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Abstract

This thesis addresses the well-known problem of nonlinear target tracking. In its general form this
problem can be solved by a state-of-the-art technique known as particle filtering. The solution can
be made more accurate by applying constraints to the state space. In this research it is assumed
that the constraints are not perfectly known. Given this assumption, we find a mathematically
correct way of incorporating the imprecise hard constraints into a Bayesian filter.

First a discussion about information and imperfections is presented. Next a theoretical solu-
tion for incorporating imprecise hard constraints into a Bayesian filter is derived. For demonstration
and analysis purposes, simulations are carried out. The theoretical method appears to be hard to
apply in practice, therefore two methods to deal with imprecise knowledge in the form of geo-
graphical maps are presented. Finally, we make the first steps in optimizing the shortest distance
method.
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Chapter 1

Introduction

In this thesis dealing with imperfect knowledge in sensor processing is considered. This chapter
deals with background information about radars and filtering. Also, the problem description and
outline of the thesis is given.

1.1 Radar

The term radar is a contraction of the words radio detection and ranging [15]. When the term
was invented, radar engineers needed a device to detect the presence of a target and to measure
its range. However, with modern techniques a radar can extract much more information from a
target’s echo than only its range.

Radar is an electromagnetic system for the detection and location of reflecting objects such
as aircraft, ships, spacecraft, vehicles, people, and the natural environment. It operates by radiating
energy into space and detecting the echo signal reflected from an object, or target. The reflected
energy that is returned to the radar not only indicates the presence of a target, but by comparing
the received echo signal with the signal that was transmitted, its location can be determined along
with other target-related information. The basic principles of radar are illustrated in figure 1.1.
A transmitter generates an electromagnetic signal that is radiated into space by an antenna. A
portion of the transmitted energy is intercepted by the target and reradiated in many directions.
The reradiation directed back towards the radar is collected by the radar antenna, which delivers it
to a receiver. There it is processed to detect the presence of the target and determine its location.
The range, or distance, to a target is found by measuring the time it takes for the radar signal
to travel to the target and return back to the radar. The target’s location in angle can be found
from the direction the narrow-beamwidth radar antenna points when the received echo signal is of
maximum amplitude. If the target is in motion, there is a shift in the frequency of the echo signal
due to the doppler effect.

In the signal processing unit the electromagnetic signal is converted to a digital signal. The
digital signal is at that point only raw data, it contains target signals, clutter signals and noise.
The task of the target tracker is to produce the so-called tracks. Tracks are estimates of the state
(position, speed and other variables of interest) of the target based on measurements subject to
noise. Numerous filtering techniques are available to execute the task of recursive state estimation.
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Figure 1.1: Basic principles of radar

1.2 Filtering

The fundamental building block of a tracking system is a filter for recursive state estimation [6]. A
Kalman filter is the best known filter, a simple and elegant algorithm formulated more than 50 years
ago. The filter computes the posterior distribution exactly for linear Gaussian systems by updating
finite dimensional statistics recursively [9]. When systems tend to become nonlinear, the approach
known as the Extended Kalman filter algorithm can be applied. Although it works well for mildly
nonlinear systems, systems with 'big’ nonlinearities cannot be filtered this way. Apart from the
(Extended) Kalman filter there are other filters such as the unscented Kalman filter, Gaussian sum
Kalman filter and point mass filter. The problem with any Kalman filter is that it can only handle
Gaussian (sum) distributions. In this sense the point mass filter is an improvement, but for this
filter the disadvantage lies in the grid: this is an approximation. The particle filter also provides
a numerical approximation to the nonlinear filtering problem similar to the point mass filter, but
uses an adaptive stochastic grid that automatically selects relevant grid points in the state space.

1.3 Problem description

We are familiar with models derived to deal with perfect knowledge in target tracking. However, in
practice the knowledge we can use to improve target tracking is imperfect. This arises the question
how to deal with imperfect knowledge in target tracking. Imperfections, in general, are a very broad
class of errors applied to data. One of the research goals of this thesis is to categorize imperfections
and make models for the different categories. Furthermore, we are interested in using these models
to derive a way of dealing with imperfect knowledge in target tracking. Finally, we need practical
algorithms to deal with imperfect knowledge in realistic situations.
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1.4 Outline

In this thesis we treat the subject 'Dealing with imperfect knowledge in sensor processing’. In
chapter 2 we look at what knowledge we use in sensor processing and in what way this knowledge
can be imperfect. Imperfections appear to be heterogenous in nature; we distinguish different types
of imperfections. One of the most common imperfections is imprecision, in chapter 4 we take a
closer look at how to model imprecise data.

One of the tasks of sensor processing is to produce tracks out of target measurements. We
can make the estimate of the state of targets more accurate by applying advanced filters to the
data. A theoretically optimal filter is called the Bayesian filter, which is reviewed in a nutshell in
chapter 3. It is already known that we can use external data to make filters more accurate. In
the past, a model for perfect external knowledge was succesfully developed [8]. If we assumed the
external knowledge to be perfect the model improved the accuracy of the tracks considerably. In
this master thesis we take a deeper look into external data that is imprecise (chapter 4): we develop
a model for incorporating imprecise external knowledge into a Bayesian filter.

One of the newest, most promising filters today is called the particle filter. This filtering
technique is subject to research in this master thesis, we incorporate the filter with the model
for imprecise external knowledge. In chapters 5 and 6 we perform simulations with the extended
particle filter to test its performance. The external knowledge we use is in the form of digital charts
which give us coastline position information. When we want to use this kind of information in
practice, an approximation of the developed algorithm is needed. In chapter 6, we develop two
methods that deal with this approximation: the shortest distance method and the grid method.
Although the methods work alright, they have their disadvantages: the shortest distance method
is slow and the grid method uses a lot of memory. In chapter 7, we set the first steps towards
optimizing the shortest distance method. That is, using the low memory cost to its advantage and
making the method faster to use. We conclude this master thesis with a discussion in chapter 8.
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Chapter 2

Dealing with information and
imperfections

Information can have different appearances. Data can be a geographical map, a table or spoken
word for example. In our research we focus on using only structured data, i.e. data which can be
represented by numbers. So in particular no video, text messages or similar (unstructured) data
types.

When we are dealing with external information, we have to be very careful. In an ideal
world all data is perfect, and can be used without hesitation. Unfortunately, we do not live in
an ideal world and data is not perfect. If we would use all data without considering its possible
imperfections, things may go wrong. Since data is inherently imperfect, we should take this into
account when dealing with external data.

In this chapter we study the most important features of a digital map format: Electronic
Navigational Charts (ENCs). Subsequently we take a look into imperfections in data: what causes
imperfections and can we categorize them?

2.1 Electronic Navigational Charts (ENCs)

In our research we focus on targets constrained by its geographical surroundings which are visual-
ized through geographical maps. Before we can use the information of geographical maps to the
full extent, adjustments are needed. Regular geographical maps are nothing more but drawings
indicating the various features of the terrain. In order to use these, we need a digital version of
the conventional maps with actual data assigned to indicate the various features. This kind of
digital map can be found in the form of ENCs: Electronic Navigational Charts. ENCs are vector
maps being produced in the S-57 format of the International Hydrographic Organization (IHO)
[10]. The ENC is internationally acknowledged as an official equivalent for the paper sea charts
and is currently being used by ships for navigation purposes. An example of an ENC is depicted
in figure 2.1.

Although the ENC is widely used, it is not perfect [11, 12]. These imperfections have their
origin in the way ENCs are set up. Before electronic navigational charts were used, ships would
navigate with paper charts. With the introduction of electronic displays, navigation agencies in-
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Figure 2.1: Electronic Navigational Chart of Marsdiep

troduced electronic charts. The ENCs were all built on the basis of paper charts [12]. One of the
most important features of ENCs is that land masses are represented by polygons. Paper charts
have been translated into a collection of connected lines which make up land areas. Standards
have generally been such that surveys were conducted with a positioning accuracy of better than
.75 millimeters [11]. Depending on the scale of the chart, this gives rise to a measurement error
of a few meters for the smaller scales up until more than a kilometer for the larger scales. In our
research, the ENC will be the basis for the geographical data.

2.2 Imperfections in data

When we are dealing with external data, we should realize that the data is often inherently imper-
fect. This is because the data was once retrieved from the 'real world’. And when one retrieves
data, it has to be measured in one way or another.

2.2.1 Definitions

Measurements can be described according to [2], [3]:
y=pu+A+e, (2.1)

with y the measurement, p the accepted reference value or true value, A the bias or systematic
error and e the random error. The random error e has a distribution with zero mean and variance
0%, (the so-called ’within-laboratory variance’) attached to it. Since A and e are in practice

never zero, the true value cannot be exactly known. This gives us the idea that measurements
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contain imperfections. Figure 2.2 gives an overview of imperfections related to measurements. The
terminology in the diagram corresponds to the definitions below. The definitions are taken from
ISO 3534-2, [4].

e True value (def. 3.2.5): a value which characterizes a quantity or quantitative characteristic
perfectly defined in the conditions which exist when that quantity or quantitative character-
istic is considered;

e Measurement (def. 3.2.1): a set of operations having the object of determining a value of a
quantity;

o Measurement result (def. 3.4.2): a value of a quantity obtained by carrying out a specified
measurement procedure;

o Accuracy (def. 3.3.1): the closeness of agreement between a test result or measurement result
and the true value;

o Trueness (def. 3.3.3): the closeness of agreement between the expectation of a test result or
a measurement result and a true value;

e Precision (def. 3.3.4): the closeness of agreement between independent test/measurement
results obtained under stipulated conditions.

Imperfections can be very heterogeneous in nature due to different sources. The definition
of true value, as given above is a formal definition for ’the actual value of that what we want to
measure’. Whenever we want to gain information about the true value, we perform measurements.
The actual values gained from the measurements are called 'measurement results’.

Every measurement result can be expressed in terms of bias and random error by (2.1).
Together, A + e represent the accuracy of the measurement. Accuracy refers to a combination of
trueness and precision, as can be seen in figure 2.2. All deviations from the true state are comprised
of a systematic error (A) and a random error (e). The trueness of a measurement result is usually
expressed in terms of bias, whereas precision only depends on the distribution of random errors.
Precision is usually expressed in terms of imprecision and computed as a standard deviation of the
test results or measurement results. In practice only discrete values can sometimes be measured
with absolute accuracy (zero bias). When we want to takes measurements of continuous values,
errors are involved. This means that accuracy plays an important role in virtually all measurements.

The Oxford dictionary [1] gives the following definitions for incompleteness and inconsistency:

e Incompleteness: the quality or state of being incomplete;

e Incomplete: not complete; not fully formed, made, or done; not whole entire or thorough;
wanting some part; unfinished;

e [Inconsistency: the quality, condition, or fact of being inconsistent;

e [Inconsistent: not consistent, not agreeing in substance, spirit or form, not in keeping, not
consonant or in accordance, at variance, discordant, incompatible, incongruous.

