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Abstract

Ļe eigenvalues of Jordan blocks are very sensitive to perturbations. Ļis is known
for a long time, but why the eigenvalues of a single Jordan block converge to the spec-
trum of the shift operator when the dimension runs to inŀnity, is unknown. In this
thesis we show why Jordan blocks are so sensitive to perturbations, what has been
studied about them in the literature and what the location of the eigenvalues is after
perturbation. We also study the shift operator, calculate its spectrum and show that
this spectrum is not sensitive to perturbations. Important to note is that the shift op-
erator can be seen as a single Jordan block on an inŀnite space.

We did not ŀnd a deŀnite answer to the relation between the two, but by studying
the pseudospectra of both the matrix and the operator we give some clues on why the
spectrum of both structures are related.
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Introduction 1

Eigenvalues are useful properties of matrices. When we have a square matrix A, then for
non-zero solutions to the equation

Av = λv

we call λ an eigenvalue and v an eigenvector ofA. Together this is an eigenpair of the matrix
A.

Eigenvalues are often used to study the stability of systems, but under small perturba-
tions eigenvalues can change signiŀcantly. Ļerefore it is useful to study the sensitivity of
the eigenvalues. How sensitive the eigenvalues are is especially visible if we plot the spec-
trum (the collection of all eigenvalues) in the complex plane.

1.1 Problem description
In this thesis we study the spectrum of random perturbations of the Jordan Canonical Form.
We especially look at matrices A ∈ Cnk×nk deŀned as

A =


C D

D

C

 , C,D ∈ Ck×k. (1.1)

All other values are zero, a convention we continue in the rest of this thesis. Ļis matrix is
perturbed by a random Gaussian matrix with a small variance σ2:

A+Nnk×nk(0, σ
2), σ2 ≪ 1.

Ļe eigenvalues of this perturbed matrix converge to the eigenvalues of C (for a given n) if
σ → 0, but this happens slowly. In Figure 1.1 this is illustrated with σ decreasing with each
plot. When σ = 0.1 the spectrum is random. But for 10−2 < σ < 10−16 we see that the
spectrum of the perturbation resembles the spectrum of the shift operator corresponding
to A. Ļis operator is the shift operator. Ļe shift operator A∞ is deŀned as g = A∞f

with
(gk) = (Cfk +Dfk+1), k ∈ Z.

1



Ș. IŚŠŞśŐšŏŠŕśŚ

By inspecting of Af = g, for f ∈ C(2n+1)k, i.e.

A

f−n

...

fn

 =

g−n

...

gn

 ,

we see that corresponds to the equations

gk = Cfk +Dfk+1, k ∈ {−n, . . . , n}.

If we let n → ∞ this becomes the operator

gk = Cfk +Dfk+1.

Ļis operator is the above shift operator A∞. In Chapter 3 we will explain this in more
detail.

Ļat the spectrum of the shift operator and the spectrum a single Jordan block are related
was noticed in another Master Ļesis [Fir12]. Ļis was also visible in the plots of Figure 1.1.
In that thesis no explanation could be found. Ļe goal of this thesis is to analyse why these
two behaviours are related.
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FŕœšŞő Ș.Ș: Simulations from [Fir12, p.25] with σ = 0.1, 0.05 and 10−3.

1.2 Structure of this thesis

We start our analysis with a simpliŀed version of the problem we stated in the previous
section. In the ŀrst chapters of this thesis we only perturb with a deterministic matrix, that
means that we perturb by a small value ε or a deterministic matrix with norm ∥ · ∥ < ε. We
will introduce randomness in Chapter 5. We also start our analysis with the assumption

2



1.3. Notation

that C and D are 0 or 1. We then get a single Jordan block like

J =


0 1

1

0

 .

Ļere is a lot known about perturbations of these Jordan blocks. In Chapter 2 we use this
to explain what happens if we perturb J in one or in multiple places. We extend this to
perturbations of the original problem, the block matrix (1.1).

In Chapter 3 we look at the case when the size n is inŀnite. We then get an operator
that acts on an inŀnite sequence. We start with the operator that corresponds to Jordan
block J . Later in that chapter we show how the operator corresponding to the block matrix
(1.1) looks like and what happens after perturbations.

In Chapter 4 we look at pseudospectra, another way to look at the structure of a matrix.
In Chapter 5 we introduce randomness and explain the difference between the deter-

ministic and random case.

1.3 Notation
In this thesis all matrices are written with in upper case, like A, and vectors with in lower
case, like v. Just like in matrix (1.1) above, empty values in a matrix are zero. When we
write a norm ∥ · ∥ we normally mean the Eucledian norm,

∥v∥2 =

√√√√ N∑
i=1

|vi|2,

when not speciŀed otherwise.
Zero matrices of size n × k are written as 0n×k, matrices of size n × k are written as

[·]n×k and diagk(a) is the k × k matrix with a on its diagonal. Values at position (n,m)

inside a matrix A are written like Anm. Ļe unit disk with radius r, {z ∈ C | |z| ≤ r}, is
written as Dr.

Ļe spectrum, the collection of all eigenvalues, is denoted with Λ.
We will most times work in the ℓ2 space, i.e. the linear space consisting of all sequences

v such that
∑∞

i=1 |vi|2 < ∞. Ļe corresponding norm is

∥v∥22 =
∞∑
i=1

|vi|2.

In some places we also need the ℓ1 and ℓp spaces, i.e. the linear spaces consisting of all
sequences v such that

∑∞
i=1 |vi| < ∞ and

∑∞
i=1 |vi|p < ∞, respectively. Ļe corresponding

norms are
∥v∥1 =

∞∑
i=1

|vi| and ∥v∥pp =
∞∑
i=1

|vi|p.

3



Ș. IŚŠŞśŐšŏŠŕśŚ

We perturb at different places and to make that easy we introduce the matrix ∆ with all
zeros, except at position (a, b). Formally we deŀne

∆a,b :=

{
1 at position (a, b)

0 otherwise
. (1.2)

4



Eigenvalues and perturbations 2

If we want to know why the behaviour of the ŀnite and inŀnite dimensional case is related
we have to understand both in detail. We study both separately and in this chapter we start
with the ŀnite case, this means we work with ordinary matrices. Ļe eigenvalues of the
matrices we study, like

J =


0 1

1

0

 or A =


C D

D

C

 with C,D ∈ Ck×k, (2.1)

are trivial without a perturbation. Ļe eigenvalues of J and A are 0 and the eigenvalues of
C, respectively. But the problem becomes more complicated if we perturb our matrix with
a small perturbation. In this chapter we look at the eigenvalues of such perturbed matrices.
We start with the Jordan block J and perturb at one location and we add perturbations
of more locations later in this chapter. We will also see why matrices like J and A are so
sensitive to perturbations. In the second half of this chapter we turn to the eigenvalues of
perturbations of block matrix A.

2.1 One perturbation
Since we expect that the value in the left bottom of the matrix has the biggest inłuence
on the eigenvalues, we perturb at position (n, 1) and we look at the eigenvalues of J +

∆n,1ε.

..
Example 2.1 To ånd the eigenvalues of J + ∆n,1ε, we need to ånd the roots of the char-
acteristic polynomial of J + ∆n,1ε − λI . So by applying Cramer’s rule twice, årst on the

5



ș. EŕœőŚŢōŘšőş ōŚŐ ŜőŞŠšŞŎōŠŕśŚş

λ1

λ2

λ3

λ4

λ5

λ6

FŕœšŞő ș.Ș: [CB94, p. 4] Perturbation of a matrix with one eigenvalue when n = 6. Left:
one Jordan block, ε both positive and negative. Right: Two Jordan blocks.

..

årst row and afterwards on the årst column we get

det



−λ 1 0 . . . 0

0
...

... 0

0 . . . 0 −λ 1

ε 0 0 0 −λ


= −(−1)nε det


1

−λ

−λ 1

+ (−λ)n

= (−λ)n + (−1)n+1ε = 0.

Thus all eigenvalues are distributed on a circle with radius r = | n
√
ε| around the origin.

Speciåcally the solutions are

ε1/n
(

cos
(
2kπ

n

)
+ i sin

(
2kπ

n

))
, k = (0, . . . , n− 1).

This means that all eigenvalues are distributed evenly around the circle with radius r. The
difference between the argument of two succeeding eigenvalues is

arg(λi+1)− arg(λi) =
2π

n
.

For k = 0 a real eigenvalue is

λ(ε) = n
√
ε, ε > 0.

When ε > 0 and n → ∞ we see that λ(ε) → 1.

Ļat the eigenvalues are distributed evenly around a circle is also visible in the two illustra-
tions of Figure 2.1. Ļere we see that depending on whether ε is positive of negative, the
positions of the eigenvalues change slightly. For multiple Jordan Blocks, multiple rings can
form.
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2.2. Normal matrices
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FŕœšŞő ș.ș: 1 Random perturbation of ε = 10−4 of a Jordan block with zeros on the
diagonal. Visible are the original eigenvalue (*) and the perturbed eigenvalues (+).

Lidskii [Lid66] proved that if we perturb J + εB, with matrix size n and ε is small
enough, the eigenvalues of J + εB lie on a circle. To be exact, the eigenvalues of the
perturbed system λp are related to the eigenvalues λ of J .

λp = λ+ (ξ)1/nε1/n + o(ε1/n), ξ = yBx, (2.2)

with y, x the left and right eigenvector of J . Ļis shows that is of the order O(ε1/n). In
Figure 2.2 the eigenvalues of J+∆n,1ε are plotted for ε = 10−4 and two values of n. Ļere
it is visible that it goes to 1.

Why do the eigenvalues of matrix change from all 0 to a circle with radius of almost 1
if we just add one small perturbation? Ļe problem is that the matrices like (1.1) are not
normal. In the next section we explain what normal matrices are and why nonnormality is
a problem for the stability of eigenvalues.

2.2 Normal matrices
In the previous section we stated that the problem with Example 2.1 was that the matrix
was nonnormal.

Deŀnition 2.1 (Normal Matrix) A matrix A ∈ Cn×n is normal if A∗A = AA∗, with A∗ the
complex conjugate of A.

