kφj,K



 · φi,K dx

=

np
∑

j=1

uj,K

∫

K
φj,K · φi,K dx,

sk(uk,φi,K) =

∫

K
ǫ−1(∇k × uk) · (∇k × φi,K) dx

=

∫

K
ǫ−1



∇k ×





np
∑

j=1

uj,Kφj,K







 · (∇k × φi,K) dx
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=

np
∑

j=1

uj,K

∫

K
ǫ−1(∇k × φj,K) · (∇k × φi,K) dx.

A natural choice to represent these equations are the element matrices M̃K and S̃K , in
which

M̃ij
K =

∫

K
µφj,K · φi,K dx,

S̃ijK =

∫

K
ǫ−1
K (∇k × φj,K) · (∇k × φi,K) dx.

To insert these local matrices into the global matrices, loop over the elements K ∈ Th and
perform for the standard problem

[S]KK ← S̃K − ω2M̃K ,

and for the eigenproblem

[S]KK ← S̃K ,

[M ]KK ← M̃K .

Bilinear forms for the faces

In this section, the bilinear forms that include integrals over the faces will be discussed.
For convenience, every face is said to have an element on the left, which is denoted by KL,
and an element on the right, KR. The choice for which element is left and which is right is
arbitrary and in practice the element with the lowest index will be the left one. Note that
by assumption, the dielectric constant ǫK and the basis functions ψj,K from Section 3.2 are
real for all elements. The bilinear form ak(uk,φi,K) can be represented by

ak(uk,φi,K) =
∑

f∈∂K

∫

f
JukKT · {ǫ−1(∇k × φi,K)}+ {ǫ−1(∇k × uk)} · Jφi,KKT dA

=
∑

f∈∂K,
K=KL

∫

f

(

(nL × uk
L) + (nR × uk

R)
)

·
1

2

(

ǫ−1
L (∇k × φi,K)

)

dA

+
∑

f∈∂K,
K=KR

∫

f

(

(nL × uk
L) + (nR × uk

R)
)

·
1

2

(

ǫ−1
R (∇k × φi,K)

)

dA

+
∑

f∈∂K
K=KL

∫

f

1

2

(

ǫ−1
L (∇k × uk

L) + ǫ−1
R (∇k × uk

R)
)

·
(

nL × φi,K

)

dA

+
∑

f∈∂K
K=KR

∫

f

1

2

(

ǫ−1
L (∇k × uk

L) + ǫ−1
R (∇k × uk

R)
)

·
(

nR × φi,K

)

dA

=
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KL

∫

f

1

2
ǫ−1
L (nL × φj,KL

) · (∇k × φi,K) dA

+
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KL

∫

f

1

2
ǫ−1
L (∇k × φj,KL

) · (nL × φi,K) dA

+
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KR

∫

f

1

2
ǫ−1
L (nR × φj,KR

) · (∇k × φi,K) dA
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+
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KR

∫

f

1

2
ǫ−1
R (∇k × φj,KR

) · (nL × φi,K) dA

+
∑

f∈∂K,
K=KR

np
∑

j=1

uj,KL

∫

f

1

2
ǫ−1
R (nL × φj,KL

) · (∇k × φi,K) dA

+
∑

f∈∂K,
K=KR

np
∑

j=1

uj,KL

∫

f

1

2
ǫ−1
L (∇k × φj,KL

) · (nR × φi,K) dA

+
∑

f∈∂K,
K=KR

np
∑

j=1

uj,KR

∫

f

1

2
ǫ−1
R (nR × φj,KR

) · (∇k × φi,K) dA

+
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KR

∫

f

1

2
ǫ−1
R (∇k × φj,KR

) · (nR × φi,K) dA.

From this last expression, it follows how this bilinear form can be implemented for all test
functions: for every face define the matrices

Ãij
CD =

∫

f

1

2
ǫ−1
C (nD × φj,KD

) · (∇k × φi,KC
) dA,

for C,D ∈ {L,R} and i, j = 1, ..., np. This results in four small, square matrices for every
face. To add them to the global matrix, perform for every face

[S]LL ← −ÃLL − Ã
∗
LL,

[S]LR ← −ÃLR − Ã
∗
RL,

[S]RL ← −ÃRL − Ã
∗
LR,

[S]RR ← −ÃRR − Ã
∗
RR,

in which the ∗ stands for the hermitian transpose of the matrix.
Doing the same for bk(uk,φi,K) leads to

bk(uk,φi,K) =
∑

f∈∂K

∫

f
αf Jǫ

−1ukKT · JφKT dA

=
∑

f∈∂K,
K=KL

∫

f
αf

(

(nL × ǫ−1
L uk

L) + (nR × ǫ−1
R uk

R)
)

