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Abstract

Shallow water flows in rivers and coastal environments are characterized by complex boundaries
demarcating wet and dry topography. Unstructured grids are ideally suited to model those
complex computational domalns, because of thelr large geometric flexibility.

The aim of this M.Se. thesis work is to compare two munerical methods that are able to
compute 1D shallow water flows. The methods must in principle be applicable to unstructured
grids when extending them to two dimensions.

The first method, the so-called Collocated Coupled Solution Method (CCSM), is a collo-
cated, vertex-centred finite volume method, in which a linear approximation of the primary
variables is used. Due to the use of a first order upwind scheme in the momentum equation the
method is first order accurate in space. Discretization of the advection term in the confinuity
equation is either done by means of a central or a first order upwind approach. The time march-
ing procedure is based on solving the coupled matrix system of equations at once by means of
a f-method. [t is quite simple to make changes in the discretization, because it only implies a
change in the computation of certain matrix elements and not of the solution procedure. Picard
linearization or an iterative process is used to deal with the nonlinear terms and for this reason
the CCSM-method is semi-implicit which allows for relative large time steps. The choice for the
time step is only limited by accuracy reasons.

The Runge-Kutta Discontinuous Galerkin finite elernent method is the second method ex-
arnined in this M.Sc. thesis. It uses a discontinuous piecewise polynomial approximation for the
variables, and the method is very local. More degrees of freedom are involved relative fo finite
volume methods. The HLLC approximate Riemann solver is used to locally solve the Riemann
problem between two cells, as is common in most finite volume methods. A diagonal mass ma-
trix is obtained by the use of orthogonal Legendre polynomials and this avoids the necessity to
solve a local matrix system. For the solution procedure an explicit TVB Runge-Kutta scheme
is used and this gives a CFL-restriction on the time step, which becomes more severe when the
order of the method increases. A slope limiter can be applied to avoid unphysical oscillations
i higher order schemes.

Some nunicrical test cases are performed to test the numerical methods and to compare
them with each other. They include a linear wave problem, a problem with one of the Riemann
variables being constant, Ricinann problems, tidal movement and flow over an isolated ridge.
The second order RKDG-method gives the best results in all test cases. The first order RKDG-
method and the CCSM-method give most of the times results of comparable quality, being more
diffusive than the second order RKDG-method. A slope limiter has to be used for the second
order RKDG-method when large gradients in the solution are present. The upwind approach in
the continuity equation has to be applied in the CCSM-method when the flow is supereritical
or in the presence of large gradients in the solution.

It can be concluded that both the RKDG-method and the CCSM-method are capable of
computing 1D shallow water flows. At least for flow involving low Froude numbers the CCSM-
method introduced in this report can use larger time-steps than the RKDG-method used in this
M Sc. thesis, but the RKDG-method is better suited to deal with discontinuities in the flow.
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Chapter 1

Introduction

Most flows on the surface of the earth, for example in rivers, seas and the atmosphere, are
shallow water flows in which the horizontal length and velocity scales of interest are much
larger than the vertical ones. The mathematical formulation of these flows, the so-called shallow
water cquations, are already known for over a century, but the equations involved are far too
complex to he solved analytically in the majority of cases. In the past this meant that physical
experiments had to be carried out to model the flow, or very simplified mathematical models
were used.

The advance in computing power gave rise to an alternative way to solve the equations: the
use of numerical simulations became possible. Nowadays, experiments are most of the times far
too expensive compared to the use of numerical models. In the past decades a large number of
different numerical methods are developed to solve the shallow water equations. At present, these
models are used in all kinds of applications such as flood warning systems, design of harbours,
impact of changes in water systems, climate predictions and reducing water pollution. And due
to the increasing computer power and speed, more complicated problems can be solved by the
day.

Closely related to this development is the generation of grids for the numerical methods. In
the past the computations were carried out on a simple structured grids because of the relative
simplicity of the cornputational domains that were involved. Thanks to the advances in computer
technology, problems on more and more complex domains can be solved. Unstructured grids are
ideally suited to model those complex computational domains, because of their large geometric
flexibility. The grid generation can also be automated to a larger extent than for structured
grids, and local and adaptive grid refinement is easier. However, the discretization of the How
equations is quite difficult and as a result the computational cost are higher.

At WL | Delft Hydraulics and the chair Numerical Analysis and Computational Mechanics
(NACM) at the University of Twente, exploratory research has started on the development
of unstructured grid methods. The aim of this M.Sc. thesis work is to get insight in the per-
formance and accuracy of two numerical methods for solving the shallow water equations on
unstructured grids.

Formulation of the problem

Two numerical methods that are able to compute 1D shallow water flows are compared. The
methods must in principle be applicable to nnstructured grids when extending them to two
dimensions.



Methodology
The research consists of the following steps:

s Understanding of the shallow water equations and the problems involved with unstruc-
tured grids.

» Investigation of numerical methods which are able to solve the shallow water equations.
¢ Performing a literature study on flooding and drying algorithms.

s Developing of a new finite volume methed, the CCSM-method, for solving the one-
dimensional shallow water equations with first order accuracy.

s Applving the first order RKDG-method to the one-dimensional shallow water equations.
» Implementing both methods in Fortran 90 and testing them by means of several test cases.

s Extending the RKDG-method to second order accuracy, including a slope limiter.

Structure of the M.Sc. thesis

The derivation of the shallow water equations (SWE) from the Navier-Stokes equations is given
in Chapter 2. The final result of this derivation are the one-dimensional shallow water cquations
which are the equations of interest in this work.

In Chapter 3 the contrast between structured and unstructured grids is outlined, the difference
between staggered and collocated grids is explained and the distinction between a vertex-centred
and cell-centred approach is given. The motivation to prefer one approach over the other is also
included.

Four different numerical methods that can be used to solve the shallow water equations are
outlined in Chapter 4. The two methods that are compared in this work are the CCSM finite
volume method and the RKDG finite element method. They are examined in detail in Chapter 5.

A literature survey of various flooding and drying algoritbms is given in Chapter 6.

In Chapter 7 some nuinerical test cases are performed to test the numerical methods and to be
ahle to compare them with each other. They include a linear wave problem, a problem with one
of the Riemann variables being constant, Riemann problems, tidal movement and flow over an
isolated ridge.

The final chapter, Chapter 8, contaius the conclusions of the research and some recommenda-
tions for further investigations.



Chapter 2

Derivation of the shallow water
equations

The Navier-Stokes cquations are the governing equations to model fluid flow in many appli-
cations, such as How through pipes and around aircrafts. In most flows on the surface of the
earth, for example in seas, rivers and the atmosphere, the horizontal length and velocity scales
are much larger than the vertical ones. In this case a simplification can be made by assuming
that the vertical acceleration is negligible compared to the horizontal accelerations. This results
in a hydrostatic pressure distribution, and the shallow water equations can be used instead of
the more complicated full Navier-Stokes equations. In this chapter the shallow water equations
(SWE) will be derived from the Navier-Stokes equations. First the three-dimensional (3D} SWE
will be derived in Section 2.1. These will be integrated over the water depth to obtain in Sec-
tion 2.2 the two-dimensional (2D) depth-integrated SWE. In for example rivers and channels
the length scales of the flow are also much larger than the scales related to the width variations
of the flow. In this case the equations can be simplified even more, by looking at equations for
the cross-section of the flow, to obtain the so called Saint-Venant equations in Section 2.3. If
the width of the channel is constant, the Saint-Venant equations reduce o the one-dimensional
(1D) SWE as described in Section 2.4. The derivation of the SWE, as given in this chapter, is
based on the derivations found in Young et al. (1997), Johnson (1998), Toro (2001), Vreugdenhil
(1994) and Schwanenberg (2003). Finally the boundary conditions for the one-dimensional case
are exarmined in Scction 2.5,

2.1 'Three-dimensional shallow water equations

The Navier-Stokes equations are the equations that govern flows in many realistic situations.
For water, we can reasonably assume that the density is constant, which means that water is
incompressible. and therefore we only look at the incompressible Navier-Stokes equations. They
consist of the equations for the conservation of mass and momentum:

mass: d5,v; =0, (2.1)
1
momnentum: Brvi + Oy, (vyui — -0y) = gi, (2.2)
7
where p is the density of water, v; the velocity components, x; the directional indices, o;; the

stresses of deformation and ¢ the acceleration due to gravity. The indices i, € {z, ¥, z} indicate
the spatial directions and in addition, partial derivatives are denoted as 9; = 3/dt.



The stresses of deformation can be expressed as
55 = —pbij + p (Oz,0 + O, vy) (2.3)

where p is the pressurc in water, g its dynamic viscosity (assurned to be constant) and &;; the
Kronecker delta which has the properties: §;; = 1 if i = j and d;; = 0 otherwise. Consequently
{2.1) and {2.2) can be written as

dyu+ v+ 0w =0, (2.4)

du + O’ + Oy (ww) + Oy {uw) = ——i D+ (d:“fu + Bgu + Bfu) . (2.5)
Orv + By (o) + By + 8, (vw) = _% o+ v (80v + B2 + O%v) (2.6)
By + B (wu) + 8, (wv) + G;w* = —g — %ﬂzp + v (87w + Ow + Hw) (2.7)

where u, v and w represent the -, y- and z- velocity components respectively and v = p/p is
the kinematic viscosity. Here we also assumed that g, = g, =0 and g, = —g.

We consider shallow water flow with a free surface under gravity for which the geometry for
a fixed value of y is depicted in Figure 2.1. We introduce a reference level at z = 0 and the
bottom is assumed to be fixed in titme and is defined by a given function

z=—hiz,y). (2.8)
The free surface is defined by
z=((z,y,t), (2.9)
and the total water depth is defined as
Hiz,y, ) = bz, 1) + (1, 1). (2.10)

Clxyt) (x.y.0)

P

Hixy.t)

h{x,y)

Fig. 2.1: Flow with a free surface.

In shallow water flow, by definition, the horizontal length and velocity scales are much larger
than the vertical ones. Therefore the vertical acceleration is assumed to be negligible compared
to the other terms appearing in the z-momentum equation (2.7), so |Dw/Dt| << |g + 8.p/p|
and [vV2w| << |g + 8.p/p|. where D/Dt = 0, + ud, + v8, + wd, is the material derivative




and V% =82 + 83 + 33. This implies that the z-momentum equation reduces to the hydrostatic
pressure distribution

1
=3,p = —g. (2.11)
P

This equation can be integrated, by assuming the atmospheric pressure to be constant, without
loss of generality taken to be zero, to yield

p=pg(( - z). (2.12)

Substituting equation {2.12) in {2.5) and (2.6) vields

Apu+ 0?4 8, (uv) + 0, (uw) = ~g0,¢ + v (O2u + 82u + H2u) (2.13)
v + Oy (vu) + Oyv® + B, (vw) = —g0,C + v (5ﬁu + dﬁu + afu) . (2.14)

Equations (2.4), (2.12), (2.13} and (2.14) are the incompressible hydrostatic Navier-Stokes equa-
tions also called the 3D SWE, The unknowns are the velocity vector v = (u, v, w} and the surface
elevation ¢.