If we look to a normal matrix, it is known that the eigenvalues of the perturbed matrix
lie close to the original eigenvalues. Ļis is illustrated in Figure 2.3 for normal matrix[

1
2 0

0 3
2

]
+ εE, ∥E∥ = 1. (2.3)

7
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Ļere it is visible that the perturbed eigenvalues lie within ε of the original eigenvalues. So
with normal matrices, small perturbations also cause small perturbations of the eigenvalues.
Another illustration is in Figure 2.4 where it is visible how random perturbations inłuence
the eigenvalues of a normal matrix with original eigenvalues 1 to 9.
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FŕœšŞő ș.ț: Random perturbations of normal matrices
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FŕœšŞő ș.Ț: Perturbations of a nor-
mal matrix with eigenvalues 1

2 and 3
2 .

But what makes normal matrices so special? If a
matrix is normal, it has a complete set of orthogonal
eigenvectors [TE05, p. 9]. Why this is a problem, it
visible in example 2.2.

For the diagonal matrix in (2.3) it is clear that it
is a normal matrix. To check if a matrix is normal or
how “far away” from matrix is from normal can be by
the ŏśŚŐŕŠŕśŚ ŚšřŎőŞ of a matrix that was intro-
duced in Wilkerson’s Ļe algebraic eigenvalue problem
[Wil65]. Ļere the condition number κ(A) is de-
ŀned as

κ(A) = ∥A∥∥A∥−1,with A non singular.

8



2.2. Normal matrices

..

Example 2.2 Let’s take the most simple Jordan Block

J =

[
0 1

0 0

]
,

the eigenvalues are 0 (with multiplicity 2). But if we compute the eigenvectors we see that
the only eigenvector is

v1 =

[
1

0

]
.

Therefore it is impossible to span the complete space.

Wilkerson came to this deŀnition via the analysis of the Jordan Canonical Form. He
showed that if λ is a simple1 eigenvalue of A, with y, x A’s left and right eigenvectors, and
y∗ the complex conjugate of y, for λ(ε) an eigenvalue of A+ εE, ||E|| = 1, with

λ(ε) = λ+
y∗Ex

y∗x
ε+O(ε2).

So we see that
λ(ε)− λ ≤

∣∣∣∣y∗Ex

y∗x

∣∣∣∣ ε ≤ 1

|y∗x|
ε.

Ļe denominator s := |y∗x| is called the ŕŚŐŕŢŕŐšōŘ ŏśŚŐŕŠŕśŚ ŚšřŎőŞ of an eigenvalue.

..

Example 2.3 If we look at the rate of change of λ(ε), λ(ε) the eigenvalues of A+ εE,

dλ(ε)
dε =

1

n
ε

1
n
−1 =

1

n
n
√
εn−1

,

we can see that the rate of change at the origin (when ε = 0) is inånite and why in the case
of multiple eigenvalues Wilkinsons theory above is not valid.

Wilkinson also uses Gershorins theorem (Ļeorem 2.1) to show other ways to analyse per-
turbations of systems with multiple eigenvalues. Ļis is one of the ŀrst theorems on bounds
on eigenvalues, established in the 1930’s.

Ļeorem 2.1 (Gershgorin) Let A = (aij) ∈ Cn×n and let the œőŞşŔœśŞŕŚ Őŕşŗş of A be
deŀned by

Gi :=

µ : |µ− aii| ≤
∑
j ̸=i

|aij |

 .

Ļen
Λ(A) ⊂

n∪
i=1

Gi.

Moreover, if the union of k of the sets Gi are disjoint from the others, then that union contains
exactly k eigenvalues of A.

1Ļat means all eigenvalues are different

9



ș. EŕœőŚŢōŘšőş ōŚŐ ŜőŞŠšŞŎōŠŕśŚş

..

Example 2.4 If we take J+∆n,1ε from Example 2.1, then we see we have n−1Gershgorin
disks {µ : |µ| ≤ 1} and one disk {µ : |µ| ≤ ε}. There is no union of k (k < n) disjoint
disks and the spectrum is contained in the union of all Gershgorin disks: {µ : |µ| ≤ 1}.

We already saw in Figure 2.2 that our perturbed matrix stayed within the circle with
radius 1. So it seems already a good bound. In the next section we will see if we can make
more direct relationship between the perturbation and the resulting eigenvalues.

2.3 Perturbation theory
We notices that the bound we derived in the previous section was already good. However,
we only measure here the eigenvalues based on the values on the diagonal. When we extend
our problem to (1.1) the diagonal items may say less about the size of our spectrum. So we
want to ŀnd a relation between the eigenvalues of a matrix and its perturbation. We can
use the Schur decomposition [GVL13, Ļ 7.2.3] to ŀnd the distance between the original
eigenvalue and the eigenvalue of its perturbation.

Ļeorem 2.2 Let Q∗AQ = D + N be a Schur decomposition of A ∈ Cn×n. Ļis means that
Q is unitary, D diagonal and N is an uppertriangular matrix. If µ ∈ Λ(A + E) and p is the
smallest positive integer such that |N |p = 0 then

min
λ∈Λ(A)

|λ− µ| ≤ max{θ, θ1/p},

where

θ = ||E||
p−1∑
k=0

||N ||k.

..

Example 2.4 (continued) We see that p = n, because with every multiplication of J with
itself the nth superdiagonal, becomes the (n + 1)th superdiagonal. Therefore after n multi-
plications we have the zero matrix left. And since ∥N∥ = 1 we get

θ = n||E||2 = n|ε|.

So the difference between the original and the perturbed eigenvalues is the maximum
of θ and θ1/p. So if n > 1/ε we have a bound that is bigger than 1, but if ε is smaller we
can ŀnd a bound within the unit circle. Ļis is also what we would expect, since when n

grows the bound grows to the unit circle.
How fast this happens depends on ε and n. In Figure 2.5 it is visible how fast the

eigenvalues grow for increasing ε. We cannot show the growth from the origin, because
MATLAB is not precise enough. We see although, that for bigger n, our perturbed eigen-
values are big, even if ε small.

Explicit bounds on the eigenvalues are given in a matrix and its perturbation are found
in a theory by Elsner. Which shows that especially the situation with A a Jordan block J is
causing a big difference in eigenvalues.

10



2.4. Characteristic polynomial with multiple perturbations

Ļeorem 2.3 ([BEK90]) LetA be the (possibly multiple) eigenvaluesλ1, . . . , λn. Let the eigen-
values of Ã = A + E be λ̃1, . . . , λ̃n . Ļen there is a permutation j1, . . . , jn of the integers
1, . . . , n such that

|λ̃ji − λi| ≤ 4(||A||2 + ||Ã||2)1−
1
n ||E||

1
n
2 .

So we see that we can also found a bound of the difference between all individual eigen-
values.
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FŕœšŞő ș.Ȝ: A+ εE, ||E|| = 1, ε = 10−17, . . . , 10−1.

2.4 Characteristic polynomial with multiple perturbations
We also want to know what happens when we have multiple perturbations. Just as we did in
Example 2.1 we can calculate the characteristic polynomial for more than one perturbation.
For two perturbations ε1, ε2 in the left corner, we want to calculate the eigenvalues of
J + ε1∆n,1 + ε2∆n−1,1. Ļese are the solutions of

det



−λ 1 0 . . . 0

0
...

... 0

ε2 . . . 0 −λ 1

ε1 0 0 0 −λ


= −(−1)n+1ε2 det


1

−λ

−λ 1

0 −λ



− (−1)nε1 det


1

−λ

−λ 1

+ (−λ)n

= (−1)n+1λε2 + (−1)n+1ε1 + (−λ)n

11
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= (−λ)n + (−1)n+1(ε2λ+ ε1) = 0. (2.4)

We arrived at the ŀrst equality by applying Cramer’s rule, just as we did in Example 2.1.
Since we look for solutions for n large, there will be no analytic solution for this equation.

Similarly, when we apply three perturbations ε1, ε2, ε3 to J we want to know the eigen-
values of J + ε1∆n,1 + ε2∆n−1,1 + ε3∆n,2. Again no analytic solution exists for the zeros
of the characteristic polynomial. Our characteristic polynomial in this case becomes

det



−λ 1 0 . . . 0

0
...

... 0

ε2 . . . 0 −λ 1

ε1 ε3 0 0 −λ


= −(−1)n+1ε2 det


1

−λ

−λ 1

ε3 0 −λ



− (−1)nε1 det


1

−λ

−λ 1

− λ(−λn−1 + (−1)nε3)

= (−1)n+1λε2 + (−1)n+1ε1 − λ(−λn−1 + (−1)nε3)

= (−λ)n + (−1)n+1((ε2 + ε3)λ+ ε1) = 0. (2.5)

It is also possible to construct the characteristic polynomial for many more perturbations.
Davies and Hager [DH09, p. 8] found that for

J + δ

[
0 0

C 0

]
the characteristic polynomial is

f(λ) :=

k∑
i,j=1

Ci,j(Rλ)j−i+k−1, (2.6)

where δ = RN , R ∈ (0,∞). Using this result it is possible to ŀnd the characteristic
polynomial without multiple times applying Cramer’s rule.

Although there is no analytic solution to the equations (2.4) and (2.5), we can use
Rouché’s theorem to ŀnd a region where the zeros are located.

2.5 Regions of eigenvalues
We can use Rouché’s theorem to prove that a function with an analytic solution has an equal
number of zeros in a certain region.

Ļeorem 2.4 (Rouché’s theorem [CZ12]) Let f and g be functions that are holomorphic on
the domain Y , and suppose that Y contains a simple, closed contour Γ. If |f(s)| > |g(s)| for
s ∈ Γ, then f and f + g have the same number of zeros inside Γ. (A zero of order p counts for p
zeros.)

12
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To ŀnd such solutions, we need the following lemma.

Lemma 2.1 For the absolute value the following statements hold

1. g > h and g > −h if and only if g > |h|.

2. |a+ b| ≤ |a|+ |b| (triangle inequality).

3.
∣∣ |a| − |b|

∣∣ ≤ |a+ b|.

4.
∣∣ |a| − |b|

∣∣ ≤ |a− b|.

Proof We only prove item 3, since item 4 follows from item 3 with b := −b.
If we set a := a+ b and b := −b in item 2 we arrive at |a| − |b| ≤ |a+ b|. If we reverse

the argument and choose b := −a instead, we arrive at |b| − |a| ≤ |a+ b|. Because of item 1 we
arrive at the result. �

We deŀned in the introduction the region inside the disk with radius r as Dr. We want
to ŀnd a region Dr for which Rouché’s theorem is valid, by proving the inequalities from
Rouché’s theorem on the circle |λ| = r for a given r. If we know that Rouché’s theorem is
valid for two functions on a certain region, then we know that they have equal zeros inside
this region. So we can ŀnd a region and a more simple function and use Rouché to prove
that all zeros of our difficult characteristic polynomial lie within this region.