· (nL × φi,K) dA

+
∑

f∈∂K,
K=KR

∫

f
αf

(

(nL × ǫ−1
L uk

L) + (nR × ǫ−1
R uk

R)
)

· (nR ×φi,K) dA

=
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KL

∫

f
αf ǫ

−1
L (nL × φj,KL

) · (nL × φi,K) dA

+
∑

f∈∂K,
K=KL

np
∑

j=1

uj,KR

∫

f
αf ǫ

−1
R (nR × φj,KR

) · (nL × φi,K) dA

+
∑

f∈∂K,
K=KR

np
∑

j=1

uj,KL

∫

f
αf ǫ

−1
L (nL × φj,KL

) · (nR × φi,K) dA
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+
∑

f∈∂K,
K=KR

np
∑

j=1

uj,KR

∫

f
αf ǫ

−1
R (nR × φj,KR

) · (nR × φi,K) dA.

So, for every face, define the matrices

B̃ijCD =

∫

f
αf ǫ

−1
D (nD × φj,KD

) · (nC × φi,K) dA,

for C,D ∈ {L,R} and i, j = 1, ..., np. Again this results in four small, square matrices. To
add them to the global matrix, perform for every face

[S]LL ← B̃LL,

[S]LR ← B̃LR,

[S]RL ← B̃RL,

[S]RR ← B̃RR.

Now that we know which matrices should be computed, the next sections will be devoted
to computing these small element- and face matrices.

4.3.2 Element matrices

In this section, the expressions for the element matrices M̃K and S̃K will be simplified for
the modified basis functions. Starting with the mass-matrix, we have

M̃ij
K =

∫

K
µφj,K · φi,K dx

=

∫

K
µe−ik·(x−sj)ψj,K · e

−ik·(x−si)ψi,K dx

=

∫

K
µeik·(sj−si)ψj,K ·ψi,K dx

= eik·(sj−si)

∫

K
µψj,K ·ψi,K dx.

Note that ψ is a real-valued function, so ψ = ψ.
So to compute the element mass-matrices, compute the element mass matrices with the stan-
dard basis functions and then multiply them with the exponent term with the appropriate
shifts. The computation of the element stiffness matrix is equivalent:

S̃ijK =

∫

Ω
ǫ−1(∇× φj,K) · (∇× φi,K) dx

=

∫

K
ǫ−1(∇k × e−ik·(x−sj)ψj,K) · (∇k × e−ik·(x−si)ψi,K) dx

=

∫

K
ǫ−1eik·(sj−si)(∇×ψj,K) · (∇×ψi,K) dx

= eik·(sj−si)

∫

K
ǫ−1(∇×ψj,K) · (∇×ψi,K) dx.

So the computation of the element matrices in case of periodic media is just the computation
of the standard element matrices, multiplied by some exponent term.

40



xL = 0 xR = 1

f1 f1

Figure 4.1: Boundary face for a 1D-domain

4.3.3 Face matrices

In this section, the face matrices Ã and B̃ will be simplified for the modified basis functions.
Here, the expressions for the interior faces and the faces at the boundary are not the same,
since x has two different values for each point at a face at the boundary. To show this, it
is easiest to first look at one dimension, for example, look at the sitation in Figure 4.1. As
one can see, face f1 is a boundary face. In case of periodic boundary conditions, the left
element for this face is the most left element, K1, and the right element is the most right
element, KN . For K1, the value of x at this face equals 0. For KN , the value of x at this
face equals 1. So define xL = 0 to be the value of x of the left element and xR = 1 the value
of x of the right element.

This can be generalized for higher dimensions. Introduce the notation xL and xR for
the value of x at the face on the left element and the face on the right element respectively.
So xR = xL + a, for some a dependent on the size of the domain.
First compute the face integrals for interior faces:

Ãij
CD =

∫

f

1

2
ǫ−1
C (nD × φj,KD

) · (∇k × φi,KC
) dA

=

∫

f

1

2
ǫ−1
C (nD × e−ik·(x−sj)ψj,KD

) · (∇k × e−ik·(x−si)φi,KC
) dA

=
1

2
eik·(sj−si)

∫

f
ǫ−1
C (nD ×ψj,KD

) · (∇×ψi,KC
) dA,

B̃ijCD = αf eik·(sj−si)
∫

f
ǫ−1
D (nD ×ψj,KD

) · (nC ×ψi,KC
) dA.