The conditions on the free surface and the bottom are given by the assumption that any fluid
particle located at the surface or the bottom remains at the surface or the bottom respectively
and the bottom boundary is assumed not to change in time. The vertical velocity of the particle
at the surface and the bottom is then given by

D

W= T =100+ w0+ U0l (2.15)
z=(

Wl = — % =l v, (216)

where the notation f|,=, means that f(z) is evaluated in the point z = «. Equations (2.15)
and (2.16) are called the kinetic boundary conditions for the incompressible hydrostatic Navier
stokes equations,

2.2 Two-dimensional shallow water equations

The incompressible hydrostatic Navier stokes equations can be simplified by integrating them
over the total water depth resulting in the 2D SWE, also called the depth-averaged or depth-
integrated SWE. Integrating the individual terms of the continuity equnation (2.4) over the total
water depth yields

¢ g
/ Oyudz = (%f wdz — ulp=¢ + O — Ul pmp - Auh, (2.17)
—h —h
¢ ¢
/ dyudz = By/ vdz — |y« Bl — U|pep + Oyh, (2.18)
—h -k
€
/ O:wdz = w|,=¢ — Ww]y=wh, (2.19)
—h

where we used Leibniz’s formula

 tala) a(e)
B f F6, ) de = [ Baf dE + F(E2,0)Pnta + F(E1, 2)Bat. (2.20)
Ey{m) JE (o)



Define the depth-averaged velocity terms

=L ff d d @ L[ d
u—ﬁ/huz an U-—?/huz (2.21)

to remove the integrals in equations (2.17) and (2.18). Substituting these in the integrated
continuity equation yields

Op(BH Y — ] y=¢ + 006 = tgmp  Oh + Oy (TH) — v|,=¢ - 3,

(2.22)
- U‘z:—h ’ ayh + w}z:( - w!z:—h =0 ) '

The physical conditions on the free surface and the bottom are implemented by substituting
the kinetic boundary conditions (2.15) and (2.16) in (2.22) to yield
B¢ + O (@H) + 8,(vH) = 0, (2.23)

Recalling that ¢ = H — h and h independent of time, the final form of the two-dimensional
continuity equation can be expressed as

8,H + 0y (aH) + 6,(vH) = 0. (2.24)

The mormentum equation can be depth-integrated using the same procedure. Integrating
the individual terms of the z-component of the momentwm equation, (2.5), over the total depth
yields

¢ ¢
/ Brudz = B, / wds —ulac - B, (2.25)
J—=h —h
" ¢
/ Ot dz = 0, / W dz — 0 yg - 03¢ — WP |aep - Oph, {2.26)
Jon —h
¢ ¢
f Qyuv dz = 0y / uv dz — wv| =g - Oy — uv|;=—p - Oyh, (2.27)
—h Jeh
¢
yuw dz = Ww|y=¢ — W ;=p, (2.28)
J=h
¢
/ 00uC dx = gOC(C + h) = gHOLC = gHB, (H — h). (2.29)
—h

and we define the depth-integrated friction term Sy, of the x-component of the momentum
equation as follows
¢
Spr = f v (0% + 02u + 8lu) dz. (2.30)
-h

We assumme that the distribution of the velocity is uniform in the z-plane, which results in the
fact that the integrands in equations {2.25), (2.26) and (2.27) can be taken out of the integral
and we can write @ = w and ¥ = ». Then along with the kinetic houndary conditions (2.15) and
(2.16), the z-momentum equation yields

A(uH) + 0, (v*H) + 8y (woH) = gHO(h — H) + S5 (2.31)
Following the same procedure, the y-component of the momentum equation becomes

O(vH) + 8, (woH) + 8y (V2 H) = gH,(h — H) + Syy. (2.32)



Equations (2.24), {2.31) and {2.32) are now called the 2D depth-integrated shallow water equa-
tions. These equations can be written in differential conservative law form

du+ V - f{u) = s(u), (2.33)

with the differential operator defined as V- f = 9,£; + 8,f,. The vector containing the unknown
variables u, the flux vector f = {f;, f,) and the vector containing the source terms s{u) are given
by

H uH
u= | uH |, £.(u) = wH |,
vH | uvH
vH ] 0
fy(u) = | wH |, s(u) = { —gHO(+ Sz |,
o2 H | —gH8,( + Sgy
or
H uH
u= | uH |, f.(u) = ulH + %QHQ ,
vl | uvH
vH i 0
f,(u) = uuH , s(u) = | gHOh+ 55, |,
U2H+%QH2 ] gHOh + Sy,

depending on the kind of solution procedure that will be used.

2.3 Saint-Venant equations

In flows in rivers or channels, for example, the main flow is in the z-direction. This means that
both the acceleration in the y- and z-direction are assumed to be negligible. In this case the
equations can be simplified even more, by looking at equations for the cross-section of the flow
instead of the total water depth.

To get a one dimensional formulation of the shallow water equations we consider the mass
and momentum equation for an infinitesimal conirol volurne. The geometry and quantities of the
infinitesimal control volume are illustrated in Figure 2.2. We assume that the velocity is uniform

Pex+AX )

Fig. 2.2: Infinitesimal control volume for the Saint-Venant equations.

in the y- and z-direction, because the accelerations in the y- and z- direction are assumed to be



small. The mass and momentum equation for this infinitesimal control volume, without viscous
terms are

B (AAx) — (Au)(z) + (Au)(x + Az) =0, (2.34a)

1

A{AuAx) — (AuQ)(m) + (Aug)(as + Az) = = [{Ap)(z) — (Ap)(z + Ax)]

P o

. (2.34b)

+ ;p [A(x + Az) — Az)],

where A(x) is the cross-section, Az the infinitesimal length of the control volume and p the
pressure on the control volume. The density p is again assumed to be constant. The last, term
on the right hand side of the momentum equation (2.34h) can be derived by dividing the control
volurne in even smaller sub-volumes by dividing it also in infinitesimal pieces Ay and Az in the
y- and z- direction and assuming that this infinitesimal volumes have quadrilateral sides. The
contribution of the pressure in the x-direction in each sub-volume e¢an be simply caleulated and
the total contribution on the infinitesimal volume is then the sum of all the sub-volunes, by
taking the limit Ay, Az — 0.

Dividing equations (2.34) by Az and taking the limit Az — 0 will give the following differ-
ential equations

BeA + By (Au) = 0, (2.35a)
8 Au) + 8, (Au?) = —%A@xp. (2.35h)

By assuming again that the pressure is hydrostatic as given in (2.11), due to the shallow water
assumption, (2.35) reduce to

OeA + Oy (Au) =0, (2.36a)

O Au) + 8,(Au?) = gAd.(h — H). {2.36Db)

Equations (2.36) are the 1D cross-sectional shallow water equations that are commonly referred
to as the Saint-Venant equations.

By making use of the chain rule to evaluate A9, H, this equations can also be written in
{quasi-) conservation law form

A + 8, (Au) =0, (2.37x)
8 (Aw) + 05(Av® + gAH) = gAdh — gHO A (2.37h)

A problem is that there is now a differential term in the unknown variable A on the right
hand side as part of the source terms and this means that the equations are not completely in
conservative forim.

2.4 One-dimensional shallow water equations

If we look at a very simple channel with a constant width, W, then 4 = HW and we get the
following simplification of equations (2.36):

O H + 8, (ull) =0, (2.38a)
8, (uH) + 8, (v H) = gHO.(h — H). {2.38h)



Introduncing the discharge ¢ = uH the equations become

8,H + 0,q = 0, (2.392)
Ovq + O (ug) = —gHOLC. (2.39h)

In this way the equations express that the term gH3,(, which represents the water surface
slope, is the driving force of variations in the discharge.

If however a Riemann problem has to be solved the momentum flux of the 'real’ conservative
form is needed and then the equations (2.38) are usually written in the following form

OH + 8.q =0, (2.40a)
Aq+ 0 (°/H + %gHz) = gHd,h. (2.40b}
fu this case, the bottom slope is represented as a source term instead of the water surface slope,

so that the source term does not contain a derivative of a primary variable.
The equations can be written in conservative law form as follows

dpu + 8,f{u) = s(u), (2.41)
with
_| H _|a _ 0 .
w=[ M wa=| 2] sw=] | (242)
for equations (2.39), and
| # ) q _ 0
o [H] =] ] =[] e

for equations {2.40).

2.5 Boundary conditions in one dimension

To solve a set of differential equations, appropriate boundary conditions have to be specified.
There can be made the distinction between two kinds of boundaries. Real boundaries can
obviously be coastlines, or other structures, but if a computational domain covers a part of the
sea ot river, then there is also an ‘open’ boundary which is artificial in the sense that it is not a
physical boundary: it is just a line drawn on the map. We will only look at hboundary conditions
for the 1D SWE, equation (2.41), which means that there is only a left and a right boundary.
We assume that the fluid flows from the left to the right, meaning that at the left boundary
the flow is directed inwards and at the right boundary directed outwards. The 1D SWE are
hyperholic partial differential equations and the mumber of boundary conditions that have to be
imposed depends on whether the flow is directed in or out of the domain and whether the flow
is sub- or supereritical, see Table 2.1. The flow is subecritical if the Froude number, Fr = |u|/c

Table 2.1: Number of boundary conditions to be prescribed.

FreliFr>1
Inflow 1 2
Outflow 1 0

with ¢ = /gH the celerity, is smaller than one and supercritical if it is larger than one. The
Froude number in shallow water flow is the equivalent of the Mach number in aerodynamic



applications. Most shallow water flows are subceritical and Fr rarely exceeds 0.1 in the ocean or
0.8 in rivers. Only in special cases (e.g. flow over dams, rivers with large water surface gradient)
supercritical flow can occur, but this will mostly be local. According to Table 2.1, in normal
cases one boundary condition must be specified at both boundaries. In the next part of the
section this will be explained further.