2.5.1 An outer region
We want to ŀnd a region containing the eigenvalues of J + ε1∆n,1 + ε2∆n−1,1, as we did
in the previous section. If we assume that

1. r = 1 + ε, ε > 0

2. |ε1|+ |ε2| < 1

and we deŀne

f(λ) = (−λ)n + (−1)n+1ε1,

h(λ) = (−1)n+1ε2λ,

g(λ) = f(λ) + g(λ) := χ(λ),

then it follows from assumption 2 that |ε1|+ |ε2|+ |ε2|ε < 1+ ε (since then also |ε2| < 1)
and because ε > 0 also that |ε1|+ |ε2|+ |ε2|ε < (1 + ε)n. We use this to prove that for λ
with |λ| = r inequality (2.4) holds. For |λ| = r we have

|h(λ)| = |ε2|(1 + ε) < (1 + ε)n − |ε1| (2.7)
= |λ|n − |ε1|
≤ |(−λ)n + (−1)n+1ε1| = |f(λ)|. (2.8)

13
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By Rouché’s theorem, g = f+h has the same number of zeros insideD1+ε as f . Since f has
n zeros inside D1+ε, so has g. Ļus we know that all eigenvalues of J + ε1∆n,1+ ε2∆n−1,1

lie within D1+ε.
Because the only condition is that ε > 0, we can choose ε as small as we would like. As

long as assumption 2 holds we have that

Λ(J + ε1∆n,1 + ε2∆n−1,1) ⊆ D1

has n zeros inside D1+ε. So we can let the region which contains the spectrum of J +

ε1∆n,1 + ε2∆n−1,1 shrink to the unit circle if we keep decreasing our ε.
Note that when n is large we don’t need assumption 2. If assumption 2 does not hold,

we can choose every ε, ε1, ε2 we want. Given we ŀx ε, ε1, ε2, |ε2|(1 + ε) + |ε1| is also a
ŀxed value, while (1 + ε)n goes to inŀnity when n → ∞ (since 1 + ε > 1). If we deŀne
v := |ε2|(1 + ε) + |ε1| we see there always exists a n such that (1 + ε)n > v. Ļis can be
seen, because (1+ε)n → ∞, while v does not depend on n. For this n and our chosen values
of ε, ε1, ε2, inequality (2.7) is valid. So |h| < |f |. Ļerefore we have the same number of
zeros inside f and g. Ļus f(λ) has n zeros inside ε, ε1, ε2. So we can always choose a n

such that all our zeros lie inside D1+ε.

2.5.2 An region dependent on n

We can also ŀnd a radius r for an outer region dependent on n that is smaller than 1 if ε1, ε2
are small. We assume that

1. r = n
√

|ε1|+ β, β > |ε2|
|ε1|n ,

2. |ε1| < 1,

3. n ≥ 3

and we deŀne

f(λ) = (−λ)n + (−1)n+1ε1,

h(λ) = (−1)n+1ε2λ,

g(λ) = f(λ) + g(λ) := χ(λ).

From assumption 2 it follows that n
√

|ε1| < 1 . From this and assumption 1 we see that

|ε2|(
n
√

|ε1|+ β) < (1 + β)|ε2| < (1 + β)nβ|ε1|.

By assumption 2, we also know that |ε1| < |ε1|m whenm < 1 and by assumption 3 we know
that 1

2n(n − 1) > n. We use both results to prove that for λ with |λ| = r inequality (2.4)
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holds. For |λ| = r we have

|h(λ)| = |ε2|r = |ε2|( n
√

|ε1|+ β) < (1 + β)nβ|ε1|
= nβ|ε1|+ nβ2|ε1|

< nβ|ε1|
n−1
n +

n(n− 1)

2
β2|ε1|

n−2
n +

n∑
k=3

(
n

k

)
βk|ε1|

n−k
n

=
(

n
√

|ε1|+ β
)n

− |ε1| = |λ|n − |ε1|

= |(−λ)n| − |(−1)n+1ε1| ≤ |f(λ)|. (By Lemma 2.1.4.)

By Rouché’s theorem, g = f+h has the same number of zeros inside D n
√

|ε1|+β
as f . Since

f has n zeros inside this disk, so has g. Ļus the eigenvalues of J + ε1∆n,1 + ε2∆n−1,1 lie
within D n

√
|ε1|+β

.

2.5.3 Summary
In the previous subsections we found a number of regions where our eigenvalues are located.
How these are located is visible in Figure 2.6 and Figure 2.7. In Figure 2.6 we show how
a random perturbation of a Jordan block behaves compared to the perturbation with two
random variables, as in section 2.4 was calculated. In Figure 2.6 we show how the region
we computed in section 2.5.2 compared to the eigenvalues of these perturbed matrices.

In section 5.2 we will calculate the probabilities that the constraints on ε are when our
ε are random.
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FŕœšŞő ș.ȝ: Two perturbations to a Jordan block J . Values used are n = 100, ε = 2 · 10−3.
Ļe solid circle is the circle with radius 1.

2.6 Block matrices
We know the spectrum matrix A in equation (2.1) when it consists of scalar values and
there is one perturbation. When the elements of A are matrices we can do the same. We
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FŕœšŞő ș.Ȟ: Left: the region of section 2.5.2 compared to the actual eigenvalues for n =
10, ε1 = 0.1, ε2 = 0.01. Solid line is r, the dotted line is the circle with radius 1. Right:
actual eigenvalues for n = 10, ε1 = 10−20, ε2 = 10−8. r > 1 so is not shown.

call matrices that consist of other matrices block matrices. When there is no perturbation,
we know that the spectrum Λ of an uppertriangular matrix with matrix C on the diagonal
consists of the eigenvalues of C.

When there is a perturbation E in the left bottom of our matrix the situation is more
complex. In section 2.6.1 we ŀrst work out some theories which help us to ŀnd the deter-
minant of block matrices. In subsection 2.6.2 we use these theories to calculate the charac-
teristic polynomial in case there is a perturbation E.

2.6.1 Ļeories
We begin by summarising some results for block matrices. We will put them all below each
other.
Lemma 2.2 ([Lie02])

det
[
A11 A12

0 A22

]
= det(A11) det(A22).

Ļeorem 2.5 Upper triangular block matrix

A =

[
A11 A12

0 A22

]
is invertible if and only if submatrices A11 and A22 are invertible.

Proof A is invertible if and only if det(A) ̸= 0. We know by Lemma 2.2 that det(A) =

det(A11) det(A22). Ļat means that det(A11) ̸= 0 and det(A22) ̸= 0 and thus that A11 and
A22 are invertible.
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Ļe other implication is very similar. If A11 and A22 are invertible, det(A11) ̸= 0 and
det(A22) ̸= 0. Since det(A) = det(A11) det(A22), it directly follows that det(A) ̸= 0 and
thus that A is invertible. �

Ļeorem 2.6 Ļe inverse of block matrix A ∈ Cn×n, when A11, A12, A22 are invertible, is

A−1 :=

[
A11 A12

0n−k,k A22

]−1

=

[
A−1

11 −A−1
11 A12A

−1
22

0n−k,k A−1
22

]
.

Proof We know that AA−1 = I and we can easily verify that our A−1 is correct by[
A11 A12

0n−k,k A22

] [
A−1

11 −A−1
11 A12A

−1
22

0n−k,k A−1
22

]
=

[
I −A12A

−1
22 +A12A

−1
22

0n−k,k I

]
= I.

�

Ļeorem 2.7 Let C,D ∈ Ck×k, with C invertible. Let A ∈ Cnk×nk be deŀned by

A =


C D

D

C

 . (2.9)

Ļen all values on the mth superdiagonal of A−1 are

(−1)m(C−1D)mC−1,m = 0, . . . , n− 1.

Proof We deŀne B := A−1 and partition A as

An :=

[
C G

0nk−k,k An−1

]
=


C D 0 0

0 C D

D

0 C

 .

If we partition B the same as A we can see by Ļeorem 2.6 that (since Bn2 = −C−1GA−1
n−1)

A−1
n = Bn =

[
Bn1 Bn2

Bn3 Bn4

]
=

[
C−1 −C−1 [D 0 ··· 0 ]A−1

n−1

0nk−k,k A−1
n−1

]
.

SinceAn−1 has the same structure asA it follows in the same way that ifAn−2 ∈ Ck(n−2)×(n−2)k

A−1
n−1 =

[
C−1 −C−1 [D 0 ··· 0 ]A−1

n−2

0(n−2)k,k A−1
n−2

]
.
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we can generalise this to for all m = n, . . . , 2 and ŀnd

A−1
m =

[
Bm1 Bm2

Bm3 Bm4

]
=

[
C−1 −C−1 [D 0 ··· 0 ]A−1

m−1

0(m−1)k,k A−1
m−1

]
.

If we continue this till we keep a 2k × 2k matrix we get

A−1
2 =

[
C D

0 C

]−1

=

[
C−1 −C−1DC−1

0 C−1

]
.

Hence B32 becomes

B32 = −C−1
[
D 0

]
A−1

2

= −C−1
[
D 0

] [C−1 −C−1DC−1

0 C−1

]
= −C−1D

[
C−1 −C−1DC−1

]
= −C−1D

[
C−1 B22

]
.

So we can generalise this and we can see this becomes a recursion for Bm2:

Bm2 = −C−1
[
D 0 · · · 0

]
A−1

m−1

= −C−1D
[
C−1 B(m−1)2

]
= . . .

= −C−1D
[
C−1 −C−1DC−1 · · · (−1)m+1(C−1D)n−m−1C−1

]
. �

Ļeorem 2.8

det
[
P Q

R S

]
= det(P ) det(S −RP−1Q) (if P is invertible).

= det(S) det(P −QS−1R) (if S is invertible).