For boundary faces, the expressions for ÃLL, ÃRR, B̃LL and B̃RR are the same as their
respective expressions at interior faces. The face integrals across the boundaries are given
by

Ãij
LR =

∫

f

1

2
ǫ−1
L

(

nR × e−ik·(xR−sj)ψj,KR

)

·
(

∇k × e−ik·(xL−si)ψi,KL

)

dA

=

∫

f

1

2
ǫ−1
L

(

nR × e−ik·(xL+a−sj)ψj,KR

)

·
(

∇k × e−ik·(xL−si)ψi,KL

)

dA

=

∫

f

1

2
ǫ−1
L e−ik·(xL+a−sj−xL+si)

(

nR ×ψj,KR

)

·
(

∇×ψi,KL

)

dA

=
1

2
eik·(sj−si−a)

∫

f
ǫ−1
L

(

nR ×ψj,KR

)

·
(

∇×ψi,KL

)

dA,

Ãij
RL =

∫

f

1

2
ǫ−1
R

(

nL × e−ik·(xL−sj)ψj,KL

)

·
(

∇k × e−ik·(xR−si)ψi,KR

)

dA

=
1

2
eik·(sj−si+a)

∫

f
ǫ−1
R

(

nL ×ψj,KL

)

·
(

∇×ψi,KR

)

dA,

B̃ijLR =

∫

f
αf ǫ

−1
R

(

nR × e−ik·(xR−sj)ψj,KR

)

·
(

nL × e−ik·(xL−si)ψi,KL

)

dA
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= αf eik·(sj−si−a)

∫

f
αf ǫ

−1
R

(

nR ×ψj,KR

)

·
(

nL ×ψi,KL

)

dA,

B̃ijRL =

∫

f
αf ǫ

−1
L

(

nL × e−ik·(xL−sj)ψj,KL

)

·
(

nR × e−ik·(xR−si)ψi,KR

)

dA

= αf eik·(sj−si+a)

∫

f
αf ǫ

−1
L

(

nL ×ψj,KL

)

·
(

nR ×ψi,KR

)

dA.

4.3.4 Right-hand side

The only term that is left is the integral over the source term multiplied with a basis function.
This can be expressed as follows:

j(φi,K) =

∫

Ω
J̃ · φi,K dx

=

∫

K
J̃ · e−ik·(x−si)ψi,K dx

=

∫

K̂
e−ik·(FK(ξ)−si)J(FK(ξ)) · (dFK)−Tψ|det(dFK)| dx.

(4.5)

4.3.5 Eigenvalue problem

In the eigenvalue problem, we want to compute the smallest eigenvalues for many different
values of k. Since the matrices can be constructed by first constructing the matrices for
k = 0 and then multiplying every entry with an exponent term, we first compute and save
the matrices computed for k = 0. From [13] we know that we only have to compute the
eigenvalues for k on the edges of the irreducible Brillouin zone in order to see whether there
is a band gap or not, so the next step is to vary k over the edges of the irreducible Brillouin
zone with small steps. Then the global matrices are computed and finally, the first 10
non-zero eigenvalues are computed. In our case we use a shift-and-invert algorithm to find
eigenvalues with value greater than 0, although it would be better to develop an algorithm
to get rid of the kernel of the curl-operator before solving the linear eigenvalue problem.

4.3.6 Implementation for a homogeneous medium

In this section, it will be discussed how to implement the DG-discretization for the 0-
dimensional periodic medium by adapting the code of the standard Maxwell solver. The
computations are done on the domain Ω = [0, 1]3.

Computing the shifts

For the shifts, we choose to define a shift for each ”type” of basis functions. Given an edge
e = (vi,vj), a face f = (vi,vj ,vl) or an element K = (vi,vj ,vl,vm) The shifts are defined
as

• Edge functions: se = 1
2 (vi + vj)

• Edge-based face functions: sef =
1
5(2vi + 2vj + vl)

• Face bubble functions: sfb = 1
3(vi + vj + vl)

• Face-based interior functions: sfi = 1
7(2vi + 2vj + 2vl + vm)

• Interior bubble functions: sib = 1
4(vi + vj + vl + vm)
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The use of the shifts is optional. If the shifts are not used, the results are the same as with
this shifts. These shifts can be used as a preconditioner and to estimate the eigenvectors, in
order to find a good starting vector. Both of these applications are not further investigated
in this project.

Adapting the right-hand side

First of all, the boundary conditions are periodic on all boundaries. The basis functions
now contain an exponent term, so the integration of the source is a bit different. The
transformation of the integrals of the source to an integral over the reference element is
given in (4.5).

Adapting the matrices

All element and face matrices can be obtained by multiplying them with a complex exponent.
Since this exponent only depends on the basis functions, this will be done as a last step
before solving the system, namely after the assembly of the global matrix.

Retrieving the magnetic field

As a result, one will find the DG coefficient vector u. From here, one should be careful
to include the exponent term when computing uk|K =

∑np

j=1 uj,Kφj,K(x,k). The magnetic

field can now be found by computing H(x) = eik·xuk(x).