The number and type of boundary conditions needed in hyperbolic systems is closcly related
to the hehaviour of characteristics. The quasi-linear form of the one-dimensional system (2.41)
with {2.43) is

du + Ba,u =s(u), (2.44)
with the Jacobl matrix B given by
B - % - _qg/HQ + qI_I Qq/H :| - |: (:2 _ ’U.2 o :| . (240)

and ¢ = +/gH again the celerity. The eigenvalues, A;, and corresponding eigenvectors, R;, of
matrix B are given by

H 1

M =u—oc, Rl_%[u—c]' (2.46)
H 1

A =u+tc, RQ——% u—i—c} (2.47)

The matrix R with the eigenvectors (R, Ry) as its columns diagonalizes the matrix B as follows
RIBR=A & B=RAR™, (2.48)

where the diagonal matrix A is given by

A= [ )E,l /32 } (2.49)

Multiplying (2.44) by BT and using (2.48) yields
R7'8u+AR'9,u=Rs. (2.50)
This equation can be written in characteristic form
Our + Adpr = §, (2.51)

where § = R™!s and r are the characteristic variables, which are constant along the character-
istics. Because (2.44) is nonlinear, R is dependent of u and the characteristic variables r cannot
be computed directly by putting r = R~1u. However, from the relation

R'9%u=08r or R l8u=a,r, (2.52)
the characteristic variables can be calculated to be
ey | u- 2e .
- []-[77%) -
These characteristic variables r are the so-called Riemann invariants.

In (2.51) a system of two ordinary differential equations is obtained in terms of the Ric-
mann invariants, which are constant along the characteristics dx/dt = X; provided § = 0. see
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Fig. 2.3: Characteristics through zy.
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Fig. 2.4; Direction of Riemann invariants for inflow and outflow at a boundary il Fr < 1.

Figure 2.3. It is important to know the signs of A1 and Az because that determines the direction
of the characteristics along which information is transmitted. If the flow is suberitical {Fr < 1)
then 1] < ¢ and A < 0, Ay > 0. The boundary conditions at time ¢ are specified by the
Riemann invariants v & 2¢, see Figure 2.4. At both the in- and outflow boundary one of the
Riemann invariants must be specified (re for inflow and r; for outflow) and the other one must
be able to run freely out of the domain. This explains why one boundary condition is needed
at both the in- and cutflow boundary when the flow is subcritical.

If the flow is supercritical (Fr > 1) then |u| > ¢ and both A; and Ay have the same sign
as u, see Figure 2.5. At the inflow boundary both Riemann invariants must be specified and at

Inflow Outtlow

.

Fig. 2.5: Direction of Riemann invariants for inflow and outflow at a boundary if Fr > 1.

the outflow boundary both Riemann invariants must he able to run freely out of the domain,
which explains why two boundary conditions are needed at the inflow boundary and zero at the
outflow boundary.

Normally there is only limited knowledge of what is happening outside the model region,
so in general it is not so easy to find good data to be prescribed on open boundaries. If data
is known outside the numerical domain it is most of the times on one of the variables u or
H, so the Riemann invariants u £ 2c are still unknown. In suberitical flows only one Riemann
variant has to be specified at the houndaries and the other one is known. The unknown Riemann
variant can be derived by manipulating the Riemann variants. For example if H is known (and
thus the celerity ¢) at the domain boundary, r9 = u + 2¢ has to be specified at the boundary
and r;y = v — 2¢ is known, then ry — 7y = 4¢ which gives 9 = r1 + 4c. This manipulation is
only possible if the solution of the problem does not depend on the boundary conditions, but

11



unfortunately this is the case in most problems. However, if the boundaries of the domain are
chosen far enough away from the region of interest, the possible errors or inaccuracies in the
boundary conditions do not reach the region of interest within the time of the total computation.

In shallow areas, parts of the region may dry up at low water levels, which means that there
arc moving boundaries. In this case H = 0 and it is not obvious what will happen, so we will
first only look at the case where H remains positive.

12



Chapter 3

Unstructured Grids

In order to perform mimerical calculations of flows, the flow domain has to be divided into small
cells. The resulting subdivision is called a grid. Basically a distinction between two types of grids
can be made: structured and unstructured grids, see Wendt (1996), Anderson (1995}, Wenneker
(2002) and Wenneker (2003}. The difference between the two grids is explained in Section 3.1
and it also contains the reason why the interest in this thesis is on numerical methods that
arc applicable to unstructured grids. There are different ways to locate the variables within
a grid. The differcnce between staggered and collocated grids is explained in Section 3.2 and
a motivation is given for our choice to use a collocated method on unstructured grids. In
Scetion 3.3 the difference between a cell-centred and a vertex-centred approach is explained,
both of which presume a collocated grid and a motivation is given for using the vertex-cenired
approach.

3.1 Advantages of unstructured grids

Structured grids have the property that at each interior node the same number of cells meet
and that (portions of) the grid can be mapped to a rectangle (in 2D) or a block (in 3D).
Unstructured grids are obtained by dividing the domain inte simple elements with no implied
connectivity. In 2D these are often triangles or quadrilaterals and in 3D tetrahedra or prisms.
In Figures 3.1 and 3.2 examples of a structured and an unstructured grid are given for the 2D
casg,

The advantages of unstructured grids compared to structured grids are that the process of
grid generation can be automated to a larger extent because of the greater geometric tlexibility
and that local and adaptive grid refinement is much easier. Unstruciured grids also have their
disadvantages: the discretization of the flow equations and its implementation becomes more
complicated, and exccution time is usually larger given a number of unknowns.

In this thesis we only consider problems in one-dimension, but in 1D there is no distinction
between structured and unstructured grids, because the only way to divide a line is in intervals.
However the methods that are examined have to be in principle applicable to unstructured grids
in 2D.

3.2 Staggered versus collocated grids
A distinction can be made between two approaches concerning the location of the variables

in the grid for the finite volume and finite difference methods. The variables can be staggered
in space, in the sense that the discrete location of the various variables differs, leading to a

13



Fig. 3.1: Example of a structured grid.

so-called staggered grid. One can argue, see Stelling (1983), that it is beneficial to store the
surface elevation in the cell centres, while the velocity components normal to the cell edges
are positioned at the midpoints of the cell edges. In a collocated grid however, all variables
are located in the same grid location, e.g. in the cell centres or in the vertices. In Figure 3.3
the differences between the two types of grids are depicted for the one-dimensional case and in
Figure 3.4 for the two-dimensional case.

We will discuss the advantages and disadvantages of both approaches, because the choice
for one of the two has far reaching implications for the discretization and the resulting imple-
mentation. The motivation in this thesis is based on the one in Wenneker (2003).

Odd-even decoupling is occurring when a central scheme is used on a collocated grid.
The central approximation of the gradient of the surface elevation (8.() decouples the surface
elevation in neighbouring points. This may however not be such & big problem on unstructured
grids, because on such a grid generally no distinction between 'odd’ and ‘even’ grids can be
made,

14



Fig. 3.2: Example of an unstructured grid.
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Fig. 3.3: Staggered and collocated grid in 11.
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Fig. 3.4: Staggered and collocated grid in 2D.

Higher order approximation of advection According to current standards, second order
spalial consistency at least is required for the discretization, including that of the advection term.
When using a staggered positioning of the variables, second order accuracy can be achieved on
orithogonal structured grids relatively easy, because the relevant velocity components at adjacent



edges are more or less collinear. However, on unstructured staggered grids this is not the case,
see Figure 3.4, and second order accuracy is very hard to obtain. Recent work in the group of
professor Wesseling at TU Delft confirms this, When a collocated positioning of the variables is
used, second order schemes can be constructed on both structured and unstructured grids. An
abundance of literature dealing with obtaining second order accuracy on unstructured grids is
available, starting with the paper by Barth & Jespersen (1989).

Ease of implementation On unstructured grids, implementation of a staggered scheme is
much more complicated than that of a collocated scheme. The dificuliy of staggered grids is
the fact that there are (at least) two distinet grid locations from which a numerical quadrature
has to be set up. This gives the necessity to inferpolate back and forth between the various grid
locations {especially for the velocity, of which only the components normal to the CV-edges are
known), leading to large grid stencils. On a collocated grid, there are no interpolations necded
to get the variables at other grid locations. This also makes the implementation of boundary
conditions easier. Another advantage of collocated schemes is that for the same operator in
different equations the same discretization can be used,

Knowledge present in literature Nowadays only a few publications about a staggered
location of the variables on unstructured grids appear and most of the research is on collocated
grids.

Conclusion We will use in this thesis a collocated location of the variables, because the imple-
mentation is easier and a higher order approximation of advection can be achieved. However we
have to take care that no odd-even decoupling occurs. Also since most of the research nowadays
is done on collocated grids, using collocated grids avoids time-consuming research that has to
be done when using staggered grids.

3.3 Collocated grids: choice between cell-centred and vertex-
centred approach

A collocated method can be either of the cell-centred type or the vertex-centred type, depending
on whether the flow variables are stored at the centres or at the vertices of the grid celis.

j=512 32 12 jHn R

_/\/ | . I WMM . f A
! ! . WWW//I!% . I
j=2 j-1 j j+1
a) Cell-centred | grid

» lacation of flow variables

| edge of control volume

=32 12 2 32

N ; 4 k) 3 " L /\/__
T ! _T ' _T ! 'l'
j-2 J=1 ] JjEl j+2

b) Vertex—centred

Fig. 3.5: Cell-centred and vertex-centred grid in 1ID.
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a) Cell—centred b) Vertex—centred

Fig. 3.6: Cell-centred and vertex-centred grid in 2D,

In the cell-centred case, the control volumes coincide with the grid cells and the flow variables
are stored in the centre of the grid cells, see Figure 3.56a for 11} and Figure 3.6a for 2D. The
values of the variables can be seen as mean values over the cell, at least if the order of accuracy
is smatler than three. In this way the cell-centred method is a piecewise constant interpolation
in the grid cells in a finite volume sense, see Section 4.2.

In the vertex-centred case, the flow variables are stored in the vertices and the control
volumes are chosen in such a way that they fill the whole domain but are non-overlapping. In
1D this can be done by choosing the cell edges exactly in the middle of two neighbouring vertices
as is shown in Figure 3.5b. An example in 2D is the the central dual, which is constructed hy
joining the centroids of the neighbouring cells of a vertex and is depicted in Figure 3.6h. This
means that the flow variables do not have to be in the centre of gravity of the control volumes and
the control volumes do not coincide with the grid cells, see Figure 3.5b and 3.6b for respectively
1D and 2D. When storing the variables in the vertices a plecewise linear interpolation in the
grid cells ean be defined in a finite element sense, see Section 4.3.

Although there are various arguments to prefer one over the other, we prefer a vertex-centred
positioning of the variables for the following reasons, see also Wenneker (2003), that also hold
in 2D and 3D:

o Linear interpolation is defined in o unique manner within a grid cell.

¢ Evaluation of gradients at control volume edges is easier, because of the uniquely defined
linear interpolation.
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Chapter 4

Numerical methods

The shallow water cquations are nonlinear partial differential equations. These equations can
be solved analytically only in a few cases, This means that a numerical method has to be used
to solve the SWE in the majority of cases. In the past decades several numerical methods have
been developed to solve the SWE. They can roughly be divided in the classes explained in the
following subsections. First the finite difference method is discussed in Section 4.1. In Section 4.2
the finite volume method will be explained. After that an outline of the finite element method is
given in Section 4.3. Finally there is a brief overview about the spectral method in Section 4.4.