Proof We can write [
P Q

R S

]
=

[
P 0

R I

] [
I P−1Q

0 S −RP−1Q

]
=

[
I Q

0 S

] [
P −QS−1R 0

S−1R I

]
and the result follows from Lemma 2.2. �
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2.6.2 Eigenvalues
To calculate the eigenvalues of our matrix (2.9) with some disturbance E,

C D

D

E C

 , (2.10)

we ŀrst compute its characteristic polynomial

χ(λ) = det


C − Ω D 0 0

0 C − Ω D

0 D

E C − Ω

 , Ω = diagk(λ), E ∈ Ck×k. (2.11)

We simplify this by writing C̄ = C − Ω and use Ļeorem 2.8 to get

det
[

P Q

R S

]
= det(S) det(P −QS−1R). (2.12)

To calculate the determinant of (2.12) we need to know S−1. Since

S−1 =

C−1 −C−1DC−1 ··· (−1)n−1(C−1D)n−1C−1
by Ļeorem 2.7, we know that S−1

1(n−1) = (−1)n−1(C̄−1D)n−2C̄−1 and thus that

QS−1R =
[
D 0 · · · 0

] 
S−1
11 · · · S−1

1(n−1)
...

. . .
...

S−1
(n−1)1 · · · S−1

(n−1)(n−1)



0
...

0

E

 = DS−1
1(n−1)E

= (−1)n−1D(C̄−1D)n−2C̄−1E. (2.13)

After ŀlling det(S) = det(C̄)n−1 and (2.13) into (2.12) we see that the eigenvalues of
matrix (2.9) with some disturbance E are the zeros of

χ(λ) = det(C̄)n−1 det(C̄ + (−1)nD(C̄−1D)n−2C̄−1E) (2.14)
= det(C̄)n−1 det(C̄ + (−1)n(C̄−1D)n−1E). (2.15)

Ļe number of zeros depends on the structure of E. It is possible all eigenvalues are
different than the eigenvalues of A. But for some E, the perturbed and unperturbed matrix
share some eigenvalues. Ļe eigenvalue that C are the perturbed matrix have in common is
the most positive real one. What happens is visible in Figure 2.8. Here it is visible that the
eigenvalue in (0,0) is shared.
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FŕœšŞő ș.ȟ: Solutions of the characteristic polynomial for block matrices (2.15) for different
sizes. With matrices from [Fir12][(3.15)] with kp = 1, kd = 2, kdd = 0, h = 2, τ = 0.38.
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Spectrum of an operator 3

In Chapter 2 we inspected the eigenvalues of our Jordan matrix when the size was ŀnite. To
know the relation between the ŀnite and inŀnite dimensional case, we inspect the inŀnite
dimensional case in this chapter.

First we need to know what happens when the size of our matrix grows to inŀnity. We
start again with a single Jordan block with zeros on its diagonal. So we have the matrix
Tn ∈ C(2n+1)×(2n+1), with n ∈ N, that is deŀned as

Tn =


0 1

1

0


1+2n×2n+1

. (3.1)

Ļe eigenvalues of this matrix are obviously 0, but what is Tn when n → ∞? To show
this, we ŀrst look at Tnf for n → ∞. We start with the sequence of equations g = Tnf ,
with f, g ∈ C2n+1. We choose to represent f as

f = (f−n, . . . , f−1, f0, f1, . . . , fn)
T

and we see that

gk =

{
fk+1 if k = −n, . . . , n− 1

0 if k = n
. (3.2)

Ļe Eucledian norm of f is ||f ||2 =
∑n

k=−n |fk|2 and if we let n → ∞, we see that ||f ||
converges to the ℓ2-norm of f . Note that the same claim holds for g. Letting n → ∞ in
(3.2) we arrive at the equation

gk = fk+1, k ∈ Z. (3.3)

So we see that when n → ∞ the matrix (3.1) becomes the operator on ℓ2 deŀned by
(3.3). However, we cannot compute the eigenvalues like we did in the ŀnite dimensional
case. In the next section we explain what the spectrum of an operator is and how to calculate
it.
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3.1 Spectrum of an operator
In the ŀnite dimensional case we checked for which λ the determinant of the matrix A−λI

was zero. Ļen we knew when A− λI was not invertible. In the inŀnite dimensional case
we do the same. Ļe spectrum of the operator S is deŀned as the set

Λ(S) := {z ∈ C | (zI − S) not invertible}. (3.4)

For f, g ∈ ℓ2 the operator λI − S is invertible if for all g there exists a unique f such that
(λI − S)f = g. If the operator S is not invertible then λ is part of the spectrum.

Deŀnition 3.1 (Regular value) All values that are not contained in the spectrum are called the
regular values of an operator. We write them as ρ(S).

3.2 Spectrum of the bilateral shift operator
In the introduction of this chapter we derived the operator gk = fk+1. Ļis is called bilateral
left shift operator S. So if we have a sequence f = (. . . , f−1, f0, f1, . . .), then S(f) =

(. . . , f0, f1, f2, . . .). Hence S moves all items one places to the left.
Given the discussion in the previous section and since S is the bilateral shift operator,

to compute the spectrum of S we have to show that for a given λ there exists a unique f for
every g such that

λfn − fn+1 = gn, n ∈ Z. (3.5)
Ļen we have the set of all regular values, ρ(S), and the spectrum is the remaining set
C\ρ(S) = Λ(S).

We will show that the fn solving (3.5) is given by a convolution and therefore we will
use Ļeorem 3.1, and especially inequality (3.9) in our proof. Ļe p-norm of f is deŀned
as

||f ||p =

( ∞∑
k=−∞

|fk|p
) 1

p

, 1 ≤ p < ∞. (3.6)

Ļeorem 3.1 Suppose f ∈ ℓ1, g ∈ ℓp. Ļen
∞∑

k=−∞
|fn−kgk|p < ∞ (3.7)

for all n ∈ Z. Deŀne the convolution of f and g (notation h = f ∗ g) as

hn =

∞∑
k=−∞

fn−kgk, n ∈ Z. (3.8)

Ļen h ∈ ℓp(Z) and
||h||p ≤ ||f ||1||g||p. (3.9)

Proof See Appendix C.1. �
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3.2.1 Regular values
We ŀrst look for all regular values. So we need to ŀnd λ such that there exists a unique f

for every g in the equation (3.5). We start to prove that |λ| < 1 and |λ| > 1 are regular
values of our operator.

Let’s assume that |λ| < 1. We then can work out the recurrence of (λI − S)f = g as

fn = λfn−1 − gn−1 = λ(λfn−2 − gn−2)− gn−1 = . . .

= −
N∑
k=1

λk−1gn−k + λNfn−N . (3.10)

Ļis motivates us to choose hk as

hk =

{
λk−1 for k ≥ 1

0 for k < 1
, (3.11)

and then deŀne a candidate solution f = (fn) for (λI − S)f = g as

fn = −
∞∑
k=1

λk−1gn−k = −
∞∑

k=−∞
hkgn−k = −

∞∑
l=−∞

hn−lgl. (l = n− k) (3.12)

Since we assumed that |λ| < 1 we have ||h||1 =
∑∞

k=−∞ |hk| =
∑∞

k=1 |λk| < ∞.
Since g ∈ ℓ2, we then can use Ļeorem 3.1 to show that

||f ||22 =
∞∑

n=−∞
|fn|2 =

∞∑
n=−∞

∣∣∣∣∣
∞∑

l=−∞
hn−lgl

∣∣∣∣∣
2

≤ ||h||1||g||2 < ∞.

We therefore see that for |λ| < 1 and g ∈ ℓ2, (3.12) is a solution of (λI − S)f = g. We
still need to prove that is unique, but we will do that in the next section.

If |λ| > 1, then we cannot say anything from (3.12) since the sum of λk diverges. But
we can solve the equation (λI − S)f = g forward. Ļerefore we introduce

hk :=

{
1

λ−k+1 for k ≤ 0

0 for k > 0
, (3.13)

and see that

fn =
gn + fn+1

λ
=

gn
λ

+
1

λ

(
gn+1 + fn+2

λ

)
= ...

=
N∑
k=0

gn+k

λk+1
+

fn+N+1

λN+1
. (3.14)

Ļis motivates us to choose the inŀnite sum

fn =
∞∑
k=0

gn+k

λk+1
=

∞∑
k=−∞

h−kgn+k =
∞∑

m=−∞
hn−mgm (m = n+ k) (3.15)
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as a candidate solution for (λI − S)f = g

Since |λ| > 1 we have that ||h||1 =
∑∞

k=0 |λ−(k+1)| < ∞. Since g ∈ ℓ2, we can use
Ļeorem 3.1 to prove that

||f ||22 =
∞∑

n=−∞
|fn|2 =

∞∑
n=−∞

∣∣∣∣∣
∞∑

m=−∞
hn−mgm

∣∣∣∣∣
2

≤ ||h||1||g||2 < ∞. (3.16)

We therefore see that for |λ| > 1 and g ∈ ℓ2, (3.15) is a solution of (λI − S)f = g. We
still need to prove that is unique, but we will do that in the next section.

3.2.1.1 Uniqueness

We now have proved that for |λ| > 1 and |λ| < 1 there exists a f ∈ ℓ2 for every g ∈ ℓ2.
But for every g this f also needs to be unique for λ ∈ ρ(S).

To check the uniqueness of (3.12) we have to show that from

λfn − fn+1 = 0 (3.17)

it follows that f = 0. We assume the opposite, that f ̸= 0. We therefore ŀrst assume that
f0 ̸= 0 and from (3.17) we get the recursion

f1 = λf0, f2 = λf1 = λ2f0, . . . , fn = λnf0.

If |λ| ≥ 1, then it follows that fn ̸= 0 for all n and

∥f∥2 ≥
∞∑
n=0

|fn|2

=

∞∑
n=0

|λ|2n|f0|2 = ∞.

But since f0 ̸= 0 we ŀnd f /∈ ℓ2. Ļerefore we see our assumption is false and we see that
g = 0 implies f = 0 in (3.12).

But if f0 = 0 we see without loss of generality that it directly follows that all fn with
n ≥ 1 are zero.

To show that also for |λ| < 1 the solution is unique we have to show that from equation
(3.17) it follows that f = 0. Ļis time we solve it in the other direction and we then get

f−1 =
f0
λ
, f−2 =

f−1

λ
=

f0
λ2

, . . . , f−n =
f0
λn

.

Let’s again assume the opposite, that f = 0. And that we therefore again assume that
f0 ̸= 0.

If |λ| ≤ 1 then it follows that fn ̸= 0 for all n, since

∥f∥2 ≥
∞∑
n=0

|f−n|2

=
∞∑
n=0

|f0|2

|λ|2n
= ∞.
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But since f0 ̸= 0 we ŀnd f /∈ ℓ2. Ļerefore we see our assumption is false and we see
that g = 0 implies f = 0 in (3.15).

But if f0 = 0 we see without loss of generality that it directly follows that all fn with
n < 0 are zero.