When a measurement result is not available or a measurement does not cover the complete true
value, we say that the measurement is incomplete. Referring to equation (2.1), being incomplete
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True value (def. 3.2.1)

Measurement (def. 3.2.1)

Measurement result
(def. 3.4.2)

Accuracy (def. 3.3.1)

Systematic error Random error

Trueness (def. 3.3.3) Precision (def. 3.3.4)

Standard deviation

Figure 2.2: Overview of imperfections

means not having knowledge of the value of . Also incompleteness can refer to no having knowledge
of the value of A or the distribution of e. In this case we know that accuracy is present on
measurements, but we do not know how the characteristics of the accuracy.

Finally, we distinguish the imperfection called inconsistency. We need more than one mea-
surement for inconsistency to happen, suppose that we have n measurements of a true value:

y1=pu+ A+ ey,
Y2 =+ Ao +eg,

yn:ﬂ+An+ena

with y; the measurement, A; the bias and e; the random error distributed with zero mean and
variance o7 for measurement i, i = 1,...,n. The true value is reflected by p. Given this description
of measurements, we call two or more measurements inconsistent if they have different bias. That
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Figure 2.3: Digital chart with accuracy (yellow line). True value depicted by the underlying photo.
Source: Google Earth

is, a different random error does not make measurements inconsistent. Also, if one measurement is
incomplete and another one is not we say that the measurements are inconsistent.

2.2.2 Examples

In this research we focus our attention to external knowledge in the form of geographical charts.
Geographical charts are widely available in usable formats, for instance ENCs, and can be easily
implemented in tracking software. If we consider ships as targets for our tracker, land masses form
natural boundaries since ships cannot sail on land. Therefore geographical charts contain valuable
information which can be translated into constraints for targets.

As we have already seen in section 2.1, digital charts contain imperfections. These imper-
fections can be related to the definitions in section 2.2.1 and can be best explained with the aid of
examples. The first imperfection we addressed was accuracy. Accuracy consisted of trueness and
precision; trueness was the systematic error measured in terms of bias and precision the random
error. An example of accuracy on a digital chart is presented in figure 2.3. The digital chart is
shown in yellow and the true value is shown by the underlying photo. We see that the digital chart
does not follow the true situation perfectly. There is a bias on the digital chart: on average the
chart is shifted to the southeast. Also, apart from the bias there is a random error present on the
data, this embodies the precision of the data.

In the previous section, we talked about the imperfection known as incompleteness. The
relation of incomleteness with digital charts is depicted in figure 2.4. The digital chart is shown
in yellow and the true value is shown by the underlying photo. The photo shows the situation
near the harbor of Den Helder, which is covered by an ENC. Now suppose we are interested in

9 THALES
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Figure 2.4: Incomplete digital chart (yellow line). True value depicted by the underlying photo.
Source: Google Earth

a bigger surrounding than only the near environment. This imposes a problem: the chart we
use is incomplete, meaning that there is vital information missing. This immediately shows that
imperfections can be subjective: if we would have been interested in a smaller surrounding of the
marine harbor, the digital chart might have sufficed and we would not have called it incomplete.

If we had two or more measurements, the measurements could be inconsistent towards one
another. An example of inconsistency is displayed in figure 2.5. We see two different digital charts;
the yellow chart is quite precise and follows the true state fairly good, the red chart is more imprecise
and follows the true state more roughly. The underlying photo covers a section of the Rotterdam
harbor and represents the true value. In section 2.2.1, we said that two digital charts are called
consistent if they fall within the precision bounds. For figure 2.5 this means that the two digital
charts are almost completely consistent with eachother. There is one exception: just northeast of
the center of the area, there is a coastline construction which is covered by the yellow chart, but
not by the red chart. It is most likely that incompleteness is involved in the red chart, which means
the charts are inconsistent at that point.

10 THALES
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Figure 2.5: Inconsistent digital charts (yellow and red lines). True value depicted by the underlying
photo. Source: Google Earth
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Chapter 3

Mathematical preliminaries

Before we dive into the theory of incorporating external information into a tracking filter, the theory
of filtering is introduced. In this chapter, we set up a theoretical framework which is able to handle
tracking a single target. This framework is called a Bayesian framework and is widely used in all
kinds of filters. The Bayesian framework is based on Bayes’ rule [13]:

P(B|A)P(A)

P(AIB) = ——prps

(3.1)

This formula is the key to succes for determining state estimates. One of the filters where it is used
is the particle filter. Both Bayesian and particle filtering are reviewed in this chapter.

3.1 Bayesian filtering

We set up the Bayesian framework for the filtering problem we consider, following [6]. First of all,
let us define the state vector s, € R"s, where n, is the dimension of the state and k € N is the
time index. We assume that measurements z; € R"s are available at every timestep k, where the
time between k and k + 1 equals T' (so tgy1 — tr := T,VT). Given the sequence of measurements
Zy, :={z;,i=1,...,k} at timestep k, the nonlinear filtering problem is deducing the state sj from
the given measurements. The nonlinear filtering problem is sometimes referred to as the Bayesian
filtering problem. Suppose the target state evolves according to the dynamic model

Sk4+1 = fk(sk7vk)7 (32)
Z = hk(Sk, Wk) (3.3)

The equations above are respectively called dynamical model and measurement model. Here f;, is a
function of sg and vy, hy, is a function of s, and wg, vi ~ py(vi) and Wi ~ pyw (Wy) are both noise
vectors. Furthermore, we assume that our original target state sg has a known probability density
function p(sg). The probabilistic model for the state evolution (often referred to as transitional
density), p(sk|sk—1), is defined by the dynamical model (3.2) and the known statistics of vj_;. The
likelihood function p(zg|sk) is defined by the measurement model (3.3) and the known statistics of
Wi.
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We are interested in sg, the state at time step k. To derive information about that state, we
should make use of the measurements Zy := {z;,¢ = 1,...,k} and the initial probability density
function p(sp). In particular, we are interested in the posterior probability density function p(sy|Zy).
This pdf may be obtained recursively in two steps: the prediction step and the update step. That
is, given p(sg—1|Zx—1) we look for p(si|Zy_1), next given p(si|Zx—1) we look for p(si|Zy).

For a given p(sx_1|Zx_1), we obtain the prediction density through the Chapman-Kolmogorov
equation:

p(sk|Zr—1) = /p(Sk|Sk—1’Zk—1)p(Sk—1|Zk—1)dSk—1,

= /p(Sk|Sk—1)p(Sk—1|Zk—1)dSk—1- (3.4)

This equation defines the prediction step.
When the new measurement z; becomes available, we update our prediction with the new
information. This is done with the aid of Bayes’ rule (3.1).

p(sk|Zy) = p(sk|zx, Zr—1),
_ p(zxlsk, Zi—1)p(sk|Zs—1)

P(zk|Zk-1) ’
_ P(zx|sk)p(sk|Zrk—1)
= oorlZe ) , (3.5)

p(zi|Za 1) = / P2k ls)p(sk|Zi_1)dsi.

The term p(z|Zx—1) is the normalization constant.

When we are in possesion of the posterior density function p(sx|Zx), we can extract point es-
timators. Optimal state measures are the mimimum mean-square error (MMSE) and the maximum
a posterior (MAP) estimators. The MMSE estimate is the conditional mean of sy:

SUMSE . — sy |Zy] = /Skp(sk|zk)dsk~

The MAP estimate is the maximum of p(sg|Zy):

Sue” = arg max p(sk|Zx)-

3.2 Particle filter

The theory presented in the previous section is merely a theoretical framework for solving the
nonlinear filtering problem. In most practical situations, the recursive Bayesian state estimation
will not suffice. The main problem is that for the solution to work, it requires the storage of the
entire pdf, which is in general terms equivalent to an infinite dimensional vector [6]. To avoid this
problem you could represent the required posterior density function by a set of random samples
with associated weights and compute estimates based on these samples and weights. This is the key
idea to a Sequential Monte Carlo (SMC) approach known as particle filtering [5]. In this section,
the method of particle filtering is explained in a nutshell, where we will roughly follow [6].
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3.2. PARTICLE FILTER

Particle filtering is a filtering technique that uses Monte Carlo integration to avoid the
problem of storing the entire pdf. The Importance Sampling method (a more general version of
Monte Carlo integration) is applied to the recursive Bayesian state estimation to form the Sequential
Importance Sampling (SIS) algorithm. The SIS algorithm forms the basis for most particle filters, in
spite of the fact that it degenerates. Degeneration means that after a certain number of time steps,
all but one particle have negligible weights. This problem is solved by making use of the resampling
technique. Which is done in the Sampling Importance Resamphng (SIR) filter, see algorithm 1;
resampling is performed every time step. Here, sj and wj, are respectively the state vector and
corresponding weight for particle ¢ and time step k. N, indicates the number of particles. Other

variables are defined accordingly.

Algorithm 1: SIR Particle Filter

Initialization:

Sample initial particles {s(()i)};\fz”1 from p(so);

Set the weights w(()) to x—
@ @

input : {s,’,,w,”},”, and a new measurement, zj.

output: {sg),wk)}l L

1 - Prediction:

fori=1,...,N, do
(4)

Sample v;.”, from py(Vi—_1);

Generate a new particle : §,(;)

end
2 - Update:

fori=1,...,N, do
(1) (2)

‘ Compute weights : 111 =w, P

end

Normalize the weights : wl(f) =

3 - Resample:

Generate a new set of particles {s(] S

so that for any j, P(s; (1) — ‘(1))
Set the weights w,(f) to 5

k
Np -()*
Zj:pl ;!

(@)

Sk 1 V-1

The SIR particle filter is the filter we use in our application.

In practice, we see that a few

adaptations are done but the general algorithm 1 is still applicable. For more in depth information

about particle filtering, we refer to [6].
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Chapter 4

Dealing with imprecise external
data in a Bayesian framework

In chapter 2, we saw that information is often imperfect. We also saw examples of imperfections
in geographical maps. As formula (2.1) indicates, measurements are not perfect descriptions of
the true value. Every type of structured knowledge was once measured and thus is biased and/or
imprecise. In this chapter we assume unbiased measurements (A = 0) and look for a way to
incorporate imprecise external data into a Bayesian filter.

In the past, research has been conducted to come up with a model for external knowledge
and how to incorporate it into a Bayesian framework [8]. For modelling purposes, this knowledge
was assumed to be perfect. Also in this research, it was assumed that the knowledge was available
in the form of structured data so that it could be incorporated into the Bayesian framework by
using hard constraints. If we replace the assumption that the external information is perfect, and
we replace it by the assumption that the external information is imprecise, we arrive at the notion
of imprecise hard constraints.