4.4 Results

In this section, some results for the infinitely large homogeneous domain are given. First,
we will look at the problem with source and check whether it works correctly. After that,
the eigenvalue problem will be solved.

4.4.1 Standard problem

In this section, some results for the standard problem with Bloch-modes in a homogeneous
medium wit ǫ = µ = 1 are given. We want to test for a periodic field uk, so we choose
Ω = [0, 1]3 and

uk(x, y, z) =





sin(2πy) sin(2πz)
sin(2πz) sin(2πx)
sin(2πx) sin(2πy)



 .

Computing the source J = ∇k ×∇k × uk − ω2uk and choosing ω2 = 1 leads to the source
J̃ = (J̃ (1), J̃ (2), J̃ (3))T , with the components of J̃ given by

J̃ (1) = (8π2 − 1) sin(2πy) sin(2πz) − 4πi ky cos(2πy) sin(2πz)− 4πi kz cos(2πz) sin(2πy)

+ 2πi ky cos(2πx) sin(2πz) + 2πi kz cos(2πx) sin(2πy)− kykx sin(2πx) sin(2πz)

− kzkx sin(2πx) sin(2πy) + k2y sin(2πy) sin(2πz) + k2z sin(2πy) sin(2πz),

J̃ (2) = (8π2 − 1) sin(2πx) sin(2πz) − 4πi kx cos(2πx) sin(2πz) − 4πi kz cos(2πz) sin(2πx)

+ 2πi kx cos(2πy) sin(2πz) + 2πi kz cos(2πy) sin(2πx) − kykx sin(2πy) sin(2πz)

− kzky sin(2πx) sin(2πy) + k2x sin(2πx) sin(2πz) + k2z sin(2πx) sin(2πz),

J̃ (3) = (8π2 − 1) sin(2πy) sin(2πx) − 4πi ky cos(2πy) sin(2πx) − 4πi kx cos(2πx) sin(2πy)
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‖uk − ukh‖L2 Order ‖uk − ukh‖DG Order

p = 1
Nelt = 40 6.0382e-01 7.1285e+00
Nelt = 320 1.9534e-01 1.63 3.7531e+00 0.93
Nelt = 2560 5.4780e-02 1.83 1.9634e+00 0.93

p = 2
Nelt = 40 1.7623e-01 3.1010e+00
Nelt = 320 3.1270e-02 2.49 1.0430e+00 1.57
Nelt = 2560 4.1910e-03 2.90 2.7653e-01 1.92

p = 3
Nelt = 40 7.8843e-02 1.7102e+00
Nelt = 320 4.9380e-03 4.00 2.1352e-01 3.00
Nelt = 2560 3.1975e-04 3.95 2.8026e-02 2.93

p = 4
Nelt = 40 2.1295e-02 3.5137e-01
Nelt = 320 6.7123e-04 4.99 3.5095e-02 3.32
Nelt = 2560 2.1835e-05 4.94 2.3089e-03 3.93

Table 4.1: Convergence of IP-DG method on tetrahedral meshes with source J̃ and k =
(1,−1/2, 1/4).

+ 2πi ky cos(2πz) sin(2πx) + 2πi kx cos(2πz) sin(2πy) − kykz sin(2πz) sin(2πx)

− kzkx sin(2πz) sin(2πy) + k2y sin(2πy) sin(2πx) + k2x sin(2πy) sin(2πx).

The penalty parameter is again chosen to be

αf =
2(p + 1)(p + 3)

min(dx, dy, dz)
.

The solution for uk is smooth, so we expect again a convergence rate of O(hp+1). In Table
4.1, the results for the wave vector k = (1,−1/2, 1/4) are given. As can be seen in this
table, the convergence rate is correct.

The results for different wave vectors are similar, although the errors become bigger
when k gets larger, since the Gauss-quadrature rules are not very suitable for high-oscillating
functions. One could use other integration rules, such as Filon’s formula [1], but these rules
are outside the scope of this project. If one would like to use these integrals and still use
the Gauss quadrature rules, one could for example make the domain bigger, so that the
Brillouin zone becomes smaller and therefore the values of the wave vector that needs to be
checked are smaller.

4.4.2 Eigenvalue problem

In this section, some results for Bloch mode computations in a homogeneous medium are
presented. The domain is given by Ω = [0, 1]3 and ǫ = µ = 1 for the entire domain. The
penalty parameter is chosen to be

αf =
2(p + 1)(p + 3)

min(dx, dy, dz)
.