3.2.2 Spectrum
We proved that |λ| > 1 and |λ| < 1 are not part of the spectrum, so we expect that |λ| = 1

is the complete spectrum. Ļe last step is to prove that this is indeed the case.
If we look again at (3.10) and choose n = 0, we get

|f0 − λNf−N | = −
N∑
k=1

λk−1g−k. (3.18)

If we write λ = |λ|eiθ = eiθ and choose

gk =
eiθ(k+1)

|k|+ 1
, k ∈ Z,

we see that gk ∈ ℓ2, since |eiθ| = 1. It follows that

|f0 − eiθNf−N | =

∣∣∣∣∣−
N∑
k=1

λk−1g−k

∣∣∣∣∣ =
∣∣∣∣∣
N∑
k=1

eiθ(k−1)

|k|+ 1
(eiθ)−k+1

∣∣∣∣∣ =
N∑
k=1

1

|k|+ 1
.

We know that this sum diverges if we take the limit N → ∞. But if f ∈ ℓ2, then f0 and
f−N must be ŀnite. Ļerefore we cannot ŀnd a f ∈ ℓ2 such that (3.18) is valid. So |λ| = 1

is not a regular value and thus part of the spectrum of S.
Concluding, the spectrum of S equals {λ ∈ C | |λ| = 1}.

3.3 Spectrum of Operator corresponding to a single Jordan block
Like we did in the introduction of this chapter, we will will in a similar way look at a single
Jordan block with ones on its diagonal when the size becomes inŀnite. So we have the
matrix Vn ∈ C(2n+1)×(2n+1), with n ∈ N, that is deŀned as

Vn =


1 1

1

1


2n+1×2n+1

. (3.19)

Ļe eigenvalues of this matrix are obviously 1, but what happens when n → ∞? We
see that Vn = Tn + I , with Tn from (3.1). So

Snew = I + S.
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Ļen we arrive at the equation

gk = fk + fk+1, k ∈ Z. (3.20)

In section 3.2 we already computed the spectrum for a similar mapping and we can use this
to inspect

λfk − (fk + fk+1) = (λ− 1)fk − fk+1 = gk, k ∈ Z.

If we follow the same steps as in the previous section, but with λ − 1 instead of λ, we
see our spectrum is |λ − 1| = 1. Ļis means that – compared to the spectrum of S – the
spectrum is shifted 1 to the right. Ļerefore the spectrum of (3.20) is a circle in the complex
plane with center 1 and radius 1.

3.4 Spectrum of the z-transformation
Till now we computed the spectrum of two operators. In the introduction in Chapter 1 we
already derived the operator corresponding to the block matrix A, see (1.1). Ļis operator

gk = Cfk +Dfk+1, k ∈ Z. (3.21)

If we apply the Fourier Transform (see Appendix B) we get the transformation

ž(θ) = (C +De−iθ︸ ︷︷ ︸
Ǎ(θ)

)x̌(θ),where θ ∈ (0, 2π) (3.22)

and x̌ is the Fourier-transform of x. Ļe mathematics is explained in Appendix B. To
compute the spectrum of this operator we need a lemma from [CIZ09].

Deŀnition 3.2 L∞(D1;Ck×q) =
{
F : D1 → Ck×q | F is measurable and

||F ||∞ = ess sup0<θ<2π ||F (eiθ)|| < ∞
}

, where D1 is the unit circle {z ∈ C | |z| = 1}.

Lemma 3.1 ([CIZ09, A. 3]) L∞(D1;Ck×k) is a Banach algebra and F ∈ L∞(D1;Ck×k)

is boundedly invertible if and only if there exists a γ > 0 such that {θ : | det(F (eiθ))| < γ}
has measure zero. If F is continuous, then L∞(D1;Ck×k) is boundedly invertible if and only if
det(F (eiθ)) ̸= 0 for all θ ∈ [0, 2π].

Ļis implies that when Ǎ in (3.22) is continuous its spectrum can be written like [CIZ09]

Λ(Ǎ) =
∪

θ∈[0,2π]

Λ
(
Ǎ(eiθ)

)
,

where, for a ŀxed θ, λ ∈ Λ(Ǎ(eiθ)) if and only if det
(
λI − Ǎ(eiθ)

)
= 0.

Ļis means that for every θ we get a ordinary matrix for which we can compute the
eigenvalues. Ļe spectrum of A is the union of all these eigenvalues.

If we choose C = 0, D = 1 in (3.21), we get the shift operator from section 3.2. We
computed there that the spectrum is the circle with radius 1 and the origin as center. If
we inspect (3.22) with C = 0, D = 1, we see Ǎ(θ) = eiθ. In general, it is true that the
spectrum of the shift operator stays the same after we apply the z-transformation:

Λ(Ǎ) = Λ(A).

26



3.5. Other kinds of spectra

3.5 Other kinds of spectra
In the ŀnite dimensional case the spectrum was just the collection of all eigenvalues. In
Section 3.1 we deŀned the spectrum as the set where the operator is not invertible.

..Start. Is (λI − T ) one-to-one.

Is the range of
(λI − T ) dense in X?

.

Is the inverse of
(λI − T ) deŀned on
its range continious?

.

λ is in the resol-
vent set ρ(T ) of T

. λ is in the point
spectrum Λp(T ) of T

.

λ is in the residual
spectrum Λr(T ) of T

.

λ is in the continuous
spectrum Λc(T ) of T

.

yes

.

yes

.

yes

. no.

no

.

no

FŕœšŞő Ț.Ș: Flow chart of the spectrum of an operator T (from [NS71, p. 413])

In the ŀnite case, only the point spectrum Λp was non-empty. Ļat was the set of
eigenvalues. Now we also have the continuous spectrum Λc and the residual spectrum Λr.
Ļe spectrum Λ(T ) of an operator is the union of those three and can then be written as

Λ(T ) = Λp(T ) ∪ Λc(T ) ∪ Λr(T ).

See e.g. [NS71, p. 412]. Ļe point spectrum Λp(T ) consists of all the eigenvalues of T ,
the continuous spectrum contains the scalars that are not eigenvalues but make the range
of T − λ a proper dense subset of the space and the residual spectrum consists of all other
scalars in the spectrum. Ļis is also illustrated in Figure 3.1.

If we look at the spectrum of Ǎ of Section 3.4 then in general the point spectrum is
empty. Ļus Λ(Ǎ) contains no eigenvalues in most situations.

We also proved already in section 3.2 that if λ is part of the spectrum of the shift operator
and there exists a solution, it is also unique. But it is also possible that we ŀnd a solution
outside of the space we are working in, so not for all y̌ ∈ ℓ2 there exists a x̌ ∈ ℓ2.

Another way of looking the problem is that if λ ∈ Λ(Ǎ) then (λI−Ǎ)−1 is unbounded.
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Deŀnition 3.3 (Approximate eigenvalue) λ is an approximate eigenvalue if there exists a se-
quence xn with ∥xn∥ = 1 such that

lim
n→∞

∥Sxn − λxn∥ = 0.

We know that our bilateral shift operator S has no eigenvalues, but its spectrum equals
|λ| = 1. We can show that |λ| = 1 is also an approximate eigenvalue.

If λ < 1, then ∥∥Sf − λf
∥∥ ≥

∣∣ ∥Sf∥ − |λ| ∥f∥
∣∣ = ∣∣1− |λ|

∣∣ ∥f∥
and thus bounded from below and thus not part of the approximate point spectrum. Since
∥S∥ = 1, we know that the spectrum (and approximate point spectrum) is contained within
the ball of radius 1, therefore we do not need to check λ > 1. In general we know that the
an approximate eigenvalue is a subset of the spectrum.

Let |λ| = 1 and let xn be the vector

1√
n
(. . . , 0, 1, λ−1, λ−2, . . . , λ1−n, 0, . . . )

then ||xn|| = 1 and

∥Sxn − λxn∥ =

√
2

n
.

Ļis holds for all n, thus the approximate point spectrum is |λ| = 1.

3.6 Spectrum Operator with scalar perturbation
We want to compare the spectra corresponding to

J =



. . .
. . .

0 1

. . . 1

0
. . .

. . .


and Jp =



. . .
. . .

0 1
. . . 1

ε 0
. . .

. . .

 .

We showed in Chapter 2 that from the relations

fn = λfn−1 − gn−1, fn =
gn + fn+1

λ

if followed that |λ| < 1 and |λ| > 1 are not part of the spectrum of J . Finally we showed
that for |λ| = 1 we could not ŀnd a bounded sequence in our space for which the equations
are valid. Now there is an extra ε in Jp. Ļerefore we have when m = n an extra equation
and the spectrum is more complex:

fm =

{
λfm−1 − gm−1 m = 1, . . . , n− 1

λfm−1 + εf1 m = n
. (3.23)
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We can write our problem as S+ ε∆1,m with ∆a,b deŀned as in section 1.3. If we again let
|λ| = 1 and let xn be the vector

1√
n
(. . . , 0, 1, λ−1, λ−2, . . . , λ1−n, 0, . . . )

then ||xn|| = 1 and

∥(S+ ε∆1,m)xn − λxn∥ = ∥Sxn − λxn + ε∆1,mxn∥ (3.24)
≤ ∥Sxn − λxn∥+ ∥ε∆1,mxn∥ (3.25)

=

√
2

n
+ ε. (3.26)

If we let n → ∞, this goes to ε. So we need more to show what the approximate point
spectrum is.

If we look at (S+∆1,mε)xext, where the values in red are extended, we see that

(S+∆1,mε)xext =



−λ 1

−λ 1

1

ε −λ 1

−λ





0

x1

xn
0


=



x1
0

0

−λxn


. (3.27)

Since ∥x∥ = 1, we need

x1 =
1∑n

k=1 |λ|−k
=

1
|λ|n−1

|λ|n(|λ|−1)

=
|λ|n(|λ| − 1)

|λ|n − 1
,

xn = λ1−n.

We then get

∥(S+ ε∆1,m)xext∥2 = |x1|2 + |λxn|2 = |x1|2 + |λ|−2n

=
|λ|n(|λ| − 1)

|λ|n − 1
+ |λ|−2n

=
|λ| − 1

1− 1/|λ|n
+ |λ|−2n.