In this chapter, we introduce a way of modelling constraints as imprecise hard constraints.
Next, it is described how we incorporate the model for imprecise hard constraints into the Bayesian
filter. The last section discusses a model for constraints on position.

4.1 Incorporating imprecise hard constraints in a Bayesian
filter

In our model, we follow the framework that has been introduced in [8] and extend it with imprecise
external data. For starters, let us assume the system is described by the following state and
measurement equations (3.2,3.3):

Sk+1 = fr(sk, vi),

Z — hk(Sk,Wk).

where s, € R™¢ is the system state, and n; its dimension. zj, is the measurement vector, vi ~ py(vy)
and Wy ~ pw(Wwyg) are both noise vectors. By assumption, we impose Markov properties on our
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system, i.e.

P(Sk|Sk—1,Sk—2,---,50) = p(Sk[sk—1)

p(Zk|Zk71,Zk71, <o- 20,5k, Sk—1y- - - 750) = p(Zk\Sk)-

Here, p(sk|si—1) is known as the transitional density and p(zy|sk) is known as the likelihood function.
We are looking for a way to incorporate imprecise hard constraint into the Bayesian frame-
work. Consequently, we need a model for imprecise hard constraints. In [8], nonlinear hard con-
straints were modelled as:
a; < Cg(sk) < by,

where Ci(sy) : R — R"<. Furthermore, the set of all states satisfying these constraints is modelled
as

Cr := {sk|skx € R"*,a, < Cp(sk) < br}. (4.1)

In contradiction to hard constraints, imprecise hard constraints are unknown apart from their
distribution. That is, the exact value is unknown, while the distribution of the constraints is
known. By assumption, we impose a probability distribution onto the constraints, i.e.

aj, < Cy(sk) < by, (4.2)
ap =ap+ay, o~ P, (4.3)
by =bi + By, By ~ ¢k, (4.4)
Or = Or(sk)- (4.5)

The distribution function ¢y is responsible for the imprecision on the constraints. The dependence
on s; can be best explained by looking at a more specific model. This specific model is inspired
by the use of multiple ENCs for an area: in practice adjoint ENCs often have different precision.
Suppose that the state space we consider is split up into n non-intersecting subspaces S;, i.e.

S=S1USU---US,, SiﬁSj:@, 175_],
and suppose that the following constraints hold:

arr < Cyp(sk) <big, Vspeb
azy < Cyp(sk) <bgyg, Vs,eS

an <Cpi(sk) <bng, Vspel,
aip=a;r +Qp, Qp~dig, t=1,....n
bi,k :Bi,k+ﬂi7k7 /Bi,k ~ ¢i,k7 1= 17"'7”
A more general way of writing this model is by letting ¢, = @x(sy) as in (4.5).
In [8], external information was exploited in two ways: in the prediction step and in the

update step. We follow the method of exploiting external information via the update step. The
update step could be written as

p(zk|sk)p(Cr|sk)p(sk|Z1:k, Crik—1)
P(2k|Z1:6-1,C1:1)P(Ci|Crik—1)
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4.1. INCORPORATING IMPRECISE HARD CONSTRAINTS IN A BAYESIAN FILTER

In this update step, we identify the following terms: the likelihood function p(zg|sk), the predictive
density function p(sk|z1.k,C1.x—1) and the normalization factor p(zk|z1.k—1,C1.£)P(Ck|C1.k—1). The
remaining factor p(Cy|sy) is called the hard constrained likelihood, and is given as

C |S),w, 1, sk €C,
PRkBe) = p(sklsp_1) | 0, otherwise.

For imprecise hard constraints, p(Cg|sk) has to be defined differently, since we do not know when
sk € Ck.

In equation (4.1), we gave the definition for the set Cj of all states which satisfy the con-
straints. This set can be seen as an intersection of two sets C, 3, and Cy 1, being defined as

Ca : = {sk|sk € R, Cy(sy) > ar},

= {si|sr € R™, o < Cp(si) —a},
Co i : = {sk|sr € R",Cpy(si) < b},

= {si|sp € R™, 3, > Ci(sp) — br}.

This gives us Cy, = Co,xNCy 1. For the set C, 1, by definition its conditional likelihood can be written
as:

Cp(sk)—ax
P(Carlsn) = / bplon) e,

—0Q

Similarly, the conditional likelihood of Cp ;, can be written as

P(Coklsk) = / ®x (B )dBy,-

Cr(sk)—bx

This implies that for p(Cg|sk), we have

P(Crlsk) = p(Cak N Cox|sk),
= p(Ca.r|sk)p(Co k[8K),

Cr(sk)—ak o
_ / br () dus /  6x(B0)dBy,

—00 Cr(sk)—bk
Ci(sk)—ak Cp(sk)—bs
=/ Pr(ag)day, 1—/ ok (By,)dBy,-

The terms f,c;(sk)_gk or(ag)day = @o 1 (Cr(sp)—ax) and f?oi(sk)_gk ok(Br)dBy = Pk (Cr(sk)—

by) can be seen as the cumulative distributions of a and B3,. So we can write our expression for
p(Cr|sk) as

Cr(sk)—ak Cr(sk)—bs
cilso = [ oulanda |1~ [ m(m)dﬁk] , (4.7)
= ®q 1 (Cr(sk) —ar)[l — ®5,,(Cr(sk) — bi)l, (4.8)
= Oy (sk). (4.9)
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We name our function ®(sy) the factorization function.
The factorization function has a nice interpretation: ®j(sx) appears to be equal to the
probability that s; satisfies the constraints.

Dp(s) = Po k(Cr(sk) — ax)[1 — D r(Chr(sk) — by,
= P{ay < Cy(sy) —ar}[l — P{B), < Ci(sk) — bi}],
= P{oy, < Cy(sg) — ax} P{B), > Cy(sk) — by}

By assumption the vectors o, and 3,, are distributed independently, so

Py (sk) = P{og < Ci(sk) — ax, By, > Cr(sk) — by},
= P{ay < Cy(sk), Cr(sk) < by},
= P{a, < Cy(sk) < bi},
= P{s € Ci.}.

Imprecise hard constraints can be seen as a general case of hard constraints. If we set ¢y = 6,
the Dirac delta function, we have o, = 3;, = 0 which gives us a; = a, and by, = bj. This makes
the constraints a; and by perfectly precise. We see that the generalization of the hard constraints
exactly coincides with the definition of hard constraints:

Ck(Sk)fﬁ
P(Caklsk) :/ §(ou)day,

o 17 if ag < Ck(Sk)
“ ] 0, otherwise
p(Chilsi) = / 5(c)doxs,
Cr(sk)—ak

o ].7 if Ck(sk) < bk
“ ] 0, otherwise

P(Cklsk) = p(Ca,k|sk)P(Co,klSk),
_ { 1, if ap < Cp(sk) < by

0, otherwise

The conditional likelihood function for the generalized case of hard constraints is equal to the
conditional likelihood function as given in [8].

4.2 The model for imprecise hard constraints applied to po-
sition

A substantial part of research is devoted to position constraints, i.e. constraints on [z yx]. When
we apply the model for imprecise hard constraints, we should take into account a number of con-
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siderations. For (4.2-4.4), we assume that @, by, and ¢, are constant over time:

a;, < Ci(sy) < by,
ak:5+ak7 ak’~¢v
b, =b+8;,, B~

This means that although the mean and the distribution of aj is constant over time, ay itself is
not, which is due to the fact that every time step a new value is drawn from the distribution ¢. At
first glance, it may seem like a rough model for imprecise hard constraints on position. That is, in
reality position constraints, although unknown, tend to be fixed over time. Consider for example
the coast of a river.

However, we can make this way of modelling imprecise hard constaints on position reasonable.
In some cases, constraints on position do change over time. If we would measure the position of a
coastline near a beach and we only measure a few times a day, we would see a changing coastline
due to tides. Also, when we take a more detailed look and measure the coastline very often, we see
a changing coastline due to waves crashing against the beach.

More importantly, the model is valid if we track a target which is moving fast enough.
Consider a ship moving along a coastline. If the ship moves fast enough parallel to the coastline,
it will encounter a 'new’ piece of coastline every time a measurement is done. If the new position
of the ship sj is such that the correlation between the point on the coastline closest to the ship
and the point on the coastline closest to the previous position of the ship is negligible, then we can
safely draw new values for o, and 3, from ¢. This reasoning does not hold for stationary or barely
moving targets. Using imprecise hard constraints with these type of targets requires a different
model.
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Chapter 5

Simulations with a theoretical
scenario

In the previous chapter, we developed a general model for incorporating imprecise hard constraints
into a Bayesian framework. Also did we develop a model for imprecise hard constraints on the
position of a target which moves fast enough. For analysis and demonstration of the model for
imprecise hard constraints, we perform simulations. We simulate a ship which sails through a canal
and want to track its whereabouts. We do this with a radar which receives measurements of the ship,
after that a particle filter performs the filtering and produces tracks. Tracks are estimates of the
true state of the target for every time step. Of course, we want to make these estimates as accurate
as possible. Although the particle filter already improves accuracy a lot, we can make the estimates
even more accurate by incorporating external information. In our case, the external information is
a geographical map of the surroundings showing water and land areas. This imposes constraints on
the position of the ship. The analysis in chapter 2 indicates that this kind of information is rarely
perfect. In the simulations we assume that this is also the case for our map: the map we use is
imperfect. There is a certain degree of imprecision present on our map, which means that we do
not know exactly where the coastlines are located. We assume that there is no bias present on this
map.

In this chapter, we compare the performance of several particle filters to study the influence
of imprecise hard constraints. We study a toy example, which has the nice property that the values
of the factorization function ®;, can be determined analytically. First we will explain the simulation
setup: we zoom in on the used model, the simulation scenario and parameter settings. Next, we
present the simulation results and draw conclusions where possible. In the next chapter, we will
drop the property that the factorization function ®; can be calculated analytically and focus on
methods which are able to deal with real ENCs.

5.1 Simulation setup
This section describes the simulation setup: the scenario is explained and the derivation of the

corresponding model is given. Furthermore we give attention to performance measures and describe
the tests that are done in the scenario.

23 THALES



CHAPTER 5. SIMULATIONS WITH A THEORETICAL SCENARIO
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Figure 5.1: Simulation scenario: abstract canal

5.1.1 Simulation scenario

We consider the case of a vertical canal that has a width of 50 meters, it is shown in figure 5.1.
The green rectangles denote land areas, the blanc area denotes water. In the canal we simulate the
movement of a ship, which travels south to north with constant speed. A tracking radar receives
measurements of the ship and converts them to tracks with the aid of a particle filter.