4.1 Finite difference methods

The most common approach to solve the shallow water equations is by the finite difference
method (FDM) on a Cartesian grid, see for example Vreugdenhil (1994) and Morton & Mayers
(1994). The region of interest is covered by a rectangular grid with grid sizes Az and Ay, and
the spatial derivatives are approximated by finite differences. For example, a central z-difference
is computed as
e
Dpu TV {4.1)
In reality the region of interest is not a rectangle, so it iy difficult using a square grid as the
boundaries will not coincide with grid points and more flexible grids are required, for example
curvilinear grids, see Figure 3.1. For even more complex geometries unstructured grids are more
appropriate, see Section 3, and then discretization is usually done by the finite-volume and
finite-elemnent methods described next, because using the FDM becomes very cumbersome.

4.2 Finite volume methods

The finite volume method (FVM) is based on the conservation form of the gouverning equations
and is obtained by integrating over finite volumes (or surfaces in 2D and intervals in 1D). These
finite volumes are obtained by dividing the demain into non-overlapping control volumes (for
example defined by the grid lines). More information about this method can be found in for
instance Johnson (1998}, Toro (2001), Kulikovskii et al. (2001) and Li et al. (2000). In this
section the FVM will be outlined for the 1D case,

Consider the 1D SWE as given in (2.41) with (2.43) in conservation law form

O + d,f(u) = s(u). (4.2)
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By integrating (4.2) over a control volume [z, _ 1Ty é] and using Gauss’ theorem the following

mtegral form can be obtained

5 fmﬁ% udm + f(ll(!r:j+%, t}) f(u(a:j_%,t)) = /Iﬁi s(u) dz. (4.3)

j*% j*%

For the difference of the places of the control volume boundaries between the cell-centred and
the vertex-centred grid, see Section 3.3 and Figure 3.5.

Equation (4.3) is called the integral form of the equation. The solution of the integral form
of the problem don't has to be smooth throughout unlike the solution of the differential form
(4.2} of the problem, hecause (4.3) does not contain space derivatives any more. So the integral
form must be used if discontinuities are present in the solution.

In this section we will consider a collocated cell-centred grid, where the flow variables are all
stored in the centre of the control volumes and the values of the variables can he seen as mean
values over the cell. An example of a vertex-centred finite volume method is given in Section 5.1,

Define Am; = Tyl — Thl and

1 Fird

[y = — dx, 4.4

A (4.4)
)
1 wJ-P%

= — dz. .

S; Az, ), s(u) dz (4.5)

i~z

Substituting (4.4) and (4.5) in (4.3) the integral form can be written as

1
ol =5 [f(u(xj_,_%, ) - flu(s,_1, t))] + 8 (4.6)
It is not evident how to evaluate f{u(z, 1,t}), because in the point x, 1, the vector u is not
2 2
uniquely defined, and therefore we replace it by a numerical flux F) ;1. The numerical flux

2
FJ,,_l_ 1 corresponds to the location z = z ks which is the boundary between control volumes
2 2

e,y 2 4] and (21,25, 04]
Usually the numerical flux is of the form

F=F({U,Ug), (4.7

where U/;, and Ug denote respectively the right and left limits of U at the interfaces where U
is discontinuous. In Figure 4.1 a the situation is depicted for the first order case, for example
when Uy is a mean, and in Figure 4.1b for the second order case, when U is a piecewise linear
function. This numerical flux must have the following properties

i) F is consistent, i.e. F(U,U) = f(U),
it) F(U,V) is a non-decreasing function in both of its arguments and
iil) F(U,V) is conservative, i.e. F(U, V) = —F{(V,U}.

There are a number of numerical Huxes satisfying this properties, such as the Godunov Aux.
Engquist-Osher flux, Lax-Friedrich flux, HLLC flux and Roe flux. They are all based on solving
locally at the control volume boundaries the Riemann problem (see (7.23)), either exact or with
an approximation. The HLLC flux will be outlined in 5.2.4 and other numerical fluxes can be
found in Toro (1997).
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Fig. 4.1: First order and second order approximations.

4.3 (Galerkin finite element methods

In the finite element method (FEM) the domain is divided into a number of basic elements
(usually) of triangular or quadrilateral form in 2D. In 1D this reduces to dividing the total
domain I in subintervals I; = [:r:j_ LTy %] for j = 1,...,N,, where N is the number of
elements, see also Figure 4.3, The unknowns are approximated by piecewise smooth functions
on each element. In this way the unknowns are defined in the entire region by a sum of piecewise
continuous functions. More information about this subject can be found in van der Vegt &
Bokhove {2003), Brenner & Scott (1994), Lucquin & Pironnean (1998) and Johnson (1998).

The approximation U of u is defined as

Nr_!
U(:':at) = Zu‘j+%(t)¢j+%($)> (48)
=0
where the coefficients u;p i with j = 0,..., N are the (Ne + 1) unknowns and ¢j+%(m) are

called the basis functions and are determined by the following requirements:

. gﬁj +1 18 defined on the whole domain,
2

. 45} j1isa polynomial of degree k in each element,
2

* ¢,.1 =1innode z, ; and zero in all other nodes.
2 b 2

¢’j73/2 ¢j—1/2 q’)j-!-l."z ¢j-f-3f2

X172 Xj-3n X112 Xi+12 X312 A Nel+172

Fig. 4.2: Linear basis functions.

In Figure 4.2 the configuration of linear basis functions (k = 1} is depicted and in Figure 4.3
an approximation of u by linear basis functions can be seen. When using (4.8) U is a piecewise
smooth function belonging to the space V),

Vy = {u eIy | oly € PHI), j=1.Na ), (4.9)

where C'1{]) is the space of continuous functions on the domain I and P*(I;) denotes the space
of polynomials in I; of degree k.
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Fig. 4.3: Approximation of u by linear basis functions.

Next, the equations to he solved, (2.41}, are multiplied by a test function w and integrated
over the domain I. This gives the weighted residual formulation

/1(31311 + d:f{(u) —s(u))wdz = 0. (4.10}

The finite element discretization is most easily obtained by splitting the integral in (4.10) uto
integrals over each element

N oy
S f " G+ 8,8(u) — s(u)jwds § = 0, (4.11)
=1 " %-4%

By integrating by parts the so-called weak formulation is obtained

Nfl L., 1 r o1 T
Z / Bk whudr — f ik f(u)0,w dz — / +h s{u)wdz
j=1 .'rj_% z:j7% 3:3.7%

+f(u(3:j+%))w(mj+%) — f(u(a:jfé))w(a:jfé)} =0. (4.12)

The important benefit of the weak formulation is that f now only has to be integrable instead
of differentiable. If the solution u is replaced by its approximation I/ and we choose w € V, the
fluxes between the cells cancel, because U is continuous at the inter cell boundaries, to yield

Nﬁf xr

i1 ;Cj__l J!j 1
Z f T U d —/ ki f(0) 0w dx — / v s(Uywdr
1=t Ir% w.‘f—% "TJ—%

+ f(U(:ENel+%))w(mNel+']2') - f(U(fz%))w(r%) =0, (4.13)

where the last two terms of the left side are called the boundary integrals and they contain the
boundary conditions.

The particular choice in the Galerkin method is to choose the test function the same as the
basis function, so w = ¢, 1 for 7 =0,..., Ng. In this way only non-zero contributions of the
integrals in the elements I; and I;4 are obtained, because in the other elements ¢, 1 is zero.

" z

This will give for § = 2,..., Nag — 1, by using (4.8)

€ i+ Tj+
/J %éﬁé(‘)t(uj_%gbj_%—l—uj_i_% j+%)d$—/ %f(U)6x¢j+%da:
:rj_% . mJ_%
Tyl Tivrd
- / s(U)¢jq o + / Py 10(uja g bias + U110y ) du

-1 “iti
E Tl
n / FR 12 f(U)au¢?+% (i:L’ _ / J+|'2' S(U)qu-;-% U‘-.L‘ - O (4]4)

i i+g
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Define

. il
Af;,m = f e Prbm di, (415)
mjvé

. J'j+%

B = £(U) by dz, (4.16)
GSJ.7%
i [ it .

C?n - S(U)Cf’m d-’l', (4:17)

;I:J7%

where the integrals Bﬁg and CY, can be approximated by a quadrature formula. Substituting
(4.15}, {4.16) and (4.17) in (4.14) vields

A B+ (A, + AT Bpu,, 1 AT T
I it M ( J+5u+s j+§,j+%) s R TR NS A}
: . . ith
=B +B7T 4+ +0C7T (418
it} 4y i i+ (4.18)

For j = 1 and j = N, the boundary integrals also have to be taken into account and extra
terms on the righthand side of the equations are obtained, f{u 1 }for j = 1 and f(u N+ %) for
J = Ng. In this way a system of (N,; + 1) ordinary differential equations is obtained, which can
be written into a tri-diagonal matrix system of the form

M(uh)atuh = Rh(uh): (4‘19)

where uy, is the veetor containing the (N, + 1) coefficients u., 1 with 7 =0,..., Ny, M isa

its
(Net + 1) x (N + 1) tri-diagonal matrix, called the mass—matrixz, consisting of the coefficients
Al and Rp{up) a vector of length (N, 4+ 1) containing the right hand side of equation (4.18).
The time-discretization is usually performed by an implicit method, because this allows for
bigger time steps. An implicit method also implies that & matrix system has to be solved, which
means that normally more calculations have to be carried out. But (4.19) is already a matrix
system, so implementing an implicit method does not increase the computational cost very
much.

4.4 Spectral methods

The starting point for the spatial discretization in the spectral methods is again the weak formu-
lation, (4.12). Instead of local basis-functions, global basis-functions are defined, such as Fourier
series and several types of orthogonal polynomials (for example Legendre and Chebyshev poly-
nomials). With a proper choice of basis functions spectral methods are very accurate when the
solution is sufficiently smooth. They are however difficult to apply in domains with a compli-
cated shape and for general boundary conditions. If for example Fourier series are used, then by
definition periodic functions are produced. This works well for periodic boundary conditions, but
for general boundary conditions artificial tricks have to be carried out. There exist also hybrid
methods which combine the advantages of spectral and finite element methods, the so-called
spectral element methods. In these methods the computational domain is divided into elements
as in FEM to be able to deal with more complex boundaries and on each element global basis
functions are defined as in the spectral method. More general information on spectral methods
can be found in Johnson (1998) and Vreugdenhil (1994).
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Chapter 5

Examined Numerical methods

In this chapter we describe in detail the two numerical methods that are compared. We choose
a finite volume method and a finite element method, because of their ease of application on
unstructured grids. The first method is the Collocated Coupled Solution Method (CCSM) and
is described in Section 5.1. This is a finite volume method using a collocated cell-centred grid.
The second method is described in Section 5.2 and is the Runge-Kutta Discontinuous Galerkin
method, which is a finite element method using a discontinuous approximation of the variables.