We know from Example 2.1 that λ = n
√
ε. In the same example we can see that if n becomes

big, the angle between the eigenvalues is small. We can choose a sequence of λ (depend on
n) such that λ → µ, |µ| = 1, when n → ∞. So we see that we can choose the unit circle
as an approximate point spectrum of our operator, since then ∥(S+ ε∆1,m)xext∥ → 0.
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3.7 Spectrum of operator with matrix perturbation
We can also prove that perturbations do not inłuence the spectrum of operators correspond-
ing to the matrices

A =



. . .
. . .

C D
. . . D

C
. . .

. . .

 and F =



. . .
. . .

C D
. . . D

E C
. . .

. . .

 ,

where F is perturbed with E at position F1,n. We see that the characteristic polynomial of
A+ E equals

(λI −A− E) = (λ−A)
[
I + (λI −A)−1E

]
.

So we see that the characteristic polynomial is a factor (I + (λI −A)−1E) bigger than the
characteristic polynomial of A.
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FŕœšŞő ț.Ș: Plot of the resolvent
norm ∥z − J∥−1. Where J is the
Jordan block in (2.1) with n = 100.

In Chapter 2 we found that the Jordan block is very
sensitive to perturbations. Now instead of looking at
the eigenvalues, we look at complex numbers that are
almost the eigenvalues. We look where the inverse
is not inŀnite, but bigger then ε−1. Ļis is made
formal in the following deŀnition.

Deŀnition 4.1 (ε-pseudospectrum [TE05]) LetA ∈
CN×N and ε > 0 be arbitrary. Ļe ε-pseudospectrum
Λε(A) of A is the set of z ∈ C such that ||(zI −
A)−1|| > ε−1.

In the deŀnition of the pseudospectrum above,
we also introduced the resolvent.

Deŀnition 4.2 (Resolvent) Ļe resolvent of matrixA
is (zI −A)−1.

Ļe norm of the resolvent is plotted in Figure 4.1. For different εwe can plot level curves
where ||(zI − A)−1|| = ε. If we combine different level curves in one plot, for different
values of ε, we get a typical representation of pseudospectra. Figure 4.2 is an example of
that.

Ļe best source on pseudospectra is Trefethen and Embree’s book Spectra and Pseudospec-
tra [TE05]. In this book they describe the history of pseudospectra and a lot of different
applications. Trefethen has researched pseudospectra since 1991. In that year he wrote a
book chapter [Tre92] in which he analysed the pseudospectra of different matrices. He
starts with the Jordan block , because this is the non-normal matrix most sensitive to per-
turbations. In the same chapter he published pseudospectra (Figure 4.2) of this matrix.

Ļere are three equivalent deŀnitions of the pseudospectrum [TE05, Ch. 2]:

1. Λε(A) = {z ∈ C | ∥(zI −A)−1∥ ≥ ε−1}

2. Λε(A) = {z ∈ C | z ∈ Λ(A+ E) for some E with ∥E∥ ≤ ε}
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FŕœšŞő ț.ș: [Tre92, p.254] Disturbances from the Jordan canonical form J . Left the
eigenvalues of 100 random complex perturbations of J with E (||E|| = 10−3), right the
pseudospectra of J with ε = 10−2, 10−3, . . . , 10−8. Ļe dotted line is the numerical range.

3. Λε(A) = {z ∈ C | there exists a v ∈ Cn with ||v|| = 1 such that ∥(A− zI)v∥ ≤ ε}

Deŀnition 1 is the most intuitive, but deŀnition 2 helps us a lot more to connect the ŀnite to
the inŀnite dimensional case that we described in Chapter 3. We are looking what happens
to the eigenvalues when we perturb a matrix since we perturb our matrix with a random
matrix E and look at its spectrum.

Ļe complete proof that all deŀnitions are equivalent can be found in [TE05, Ch. 2],
but if we know why item 2 implies item 1, it will help us understand what happens when
we perturb a matrix with a small matrix E.

If z ∈ Λ(A+E), that means that there exists a v, with ∥v∥ = 1, such that (A+E)v =

zv. If we move Av to the right and invert zI − A, we arrive at v = (zI − A)−1Ev. We
can use this equation to prove that when z ∈ ρ(A)

1 = ∥v∥ = ∥(zI −A)−1Ev∥ ≤ ∥(zI −A)−1∥∥Ev∥ ≤ ∥(zI −A)−1∥ε.

So we see that deŀnition 2 of a pseudospectrum implies also that deŀnition 1 is true.
Ļis means that we can perturb a matrix A and learn something about its behaviour.

4.1 Poor man’s pseudospectra
We can use deŀnition 2 to build pseudospectra. We then simulate the ε-pseudospectrum
by perturbing a matrix E, with ∥E∥ < ε, and compute the eigenvalues of this perturbed
matrix. Ļis gives results that are not as accurate as the algorithms used today, but perturb-
ing the matrices and looking at its eigenvalues was a cheap way of creating pseudospectra
plots. Ļerefore there are called “poor man’s pseudospectra”. Ļis difference is also visible
in Figure 4.2. Ļe contour line for ε = 10−2 is the solid line at the outside of the right
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plot. When we perturb J with ∥E∥ < 10−3, we see the perturbed eigenvalues lie inside
the 10−3-pseudospectrum.

Trefethen [Tre99] gives three problems with “poor man’s pseudospectra”. Ļese spectra
are of course not as accurate as computing them using deŀnition 1, since we get a cloud of
points and not a circle. Secondly, pseudospectra are not essentially about perturbations and
by representing them as perturbations they can be easily misinterpreted. Finally, random
perturbation to an operator do not make sense. Ļerefore these days there more accurate
algorithms for computing pseudospectra. Modern way’s to compute pseudospectra can be
found in [Tre99].

4.2 Pseudospectra of operators
We can also deŀne pseudospectra for operators. Trefethen and Embree [TE05][p. 31]
deŀne them. Ļey use that for X a Banach-space, C(X) is the set of all closed operators,
B(X) the set of all bounded operators on X and D(x) ⊂ X the domain of X .

Deŀnition 4.3 (ε-pseudospectra for operators [TE05, p. 31]) Let A ∈ C(X) and ε > 0.
Ļe ε-pseudospectra Λε(A) of A is the set of z ∈ C deŀned equivalently by any of the conditions

1. ∥(zI −A)−1∥ > ε−1

2. z ∈ Λ(A+ E) for some E ∈ B(X) with ∥E∥ < ε

3. z ∈ Λ(A) or ∥(zI −A)u∥ < ε for some u ∈ D(A) with ∥u∥ = 1.

4.3 Numerical range
In Figure 4.2 we already saw the numerical range as a dotted line. Ļe numerical range is a
closed convex hull of the spectrum Λ(A). Ļe numerical range of a matrix A is deŀned as

W (A) =

{
x∗Ax

x∗x
| x ∈ Cn; x ̸= 0

}
= { x∗Ax | x ∈ Cn; ∥x∥ = 1} (4.1)

..

Example 4.1 Let’s take the most simple Jordan Block and a vector x with ∥x∥ = 1, e.g.

J =

[
0 1

0 0

]
, x =

[
1
2

√
2

1
2

√
2

]
.

Then we see that Λ(J) = {0}, while x∗Jx = 1
2 and is a part of the setW (J).

So we see in example 4.1 that the numerical range can be much bigger than the spectrum.
We can also look at Jordan block of size n.
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..

Example 4.2 Let J ∈ Cn×n. Then we can choose v ∈ Cn, e.g.

y =


1
n

√
n

...
1
n

√
n

 ,

such that ∥y∥ = 1 then

y∗Jy =
n− 1

n

is part of the setW (J).

Till now we only have a theory how to compute the numerical range for matrices. We
can also deŀne them for operators, just as we deŀned pseudospectra for operators.

Deŀnition 4.4 (Numerical range of an operator [Jen, p.12]) LetA ∈ B(X)withX a Hilbert
space. Ļe numerical range of an operator A is the set

W (A) = {⟨u,Au⟩ | ∥u∥ = 1}.

In the operator case we can see something similar to example 4.1. Ļe spectrum of our
shift operator on ℓ2 is the unit circle, but its numerical range is the unit disk [TE05, p. 174].
So we see that the numerical range can be much bigger then the spectrum.

Ļe numerical range can be used to study the behaviour of matrix exponentials, but
according to Trefethen and Embree [TE05, p. 166], the numerical range also is determined
by the limit when ε → ∞ of behaviour of the pseudospectrum of σε(A).

In the beginning of Chapter 3 we deŀned Tn. If we just as in Example 4.2 compute
the numerical range, we see that 2n/(2n+ 1) is part of the set W (Tn). So we see that as
n → ∞, 2n/(2n + 1) → 1.So the set W (Tn) contains for sure a value close to 1 when n

goes to inŀnity, which is also what we would expect. Since we proved that when n → ∞,
Tn becomes the shift operator when n → ∞ and the numerical range W (S) of the shift
operator also is 1.

4.4 Structured pseudospectra
In Figure 4.2 we perturbed with a complex matrixE. But it is interesting to see that when we
perturb with a real matrix, the eigenvalues of our perturbed matrix lie in a different pattern
compared to the eigenvalues of our perturbed matrix by complex perturbations. Ļis is
visible in Figure 4.3.

When we restrict which ε we can use in our pseudospectra (for instance ε ∈ R instead
of C), we have structured pseudospectra. Ļere are interesting applications of structured
pseudospectra. We can for instance take the equations

ẋ = Ax+Bu, y = Cx+Du.

After applying the Laplace transformation this leads to the operator-valued function

D + C(λI −A)−1B.
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4.5. Conclusion

If A,B,C are matrices, we get the equations [BL]

Λ(A) ∪ {λ ∈ ρ(A) : ∥C(λI −A)−1B∥ > 1/ε} =
∪

∥E∥<ε

Λ(A+BEC).

Ļese structured pseudospectra are also called spectral value sets and are useful for analysis
of and control of uncertain linear systems.
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FŕœšŞő ț.Ț: Structured pseudospectra. Left: real perturbation. Right: complex perturba-
tions. We did 250 random computations to Jordan Block from size 50, J + E, ∥E∥ =
10−10, n = 50.

4.5 Conclusion
In this chapter we showed why pseudospectra are useful. Especially useful is the idea that
with random perturbation we can simulate the pseudospectra of a matrix, although this is
not as accurate as real algorithms. Ļis helps us to understand what we see when we perturb
a matrix with a random perturbation.
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Random matrices 5

In Chapter 1 we introduced our problem as the perturbation with a random matrix. In the
previous chapters we started with a deterministic perturbation E with norm ∥E∥ < ε.