For the polynomial order, we choose p = 4. This results in the fastest convergence, since
the eigenfunctions are smooth for this problem. In Section 3.5.2, it can be seen that the
relative error of the eigenvalues for k = 0 are about 10−7 for a mesh of 320 elements, so this
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Figure 4.2: Brillouin zone (left) and reduced Brillouin zone (right)

mesh should be small enough to compute sufficiently accurate eigenvalues for all values of
k.

The Brillouin zone is the cube B = [−π, π]3, and the irreducible Brillouin zone is the
tetrahedron with vertices Γ = (0, 0, 0)T , X= (π, 0, 0)T , M= (π, π, 0)T and R= (π, π, π)T , see
Figure 4.2. The first ten non-zero eigenvalues for k on the edges of the irreducible Brillouin
zone with increments of π/25 are computed. To find the eigenvalues, Matlab’s iterative
eigensolver ”eigs” is used with as starting vector the first eigenvector of the k from the
previous step is used. Unfortunately, it is only possible to give one starting vector for all
eigenvectors, instead of a starting vector for each eigenvector.

The eigenvalues generated with the discontinuous Galerkin finite element method are
plotted in Figure 4.3. These eigenvalues are compared with the results of Bulovyatov, [8],
in which the eigenvalues are computed with a curl-conforming finite element method, and
with the MIT photonic bands (MPB) software by Johnson and Joannapoulos, [14], in which
the eigenvalues are computed with a plane-wave method. The bands are displayed in Figure
4.4.

For the MPB-software, we used the default settings with 24 interior points on each edge,
the same number as we used for our software to generate Figure 4.3. The results can be seen
in Figure 4.4a. The MPB-software generates almost the same bands as our DG-software,
with the exception that it generates some peaks and the multiplicity of two bands change
between k = (π, 0, 0)T and k = (π, π, 0)T . Since the bands of eigenvalues should be smooth
when k is smooth ([13]), this is probably a flaw in the software and the eigenvalues are most
likely computed incorrectly at these points.

Looking at the band-structure of Bulovyatov in Figure 4.4b, we first have to observe that
he only uses 3 interior points on each edge of the irreducible Brillouin zone, and plotted
smooth curves through these points afterward. He used first order curl-conforming basis
functions on 4096 cubic elements. Note that using first order basis functions is less efficient
than higher order functions when dealing with smooth eigenfunctions, see Section 3.5.1.

We see that at the points where the eigenvalues are computed, the eigenvalues are the
same as our eigenvalues, but that the behavior of the bands outside these points is slighly
different. Since k is not smooth at the corners of the reduced Brillouin zone, we do not
expect the bands to be smooth at these points. Also, the first band has a larger value than
the second band at some intervals, which contradicts the definition of how the bands are
numbered. Thus, it is likely that the interpolation of the bands is done incorrectly and that
they should not be smooth at k =X and k =M.

All in all, we believe that our code produces the right results, even though the graph of
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Figure 4.3: Band structure for a homogeneous medium

the bands is different from the graphs produced by other methods.
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Figure 4.4: Band structures resulting from other methods
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Chapter 5

Conclusion and outlook

In this project, the goal was to develop an algorithm to approximate the Maxwell-eigenvalue
problem in periodic media using a discontinuous Galerkin method. This algorithm was
developed in small steps: first we looked at the time-harmonic Maxwell equations in a
bounded domain. For this problem, the derivation of the discontinuous Galerkin method is
given in more detail than one normally finds in papers on this subject. It is implemented
for a homogeneous medium and tested against known results.

After that, the same procedure was repeated for the time-harmonic Maxwell-equations
in periodic media using Bloch mode expansions. The algorithm gives the results with the
proper rate of convergence based on analytical results, so it provides a good basis for later
work on this subject.

The next step would be to implement the algorithms for more complex media and to
find ways to improve the performance of the algorithm. This improvement can be done in
several ways. For example, one could discretize the transversility condition ∇ ·H = 0 or
filter out the null-space of the curl-operator from the eigenspace. Another way is to develop
a fast eigensolver and preconditioner for this specific type of problems.

In order to deal with singularities at material interfaces and sharp corners and edges, hp-
adaption will be important (h-adaption: local refinement of the mesh, p-adaption: element
wise adjustment of the polynomial order), including a theoretical analysis of the conver-
gence of the numerical algorithm and a posteriori error estimation to control the adaptation
algorithm.

Also, it would be beneficial to be able to include real-world features such as media in
which the unit cell is repeated only finitely many times, including proper inflow and outflow
boundary conditions. Moreover, the production process of periodic media can give some
perturbations in the media. It would be interesting to investigate the influence of these
pertubations.
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Appendix A

Transformation of functions and

integrals

In this appendix, it is discussed how functions and integrals can be transformed from the
reference tetrahedron K̂ to any tetrahedral element K in physical space.