5.1 Collocated Coupled Solution Method

The Collocated Coupled Solution Method {CCSM} is a collocated finite volume method in
which a linear approximation of the primary variables is used, while the sclution procedure is
based on solving the coupled system of equations at once. The advantages of this scheme lie in
its (relative) simplicity and its {(expected) accuracy and efficiency. It is a semi-implicit method
which allows for relative large time-steps. The disadvantage of the scheme is that, as far as we
know, such a scheme has never been developed vet for free surface flows. The method is based
on Wenneker (2003), where we will only consider the 1D case in this report. In Section 5.1.1
we will start with the diseretization of the equations using a finite volume method and a Hnear
approximation of the variables. After that we will deal in Section 5.1.2 with the conditions at
the boundaries. Assembly of the discretized equations, which results in a formulation in terms
of matrix algebra, is presented in Section 5.1.3. Finally, in Section 5.1.4, a semi-implicit time
discretization using a coupled matrix system will be introduced.

5.1.1 Discretization of the 1D SWE

The finite volume method examined in this masters thesis will be based on the 1D SWE in the
form of equations (2.41) with {2.42) and q = uH:

8¢ + 0bg =0, (5.1a)
g + Og(uq) = —g{{ + h)agL, (5.1b)

where we used the fact that H = (+ h (see equation (2.10)) and 9:H = §(, because the bottom
h is assumed not to change in time. The domain will be divided in Ny control volumes (CV’s)
[;r.y_%,ﬂ:j 1 ] with 7 = 1,..., Ny and the variables are stored in the grid points @;. The grid
is collocated and vertex-centred, see sections 3.2 and 3.3, and is depicted in Figure 5.1. The
location of the cell-edges z ;+1 will be exactly in the middle of the two neighbouring vertices as
shown in Figure 3.5b. In spité of the fact that we use a vertex-centred grid, the approach at the
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Fig. 5.1: The grid for the Collocated Coupled Solution Method. CV j has size Az; and Az, 1 denales

the size of cell 7 + %

boundaries rescmbles the one of a cell-centred grid. The boundaries of the domain coincide with
the points x 1 and 2y ! and for this reason we introduce the fictitious points xp and ay,,41.
The treatment of conditions at the boundaries will be given in Section 5.1.2.

The variables ¢ and ¢ are approximated in each cell by a continuous piecewise-linear function

of the form
(2 = z)Py41 + (@41 — )Yy

]
A"Bﬂ%

Pr) = ¥ =1{¢q}, {5.2)
for « € [z, 2;41] and AIH% = z101 — &5 S0 Yz} = ¥y and ¥{zi41) = ¥;41 are the values
in the vertices. The bottom h is approximated in the same way and this causes the total water
depth H = { + h to be linear as well.

Integrating equations (5.1a) and (5.1b) over each control volume [z, IR | with j ==
1,..., Ny yields

E, 1 '.TJ
[ 2 8¢ da + / " 0qde =0, (5.3)
v Ij—% mj_%
T, L. .1 o1
[ 3 By dx + f ", (uq) dz = —[ e g(¢ + h)0z( dr. (5.4)
it “i-% Ti-4

Subsequently we replace in (5.3) and (5.4) the variables ¢ and ¢ by their linear approximations.
The integrated time derivative of ¥ = {(, ¢}, appearing in (5.3) and (5.4}, can be computed
by using (5.2} and gives

Ty d d
/ "7 Bp(x) de = 7 [%Afﬂj-%’%‘q + S Az + %AJ:]+%'¢’_1:+1 : (5.5)
. IJ_%

where Az, =21 —x._1, see Figure 5.1
J ]+§ J—3
For uniform grids this becomes

i+ d .
f 7 Dpp(a) do = Az [§%i-1+ 595 + §9¥51] - (5.6)
l‘l:j—%

The second integral of equation (5.3) can be caleulated in two different ways.

1. The central approach in the continuity equation is using a central scheme for ¢, which
gives

g
aquxZQj+% —qj:_%u (57)
JI 1
1—3
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where we use linear interpolation to find the values of ¢ at the control volume edges:
Gy = (g +aim). (5:5)

With this (5.7) becomes

T+l
] Y e = (g1 — qjr). (5.9)

'j—%

2. The upwind approach in the continuity equation is obtained by using the fact that ¢ =
ul = u(( 4 k). This can be substituted in (5.7) to give

/ Boqidz = [ T o, fuf + b do = ulC + iy — Ry (510)

£ e
i i}

We use first order upwind to compute the values of (¢ + k) at the CV-edges:

(C+h). 1= (CHR); i gy >0 (5.11)
It (C + h)j+1 if 'U,J-_’_% <0,
and « is interpolated as follows
iyl . :
W, 1= J+2 _ q]+1 "I“QJ (512)
1+3

(M) G +(C+R),

In this way (¢ + h) is dependent of » in (5.11), but u itself is depending on (¢ + k) too,
because of (5.12). In practice this is overcome by using Picard linearization, which means
that u is evaluated at the old time level (so this value is known) and (¢ + h) at the new
time level or using an iterative process, see Section 5.1.4. Because of the use of a first
order upwind scheme the total scheme will only be first order accurate in space.

Note that we do not use a linear interpolation of u of the form

q; q;
uj-ﬁ-% = %(U‘J +uj+1} = % ((C —I—Jh)j + (C f|'+;l)3) ) (5'13)

because this introduces an extra linear approximation for v as opposed to {5.12) and we
expect that the discretization becomes more accurate if we use a minimum of approxima-
tions.

Using (5.11) in (5.10) gives

/7 0n ¢+ 1) do = [~ (g + ;4 ) (CF )y

,ij

+ (‘”’j*%| — U + |1Lj+%i +uj+1) (!; “+ h)J - (Euj}-%| —uj+%) (C -+ h)j+1] . (5.14)

1 1
2 2

Working out the momentum advection term, i.e. the second integral of equation (5.4), yields
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./<x3+% a::(UQ) dr = (uq)]+% - (uq)j_%. (5.15)

-4
‘We use again first order upwind fo compute the values of g at the CV-edges:

_ g; if Uiyl >0, .
QJ'"% o { qj‘i'l lf 'U.,‘;+l < 0, (5I16)
- 2

and use the interpolation for 1 as given in (5.12). Again the nonlinearity is overcome in practice
by using Picard linearization or an iterative process. Substituting (5.16) in (5.15) gives
Tt
/ " 0, (ug) de = 3 [— (\u-_;\ + U-__l_) -1
2 2
. xJ_%
+ (‘“j—%' =g+ jug, g +“j+§) 9~ U’”‘j+§| B “’j+%) q;+1] - (817)

The only integral left is the one on the right hand side of (5.4), which can be computed as
follows

/I o+ mouCde = 90012 [ K

1

(C+h)dz+g [(>{L.cﬁ§j+é f”% (¢ -+ k) du

i-5 ) J‘—é T3
G =G f” (z =z )+ A)y + (25~ 2)(CHh)j1
=g A A i
Ij_% a:]_% xj_%
n gC;,+1 G fFird (@ = 35)(C + )y + (201 — 2) + h); i
Az, 1 Az, 1
Itz L3 1+3

= S0l + R)jm + 3G+ Rl G+ G+ R)yma = (4 B}
+ {3+ h); + ((+ A)ye1t ], (5.18)

where we utilized in the first step the fact that 8, is constant in cach cell {a conscquence of
the presumed linearity of ).

By using the discretization given in (5.18) it is possible that a so-called odd-even decoupling
occurs. If we look at the special sitnation where {( + h); = H and (¢ - h);41 = H + 6, with
H > 0 and § constant, as depicted in Figure 5.2 for the case with a constant bottom level k,
then {5.18) becomes

S-2 S 5 [STO R STS

Xj2  Xj-1 Xj X+ X2

Fig. 5.2: Odd-even decoupling.

ég [(4H + 8)¢;—1 + (4H + 8)¢j41] - (5.19)

This equation is equal to zero when (;_1 = (541, for example as in the situation depicted in
Figure 5.2, and does not involve (;. But if we look at the left-hand side of (5.13), then the
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only time this exact integral can become zero is when 9,¢ = 0, that is when the water level
is constant and this is definitely not the case with the situation as shown in Figure 5.2. This
means that the numerical calculation of the integral yields a value equal to zero even though
the water level shows so-called 2Az-waves.

5.1.2 Boundary conditions

In the previous section we derived two discrete equations for each control volume. This means
that we have 2N, equations for the 2( Ny +2) unknowns in the grid points. The other 4 equations
will be obtained by deriving equations for the conditions at the boundaries, which are located at
the points x : and x No+d- Due to the linear approximation of the variables we use the following
interpolation

lb% = %(¢0+Tf)1),

waw% =4 (UNy + ONa1), } ¥ ={¢ q}- (5.20)

We will only look at transmissive and Dirichlet boundary conditions.

1. Transmissive boundaries are obtained by the following relation

o = 11, (5.21a)
YNoy+1 = VN, (5.21h)

with ¢ = {¢, ¢}.

2. Dirichlet boundary conditions are of the form

1
¥y =Yg (1), (5.22a)
Nog+i
Uy =Vge (), (5.22b)
: 3 jvpzl'*’l . A .
with 1 = {{, ¢}, and Y5, and ¢, * given functions of ¢.

By using (5.20} we can write (5.21) and (5.22) in generic form as follows

1
o + (1 = 2ay )by = 22, (8), (5.231)
Neg Ngt'*";‘ = i
N1+ (1 - 2%{; SNy = 2"w/)giv (t), (5.23b)

with ¥ = {{,¢}. A transmissive boundary is obtained by putting a; = 1 and ¥y (t) = 0 and a
Dirichlet boundary is obtained by putting ay = 0 and 44, (t) the Dirichlet boundary condition.
To be able to write all the equations in matrix form, as will be done in the following section,
(5.23) are differentiated in time to yield

1
ddbo+ (1 —2a)) $o = 2503, (8), (5.242)
4y Nayd,  _od Nt 5.24b
FE ':Nel+1 -|- (1 - Q(Iw )Ef['bNe! = gjtwgiv (t), ( . )

Now we have as many equations as unknowns and the system can be solved.
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5.1.3 Matrix formulation

In the previcus sections we derived a set ordinary differential equations (ODY’s) for each con-
trol volume. We will write this system of coupled ODE’s in matrix form, because a matrix
formulation is more succinet. The matrix system is given by

M:4¢+D® =Ry, (5.25a)
Mytq+Cq=-G(+R,, (5.25b)

where ¢ and q are vectors of length (N +2) containing the values in the vertices 0, ., N +1 and
& depends on the approach chosen to discretize the advection term in the continuity equation.
When using the central approach, given in (5.9), ® is equal to g and in the uvpwind approach,
given in (5.14}, ® is equal to ¢ +h, with h the vector of length (Ne+2) containing the values for
the bottom level in the vertices. The equations representing the particular boundary conditions
are processed in the matrices M, and M, and the vectors R, and R,.