Following figure 5.1, this situation can be modelled as follows. The dynamical equations for
the ship are set to

Sk+1 = F'si, + wy, (5.1)

sk:[mk 'Uz,k: Yk ’Uy,k]T. (52)

Here, zj, and yy, are the (z, y)-coordinates of the ship for time step k and v, and v, the velocities
in the z and y directions respectively.

(5.3)

o O O
cor N
O = OO
— N oo

In the above equation, T represents the update time. The Brownian motion model is applied, which
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means that the covariance matrix of the process noise wy, [7] is given by:

%Ti" ir? 0 0
;I T 0 0
0o 0 3T T

Here, g represents the variance of acceleration (both in z and y direction). For normal distributions,
we have that 99.9% of the distribution falls below 30. So by assuming v, ; ~ N(0,0) and vy j ~
N(0,0), we could safely say that the maximum acceleration ap.x = 3. This results in ¢ = 02 =
(anéax)g

The available measurements at each time step are assumed to be the target range ry, the
bearing b, and the Doppler velocity d.

Tk = \/in +y]37

br = arctan <wk> ,
Yk

_ TkVz,k + YkUy k
Tk ’

dy,

The measurement noise is zero-mean Gaussian noise with a standard deviation of o,., o, and o4 for
the range, bearing and Doppler, respectively.

Since the ship is not allowed to sail on land, the position of the ship is subject to constraints.
Following figure 5.1, the constraints in the case of perfect knowledge can be formulated as

=25 <2, <25, yp €R, wpp, vy €R.

Formulating the constraints in the case of imprecise knowledge is not as easy. We can however,
formulate the constraints for a fixed yy:

ar < 2p bk, Yk =Yg, Vzk, Uyk €R,

ak:*25+0[}€, ak~¢7

bk:25+ﬂk7 ﬂkw¢7

We assume ¢ to be Gaussian distributed with zero mean and a standard deviation of o = 20.
This gives us enough information to compute ®; in this instance:

Pr(sk) = ok (Cr(sk) — ax) [1 — ©3k(Cr(sk) — Bk)] (5:5)
=, (2 +25) [1 — Pg i (zr — 25)],

s | 2
Do k(xr + 25 2/ e~ 800 “kdayy,
ok (T ) BT k

SO | | g
q)ﬁ,k(-Tk - 25) = / 20meim’6kdﬁk.

The imprecise hard constraints are incorporated into the particle filter through evaluating
the function ®y, for every particle. Let us return to previous equations to see what actually happens.
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In chapter 4, we saw that the Bayesian filter with constraints consisted of two steps: the prediction

step and the update step. We chose to incorporate the constraints in the update step and found

formula (4.6), i.e

p(zk|sk)p(CrIsk)p(sk|z1:k, Crok—1)
P(2k|Z1:5-1,C1:)P(Ck|Cr:k—1)

p(sk|z1k, Crik) =

We also found a way to express p(Cg|si) in terms of the distribution function ¢y: p(Cg|sk) = Pr(sk)-
This means that in practice, incorporating the imprecise hard constraints in the particle filter means
evaluating the function ®;, for every particle é,(;) and multiplying it with the weights. In the case of
the abstract canal, it is straightforward since ®j, only depends on zj. The result is the SIR particle
filter with imprecise hard constraints as can be seen in algorithm 2.

Algorithm 2: SIR Particle Filter with imprecise hard constraints

Initialization: ‘
Sample initial particles {séz)}iv:”l from p(sp);
Set the weights w(()l) to x

. N,
input : {sk l,wk 1hZ

output: {Sk 7wk)}2 -

1 - Prediction:
fort=1,...,N, do
( ) 1 from py(vip—1);
Generate a new particle : §§€)
end

2 - Update:
fort=1,...,N, do

| Compute weights : &) = wi? p(ar/s]”)21(5]");

, and a new measurement, zj.

Sample vy,

f(sk 17Vk 1)

end
, hts - () — @
Normalize the weights : w,’ = W
3 - Resample:
. DN,
Generate a new set of partlclgs {sm}] 21
so that for any j, P(s; @) — §,(€Z)) w](:)v

Set the weights w,(j) to &

5.1.2 Performance measures

As mentioned before, we are interested in the performance of the particle filter under different
circumstances. To be able to discuss the performance, we need performance measures, i.e. numbers
which actually define the quality of the particle filter. We can acquire these measures by various
means: by Monte Carlo simulations and by inspection of a single run.
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Comparison of MMSE and MAP estimates
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Figure 5.2: A bimodal Gaussian distribution. Source: [14]

A single run gives us an impression of the behaviour of the posterior density function for every
time step. Although a single run is subject to randomness, we often gain fairly good insight. Also,
point estimators can be extracted from a single run. A point estimator is a measure which assigns
one value to the variable that has to be predicted. We distinguish between the mean estimator and
the maximum a posteriori (MAP) estimator:

gy = Elsy|Za] = / sp(sk|Z)dsi;

SMAP . — arg max p(si|Zy).
s ERMs

For this research we choose to use the MAP estimator, because this estimator is better able to deal
with nonlinearities [14]. Suppose we have a bimodal Gaussian distribution as in figure 5.2. The
mean estimator is given by MMSE, the MAP estimator by MAP. The mean estimator gives little
information about the true position of the target, while the MAP estimator gives you the top of
the distribution and makes much more sense in this case.

A Monte Carlo simulation is a type of simulation that relies on repeated random sampling
to compute results. Suppose we perform 100 runs and collect for every run and every time step in
the simulation a state estimator. Then we can compute performance measures such as the mean
bias and the standard deviation of the state estimates, i.e.
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The mean bias gives a measure for the deviation from the true state, whereas the variance gives
a measure for the dispersion around the mean estimated state. We have to be very careful when
using the mean bias of the state estimates. Againg, referring to figure 5.2: suppose that 70 MC
runs place the state estimate around top on the right and 30 MC runs place the state estimate
around the top on the left. Then the mean of the estimates is again somewhere in the middle. This
means that we can only use the mean bias of the state estimates when we are dealing with a linear
situation; a situation where the mean estimator coincides with the MAP estimator.

5.1.3 Trials and parameter settings

We perform two simulations to test the performance of various particle filters. The particle filters
we compare are

e PF1: a particle filter in which the coastline position information is not taken into account;

e PF2: a particle filter in which the coastline position information is exploited as precise (per-
fect) hard constraints on the target dynamics;

e PF3: a particle filter in which the coastline position information is exploited as imprecise
hard constraints on the target dynamics.

The coastline position information is given by the map as shown in figure 5.1.

In the first trial, we consider the map to be perfect, i.e. it reflects the true values with
absolute precision and no bias. On the perfect map, we consider two separate trajectories. They
are shown if figure A.1 and figure A.2. In both figures, again the green rectangles represent land
areas and the blank parts of the map represent water. The red lines are the trajectories, in both
cases the ship sails from south to north. The performance of PF1 and PF2 is compared. In the
case of perfect knowledge PF2 and PF3 would be exactly the same, therefore we leave PF3 out of
the comparison.

In the second trial, we consider the map to be imprecise. We assume that we exactly know
the distribution of the coastline position. On the imprecise map we consider the trajectory as shown
in figure A.3. The imprecise coastline position information is shown by the green rectangles. The
actual coast is shown in blue, we see that there is a certain deviation from the true value. Again
the trajectory of the target is shown in red and the target moves from south to north. At first the
trajectory may seem contraintuitive since it moves over the green area, which denotes land. One
should remember that the green rectangles only represent our knowledge about the area and not
the area itself. The performance of all three filters, PF1, PF2 and PF3, is compared.

We expect PF3 to give a trade-off solution between PF1 and PF2. In the case of the
simulations with perfect information, PF2 is expected to give the best results. When information
is not perfect, PF3 is expected to perform better than PF2.

A number of assumptions is imposed onto the model:

e There is only one target present;
e The target, in this case a ship, can only be present at water.
The following parameter settings have been used:

e The radar position is (0,0);
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e The number of particles is 6000;

The update time is T' = 1s;

e The maximum acceleration is amax = 5m/ s2;

The standard deviation on the measurement noise is o, = 10m, o, = lmrad and o4 = 3m/s,
for range, bearing and Doppler respectively.

We have developed a MATLAB application that is able to perform the simulations. This
application is focused on incorporating external information in the form of geographical maps into
the filter.

5.2 Simulation results

This section covers the results of the trials as described in section 5.1.3. Furthermore, the results
of the trials are analysed. All results can be found in appendix A.

5.2.1 Results for trial A

The trajectories in figures A.1 and A.2 were used to compare filter PF1 and PF2. We have performed
single runs as well as Monte Carlo simulations (100 in total) to produce performance measures. For
the single runs we have looked at the posterior density function for all time steps. The posterior
density function is in practice reflected by the particle cloud. Although we miss information about
the weights of the particles, we still get a good impression of what the posterior density function
looks like. The Monte Carlo simulations provided us with the mean bias and the standard deviation
of the point estimates. For this scenario, we have only looked at the performance measures over
horizontal position z;. Recall that we mentioned in section 5.1.2 that we have to be very careful
when looking at the mean bias of point estimates. We could only do this when there were no
nonlinearities involved. For the abstract canal, this is the case so we do not have to worry using
these performance measures.

The results of the Monte Carlo simulations for both trajectories are presented in figures A.4
- A.7. Both trajectories were completed in exactly 100 time steps. Every time step a measurement
becomes available. The red and blue lines represent the measures for PF1 and PF2 respectively.

Let us first take a look at the simulation results for the trajectory through the middle of
the canal. The results of the Monte Carlo simulations are shown in figures A.4 and A.5. It can
be seen that both filters perform similarly. This is the result of the constraints being 25 metres
apart from the target trajectory, i.e. the influence of the constraints is minimal. This feature is
clearly displayed when one takes a look at the particle clouds, see figures A.8 and A.9. Although
the particle cloud is reduced in the hard constraints case, the reduction has no measurable effect.
This is caused by the outer particles having negligible weights, complemented by the vast majority
of the particles being located near the middle of the canal.

Secondly we discuss the results for the trajectory along the coast. The results of this sim-
ulation are depicted in figures A.6 and A.7. It appears that PF2 performs worse when one looks
at the mean bias, which is higher thoughout the whole simulation. However, this is compensated
by the standard deviation of the estimates which is lower. This phenomenon exists due to the fact
that the weights of all particles located on land are set to 0, which results in a bias which is always
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located in the direction of the centre of the canal. Also for this simulation, a plot of particle clouds
in a simulation is depicted, see figures A.10 and A.11.

5.2.2 Results for trial B

For the second trial, we compare particle filters PF1, PF2 and PF3. We compare their performance
on the scenario depicted in figure A.3. In this scenario, we let the ship sail from south to north 1
meter from the actual coastline. It takes the ship 101 time steps to complete the trial.