A.1 Transformation of functions

We start by defining the transformation that maps the reference tetrahedron onto an arbi-
trary element. This transformation FK : K̂ → K is given by

FK(ξ) =
4

∑

i=1

xiλi(ξ),

with xi being the coordinates of the vertices of K and λi the barycentric coordinates of
the vertices of the reference tetrahedron. Since this is an affine transformation, it can be
written as

x = BKξ + bK .

The Jacobian matrix dFK of this transformation is defined as

(dFK)lm =
∂(FK)l
∂ξm

,

so for this transformation dFK = BK and (dFK)−T = B−T
K . Now a scalar function p̂(ξ) can

be transformed as
p(FK(ξ)) = p̂(ξ),

or, equivalently,
p(x) = p̂(F−1

K (x)).

Using the chain rule for differentiation, the gradient of p ∈ H1(Ω) can now be expressed as

(dFK)T∇p ◦ FK = ∇̂p̂,

or equivalently

∇p ◦ FK = (dFK)−T ∇̂p̂,

in which ∇̂ is the gradient with respect to the coordinates ξ1, ξ2 and ξ3 in the reference
space.
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Since ∇×∇p = 0 for all p ∈ H1(Ω), it is clear that ∇p ∈ H(curl,K) and ∇̂p̂ ∈ H(curl, K̂).
This suggests that any û ∈ H(curl, K̂) can be transformed to a u ∈ H(curl,K) via

u ◦ FK = (dFK)−T û.

Substituting the expression x = BKξ+bK then gives the following relations between u and
û:

û(ξ) = BT
Ku (BKξ + bK) ,

u(x) = B−T
K û

(

B−1
K (x− bK)

)

.

Now the expressions for the normal vectors follow immediately from this expression, namely,
if n̂ is the outward unit normal vector to K̂ at ξ ∈ ∂K̂, then

n (FK (ξ)) =
(dFK)−T n̂

|(dFK)−T n̂|
(ξ)

=
B−T

K n̂

|B−T
K n̂|

(ξ)

is the outward unit normal vector to K at x ∈ ∂K.
The last expression we need is one that relates ∇×u to ∇̂× û. This expression is given by

(∇× u) ◦ FK =
1

det(dFK)
dFK∇̂ × û.

A complete derivation of this expression is given at p.78 of [18].

A.2 Transformation of integrals

If an integral is defined on (the boundary of) an element K, it can be beneficial to transform
the integral to (the boundary of) the reference element K̂ and compute the integral on the
reference element. Given an affine mapping FK : K̂ → K and Jacobian matrix dFK , then
the integral of a scalar function over an element is given by [23]

∫

K
p(x) dx =

∫

K̂
p̂ (ξ) |det(dFK)| dξ.

To integrate over a face, one wants to transform the reference triangle T̂ with vertices
vt,1 = (−1,−1),vt,2 = (1,−1),vt,3 = (−1, 1) and local coordinates η1, η2 to the face with
vertices w1,w2,w3. This transformation is performed in two steps: first the reference
triangle will be transformed to a face of the reference element with the transformation
ri : T̂ → f̂i, then this face will be transformed to the physical face with the transformation
FK : K̂ → K as defined before.
The transformation ri is defined as

r1(η) =





η1
−1
η2



 , r3(η) =





−1
η1
η2



 ,

r2(η) =





−η1 − η2 − 1
η1
η2



 , r4(η) =





η1
η2
−1



 .
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An integral over a face f can be transformed to an integral over face f̂i of the reference
tetrahedron by [18]

∫

f
p dA =

∫

f̂j

p̂|det(dFK)||(dFK)−T n̂j | dÂ,

in which p̂ = p ◦ FK . To integrate this over a the reference triangle, we have

∫

f̂j

p̂ dÂ =

∫

T̂
p̃|rj,η1 × rj,η2 | dη,

in which p̃ = p̂ ◦ rj(η).
So an integral of the form

∫

f ψ1 ·ψ2 dA can be written as

∫

f
ψ1 ·ψ2 dA =

∫

f̂j

(dFK)−T ψ̂1 · (dFK)−T ψ̂2|det(dFK)||(dFK)−T n̂j| dÂ

=

∫

T̂

(

(dFK)−T ψ̂1 · (dFK)−T ψ̂2

)

◦ rj(η)|det(dFK)||(dFK )−T n̂j ||rj,η1 × rj,η2 | dη.