The tri-diagonal (Ng; + 2) x (N +2) mass matrices My and M, are of the form

1 1-2d}
%;A:c% SAzy %]Anrlé @
%A.’L’ll %A.Eg éASL‘Ql
My = : : : (5.26)
LA 6 .
@ §A$N617% gAINﬁJ %A"LNE;'F%
i 1 - 2, T
for + = {¢,q}, and can be deduced from (5.5) and the boundary conditions in (5.24).
The vectors R; and R, of length Ng + 2 are of the form
[ L 1
d
ci_!,’t/)gziv
0
0
d Ng+4
L T*Ewgiv ’ i

as derived from the boundary conditions in (5.24).
From (5.17) the tri-diagonal (N + 2) x (Ny + 2) advection matrix €' can be found to yield

-0 -
4
1 & 6 &
C=z , (5.28)
2 . .
1 9 3
@ CN:*I NE( CNCI
with
I-1 — L f—
¢ —!u]_%l Ui
2 o —
¢ =l gl =g +lupp gl o
3
¢y = \uﬁ_%\ + g1



The sum of row j of the matrix C is equal to Uipd T %k except for the first and last row.
The boundary conditions have been taken care of in (5.26) and (5.27). This means that if q is a
vector with constant coefficients then Cq gives the vector with coefficients q(uj +1 T ) for
J=1,..., Ng. The reason for this is that Cq calculates the integral of d,(ug) over each control
volume. If ¢ is constant then it can be taken out of the integral and this gives

b iy
[ O (ug) de = ¢ / deudr = q(uj_{_% - uj_%_). (5.29)
.'I:?_é D Ij_ﬁ
If « is also constant then the sum of each row of C is equal to zero and thus Cq becomes equal
to zere, This is what we expect, because if we calculate the integral of 8, (ug) when u and ¢ are
constant, this will have zero as a result.
The tri-diagonal (N +2) x (N +2) matrix D depends on the approach chosen to discretize
the advection term in the continuity equation. For the central approach, the divergence operator
D is of the form

0 0
-1 0 1 0
1 -1 0 1
@ -1 0 1
0 0]

which can be seen from equation (5.9). Note that the sum of each row of the matrix D is equal
to zero. This means that if q is a vector with constant coefficients (remember that ® = q in
the first approach) then Dq is equal to zero. This is caused by the fact that Dq calculates the
integral of d.q. If ¢ is constant in space, then the spatial derivative must be zero and hence
its integral. For the upwind approach, given in (5.14), the matrix D is equal to the advection
matrix C,

The tri-diagonal (Ng + 2) x (Ng + 2) gradient operator G is defined as follows

((3){ Gi oGy #
oo ég G G% GE , (5.31)
B Gk, Gh, Gk,
with
G = —({+h);—1 — 3(C + R);,
G2 = (C+ h)jo1 — (C+ h)jaa,

G =3(C+ )+ (C+ M)

as derived frow (5.18). For a reason similar to that for matrix D and C' the sum of each row of
GG is equal to zero.

5.1.4 Time integration

Equations (5.25a) and (5.25b) are integrated in time, using the f-method. If {t"}2_, is a parti-
tion of [0, 7], with T the total computation time, and At™ ="' — " forn =0,..., N — 1, the
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time discretization is as follows:

n+l _ »n
PR S A < D HE 4 (1- 0D 8" = RY, (5.32a)
n+l _ n
ﬂrqu NG q + Qccn+an+l + (1 _ gc)cnqn _ _Han+1Cn+1 _ (l _ gg)GnCn + RI;- (5.321))

with 6, 8¢ and 8, given constants between zero and one. If 8; = 0 for ¢ = {d. ¢, g}, the time
integration of the corresponding term is explicit and if #; = 1, it is fully implicit. Note that
we have the freedom to choose different values for the various €, but iu this thesis only equal
values for the 6°s are used. The superscripts n and n + 1 indicate at what time level a quantity
is evaluated.

The vectors R} and Ry are obtained by integrating (5.27) in fime and are given by

1 1
W2 gm0 T e
gt )0 Ui (1)

Ry = : » v={q} {5.33)

Al
0
Ne+3 Nejt+3
u}givl 3 (tn+1) _ wgivl 2 (tn)

If we put all the unknown variables in (5.32) at time level n 4+ 1 on the left-hand side and
the known variables at time level n on the right-hand side we get the following system

L n+1 n+lgntl _ L o = T i mo«
Ap M 4 8,07 0T = Ap M —(1-8,)D" ™ + RC' {5.34a)
1 1

qu77,+1 + eccn+lqn-l—l + ann+lc-7¢+l — qun - (1 - ec)cnq'n,

— (L—8,)G"¢" + B, (5.34h)

EE; At

This system can also be written ag a coupled matrix system in the following way

Migp U™ = Megp U™ + R (5.35)
with
M, QA" D
Mimp = : : ; U= [ ; ] :
FAN AL ggAtnGn+] Mq + HCAtnCn+l q
M 6y - 1) At"D n
AP | (8- )AIG® M, + (6 - 1) At"C™ R

for the central approach in the continuity equation. Except for the value of A", the only things
that change in matrices Miyp and M in each time step are the matrices G and C'.

For the upwind approach in the continuity equation the matrices My, Moy, and the vector
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R™ are given hy

1 MC + HdAtn.DnJrl 0
Mimp = s (536)
A B ARG M, + 8. AtmCnHi
M 1 M, + (84— 1) At D? 0 (5.37)
o AR (@, —1)ATC™ M+ (8. - LAt |
o | B (840" 4+ (1 - 64)D") b
[ = R ,

and this time also the matrix D changes in each time step. The vector B™ does in this case
also include the matrix D at time t"t!, but this is solved by using Picard linearization or an
lterative process as is explained later.

We can rearrange system (5.35) and write it in block-tridiagonal form. This can be obtained
by rearranging the vectors U and R™ in the following way

- n _
G ] Reo
10
90 9.0
n
1 Rz,
i)
q1 g,1
g=| : | B=| :
— . - ki
Dn
(N Nt
n
Cqut — "LNel
N 1 T
@t RC:NeI+1
L QNCl-’-l - _lfén
- quel+l =

where R’C‘ is equal to the first half of R™ and E&* to the second half. Then system (5.34) can be
written as a block-tridiagonal system

MB.['jn-f-l _ Mbﬁn n ﬁﬂ', (538)

with
My = Mn-'—l(edm an gc)s My = Mn((gd - 1), (99 - l), (gc - 1)) (5'39)
For notational purposes we introduce the block-tridiagonal matrix M™{c, 3, ), where we have

in (539 m=norm=n+1, a=460;or a=~0;—1and similar relations for 5 and ~. The
matrix M"™{c, 4, ) is defined as follows:

[ Ay By ]
C1 A By @
Cy, A B
M™(a, B,7) = ST (5.40)
m CNﬂl ANL‘I 'BNf'f
L CN::I+1 ANEI+1 J
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with the values of A;, B; and C; depending on the approach used to calculate the advection
term in the mass equation. The central approach will give

_ a1
AD=_1_[10], B, 1[1 2a; 0 }

A |01 TAr| 0 1-2d
C 1 [ %A:r:j__% —%At”a 1 N
':'—"‘; m m ar J =1, ..., ¥,
TTAE | JARBg ((C+R)jm 43+ R FAz, s + JAEy (C})
4 1 i gA.’L'j 0 .
P = e— ‘ AT or j=1,.... N,
A | LA B (¢ R)r — (CHR))™ §A + FAy (&) e
[ 1 1 Am
3:_—1; n m o ™ or 7= L,..., Vg,
ATt | 1A (3(C + )y + (¢ +R)ja)™ $Az,y + FAEy (&)
1 [1-24Y 0 1 [10
CONatl = K 0 ¢ I 2al } N [ 01 ] :
For the upwind approach the matrices for 7 = 1,..., Na are given by
o - 1 %Aa:j_% + %At”a (cjl) 0
J - n ) m 1
AL | LAE B ((C+ h)jor +3(C+ )™ BAw s+ 3Ary (df)
) 1 [ fAz; + 1At (c?)m 0
i = A m S\ m :
AP LARBg ((C+ h)ym1 = (C+h)e)™ §Az; 4+ JAy (Cf)
3 1 [ %A.’L'j_{_% o %Atna ((:3)7 0
i = n ; m _ m
AP | IArg (B(C+R)y+ (C+ Ry 3Awy, g + A (&)

This means that in the implementation the same algorithm can be used to create the matrices
Mg and M, and the only difference is the value for &, F and ~ and the time of evaluation of
certain teyms. It also turns out to be very simple to make changes in the discretization, see for
examnple the difference between the central or the upwind approach for the advection term in
the mass equation. The only things that change in the implementation is the setup of matrix
M™(a, 3,7) and that of vector R™.

A problem in solving (5.38) is that matrix Mp is dependent of values at the unknown time
level n + 1 and for the upwind approach the vector R™ also contains values at that time level.
The easiest way to solve this is by using Picard linearization. This means that instead of the
unknown values at time level n + 1 known values at time level n are used to compute Mg and
E™, and for this reason the method becomes semi-implicit. This can however in certain cases
lead to errors in the pumerical solution as can be seen in the numerical results in sections 7.3
and 7.4. Another way of dealing with the unknown values at time level n 4+ 1 is by using an
iterative process of the following form:

34



1. Take Mp = M™(8,4,0,,0.) and D**! = D™ in R™ (Picard linearization) and solve
MUY = 1, 0" + B (5.41)

2. Fori=1,..., Ny, with N; the number of iteration steps, take Mg = M“"l)(ﬂd, fy,6c)
and D"l = DO=1 in R™ where the superscript (¢ — 1) indicates that the values used in

Mg and D are the ones obtained from U 1_1).

Solve

@

MpU" = MU" + R (5.42)

3. Set Ut = i),

Notice that when N;; = 0 the iterative process is identical to using Picard linearization. Another,
more accurate, form of linearization is Newton- Raphson linearization, but that is not considered
in this thesis.

The block-diagonal system is solved by an algorithm that first performs the block LU de-
composition of the block-tridiagonal matrix and then solves the matrix system by means of a
double sweep mechanism.