The results of the simulations are shown in figures A.12 and A.13. Both the mean bias and
the standard deviation are taken over the horizontal position xj. The red, blue and yellow lines
represent the simulations results for PF1, PF2 and PF3 respectively. Let us first zoom in on the
results related to PF1 and PF2. Using external information as though it were perfect in the case it
is actually imprecise can be harmful to the filter, as can be seen from the results. The trajectory
is situated on land during time steps 1 to 45 and 87 to 101. During these time steps, the bias of
the state estimates are in the case of PF2 larger than during the other time steps. This is a results
of all weights of the particles on land reduced to 0. Figures A.14, A.15, A.16 and A.17 illustrate
the situation. Note that the true state lies within the particle cloud of PF2 during time step 61, a
time step in which the target is located in water according to the map. During time step 101, this
statement is not true. This is the danger of using a filter with hard constraints in a scenario where
information about constraints is imprecise. The filter throws away valuable information, resulting
in a large state bias. This happens for instance in time step 101.

Let us now focus on comparing filters PF2 and PF3. When we look at figure A.12, we see
that PF3 performs alternately better and worse than PF2. The simulation can be subdivided into
four phases:

e time steps 1 - 10: PF3 performs better than PF2;

e time steps 11 - 42: PF2 and PF3 show similar performance;
e time steps 43 - 91: PF3 performs worse than PF2;

e time steps 92 - 101: PF3 performs better than PF2.

During time steps 1 - 10 and 92 - 101, the horizontal position of the target is more than 8 metres
on land, according to the map. This indicates that when the target is far enough on land, the filter
with imprecise hard constraints outperforms the conventional one. When the horizontal position of
the target is less than 8 metres inland, the filter with imprecise hard constraints performs similar to
or worse than the filter with hard constraints (see figures A.18 and A.19). This is a strange effect
that we did not expect. It is caused by the fact that we are looking at a point estimator and not
the complete posterior distribution. For more information on this topic, see section 5.3.

Compared to PF2, PF3 shows a more or less constant standard deviation (figure A.13). And,
maybe more important, the standard deviation is found to be smaller than the standard deviation
of PF1.

5.3 Influence of ®

In section 5.2.2, we found that the filter incorporated with imprecise hard constraints sometimes
seemed to perform worse than the filter incorporated with hard constraints. This seemingly strange
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Figure 5.3: (Adapted) likelihood function for imprecise hard constraints: pp = —35 (left) and

pur = —20 (right)

phenomenon can be explained. To incorporate external information into the particle filter, the
likelihood function p(zg|sg) is multiplied with the factorization function ®j(sy). Ultimately this
has its effect on the posterior density function p(si|zx).

Now, suppose the posterior density function right before incorporating constraints has the
form p(sk|zx) ~ N (pr,0%), with ur the mean position of the target and o its standard deviation,
which we pick as 5. Figures 5.3 and 5.4 depict the situations where yup = —35, —26 and —20. The red
graph indicates the posterior density function right before incorporating the external information.
The posterior density function including the external information (apart from a normalization
factor) is indicated by the green graph. In all figures the canal is indicated by the blue lines.

If we deal with the MAP estimator, the point estimate that is chosen is the top of the graph.
In the case of imprecise hard constraints, we see that this top is shifted towards the middle of the
canal compared to the case of the filter without constraints. For targets far off-coast (figure 5.3,
left), this gives us a nice trade-off solution with the state estimator halfway the coast and the target.
But when targets are close to the coastline (figure 5.4, left), the point estimator performs worse
than in the case of hard constraints (see figure 5.4, right). In the case that the target is located
close the coast (ur = —26), the MAP estimator is given as

KMAP — _95  for hard constraints,

)ACQ/IAP = —23.6, for imprecise constraints.

This means that according to the MAP estimator, the filter incorporated with imprecise hard
constraints performs worse than the filter incorporated with hard constraints. This is an unwanted
situation. However, if we look at the complete posterior distribution, we see that still a lot of
information is preserved in the case of imprecise constraints. While in the case of hard constraints
all information below the coastline is destroyed. So we can say that in general, when you take into
account the complete posterior distribution, PF3 performs better than PF2.

31 THALES



CHAPTER 5. SIMULATIONS WITH A THEORETICAL SCENARIO

0.1 ) 0.1 L

000 —p(s,/z) 006 —p(s,lz,)
- p(s,|z,)P(s,) = p(s,|z,)P(s,)
= 0.08F ---a.andb, = 0.08F ---a andb
S T S T
S 1 k3] !
50071 ! 50071 !
2 1 2 1
% 0.06F i G 0.06F I
S 1 S 1
8 ' 3 |
5 0.05 : 5 0.05f :
Q 1 o) ]
@ 0.041 % 0.04f
g : E
g 0031 : go.03r :
£ 0.2} , £ 0.02} ;
e : 8" :

0.01f : 0.01f :

. ; . ‘ ; .
% 0 50 %o 0 50
x[m] x[m]

Figure 5.4: (Adapted) likelihood function for pr = —26 for imprecise hard constraints (left) and
hard constraints (right)

32 THALES



Chapter 6

Simulations with a realistic
scenario

In chapter 5, simulations were performed on a theoretical scenario. We chose the scenario in such
a way that it has nice properties: we could directly compute values of ®; and only had xj as our
variable of interest. We showed that the particle filter incorporated with imprecise hard constraints
was succesfull in improving performance, when one considers the complete distribution. This arouses
our interest in more realistic scenarios: what would happen if we performed the simulations with
external information in the form of realistic maps, for example the map in figure 6.17

In this chapter we develop methods for dealing with realistic imprecise digital charts. The
main problem we face when we deal with realistic digital charts is computing the value of ®; for
every particle. We address two methods which are able to deal with this problem in their own
way: the shortest distance method and the grid method. In the remaining part of the chapter we
perform simulations with both methods. In these simulations, we compare the performance of the
shortest distance method with the grid method. Also, we compare the performance of the filter with
imprecise hard constraints with the performance of the filter with and without hard constraints,
just like we did in chapter 5.

When we want to use imprecise knowledge in the form of nonlinear maps in a tracking filter,
we need additional theory to be able to compute the value of ®;, for every particle. Recall that the
formula for @, was (see equation (4.7))

Ci(sk)—ak Cj(sp)—bg
Dy (sk) =/ on (o) day, [1 —/ o1(By)dBy

—00 —00

When we want to determine the value of @k(ég)), we need the values for Ck(ég)) —ay, and Ck(él(;)) -
byj. The problem is that we are in general not familiar with the values for Cy, @, and by. To be
able to use imprecise knowledge in a realistic situation, we need to tackle this problem somehow.
We developed two methods that are able to do this approximately: the shortest distance method

and the grid method.
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y [m]

-4000 -3000 -2000-1000 O 1000 2000 3000 4000 5000
x [m]

Figure 6.1: Simulation scenario: Port Fourchon and approaches in the Mississippi River Delta near
New Orleans (ENC cell USSLA26M).
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6.1. SHORTEST DISTANCE METHOD

6.1 Shortest distance method

For the shortest distance method, we use the exact same particle filter as for the abstract canal
(algorithm 2). The difficulty lies in computing ‘I’(ég)) for every particle 4, i = 1...N. In the case
of the abstract canal we could just input the variable zj into formula (5.5) and extract this value.
For the more realistic case of the map of New Orleans, this is not as easy. The shape of ®;, is much
more complex, by which it hampers these computations.

The main problem is that in fact, every piece of coastline contributes to the value of the
function ®;. This means that we have an infinite amount of variables we have to take into account.
Since this is impossible to implement we have to look for solutions. One of these solutions is the
shortest distance method. The shortest distance method does not take into account all coastlines,
but the point of all coastlines closest to the particle, i.e. the point with the shortest distance. It is
an online method, so during the filtering the values of ®; have to be computed.

6.1.1 Assumptions

A number of assumptions are at the basis of the shortest distance method:
1. for the complete map and for all time steps, we have the same standard deviation o;
2. the smallest shown waterways have size o;
3. the influence of the closest coast is large enough to ignore the influence of the other coasts;
4. concave polygons are treated as though they are convex.

The assumptions will be illustrated below.

The same standard deviation for the whole map

If we only measure the shortest distance to the coast in order to find the value of ‘ID(égL)), we
implicitly assume that the distribution of every coast has the same standard deviation. If this was
not the case, the shortest distance to a coast need not necessarily imply the biggest influence on
the function ®;. In figure 6.2, a situation with two coasts containing different standard deviations
is depicted. The coast on the left has a standard deviation of 10, while the coast on the right has a
standard deviation of 100. This results in a skew function ®;, shown in green. If we try to mimick
this @ with the shortest distance method, the result is the function as shown in red. Clearly, this
method is not sufficient for coasts with unequal standard deviations. But since in practice complete
maps are built with the same standard deviations, we can safely assume that a complete map has
the same standard deviation.

The smallest waterways equal o

Geographical map are built with a certain imprecision. This leads to same standard deviation
for the complete map, as mentioned in the previous paragraph. As a side effect, imprecision has
its influence on the smallest waterways that can be printed on the map. The smallest waterways
appear to be as small as the imprecision, or o.
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Figure 6.2: The function ® for o, # og

The influence of the closest coast

In the shortest distance method, only the point on the coast closest to the particle is considered.
This results in a slightly modified function ®;. In figure 6.3, the worst case scenario is sketched:
a waterway with its width equal to the standard deviation. The blue dotted lines indicate the
position of the coasts, whereas the green and red lines represent respectively the real function ®y
and the function @ constructed with the aid of the shortest distance method. We can see that the
shape of the function @, is more peaky, which results in more particles situated towards the middle
of the waterway. For wider waterways, this effect is less dramatic and the function ®; constructed
with the aid of the shortest distance method looks more like the real function ®.

Concave polygons

The digital maps that are used in practice consist of polygons, see 2.1. In figure 6.4, a situation
with a concave polygon is depicted. The shaded area represents the polygon, and the dotted lines
represent the standard deviation. The only problem area, where the influence of the adjoining coast
gets too large, is area A. In these areas, the approximation of ® is somewhat rough, but we take
this drawback for granted.

6.1.2 The method in detail

As mentioned in section 2.1, the maps described by ENCs are constructed out of polygons. Com-
puting the shortest distance from a point to land is a matter of minimizing the distances to all
polygons, which is done by minimizing the distance to every line in a polygon. Suppose that we
want to know the value of ®; for particle é,(;). First we compute the shortest distance d from égj) to
(@)
k

all polygons. Then we determine whether §;’ is inside a polygon or outside all polygons. If é;ci) is
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Figure 6.3: The difference between the smallest distance method and the real function ®j: worst
case scenario

inside a polygon we set D = —d, otherwise D = d. We approximate the value of @(é,(:)) as follows:

4 D
B(E) ~ [ Gr () daus.

This method is precise, but very slow as we will see in section 6.4.1.