Note that the expression |det(dFK)||(dFK)−T n̂j ||rj,η1 × rj,η2 | gives the proportion between
the area of the physical element and the area of the reference triangle. So if we have to
compute an integral with terms on both adjacent faces, then it is sufficient to transform
the functions to their equivalent reference face, then compute the expression in terms of
ξ and finally transforming these functions to the reference triangle with their respective
transformations rL and rR. Then the integral can be computed by multiplying this last
term with the ratio between the reference triangle and the physical phase and integrate over
η.
With the help of these transformations, all the integrals of Sections 3.4.3 and 4.3.1 can be
computed.
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Appendix B

Nédélec basis functions

The basis functions for the second order Nédélec elements are given by

φe1,0 =





3
4ξ2 +

3
4ξ3 + ξ2ξ3 +

1
2ξ

2
2 +

1
2ξ

2
3

−1
2ξ2 −

1
2ξ3 −

1
2ξ1ξ2 −

1
2ξ1ξ3 −

3
4ξ1 −

3
4

−1
2ξ2 −

1
2ξ3 −

1
2ξ1ξ2 −

1
2ξ1ξ3 −

3
4ξ1 −

3
4



 ,

φe2,0 =





−1
2ξ1 −

3
4ξ2 −

1
2ξ1ξ2 −

1
2ξ

2
2 −

1
4

3
4ξ1 +

1
2ξ2 +

1
2ξ1ξ2 +

1
2ξ

2
1 +

1
4

0



 ,

φe3,0 =





1
2ξ1 +

3
4ξ2 +

1
2ξ3 +

1
2ξ1ξ2 +

1
2ξ2ξ3 +

3
4

−3
4ξ1 −

3
4ξ3 − ξ1ξ3 −

1
2ξ

2
1 −

1
2ξ

2
3

1
2ξ1 +

3
4ξ2 +

1
2ξ3 +

1
2ξ1ξ2 +

1
2ξ2ξ3 +

3
4



 ,

φe4,0 =





−1
2ξ2 −

3
4ξ3 −

1
2ξ1ξ3 −

1
2ξ2ξ3 −

1
2ξ1 −

3
4

−1
2ξ2 −

3
4ξ3 −

1
2ξ1ξ3 −

1
2ξ2ξ3 −

1
2ξ1 −

3
4

3
4ξ1 +

3
4ξ2 + ξ1ξ2 +

1
2ξ

2
1 +

1
2ξ

2
2



 ,

φe5,0 =





−3
4ξ3 −

1
2ξ1ξ3 −

1
2ξ

2
3 −

1
4

0
3
4ξ1 +

1
2ξ3 +

1
2ξ1ξ3 +

1
2ξ

2
1 +

1
4



 ,

φe6,0 =





0
−1

2ξ2 −
3
4ξ3 −

1
2ξ2ξ3 −

1
2ξ

2
3 −

1
4

3
4ξ2 +

1
2ξ3 +

1
2ξ2ξ3 +

1
2ξ

2
2 +

1
4



 ,

φe1,1 =





−1
2ξ1 −

5
4ξ2 −

5
4ξ3 − ξ1ξ2 − ξ1ξ3 − ξ2ξ3 −

1
2ξ

2
2 −

1
2ξ

2
3 −

1
2

7
4ξ1 +

1
2ξ2 +

1
2ξ3 +

1
2ξ1ξ2 +

1
2ξ1ξ3 + ξ21 +

3
4

7
4ξ1 +

1
2ξ2 +

1
2ξ3 +

1
2ξ1ξ2 +

1
2ξ1ξ3 + ξ21 +

3
4



 ,

φe2,1 =





1
2ξ1 −

1
4ξ2 +

1
2ξ1ξ2 −

1
2ξ

2
2 +

1
4

1
2ξ2 −

1
4ξ1 +

1
2ξ1ξ2 −

1
2ξ

2
1 +

1
4

0



 ,

φe3,1 =





−7
4ξ2 −

1
2ξ3 −

1
2ξ1ξ2 −

1
2ξ1 −

1
2ξ2ξ3 − ξ22 −

3
4

5
4ξ1 +

1
2ξ2 +

5
4ξ3 + ξ1ξ2 + ξ1ξ3 + ξ2ξ3 +

1
2ξ

2
1 +

1
2ξ

2
3 +

1
2

−7
4ξ2 −

1
2ξ3 −

1