Now we return to the original question. We wanted to know the eigenvalues of

J +Nnk×nk(0, σ
2).

In section 2.5 we introduced regions of eigenvalues when there were too many pertur-
bations to ŀnd an explicit solution. Before we answer the question stated above, we assume
that all our ε that we introduced are random variables. We look at the probability that
the eigenvalues lie within the regions we found. Later we will look at complete random
matrices, not just random perturbations at limited places.

We need probability distributions of functions of random variables for the calculations
in this chapter. Ļese distributions can be found in Appendix A.

5.1 One eigenvalue
In Example 2.1 we show that when there is one perturbation ε, all eigenvalues lie in a circle
with radius n

√
ε. In Appendix A.2 we found that the distribution of n

√
ε, with ε ∼ N (0, 1)

is distributed with density function

fZ(x) =
2nxn−1

σ
√
2π

e−x2n/2σ2
.

Ļeorem 5.1 Z = n
√

|α| is distributed with

fZ(x) =
2nxn−1

σ
√
2π

e−x2n/2σ2

with expected value

µZ =
2

1
2nσ

1
nΓ
(
n+1
2n

)
√
π

and variance σ2
Z =

2
1
nσ

2
nΓ
(
1
2 + 1

n

)
√
π

−

(
2

1
2nσ

1
nΓ
(
n+1
2n

)
√
π

)2

.

As n → ∞, µZ → 1 and σ2
Z → 0.
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Proof See Appendix A. �

We already saw in Figure 1.1 that when our σ2 became smaller, the eigenvalues of our
perturbed matrix are going to a ŀxed contour. Ļeorem 5.1 illustrates this clearly. It states
that the variance of the eigenvalues of our perturbed matrix are going to zero when n → ∞.

In Figure 5.1 we perturbed with three different ε to see the effect on the spectrum, just
as we did in Figure 1.1. We see the same thing happening for the Jordan block with zeros
on the diagonal, for a smaller ε the random perturbations are going to the unit circle.
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of 10 experiments.
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FŕœšŞő Ȝ.ș: Random simulations of J + εE, ∥E∥ = 1, ε = 10−2. Plot are combined plots
of 10 experiments.

5.2 Region of eigenvalues
In this section we assume that all perturbations are normally distributed with mean 0 and
variance σ2:

εi ∼ N (0, σ2), i = {1, 2, 3}.
For each of the subsections we will use the probability distributions to know the change
that the eigenvalues of a randomly perturbed Jordan block lie within the regions found in
section 2.5.
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5.2. Region of eigenvalues

Ļeorem 5.2 |α| is distributed by

fY (x) =
2

σ
√
2π

e−x2/2σ2
,

and has expected value
√

2
πσ and variance

(
1− 2

π

)
σ2.

Proof See Appendix A. �

In section 2.5.1 we found all our eigenvalues of J + ε1∆n,1 + ε2∆n−1,1 lie within
r = 1 + ε, ε > 0 provided

|ε1|+ |ε2| < 1.

In Ļeorem A.3 we proved that the sum of two absolute random variables is distributed like
one absolute random variable, but with twice the mean and variance. So if ε1,2 ∼ N (0, σ2),
then |ε1|+ |ε2| is distributed with density function

fY (x) =
2

σ
√
2π

e−x2/4σ2
.

Ļerefore when σ2 = 10−1,

P (|ε1|+ |ε2| ≥ 1) ≈ .11

If σ2 = 10−2, then this probability is approximately 5 · 10−7. When σ2 = 10−5,

P (|ε1|+ |ε2| ≥ 1) ≈ 0.

So we proved that

Λ




0 1

ε2 1

ε1 0




lies within the unit circle when ε1, ε2 are normally distributed with mean 0 and variance
10−5.

5.2.1 An region dependent on n

In section 2.5.2 we got from these conditions that were dependent on our random variable.
We wanted to ŀnd a smaller region and found that our eigenvalues lie within the disk

r =
n
√

|ε1|+ β, β >
|ε2|
|ε1|n

(5.1)

if |ε1| < 1. By the probability density function of |ε1| in (A.2) we see that if σ2 = 10−1

that
P (|ε1| ≥ 1) = 1 · 10−3.
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When σ2 = 10−2

P (|ε1| ≥ 1) ≈ 0.

So we proved that

Λ




0 1

ε2 1

ε1 0




lies within the disk with radius r from (5.1) when ε1, ε2 are normally distributed with mean
0 and variance 10−2.

5.3 Conclusion
We saw that the assumptions we did in section 2.5 are good, since the probability that
random perturbations fall inside this region is big for small ε. We also saw an explanation
why Figure 1.1 converges when σ becomes small. We did not look at complete random
perturbations, that stays a major point of research.
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Conclusions and recommendations 6

We started this thesis with the question what the relationship is between the ŀnite pertur-
bation of the Jordan block and the spectrum of the z-transformation. We can conclude
that

1. Ļe scalar and the matrix case have a lot in common.

2. Ļe spectra of operators are unaffected by perturbations.

3. Ļere is clear relation between computing pseudospectra and our random perturba-
tions.

6.1 Relation between scalar and matrix case
We found in section 2.1 that one small perturbation of a Jordan block led to a Pusieux series
with our eigenvalues distributed around a circle with no eigenvalues in common with the
unperturbed eigenvalues. We see that in the matrix case almost the the same happens. In
section 2.6 we found that the characteristic polynomial was

χ(λ) = det(C̄)n−1 det(C̄ + (−1)n(C̄−1D)n−1E)

At the end of section 2.6 we discussed how the characteristic polynomial above looks like.
Depending on the structure of E there are a lot of zeros in the long expression of the deter-
minant.

In the ŀnite dimensional case all eigenvalues would be different, but in the inŀnite
dimensional case there can be some common eigenvalues.

6.2 Ļe spectra of operators are unchanged after perturbations
In Chapter 3 we saw that we could perturb an operator, but the spectrum does not change.

6.3 Pseudospectra
We found that the spectrum of a Jordan block is extremely sensitive to perturbations. As a
solution pseudospectra were invented to overcome this.
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6.4 Random matrices
We calculated that the spectrum of our perturbed matrix lies almost always in the regions
we found in Chapter 2. We also noticed that the variance the perturbed matrix is going to
zero, what explains why we see the behaviour of Figure 1.1. ø

6.5 Summary
We computed a lot of different spectra, for ordinary matrices and for operators. I created
Table 6.1 with an overview of all these different computations to make it visible how they
are related.

6.6 Recommendations for further research
While we started this thesis with the question how a randomly perturbed matrix is connected
to the spectrum of the z-transform we only looked at random perturbations are certain
places. Since random matrix perturbations are a vivid research ŀeld, there can be done
more research in this ŀeld. For instance Bordenave and Capitaine [BC14] discussed random
matrix perturbations. It would be interesting to see whether their article could also bring
this research a step forward.

Also the research in the last sections of Chapter 3 is not complete. When the exact
behaviour of the spectrum of z-transformation can be understood, maybe the complete
research question can be answered.
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6.6. Recommendations for further research

TōŎŘő ȝ.Ș: Eigenvalues (ŀnite) or spectra (inŀnite) of different matrices/operators.

Finite Inŀnite


0 1

. . . 1

0

 0 |λ| = 1


1 1

. . . 1

1

 1 |λ− 1| = 1


0 1

. . . 1

ε 0

 |λ| = n−1
√

|ε| |λ| = 1


C D

.. . D

C

 eig(C)
∪

θ∈[0,2π]

Λ
(
Ǎ(eiθ)

)

C D

.. . D

E C

 det
(
C̄ + (−1)nD(C̄−1D)n−2C̄−1E

)
·

det(C̄)n−1 = 0

∪
θ∈[0,2π]

Λ
(
Ǎ(eiθ)

)

C̄ = C − λI
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Appendix A

Probability distributions

In this thesis we multiple times use distributions that are a function of a Gaussian distributed
random variable. In this appendix we work out their distributions, expectation and variance.
We assume in all sections that α ∼ N (0, σ2).

A.1 Distribution of |α|
Ļeorem A.1 |α| is distributed by

fY (x) =
2

σ
√
2π

e−x2/2σ2
,

and has expected value
√

2
πσ and variance

(
1− 2

π

)
σ2.

Proof Since Y = P (|α| ≤ x) = P (α ≤ x) + P (α ≥ −x). We know if we deŀne the error
function erf(y) as

erf(y) = 2√
π

∫ y

0
e−u2du,

that (by substituting u = x(2σ2)−1/2)

fY (x) :=

{
2

σ
√
2π
e−x2/2σ2

x > 0

0 x ≤ 0
, (A.1)

FY (y) := P (|α| ≤ y) =

∫ y

0

2

σ
√
2π

e−(x−µ)2/2σ2 dx = erf
(
y − µ√

2σ

)
. (A.2)

We use this to compute the expectation of |α|

E(|α|) =
∫ ∞

0

2x

σ
√
2π

e−x2/2σ2 dx

=
2

σ
√
2π

∫ ∞

0
xe−x2/2σ2 dx

= −
√

2

π
σ

∫ ∞

0
eu du

(
u = − x2

2σ2

)
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=

[
−
√

2

π
σeu

]∞
0

=

√
2

π
σ.

We use the calculation of∫ ∞

0
x2e−x2/c2 dx =

∫ ∞

0

c2x

2
d(e−x2/c2) dx

= −c2x

2
e−x2/c2

]∞
0

+
c2

2

∫ ∞

0
e−x2/c2 dx

=
c

2

∫ ∞

0
e−x2/c2 dx

=
c2|c|
2

∫ ∞

0
e−y2 dy

(
y =

x

|c|

)
=

c2|c|
4

√
π,

(where we used that the Gaussian Integral equals √π) to compute

E(|α|2) =
∫ ∞

0

2x2

σ
√
2π

e−x2/2σ2 dx

=
2

σ
√
2π

∫ ∞

0
x2e−x2/2σ2 dx

=
2σ3

σ
√
2π

√
π

2

= σ2.

Ļerefore we know that

σ2
|α| = E

(
|α|2

)
− E (|α|)2 =

(
1− 2

π

)
σ2. (A.3)

�

A.2 Distribution of n
√

|α|

Ļeorem A.2 Z = n
√
|α| is distributed with

fZ(x) =
2nxn−1

σ
√
2π

e−x2n/2σ2

with expected value

µZ =
2

1
2nσ

1
nΓ
(
n+1
2n

)
√
π

and variance σ2
Z =

2
1
nσ

2
nΓ
(
1
2 + 1

n

)
√
π

−

(
2

1
2nσ

1
nΓ
(
n+1
2n

)
√
π

)2

.