6.2 Grid method

Another method for implementation of imprecise information into a particle filter for realistic maps
is the grid method. This method relies on off-line computation of a grid, which is later used to
easily access information about the value of ®; for a certain particle. The geographical map is
divided into small cells which make up the grid. Each cell is then assigned a value of the function
®;.. The grid is a discrete approximation of ®j.

First a (0,1)—grid is constructed: a grid is put on top of the geographical map and for every
central point (X;,y;) in a cell it is checked whether the point is inside or outside a polygon. Inside
a polygon generates a 0, outside all polygons generates a 1: we acquire a map with ones at sea and
zeros at land. An example of such a map is shown in figures 6.5 and 6.6.

After the (0,1)—grid is assembled, we perform a discrete convolution with a normal distri-
bution. We use a two dimensional Gaussian with two independent variables x and y,

1 1 _
¢($,Q)ZWGXP <2[9C y| =t |:':Z:|>v
with
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Figure 6.4: The drawback of sharp angles in coasts
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Figure 6.5: (0,1) grid of New Orleans
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Figure 6.6: (0,1) grid of New Orleans zoomed in

If we name the (0,1)—grid G, the convolution is performed as

(Gx9)(z,y) = /_ o; /_ Z Gz — u,y — v)¢(u, v)dudv.

This is a continuous convolution. We use a discrete convolution, since it simplifies calculations.
The discrete convolution can be written as

(G*¢)(x,y) = Z Z G(x_u’y_v)d)(uav)'

V=—00 Uu=—00

An example of a (0,1)—grid after convolution with a normal distribution is shown in figures 6.7
and 6.8.

To verify whether a convolution of the (0,1)—grid with a normal distribution gives indeed
the desired function ® we perform a small check. In figure 6.9, the convolution between a one
dimensional (0,1)—grid and a normal distribution with ¢ = 5 is depicted (the red graph). At the
same time, the real values of ® are plotted in blue. The difference between the two functions is
shown in green in the other figure. We can see that the difference between the two is relatively
small, with peaks of 0.04.
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Figure 6.7: ® grid of New Orleans
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Figure 6.8: ® grid of New Orleans zoomed in
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Figure 6.9: Deviation of the convolution method

6.3 Simulation setup

In sections 6.1 and 6.2, two methods for evaluating @k(él(:)) in a realistic scenario were presented.
We compare both methods and measure their performance. Furthermore, we want to measure the
influence of imprecise hard constraints in a coastal environment.

6.3.1 Simulation scenario

We consider the case of the area as depicted by figure 6.1. The map depicts a coastal area near
New Orleans. Again, the green areas denote land whereas the blank areas denote water. In this
area we simulate the movement of a ship and again a tracking radar receives measurements of the
ship and converts them to tracks with the aid of a particle filter.

The dynamical equations are unchanged from chapter 5, see equations (5.1, 5.2, 5.3, 5.4).
The state is constrained by the general equations as given in section 4.2. This makes the filtering
algorithm unchanged from the one presented in chapter 5, i.e. algorithm 2.

6.3.2 Trials and parameter settings

We perform three simulations to test the quality of the various particle filters. The particle filters
we compare are:

e PF1: a particle filter in which the coastline position information is not taken into account;

e PF2: a particle filter in which the coastline position information is exploited as precise (per-
fect) hard constraints on the target dynamics;
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e PF3: a particle filter in which the coastline position information is exploited as imprecise hard
constraints on the target dynamics, the shortest distance method is used to compute values
of (I)k;

e PF4: a particle filter in which the coastline position information is exploited as imprecise
hard constraints on the target dynamics, the grid method is used to compute values of ®y.

The coastline position information is given by the map as shown in figure 6.1. We use the perfor-
mance measures as described in section 5.1.2.

In the first trial we assume that the coastline position information is imprecise. We simulate
the trajectory as seen in figure B.2 and compare the performance of PF3 and PF4. The target
moves from north to south. We do not perform Monte Carlo simulations, since the shortest distance
method is too slow.

In the second trial we assume that the coastline position information is perfect. We simulate
the trajectory as seen in figure B.1 and compare the performance of PF1 and PF2. The target
moves from north to south

In the third trial we assume that the coastline position information is imprecise againg. Just
as in the first trial, we simulate the trajectory as seen in figure B.2 and compare the performance
of PF1, PF2 and PF4. The target moves from north to south. For reasons of computational time,
PF3 is left out of the comparison.

The same MATLAB application is used, supplemented with the shortest distance method for
PF3 and the grid method for PF4. Apart from the assumptions already discussed in this chapter,
we impose a number of additional assumptions:

e There is only one target present;

e The target, in this case a ship, can only be present at water.
The following parameter settings have been used:

e The radar position is (0,0);

e The number of particles if 6000;

e The update time is T = 1s;

e The maximum acceleration is amax = 5m/ s2;

The standard deviation on the measurement noise is o, = 10m, o, = lmrad and o4 = 3m/s
for range, bearing and Doppler respectively.

6.4 Simulation results

In this section, simulation results are presented and analysed for the simulation scenarios mentioned
in section 6.3.
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6.4.1 Trial A

For this trial we compared a single run of PF3 and PF4. We only compare a single run, because
a full Monte Carlo simulation of 100 runs would take weeks for the shortest distance method to
complete the simulation. To be able to do a valid comparison, we use the same measurements for
both filters. The results of the simulations are plotted in figures B.3 and B.4. We can see that
although the methods produce different results, the results are comparable. For example, the big
deviations on time step 11 and 54 are present in both filters. Time step 36 shows a relatively big
difference between the two methods when one considers the bias on the horizontal position. Even
for this time step the particle clouds behave similar, see figures B.5 and B.6. We can conclude that
both methods act differently, but produce similar results in our case.

6.4.2 'Trial B

For the second trial, we perform simulations as though we were using a perfect map. This is for
comparing the performance of PF1 and PF2. In particular, we let the target move according to
the trajectory as shown in figure B.1. The target follows the trajectory from north to south. For
one particular run, we measure the posterior density function as reflected by the particle cloud.
We measure the mean bias and the standard deviation of the estimates over 100 Monte Carlo runs.
In chapter 5, we explained that using a mean bias can be very dangerous in case of a nonlinear
system, see figure 5.2. Unfortunately, the coastline position information produces highly nonlinear
constraints, which makes the use of the mean bias for measuring performance cumbersome.

Figures B.7, B.8, B.9 and B.10 show the Monte Carlo results for the second trial. In these
figures, the mean bias and standard deviation are plotted for xj and y;. The results for PF1 are
shown in red, while the results for PF2 is shown in blue. If we take a look at the results for the
filter with no constraints we see, after a few initialisation steps, a constant standard deviation.
Furthermore, we see that the bias fluctuates, these fluctuations occur whenever the target moves
along a curve.

The result for the particle filter with hard constraints show a constant standard deviation
as well when the target is located on broad waterways. This was to be expected, since most
constraints are virtually inactive. The standard deviation of this filter in the direction of x shows
a remarkable drop when waterways become smaller. This indicates that constraints become active
and the posterior density function becomes peakier in those areas. The results for the filter with
hard constraints show an increase in mean bias when the target moves along a coast. When the
coast is situated on the left or right, the standard deviation of zj increases or decreases respectively.
And when the coast is situated above or below the target, the standard deviation of y; decreases or
increases respectively. These results comply to earlier results in the abstract case. Particle clouds
for a single run are plotted in figures B.11, B.12, B.13 and B.14. We see that in these figures, the
particle cloud for PF1 is a nicely shaped Gaussian both in time step 15 and time step 102. The
particle cloud for PF2 is shaped according to the coastline in time step 102. In time step 15, the
particle cloud of PF2 is not changed compared to the particle cloud of PF1: this is due to the fact
that the constraints are barely active.

6.4.3 Trial C

For the third trial we assume that the map in figure 6.1 is imprecise. Like in the case of the abstract
canal in chapter 5, the target trajectory moves over areas that are designated as land by our map.
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However, in reality these areas are water and the target is able to move there. See figure B.2 for
reference, again the target moves from north to south.

Figures B.15, B.16, B.17 and B.18 show the results for the second trial. In these figures, the
mean bias and standard deviation are plotted for zj; and yi. The results for PF1 are shown in red,
the results for PF2 is shown in blue and the PF4 is shown in yellow. We do not use PF3 in this
scenario because it is too slow. Moreover, we have already shown that it performs similar to PF4.

First of all, we notice that the results for PF1 are not any different than in the first trial. This
is not very surprising, since the target follows roughly the same trajectory. The most important
part of this trial is the comparison of the results of PF2 and PF4. When the target is on open sea,
we see no significant differences between the two filters, see the particle clouds in figures B.19 and
B.20. We do see differences when the target moves over area that is shown as land on our map.
There are instances when the bias of PF2 larger and instances when the bias of PF4 is larger, both
in xp and y;, direction. Although we cannot draw conclusions from this phenomenon, we can look
for the particle clouds (the results of one run) at those particular time steps. First, we take a look
at a situation where the bias of the PF4 is larger (¢t = 55): figures B.21 and B.22. We see that the
target trajectory is still covered by PF4 but not by PF2. This indicates a better performance of
PF4. In the situation where the bias of PF4 is smaller than the bias of PF2 (¢t = 73), we are looking
at a target located about 30 inland. See figures B.23 and B.24. Again the trajectory is covered by
PF4, but not by PF2.
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Chapter 7
Optimization

As we have seen in section 6.4.1, the two methods developed to deal with computing the value of
<I>k(é,(j)) perform similar. However, both the shortest distance method and the grid method have
their drawbacks. Due to these drawbacks the methods cannot be applied in practice, not as accurate
as we want them to perform that is.

In this chapter the drawbacks of the shortest distance method and the grid method are
reviewed. We extend the shortest distance method and try to make it perform faster. The first
steps are made towards improving the performance of this method.

7.1 Drawbacks of the methods

As we saw in section 6.4.3, the grid method is fast enough. After an initialisation step where the
grid is made, the method ensures that the factorization function @, can be approximately computed
fast enough. In section 6.2, we explained that the the grid method is an approximation in the sense
that the state space is discretized. We divide the state space in equal cells and assign values of ®y
to every cell. When we want to make the approximation better, our only option is to make the
cells smaller, hence more accurate. This directly invokes another problem: a larger number of cells
means storing a larger matrix in the computer memory. Consider for instance the map we used in
the simulations in chapter 6: this map covers an area of 90,000,000 m?2. If we want to cover this
map with cells of size 1 by 1 metres (remember, this is only 0.20 in our case), we need to store a
10,000 x 9,000-dimensional matrix. For larger maps, this problem grows rapidly and makes the
method unusable in its current form. So for this method, accuracy is directly related to the memory
capacity of the computer.