2ξ1ξ2 −

1
2ξ1 −

1
2ξ2ξ3 − ξ22 −

3
4



 ,

φe4,1 =





1
2ξ1 +

1
2ξ2 +

1
2ξ1ξ3 +

1
2ξ2ξ3 + ξ23 +

3
4

1
2ξ1 +

1
2ξ2 +

7
4ξ3 +

1
2ξ1ξ3 +

1
2ξ2ξ3 + ξ23 +

3
4

−5
4ξ1 −

5
4ξ2 +

7
4ξ3 −

1
2ξ3 − ξ1ξ2 − ξ1ξ3 − ξ2ξ3 −

1
2ξ

2
1 −

1
2ξ

2
2 −

1
2



 ,
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φe5,1 =





1
2ξ1 −

1
4ξ3 +

1
2ξ1ξ3 −

1
2ξ

2
3 +

1
4

0
1
2ξ3 −

1
4ξ1 +

1
2ξ1ξ3 −

1
2ξ

2
1 +

1
4



 ,

φe6,1 =





0
1
2ξ2 −

1
4ξ3 +

1
2ξ2ξ3 −

1
2ξ

2
3 +

1
4

1
2ξ3 −

1
4ξ2 +

1
2ξ2ξ3 −

1
2ξ

2
2 +

1
4



 ,

φf1,0 =





−1
2ξ2 −

3
2ξ3 − ξ1ξ3 −

1
2ξ2ξ3 − ξ1 −

1
2ξ

2
3−

−1
2ξ1 −

1
2ξ3 −

1
2ξ1ξ3 −

1
2

3
2ξ1 + ξ2 +

1
2ξ3 + ξ1ξ2 +

1
2ξ1ξ3 + ξ21 +

1
2



 ,

φf1,1 =





−ξ2 −
3
2ξ3 −

1
2ξ1 −

1
2ξ1ξ3 − ξ2ξ3 − ξ23 −

1
2

1
2ξ1 +

1
2ξ3 +

1
2ξ1ξ3 +

1
2

3
2ξ1 +

1
2ξ2 + ξ3 +

1
2ξ1ξ2 + ξ1ξ3 +

1
2ξ

2
1 + 1



 ,

φf2,0 =







√
3
2 ξ2 +

√
3
2 ξ3 +

√
3
2 ξ2ξ3 +

√
3
2

−
√
3

10 ξ1 −
√
3

10 ξ3 −
√
3

10 ξ1ξ3 −
√
3

10

−2
√
3

5 ξ1 −
2
√
3

5 ξ2 −
2
√
3

5 ξ1ξ2 −
2
√
3

5






,

φf2,1 =







−
√
3
2 ξ3 −

√
3
2 ξ2ξ3 −

√
3
2 ξ2 −

√
3
2

2
√
3

5 ξ1 +
2
√
3

5 ξ3 +
2
√
3

5 ξ1ξ3 +
2
√
3

5√
3

10 ξ1 +
√
3

10 ξ2 +
√
3

10 ξ1ξ2 +
√
3

10






,

φf3,0 =





1
2ξ2 +

1
2ξ3 +

1
2ξ2ξ3 +

1
2

1
2ξ1 + ξ2 +

3
2ξ3 +

1
2ξ1ξ3 + ξ2ξ3 +

1
2ξ

2
3+

−ξ1 −
3
2ξ2 −

1
2ξ3 − ξ1ξ2 −

1
2ξ2ξ3 − ξ22 −

1
2



 ,

φf3,1 =





−1
2ξ2 −

1
2ξ3 −

1
2ξ2ξ3 −

1
2

ξ1 +
1
2ξ2 +

3
2ξ3 + ξ1ξ3 +

1
2ξ2ξ3 + ξ23 +

1
2

−1
2ξ1 −

3
2ξ2 − ξ3 −

1
2ξ1ξ2 − ξ2ξ3 −

1
2ξ

2
2 − 1



 ,

φf4,0 =





ξ1 +
3
2ξ2 +

1
2ξ3 + ξ1ξ2 +

1
2ξ2ξ3 +

1
2ξ

2
2+

−3
2ξ1 −

1
2ξ2 − ξ3 −

1
2ξ1ξ2 − ξ1ξ3 − ξ21 −

1
2

1
2ξ1 +

1
2ξ2 +

1
2ξ1ξ2 +

1
2



 ,

φf4,1 =





1
2ξ1 +

3
2ξ2 + ξ3 +

1
2ξ1ξ2 + ξ2ξ3 + ξ22 +

1
2

−ξ2 −
1
2ξ3 − ξ1ξ2 −

1
2ξ1ξ3 −

3
2ξ1 −

1
2ξ

2
1 − 1

−1
2ξ2 −

1
2ξ1 −

1
2ξ1ξ2 −

1
2



 .

The edges and faces are given in Figure B.1 and Table B.1.

53



ê2

ê6

ê3

ê5ê4

v1

v2

v4

v3

ê1

Figure B.1: The reference tetrahedron

Edge/face vertices

ê1 v2,v3

ê2 v3,v1

ê3 v1,v2

ê4 v2,v4

ê5 v3,v4

ê6 v1,v4

f̂1 v2,v3,v4

f̂2 v1,v3,v4

f̂3 v1,v2,v4

f̂4 v1,v2,v3

Table B.1: Numbering of edges and faces of a tetrahedron, numbering indicates direction
along edges
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