The order of acearacy of the time-integration can be derived by looking at the truncation error
of the time-integration. The truncation error is obtained by substituting the exact solution into
the mumerical scheme and using Taylor expansion to compare it with the original differential
equation. We will only look at the truncation error for the time-integration and simplify the
discretization by neglecting the time-dependence of the matrices D, €' and & and the vectors
R and R, The truncation errors for the mass- and momentum equation then become

Clt+ A1) — ¢.{t)
At

(t+ At) —
At

Tc=M<

+ D (6Bt + Ab) + (1 — 0,)@. (1)) — Re, (5.43)

L) | o (0qu(t+ A1) + (1= 6)q, (1)
+ G (QQCe(t + At) '+‘ (1 - 8Q)Ce(t)) - RQ’ (544)

where (., q, and ®, are the vectors containing the exact solution in the vertices. We can express
the variables ¢ = {(,,q,, ®.} with a Taylor series around £ + 1At as follows

1':’1 - ﬂ{q q(‘

$(t+ At) = ¢+ iAtds + 3 (Ja1) 8o+ L (1a1)* 8o + O((an)Y), (5.45)
#(t) = ¢ — LAt06 + 1 (3A0)* 026 — L (3A0) 809 + O((AY), (5.46)
where ¢, 0;¢» ete. are evalnated in t + %At. We find
Bt + At) — (1) = Atdid + o (A1) 02 + O((AL)%), (5.47)
Bt + ALY + (1 - )o(t) = ¢+ (8 — 1) Atdhop + (A1) 8
+ 55 (60— 3) (A1) 89 + O((A1)%). (5.48)

The truncation error can be found by substituting (5.47) and (5.48) for the appropriate variables
and §'s in (5.43) and (5.44) and yields for the continuity equation

T; = MO, + D®, — R+ {D (62— 1) 8,8, At

- v

=0

+ [HMeOiC, + DO (A1) + O((AR)"). (5.49)



For the momentum equation the truncation error becomes

Ty = [MyBidts + Ca + GC. = Ry +{C (0 — 3} Bit, = G (0 — 3) 8i¢.] &
=0

+ [ Me0a. + 508 a. + §G(.] (A + O((ANY). (550)

The first term of the truncation errors are equal to zero because the exact solution satisfies the
differential equations (5.25a} and (5.25b). If all the &’s are equal to one half, a so-called Crank-
Nicolson scheme, then the linearized scheme {due to the neglecting of the time dependence of
D, €, G, R and Ry) is second order in time, because all the terms with At cancel in both
truncation errors. If however one of the &’s is unequal to one half the linearized scheme is first
order in time. The 1D SWE are however non-linear equations so we expect the scheme not to
be perfectly second order in time when all the theta’s are equal to one half when solving the
1D SWE.
When the advection terms are taken explicit, usually time step restrictions of the form

Az

At € —
[l

(5.51)

need to be satisfied. In our case the advection term is taken semi-implicit and there are no
time-step restrictions for the linearized scheme. Only for accuracy reasons we want to Himit the
time-step.
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5.2 Discontinuous Galerkin finite element method

The discontinuous Galerkin finite element methods (DG) are a class of finite element methods
using a discontimous piecewise polynomial space for the basis functions and the test functions.
This has several advantages. First, like in finite element methods, it is straightforward to use
unstructured grids. Second, the structure of the scheme allows to build in arbitrary order of
accuracy per element. Third, the scheme is extremely local as the data communication occurs
entirely through the faces between elements and this allows for efficient parallellizations. Also
the implementation of boundary conditions is efficient and accurate due to the local nature
of the scheme. Disadvantages are that the scheme is more complex, and that more degrees
of freedom are involved relative to finite-volume schemes. The method used in this thesis is
based on Cockburn & Shu (1989), Cockburn et al. (1989}, Cockburn (1998), Schwanenberg
& Harms (2003) and Schwanenberg (2003). We will only consider the 1D case of the shallow
water cquations. In Section 5.2.1 we start with the spatial discretization of the equations by
discontinuous piecewise polynomials. This is followed in Section 5.2.2 by the time discretization
which is done by a Runge-Kutta method. The principles of total variation are explained in 5.2.3
and a modification of the Runge-Kutta method is introduced by the implementation of a slope
limiter. Finally we will in Section 5.2.4 introduce the HLLC numerical flux that will be used in
the spatial discretization.

5.2.1 Spatial discretization

Division of the spatial domain in intervals is the same as in FEM, see Section 4.3. Again the
unknowns are approximated by piecewise smooth functions, but these functions are not contin-
uous any more. Figure 5.3 shows a discontinuous approximation of u by linear basis functions.
In Bokhove (2003) basis functions, ¢, corresponding to the mean and slope of the approxima-

L L L L
Ujan Uitin Ujin  Upan
: '
— iR J LR
Uise Uiz U Uz
Xip Xj3n Xj-12 Xz Xjsae XN+
\_,.z/\l/\_,_/

j
Fig. 5.3: Discontinuous Galerkin approximation I/ of u by linear basis functions.
tion are used, while in Cockburn (1998} and Schwanenberg (2003) Legendre polynomials P are

chosen as local basis functions, which we also will use in this thesis. The L2-orthogonality of
the Legendre polynomials

j_']l P(8)Prls)ds = sty (5.52)

2
A+l

with 8, the Kronecker delta, can be exploited, as we will see, to obtain a diagonal mass-matrix.
This freedom in the choice of basis functions is one of the advantages of DG compared to FEM.
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The Legendre polynomials up to degree three are given hy

Py(z) =1,
Pi(z) ==,
Pyfa) = 5(35% ~ 1),

Paiz) = ;(aa. - 3x)

The approximation U of u in each element I; = [:cj 1, ] by the first k + 1 Legendre

polynomials is as follows

k
Uz, t) = Zué(f)qﬁz(os) for z € [xj-%’mjﬁ-%] (5.53)
I=0
with basis functions
4= (o), (5.54)
and Ax; = Bipl =T and z; = %(Ej+% + :cj_%). So in each element u is approximated by

a polynomial of degree k and there are (k + 1) unknown coefficients u_zf, i =0,..,k defined on
each element [;. This means that there are in total Ney X (k+ 1) unknowns in contrast with the
N,; unknowans in the finite volume method. The approximation U belongs to the space

Voe = {»u e IND)jv e PNI) VL, € 1}, (5.55)

where L!(I) is the space of Lebesque integrable functions on the domain I and P*(1}) again
the space of polynomials in I; of degree k (Brenner & Scott (1994)}).

We consider the weak formulation (4.12) obtained in deriving the finite element method,
given by

Net

T 1 r. .1 &1
Z fﬂg wﬁtud:ﬁ»/ ak f(u)O,wdx — / i s(u)w dx

5=t {774 - 54
FHu(z, (o) — fufz,_ oz, 1)} =0 (5.56)

We can not use (4.13) as we did in the finite element method, because due to the discontinuity
of U the fluxes between the cells do not vanish any more. If the approximation U of the exact
solution u is substituted in (4.12), the flux f{I/) must be replaced by a numerical flux, F

F(U(f[:i+%,t)) (UL(.Q,“J+ .1, UR(xj_l_%,f)), (5.57)

where UL and U denote the right and left limits of U respectively at the interfaces where
UV is discontinuous, see Figure 5.3. This numerical flux must have the same properties as the
numerical flux encountered in the FVM in equation (4.7).

We take the test function w out of the same space, Vpg, as U and again choose the test
function the same as the basis functions, sow = ¢7*(x) with m = 0, ..., 1. Substituting w = ¢7'(z),
the approximation U and the numerical flux F' in the weak formulatlon {4.12), will give in each
element

fr {afzu g, }qsm dx — /I"% f(U)%qb}”dr— f”% S(U)6T da
Ij_é j—% : @



where we used ¢i(z;,19) = P(1) = 1 and ¢i(z;_149) = Pi(=1) = (=1

We can rewrite the first term of (5.58) as

1 k k
/J'Fj at{z,ug(ﬁg}qg?dngt Z ugf ith fﬁl(ﬁm dr
T &,

'_;--é- 1=0 =0 J—g
Aﬁj d

— LI 5.50
om+1dt 7 (5.59)

where we used
Ij+’12 ] m m-’“’%
T, ’ 7
Ax; / P(s)Po(s)ds = 25, (5.60)

with s = 2(z — z;)/Ax;. By choosing this specific values for w a diagonal mass-matrix can be
obtained and as a resalt no matrix system has to be solved and the scheme becomes extremely
local, allowing an efficient parallelization.

Substituting (5.59) into (5.58) we find for j = 1,..., Ny and { =0, .., k:

d o A+1 | [T d ;. Tl !
T A / H(U) -4, d“f/ s(U)e; dz

J £l Jr. g
i~q 473
2[4+1

A.’EJ’

[P(U(2;.4,8) = (1} F(U,_y,1)| . (561)

Here we obtained a system of ODE’s for the coefficients u:; of the form

d
EU;z = Lp(Un), (5.62)

where U} is a Ny % (k + 1) matrix consisting of the coefficients u;

S B
U Wy e W
2 2 2
Up = : : S (5.63)
0 1 k
u’Ne! uNci e uNﬂl

and Lj contains the right hand side of (5.61). The integrals in Ly, can be easily approximated
by a quadrature formula of the form

/ flx d:z:-—Zw,vf(fﬂv (5.64)

i=1

For the the threec point Gauss approximation (d = 3), the weights w; and the Gauss points
£, are given in Table 5.1. This three point approximation is exact for polynomials up to and
including degree five,
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Table 5.1 Values for the weights and the Gauss points for the three point Gauss approximation.
Li [ i | & |

)59 a+ (3-435) (- a)

2,8/9 (b—a)/2

3(5/9 | b-(3-3V375) -

For constant basis functions (k = 0} equation (5.61) takes the form

d, 1 |
=5 F Bt (5.65)
where F, ) = Ful,u3,,) is the flux between element j and j+ 1 and §; = M jr sz s(U) dz.

This is exactly the same form as (4.6) for the finite volume method, so the first order RKDG-
method is identical to the finite volume method described in Section 4.2. This meauns that the
DG-method is a generic form of the finite volume method.

5.2.2 Runge-Kutta time-discretization

To diseretize in time the TVD Runge-Kutta time discretization of Shu & Osher (1988) will be
used as was done in Cockburn (1998). The starting point is a given initial condition u(z,0)
satisfying the boundary conditions and its polynomial approximation Upg. If {#7}N n—n is a par-
tition of [0, 7], with T' the total computation time, and At™ = " forn =0, N~ 1,
the algorithm is as follows:

1. Set U2 = Uy,

2. For n =0, ..., (N — 1) compute U7 from U} as follows:

(a) set U}(LO) =
(b) for i =1,...,(m+1), with m 1 the order of the Runge-Kutta method, compute the
intermediate functions

11
U = {Z aq U + BmtnLh(U,S“)} : (5.66)

{=0

(c) set Up+ =il

The values for the coefficients o and 5 can be found in Tables 5.2 and 5.3. For example the first
order Runge-Kutta scheme is given by

UMY = 0 U + BroAt"Ly(UR) = UR + ALy (UF), (5.67)

which is actually the Explicit Fuler Forward scheme.