The shortest distance method, on the other hand, is (given the assumptions in section 6.1.1)
not an approximation. Also, the method does not require a large memory. The only problem with
the shortest distance method lies in its speed. For example, computing the simulation results for a
single run, as shown in figures B.3 and B.4, required a computional time of about 6 hours. This is
due to the fact that the shortest distance from every particle to every polygon has to be computed
for every time step. Polygons range from having 3 edges to over 2000 edges in the example map in
figure 6.1. So one can imagine that this process can take a lot of time.

We look for a method that is, in contradiction to the current two methods, performable
in practice. In fact, we want to combine the speed of the grid method with the precision and low
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memory cost of the shortest distance method. It seems impossible to reduce the memory cost of the
grid method, since this method always makes use of storing a grid. The shortest distance method
seems a better starting point for optimization. It appears to be possible to reduce computational
time when smaller areas are taken into account. The exact method is explained in the next section.

7.2 Optimization of the shortest distance method

Like we explained in the previous section, the problem with the shortest distance method is that
we have to compute the shortest distance from every particle to every polygon, for every time step.
The particle filter requires us to keep the number of particles high enough, so we assume that we
cannot change anything here. This means that we have to focus our attention to the number of
polygons.

When a target violates the constraints, we say that the corresponding polygon is active. The
probability of a polygon, with a large shortest distance to the particle, of being active is commonly
very low. Consider for instance a map with imprecision, being distributed according to a Gaussian
with a standard deviation of . Then every polygon with a shortest distance of greater than 3o
has a probability of at most 0.1% of being active.

Figure 7.1: Map without partitioning

Consider the map given in figure 7.1. Inspired by the grid method, we make a partition of
the map in large cells. This way, we only have to consider the direct surroundings of the particle
and compute only the shortest distance to the nearest polygons. An example of a partition is
depicted in figure 7.2. The problem with this partition is that particles at the edge of the cell lose
all information of adjacent cells. This can be problematic since in theory there might be nearby
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’l

Figure 7.2: Map with simple partitioning

Figure 7.3: Map with intelligent partitioning
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polygons which we do not consider in our computations, e.g. the polygons to the northwest or
southeast of the shaded area in figure 7.2. A better way of making a partition of the map is by
giving each cell a 'boundary area’, we call this method intelligent partitioning. An example of this
is shown in figure 7.3, the boundary area is shown by the dotted line, the inner cell by the solid line.
If we make the width of the boundary area 30 we have a probability of less than 0.1% that particles
on the edge of the inner cell violate constraints which we do not include in our computations. For
particles further away from the edge of the inner cell, this probability is even smaller. The polygons
that were not considered in the case of simple partitioning (polygons to the northwest or southeast
of the shaded area in figure 7.2), are taken into account with intelligent partitioning, see figure 7.3.

In practice, the optimization method described in this section is applied as follows. First we
make a partition of the map into cells. The amount of cells has some influence on the performance
of the filter: a small amount of large cells creates a slow filter and a limited use of memory, a large
amount of small cells does the opposite. For every cell (including the boundary area), all active
polygons are stored. While performing the tracking, a check is performed to see in what cell the
particle lives. Only for the polygons which are active in that cell, the shortest distance is computed.

It appears that the computational time is greatly reduced. Remember that without using
intelligent partitioning, the computational time for the shortest distance method was large. When
we include intelligent partitioning in the tracking filter, the computional time is reduced consid-
erably, with an order of magnitude of 10. This specific computational time was acquired with a
partitioning into 5 x 5 cells. More research has to be done to find an optimal partitioning and
conditions under which it is optimal. Another decrease in computational time could be gained
through cutting the active polygons along the cell boundary. This way, the total amount of edges
taken into account when computing the smallest distance is reduced. Additional research has to be
carried out to show the influence of this technique.
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Conclusion and discussion

In the introduction of this thesis we wrote in the problem description the following: We are familiar
with models derived to deal with perfect knowledge in target tracking. However, in practice the
knowledge we can use to improve target tracking is imperfect. This arises the question how to deal
with imperfect knowledge in target tracking. Imperfections, in general, are a very broad class of
errors applied to data. One of the research goals of this thesis is to categorize imperfections and
make models for the different categories. Furthermore, we are interested in using these models to
derive a way of dealing with imperfect knowledge in target tracking. Finally, we need practical
algorithms to deal with imperfect knowledge in realistic situations.

8.1 Summary of the results

In chapter 2, we reviewed the subject of imperfect knowledge. Measurements appeared to be subject
to imperfections according to

y=pu+A+e.

The systematic error (A) and the random error (e), were the cause of bias and imprecision, respec-
tively. The systematic error and random error together were called the accuracy of the measurement.
Furthermore, we distinguished the imperfections known as incompleteness and inconsistency.

Dealing with imprecise knowledge was considered in chapter 4. We modeled imprecise know-
ledge as constraints, and did this as follows,

aj < Ci(sk) < by

ay =ay +ag, o~ Py
br =br+ B, By ~ bk
r = dr(Sk)-

The constraints a; and by were distributed according to distribution function ¢j. Constraints
were incorporated into a Bayesian filter by multiplying the likelihood function by the factorization
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function ®;. The factorization function was computed as

Cr(sk)—bg
- / ox(B)dB, | |

= @a,k(Ck(sk) —ﬁk)[l — <I>5_,k.(Ck(sk.) — Bk)]

Cy(sk)—ay
By (s4) = / dn(cup)doy,

—00

The model for imprecise hard constraints applied to position is a little different from the general
model. We set @, = a, by = by and ¢, = ¢.

In chapter 5, we performed simulations with the models developed in chapter 4. We showed
that in the case of perfect information, the filter with hard constraints performed better than the
filter without constraints. However, when information is not perfect (which is a more realistic
assumption), this filter throws away important information. In this case the filter with imprecise
hard constraints performs better. Also, we conluded that point estimators give a distorted view of
the actual results.

Chapter 6 addresses dealing with imprecise knowledge in a realistic scenario. Two methods
for computing @k(é,(;)) were developed: the shortest distance method and the grid method. The
methods seemed to perform similarly. The shortest distance method is slow but precise and with a
low memory cost. The grid method needs a lot of memory and approximates @k(és)), at the same
time the method is fast. From the results in chapter 6, we could draw the same conclusions: in
the case of perfect knowledge the filter incorporated with hard constraints performs best, in case
of imprecise knowledge the filter with imprecise hard constraints appeared to perform better.

Finally, in chapter 7 we made the first steps towards optimizing the shortest distance method.
The speed of the method was increased using intelligent partitioning.

8.2 Discussion

In chapter 4, we proposed a model for imprecise hard constraints. This model has its limitations
though. In principle its use is for constraints which change over time. We use the general model,
which changes every time step, also for cases where the constraints are constant. We can make this
way of using the general model reasonable. The model is valid if we track a target which is moving
fast enough. Consider a ship moving along a coastline. If the ship moves fast enough parallel to the
coastline, it will encounter a 'new’ piece of coastline every time a measurement is done. If the new
position of the ship sy is such that the correlation between the point on the coastline closest to the
ship and the point on the coastline closest to the previous position of the ship is negligible, then
we can safely draw new values for o, and 3, from ¢. This reasoning does not hold for stationary
or barely moving targets. Using imprecise hard constraints with these type of targets requires a
different model.

In chapter 6 we developed two methods to deal with imprecise hard constraints in a realistic
scenario. Both methods have their drawbacks however. We explained that the the grid method
is an approximation in the sense that the state space is discretized. When we want to make the
approximation better, we need to store a larger matrix. The problem with the shortest distance
method lies in the fact that its speed is very low. This is due to the fact that the shortest distance
from every particle to every polygon has to be computed for every time step.
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8.3 Recommendations for further research

Up untill now, we have only looked at a model for imprecise knowledge. In chapter 2, we have seen
that there are a lot more imperfections that can be present on measurements or measurement results.
It is interesting to research the models for other types of imperfections such as bias, inconsistency
or incompleteness.

In section 8.2 we discussed the use of our model for imprecise hard constraints. There were
a few remarks that could be placed. We recommend looking into other ways of modelling imprecise
hard constraints, such that also stationary targets can be tracked.

Finally, we recommend extending the optimization of the shortest distance method. Right
now, the first steps towards a faster method are made, but there is still a lot to be accomplished.
More research has to be done to find an optimal partitioning and conditions under which it is
optimal. Another decrease in computational time could be gained through cutting the active
polygons along the cell boundary. This way, the total amount of edges takes into account when
computing the smallest distance is reduced. Additional research has to be carried out to show the
influence of this technique.
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Chapter 9

Working at Thales

Thales is a worldwide multinational with over 67,000 employees in 56 countries. The company’s
name refers to the Greek mathematician Thales of Miletus. Thales is familiar among mathemati-
cians for his theorem, alson known as the ’intercept theorem’. Worldwide, Thales is active in the
markets of Defence, Aerospace & Space and Security. In 2011, the Thales group has an annual
revenue of 13.03 billion euros.

This chapter will give an overview of the organization Thales as a company. We zoom in on
Thales Nederland, the subdivision of Thales where I was active during my traineeship. The history
of Thales is briefly reviewed followed by a discussion about the organisation of the company. The
chapter is closed by my personal experience working at Thales during my period as a trainee.

9.1 History

Thales Nederland began in 1922 as 'Hazemeyer’s Fabriek van Signaalapparaten’. Back then, the
company was responsible for building the fire control systems for the Hr. Ms. Java and the Hr. Ms.
Sumatra of the Dutch navy. The system had to be built according to the 'Duitsche Systeem’, but
this was problematic since the Treaty of Versailles prevented similar systems from being developped
in Germany. An agreement was made between several companies, and the production of the systems
could begin in the Netherlands, close to the German border.

In the second world war, Hazemeyer’s Fabriek van Signaalapparaten was captured by nazi
Germany and employees took refuge in Great Britain. When they returned after the war, all they
found was a pillaged factory. The Dutch government soon realized that a good defense industry was
vital and bought the installation. The company continued under the name 'Hollandse Signaalappa-
raten’ or ’Signaal’ for short. During the post-war reconstruction of the Netherlands, the company
thrived and developed new techniques such as radar, fire control for the army, computers and air
traffic control equipment.