As n → ∞, µZ → 1 and σ2
Z → 0.
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A.2. Distribution of nth root of abs(a)

Proof If we have a function of a random variable Y = g(X), when X is distributed with
probability density function fX , then

fZ(x) = fX(g(x))× |g′(x)|. (A.4)

Since n
√

|α| = x, g(x) = xn ∼ |α|. Ļerefore g(x) is distributed as (A.1). Ļus with fX as in
(A.1), (A.4) becomes

fZ(x) =
2

σ
√
2π

e−x2n/2σ2 ∣∣nxn−1
∣∣ (A.5)

=
2nxn−1

σ
√
2π

e−x2n/2σ2
. (A.6)

We can use the probability density to compute the expectation.

E (Z) =

∫ ∞

0
xfZ(x) dx

=

∫ ∞

0

2nxn

σ
√
2π

e−x2n/2σ2 dx
(
u =

x2n

2σ2

)
=

1

σ
√
2π

∫ ∞

0

2nxn

2nx−1u

(
21/2nσ1/nu1/2n

)n+1
e−u du

=
1

σ
√
2π

∫ ∞

0

(
21/2nσ1/nu1/2n

)n+1
u−1e−u du

=
σ

n+1
n 2

n+1
2n

σ
√
2π

∫ ∞

0
u

n+1
2n

−1e−u du

=
2

1
2nσ

1
nΓ
(
n+1
2n

)
√
π

.

Furthermore in a similar way we can calculate

E
(
Z2
)
=

∫ ∞

0
x2fZ(x) dx

=

∫ ∞

0

2nxn+1

σ
√
2π

e−x2n/2σ2 dx
(
u =

x2n

2σ2

)
=

1

σ
√
2π

∫ ∞

0

(
21/2nσ1/nu1/2n

)n+2
u−1e−u du

=
σ

n+2
n 2

n+2
2n

σ
√
2π

∫ ∞

0
u

n+2
2n

−1e−u du

=
2

1
nσ

2
nΓ
(
1
2 + 1

n

)
√
π

.

Ļerefore we know that

σ2
Z = E

((
n
√

|α|
)2)

− E
(

n
√

|α|
)2

(A.7)

=
2

1
nσ

2
nΓ
(
1
2 + 1

n

)
√
π

−

(
2

1
2nσ

1
nΓ
(
n+1
2n

)
√
π

)2

. (A.8)
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To compute the asymptotic behavior of the expectation and the variance, it follows from

lim
n→∞

Γ

(
n+ 1

2n

)
= lim

n→∞
Γ

(
n+ 2

2n

)
= Γ

(
1

2

)
=

√
π and lim

n→∞
n
√
z = 1, z > 0.

that

µasymp = lim
n→∞

E (Z) =

√
π√
π
= 1

σ2
asymp = lim

n→∞
E
(
Z2
)
−
(

lim
n→∞

E (Z)
)2

= 1− 12 = 0. �

In Figure ō.Ș the expected value and variance is plotted against n.
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FŕœšŞő ō.Ș: Expected value and variance of n−1
√

|α|, α ∼ N (0, σ2), σ2 = 0.01

A.3 Sum of two random variables
Ļeorem A.3 If X,Y are distributed with distribution function (A.1) with mean µX , µY and
variance σ2

X , σ2
Y , then X + Y is distributed with (A.1) with mean µX + µY and variance

σ2
X + σ2

Y .

Proof From [ES08]. Let Z1 and Z2 be two independent standard normal random variables
with joint density function

f(z1, z2) =
exp
(
−1

2

(
z21 + z22

))
π

.

Ļis is function is is rotation invariant, which means that this function has the same value for all
points with the same distance from the origin. Ļus, f(T (z1, z2)) = f(z1, z2) where T is any
rotation around the origin.

It follows that for any set A in the plane P ((Z1, Z2) ∈ A) = P ((Z1, Z2) ∈ TA) where T
is a rotation of the plane. Now if X1 is normal with mean 0 and variance σ2

1 and X2 is normal
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A.4. Sum of two absolute variables

with mean 0 and variance σ2
2 , then |X1| + |X2| has the same distribution as |σ1Z1| + |σ2Z2|.

Hence
P (X1 +X2 ≤ t) = P (σ1Z1 + σ2Z2 ≤ t) = P ((Z1, Z2) ∈ A)

where A is the half plane {(z1, z2) = σ1z1 + σ2z2 ≤ t}. Ļe boundary line σ1z1 + σ2z2 = t

lies at a distance d = |t|/
√

σ2
1 + σ2

2 from the origin. It follows that the set A can be rotated into
the set

TA =

{
(z1, z2) | z1 ≤ t/

√
σ2
1 + σ2

2

}
.

Ļus P (X1 + X2 < t) = P
(√

σ2
1 + σ2

2Z1 < t
)

. It follows that X1 + X2 is normal with
mean 0 and variance σ2

1 + σ2
2 . Ļis completes the proof. �

Note Ļe proof is only above the normal case, but I like it a lot more than the convolution
proof. I still need to adapt it to the absolute case.
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FŕœšŞő ō.ș: Rotation in set z1, z2

A.4 Sum of two absolute variables
We know that α1

α2

 ∼ N

0
0

 ,

σ2 0

0 σ2

 .
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Ļe sum of two independent normally distributed variables x ∼ N (µx, σ
2
x), y ∼ N (µy, σ

2
y)

is again normally distributed with mean µx + µy and variance σ2
x + σ2

y . We know from
section A.1 that

σ2
|α| = E

(
|α|2

)
− E(|α|)2 = σ2 − 2

π
σ2. (A.9)

Since |α1| is distributed with cumulative distribution function FX(y) with mean σ(2/π)1/2

and variance (1− 2/π)σ2, |α1|+ |α2| is distributed with cumulative distribution function
FX(y) with mean 2σ(2/π)1/2 and variance (2− π)σ2 (Ļeorem A.3). It then follows that

k(y, σ) = P (|α1|+ |α2| ≤ y) = erf
(
y − 2σ(2/π)1/2√

2(2− π)σ

)
.
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Appendix B

System theory in the z-domain

B.1 Norms and spaces
Corresponding to the deŀnition in [Fir12, C.2] we deŀne the L2-space for x̌

(
z = eiθ

)
as

as mapping from D1 to Cn for which (B.1) is ŀnite. In Deŀnition B.1 this is made formal.

Deŀnition B.1 (L2-space)

L2(D1;Cn) = {x̌ : D1 → Cn | ∥x̌∥L2 < ∞},

where ∥ · ∥L2 is called the L2-norm and is deŀned as

∥x̌∥L2 =

√
1

2π

∫ 2π

0
∥x̌(eiθ)∥2Cndθ. (B.1)

Here D1 = {z ∈ C | |z| = 1} is the unit circle.

B.2 Bilateral z-transformation
Ļe bilateral z-transformation of an element x = (xk)

∞
k=−∞ ∈ ℓ2(Cn) is defined as

Z(x) = x̌(z) =
∞∑

k=−∞
xkz

−k =
∞∑

k=−∞
xke

−kiθ,

where z is a complex variable that acts as a shift operator and can be written as z =

eiθ with θ ∈ [0, 2π]. Ļis is precisely the Fourier series representation of an element
x̌(z) ∈ L2(δD;Cn) with the Fourier coefficients

xk = Z−1(x̌(z)) =
1

2πi

∮
x̌(z)zk−1dz

with the unit circle as the path of integration. Ļus, by substituting z = eiθ

xk = Z−1(x̌(z)) =
1

2πi

∫ 2π

0
x̌(eiθ)eiθ(k−1)(ieiθdθ) = 1

2π

∫ 2π

0
x̌(eiθ)eiθkdθ

Note that an element x̌(z) ∈ L2(δD;Cn) has an inverse bilateral z-transformx = (xk)
∞
k=−∞ ∈

ℓ2(Cn) , where xk ’s are the Fourier coefficients of x̌(z).
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Appendix C

Proofs

Ļeorem C.1 (Ļeorem 3.1) Suppose f ∈ ℓ1(Z), g ∈ ℓp(Z). Ļen

∞∑
k=−∞

|fn−kgk|p < ∞ (C.1)

for all n ∈ Z. Deŀne the convolution of f and g (notation h = f ∗ g) as

hn =

∞∑
k=−∞

fn−kgk, n ∈ Z. (C.2)

Ļen h ∈ ℓp(Z) and

||h||p ≤ ||f ||1||g||p. (C.3)

Proof If p̃ = p(p− 1)−1 thus p−1 + p̃−1 = p−1 + (p− 1)p−1 = 1, we see that

|hn|p =

∣∣∣∣∣
∞∑

k=−∞
fn−kgk

∣∣∣∣∣
p

≤

( ∞∑
k=−∞

|fn−kgk|

)p

=

( ∞∑
k=−∞

∣∣∣f1/p̃
n−kf

1/p
n−kgk

∣∣∣)p

≤

( ∞∑
k=−∞

|fn−k|
p̃
p̃

) 1
p̃
( ∞∑

k=−∞

∣∣∣f1/p
n−kgk

∣∣∣p) 1
p

p

(by Hölder: 1
p
+

1

p̃
= 1)

=

( ∞∑
k=−∞

|fn−k|

) p
p̃
( ∞∑

k=−∞

∣∣∣f1/p
n−k

∣∣∣p |gk|p
)

=

( ∞∑
k=−∞

|fn−k|

)p−1 ∞∑
k=−∞

|fn−k| |gk|p .
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Ļerefore

||h||pp =
∞∑

n=−∞
|hn|p ≤

∞∑
n=−∞

( ∞∑
k=−∞

|fn−k|

)p−1 ∞∑
k=−∞

|fn−k| |gk|p


= ||f ||p−1
1

∞∑
k=−∞

( ∞∑
n=−∞

|fn−k| |gk|p
)

(Tonelli-Fubini)

= ||f ||p−1
1

∞∑
k=−∞

( ∞∑
m=−∞

|fm| |gk|p
)

(n− k = m)

= ||f ||p−1
1

∞∑
m=−∞

|fm|
∞∑

k=−∞
|gk|p

= ||f ||p−1
1 ||f ||1 ||g||pp = ||f ||p1 ||g||

p
p.

Ļus ||h||p ≤ ||f ||1||g||p. �
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