Philips bought a large part of the shares and became the major shareholder in 1956. Due to
the Cold War, governments had large budgets for defense which resulted in a period of growth for
Hollandse Signaalapparaten. When the Cold War ended, the political theatre changed dramatically.
Large cuts in defense budgets forced Signaal to reorganise, leading to a staff reduction. Meanwhile
Philips decided that 'Defence and Control systems’ were not part of its core-business and in 1990
Signaal was taken over by Thomson-CSF (now Thales). The name was changed in december 2000

53 THALES



CHAPTER 9. WORKING AT THALES

Figure 9.1: The plant of Hollandse Signaalapparaten in Hengelo. Source: Signaal Museum

54 THALES



9.1. HISTORY

Figure 9.2: Signaal Engineers working on new technologies. Source: Signaal Museum
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to Thales, to emphasize that the company was now internationally oriented. Thomson-CSF Signaal
also changed its name into Thales Nederland.

9.2 Structure of the organisation

Thales group is a worldwide multinational with over 67,000 employees in 56 countries. Thales
headquarters is located in Neuilly-sur-Seine, a suburb of Paris. Worldwide, it is the eleventh largest
defence contractor and 60% of its total sales are military sales.

Thales Nederland is the Dutch subdivision of Thales group. In the Netherlands, Thales
has establishments in Hengelo, Huizen, Houten, Delft, Eindhoven and Enschede. The Dutch sub-
division is responsible for a number of military and civil markets In Hengelo, marine radars and
electro-optic sensors for defense purposes are developed. The department in Huizen is resposible for
communication systems for command & control and battlefield management. In Eindhoven, cry-
ocoolers and batteries for military goals are developed. In Houten the Thales transporation systems
department is located: there they make for instance e-ticketing systems for the public transport.
The management of Thales Nederland has its office in Hengelo, the main establishment.

Apart from the subdivision in establishments, Thales Nederland can also be subdivided into
units: the units of 'Land Defence & C4I Systems/Transportation Systems’, 'Naval Systems’ and
"Sensors’. The department ’Sensors’, where I was active during my traineeship, is responsible for the
development and delivery of custom made radars and optical sensors, and accompanying knowledge
and technology. Again, the unit Sensors is divided into different departments. During the period of
my traineeship I was active in the department of Engineering. In the department of Engineering,
software is developed for the processing of data and signals. Also, research is done to look for new,
more accurate algorithms to improve performance of radar systems.

9.3 Personal experience

In november 2011 I got the opportunity to work on a project that would take me a year at Thales
Nederland. This meant that I had to combine my traineeship and final project and spend the last
year of my study in Hengelo. I could start in december 2011 and finish in december 2012. During
the first month, I spent my days at the University of Twente because my supervisors at Thales had
other occupations. This time was well spent studying the literature required for doing research on
the topic of particle filters. I had my own office in the Citadel on the campus of the University of
Twente. During those days I had meetings with my supervisors once in a while, such that I knew
where to focus my study on.

After a month of studying, my workplace changed from the University of Twente to Thales
Nederland, location Hengelo. There I actually started working on my graduation project.

9.3.1 Supervisors

During my traineeship and work on my final project I was supervised by three supervisors. From the
University of Twente I was supervised by prof. dr. A.A. (Anton) Stoorvogel. At Thales Nederland,
my supervisors were dr. Y. (Yvo) Boers and dr. M. (Martin) Podt. In may 2012, Yvo, my first
supervisor, got seriously ill and was bound to stay home for at least a few months. This left me
with Martin as my main supervisor for the rest of the period of my traineeship.
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Every week I had meetings with Martin, and in the beginning, Yvo. We talked about the
progress in my research and other work related topics. I met my supervisor at the University, Anton
Stoorvogel, less often. During these meetings also the progress was reviewed and commented.

9.3.2 Daily routines

At Thales a regular working hours are from 8.00 untill 16.30, but in practice employees come and
go during the day. This is due to flexible hours: employees are asked to work 40 hours a week with
working hours between 7.00 and 19.00, from monday to friday. A half hour lunch is excluded from
your working hours.

I worked in an office with three desks, accompanied by one other employee. He was not
working in the same field as me, but that did not prevent us from having good conversations
once in a while. When working at Thales, you are in the possesion of a computer. Due to strict
security rules, laptops are not allowed on the terrain so I had to deal with the equipment available.
This meant that installing new software is not as easy as usual (you had to ask the companies I'T
department), but this caused no major issues. Also, websites are not freely accessible: they can
only be reached via a (slow) secure connection, unless they are blocked.

My daily activities consisted of doing research (through algebraic manipulation, simulation
and literature research), discussing with supervisors and other colleagues and writing the thesis.
Apart from the research, there were times I was involved into other activities; these are all viewed
in sections 9.3.3, 9.3.4 and 9.3.5.

9.3.3 EKSPLORE

The project I was involved in was called EKSPLORE: Exploiting Knowledge in Sensor Processing
for tracking Low-level Objects in Realistic Environments. EKSPLORE is a cooperative project
between Thales en Saab, a company in Sweden focussed on defence and security. It is a European
research project which is financed by the Dutch and Swedish ministries of defence, in the project
they are called ’customers’.

Every half year a so called progress review meeting is held to inform the customers about the
progress in the project. After the meeting, the customers decide if they find that there is enough
progress to continue the project. During the second progress review meeting, which was held in
Hengelo, T was able to present my work to the customer and other attendees. This was a formal
meeting where I had to present my research to an international audience. In preparation for this
presentation, a progress review report had to be written.

Altogether, this was a very nice experience, dealing with formal writing and presentation.
Also, the formal and informal contact with international clients and researchers was a valuable
experience. It was interesting to see how other researchers tackled their problems, which were
similar to the problems I was dealing with.

9.3.4 Volonta

Thales takes good care for trainees working in Hengelo: they have set up a student association called
Volonta. At Volonta, Thales trainees get to know eachother and participate in both exploratory
and fun activities. Fun activities include bowling, karting, visiting the Grolsch brewery and having
a barbecue. Exploratory activities are for example a tour in the Signaalmuseum or a visit to the
Dutch marine base in Den Helder. In Den Helder, we got the opportunity to walk around inside a
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Figure 9.3: The logo for EKSPLORE

Dutch frigate, this was really impresive. Also, we participated in a test of a Thales system at the
Grolsch Veste. However, the most impressive event was the trip to Jouy-en-Josas, near Paris, where
Thales University was located. Thales had organised an ’Interns Forum’, this was an informative
day where we could meet other interns and Thales recruiters from all over the world.
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Figure 9.4: The logo for Volonta

9.3.5 Other noteworthy events

Apart from my regular business at Thales I was involved in a couple of side occupations. I already
mentioned the work for EKSPLORE and the trips with Volonta.

Halfway my traineeship period at Thales, I held a presentation for direct colleagues who were
also involved in sensor processing. This gave a good impression of the position of my research.

Once in a while, I was working at home or the University. This was mainly due to the fact
that I needed software which was not available at Thales Nederland. You can think of Google Earth
or for instance IXTEX-Word conversion software, needed for the EKSPLORE report.

In oktober the study association for mathematics from Enschede visited Thales. Together
with two colleagues I was responsible for the guided tour through the facilities. After the tour, I
held a short presenation about the activities of a mathematician at Thales Nederland.
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Appendix A

Results for chapter 5

This appendix contains the simulation trajectories and simulations results from chapter 5.
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Figure A.1: Trajectory for perfect map
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Figure A.2: Trajectory for perfect map

-300 -200 -100 0 100 200
x [m]

300

Figure A.3: Trajectory along the actual coast
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Figure A.4: Mean bias of PF1 (red) and PF2 (blue) for the trajectory through the middle of the
canal

Figure A.5: Standard deviation of PF1 (red) and PF2 (blue) for the trajectory through the middle
of the canal
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Figure A.6: Mean bias of PF1 (red) and PF2 (blue) for the trajectory along the coast of the canal
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Figure A.7: Standard deviation of PF1 (red) and PF2 (blue) for the trajectory along the coast of
the canal
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Figure A.8: Particle cloud for PF1. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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Figure A.9: Particle cloud for PF2. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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Figure A.10: Particle cloud for PF1. The blue circles represent the MAP estimates, the black 'x’
is the current measurement and the cyan cloud the particle cloud.
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Figure A.11: Particle cloud for PF2. The blue circles represent the MAP estimates, the black 'x’
is the current measurement and the cyan cloud the particle cloud.
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Figure A.12: Mean bias of PF1 (red), PF2 (blue) and PF3 (yellow) for the trajectory along the
actual coast of the canal
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Figure A.13: Standard deviation of PF1 (red), PF2 (blue) and PF3 (yellow) for the trajectory along
the actual coast of the canal
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Figure A.14: Particle cloud for PF1. The blue circles represent the MAP estimates, the black 'x’
is the current measurement and the cyan cloud the particle cloud.
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Figure A.15: Particle cloud for PF2. The blue circles represent the MAP estimates, the black 'x’
is the current measurement and the cyan cloud the particle cloud.
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Figure A.16: Particle cloud for PF1. The blue circles represent the MAP estimates, the black 'x’
is the current measurement and the cyan cloud the particle cloud.
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Figure A.17: Particle cloud for PF2. The blue circles represent the MAP estimates, the black 'x’
is the current measurement and the cyan cloud the particle cloud.
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Figure A.18: Particle cloud for PF3. The blue circles represent the MAP estimates, the black 'x’
is the current measurement and the cyan cloud the particle cloud.
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Figure A.19: Particle cloud for PF3. The blue circles represent the MAP estimates, the black 'x’
is the current measurement and the cyan cloud the particle cloud.
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Appendix B

Results for chapter 6

This appendix contains the simulation trajectories and simulations results from chapter 6.
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Figure B.1: Trajectory for perfect map
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Figure B.2: Trajectory for imprecise map
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Figure B.4: Bias over vertical position for two different methods
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Figure B.5: Particle cloud for PF3. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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Figure B.6: Particle cloud for PF4. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.

Figure B.7: Mean bias over horizontal position for simulations on perfect map
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Figure B.10: Standard deviation over vertical position for simulations on perfect map
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Figure B.11: Particle cloud for PF1. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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Figure B.12: Particle cloud for PF2. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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Figure B.13: Particle cloud for PF1. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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Figure B.14: Particle cloud for PF2. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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Figure B.15: Means bias over horizontal position for simulations on imprecise map
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Figure B.16: Standard deviation over horizontal position for simulations on imprecise map
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Figure B.17: Mean bias over vertical position for simulations on imprecise map
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Figure B.18: Standard deviation over vertical position for simulations on imprecise map
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Figure B.19: Particle cloud for PF2. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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Figure B.20: Particle cloud for PF4. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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Figure B.21: Particle cloud for PF2. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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Figure B.22: Particle cloud for PF4. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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Figure B.23: Particle cloud for PF2. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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Figure B.24: Particle cloud for PF4. The blue circles represent the MAP estimates, the black 'x’ is
the current measurement and the cyan cloud the particle cloud.
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