For a stable mmmerical scheme, the order of the Runge-Kutta time discretization, mm+1, must
be at least as large as that of k + 1, with % the highest degree of the used basis functions. So
when using linear basis functions, as we do in this thesis, at least a second order Runge-Kutta
scheme must be applied.

Explicit numerical methods, such as this Runge-Kutta method, are limited in the choice
of the time step At becanse of stability reasons. A reference number related to the grid is the
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Table 5.2: Values for . Table 5.3: Values for 3.

[ Order [ i [1=0 I=1 [=2] fOrder [i [1=0 I=1 I=2]
m=0|1] 1 - - m=0]1 1 - -
m=11 1 - - m=1/|1 1 - -

20 1/2 172 - 2 0 1/2 .
m o= 1 1 - - m=2]1 1 - -

21 3/4 1/4 - 2 0 1/4 .

3| 13 0 2/3 3| o 0 23

CFL-condition. This number gives the relation between two speeds, namely the maximum wave
propagation speed and the grid speed Axz/At. For one-dimensional elements this CFL-number
can be defined as

At Az

oc=—/(lu|+¢) = At=oc———. 5.68

ol + ) T (5.68)
This condition actually says that the scheme will allow time steps At such that the fastest waves
do not traverse more than a single cell of width Az in time At. The value of ¢ lies between zero
and one and depends on the actual order of the RKDG method. The maximal values for o are
givert in Table 5.4 and also the values used in this thesis. The estimation of the maximal value

Tahle 5.4: Maximal and used values for ¢ for the RKDG-method.
Order l maximum value for & | used value for o ]

k=10 1.00 0.90
k=1 0.33 0.30
k=2 0.20 0.18
B=: 0.16 0.15

of o is obtained from Schwanenberg {2003), where the estimation is carried out numerically
because analytical enquiries failed. The used values of ¢ are also the same as in Schwanenberg
{2003) and they correspond in 90% of the numerical experiments to the maximal possible time
step.

5.2.3 Total variation properties

Total variation The basic idea of the Total Variational Diminishing (TVD) methods is to
restrict the total variation to avoid unphysical oscillations in the numerical solution. Given a
function u = u(z}, the total variation of u is defined as

TV () = lim sup 5 f lule + 8) - u(z)| de. (5.69)

-0

Moreover, if w* = {u7}, then the tota] variation of " is defined as

oQ
TV = Y |u}y —ull- (5.70)

j=—c0

A fundamental property of the exact sclution of the non-linear scalar conservation law
G+ 9. f(u) =0, {5.71)

when the initial data u(z,0) has bounded total variation, is
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s No new local extrema in = may be created.

e The value of a local minimum does not decrease and the value of a local maximum does
not increase,

From this it follows that the Total Variation TV (u(t)) is a decreasing function of time
TV(u(tz)) TV (ult1)) Vi <ta (5.72)

This property of the exact solution is the one that we want to mimic when designing numerical
methods. A scheme is now said to be a Total Variation Diminishing (TVD) scheme if

TV < TV (u™), V. {(5.73)

This statement can be extended to a system of conservation laws, such as the 1D shallow water
equations, by applying it separately to all the characteristic variables.

Numerical methods with property (5.73) are called TVD methods. First order upwind
schemes satisfy this property in principle, but they lead to dispersed shock-waves and a poor
quality of the approximation. It can be proven, see Cockburn (1998), that the first order RKDG
method (k = 0) satisfies the TVD property. Higher order methods give substantial better solu-
tions, but close to steep gradients and discontinuities unphysical oscillations may occur, hence
the TVD) property is violated. TVD methods are thercfore equipped with a suitable mechanism
to maintain the TVD property. This mechanism makes sure that the higher order method is
used when the solution is smooth, but in the vicinity of steep gradients or discontinuities it uses
a first order method to keep the TVD property satisfied.

Slope limiter One of the techniques to construct a TVI) method is to use a slope limiter.
Slope limiter methods are based on the reconstruction of the variables inside an element using
linear or quadratic functions, We will use the slope limiter Al'[f{ as given in Cockburn (1998} to
modify the RKDG method in such a way that it will also satisfy the TVD property when the
order is greater than one.

Recall that in (5.53) the approximation of u was done by Legendre polynomials and was
called U

k
Ulz,t) = > ub(t)dh(z). (5.74)
1=0
Define what could be called the linear part of U
1
Viz,t) =Y u(®)é}(z), (5.75)
=0
with the matrix containing all the coefficients given by
W ouj
uy o
V=1 o 1. (5.76)
U?Vel u}vei

We will apply the slope limiter Al’[ﬁ on V. The slope limiting is done with respect to the
characteristic values, because we are dealing with a system of partial differential equations. We
define Wy, = ATIE(V4), in the following way:
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For 7 =1, ..., Ny compute ull_ . and «} . as follows:
P lim,s lim, 7

1. Compute the following transformed variables

b= B""u, (5.77)
;L = B! (u? - ug_l) , (5.78)
o =B (10, ), (5.79)

where the Jacobian B is as in (2.45) given by

0 1
JoEE - (78)" 2 O ] (5.80)

2. Perform the limiting of v} as follows

D=

vllim,j =m (vl s vR) , {5.81)

where the minmod function m is defined as

(5.82)

sign(ar) min la,| if sign(a;) = sign(as) = sign(as),
(a1, as ad) 1=n<3 _
0 otherwise.

3. Transform the variable v} ; back, to obtain the limited value of u}. No modification of
u,g 1s needed, because only the slope is limited.

Ul j = U (5.83)
uilim,j = Bvllim,j‘ (584)

Then Wy, is given by (5.76), only with the coefficients uy replaced by - See Figure 5.4 for
a graphical representation of the limiting process. It can be seen that the slope in element j is
limited between the mean values in the neighbouring elements.

U

a) Belore limiting. b) After limiting.

Fig. 5.4: Functioning of the slope limiter.
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The slope limiter is implemented by modifying the Runge-Kutta time-discretization by re-
placing equation (5.66) with

i—1
Ul = ATTE {Z axU + ﬁdAt'”Lh(Uf))} : (5.85)
=0

This means that the limiting is performed after each step of the RKDG method, In Cockburn
(1998) it is proven that the thus obtained RKDG method satisfies the TVD property for the
mean of U for the scalar case. It is expected that the favourable properties also apply to the
system case.

It is possible to modify the slope limiter in such a way that the degradation of the accuracy
at local extrema is avoided. In Figure 5.5 an example of the approximation at a local extremum
is given. The slope limiter, as it introduced till now, limits the slope in cells 7 and j+1 to zero.

Fig. 5.5: Limiting at local extrema.

This reduces the accuracy and this can be avoided by not applying the slope limiter as long as
the slope is less than a certain threshold. The method becomes then total variation bounded
(TVB) ipstead of total variation diminishing (TVD).

To achieve this, we modify the definition of the slope limiter by simply replacing the minmaod
function m by the TVB corrected minmod function in as follows

& { aq if |a1|-5 M{Az)?, (5.86)
m{a1,a2,a3) otherwise.

where M is a given constant. This means that as long as [vj| < M (Az)? no limiting is performed.

The TVB correction constant A is an upper bound of the absclute value of the second-order

derivative of the solution at local extrema. When M = 0, the TVB corrected minmod function

reduces to the original minmod function. In this thesis the TVB corrected minmeod function is

used.

According to Schwanenberg (2003}, the above described slope limiter can together with great
changes in the bottom level lead to uncorrect results. After limiting, the water level can become
constant leading to great changes in the water level whenever the bottom level is not constaut.
This can be overcome by limiting the water level ¢ instead of the total water depth H. For
constant hottom level this reduces to the above described slope limiter. In this work only the
above described slope limiter is used and not the one which takes the botton level into account.

5.2.4 The HLLC Solver

There are many possible choices for calculating the numerical flux in equation (5.61). In this
thegis we will use the so-called HLLC solver. The HLLC solver is an approximate Riemann solver
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and a modification of the basic HLL scheme. Full details on the HLL and HLLC approach are
given in Toro (1997).

Denote by Uy, = [Hp,q1] and Ur = [Hg,qg] the state on the left and the right side,
respectively, of an interface where IV is discontinuous. Then the velocity on both sides is given
by ux = qx/Hg and the celerity by ¢ = +/gHx for K = L, R. Figure 5.6 illustrates the
assumed wave structurs in the HLLC Riemann solver. The HLLC approach assumes estimates

t Star-region

TS, TS, % X

Fig. 5.6: ILLC Riemann solver.

Sr.. g and 8, for the smallest and largest signal velocities and the speed of the middle wave,
corresponding to the different eigenvalues of the system. There are several possible choices
available. According to Toro (2001) we will use

Sp=up—ecrry,  Sr=ur+crrr, (5.87)

where vy for K = L, R is given by

1 [%I:zi] if H,> Hg,

1 it H, < Hg.

(5.88)

TR =

Here H, is an estimate for the exact solution for H in the star region between Sy and Sp. We
will use the estimate

H, = %—(HL + Hp) - %(UR ~up)(Hp + Hg)/(cr + cr). ‘ (5.89)

The wave speed of the middle wave will be estimated as follows

g - SpHp(up — Sr) — SpHp{uy — Sp)
* Hp(up — Sp)—H(ur - S1)

According to Toro (1997) the HLLC numerical flux can be derived by integrating over the
space-time volume [zp,zp] % [0,T] as depicted in Figure 5.6 to yield

(5.90)

F, if 0<8Sy,
Fog it 5L <0<85,,

Fit =Y Fp if S <0< Sk, (5.91)
Fp if 0> 5g,
where
Fg = f(Uxk), (5.92)
Fug = Fi + Sg(U.g - Ug), (5.93)
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and the states U, and U,p are given by

Sk —uk 1 .
Uk =Hg | =——— 5.
. K(SK—SJ[S*] (94

For the one dimensional case the HLLC numerical flux reduces to the HLL flux, because there
are only two eigenvalues and hence there is no middle wave and then U, = U, g.
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Chapter 6

Flooding and drying

The shallow water equations are typically used to model surface irrigation, overland flow, river
and lake hydrodynamics, and long wave runup, as well as estuarine and coastal circulation,
Many of these applications involve moving boundaries in which flooding and drying occurs, and
sirmilating these processes is becoming increasingly important. Predictions of flooding due to a
storm surge, breached dam, or overtopped dike are crucial for disaster planning and wave runup
estimates are needed for beach and coastal structure design.

The definition of moving boundaries would appear to be rather straightforward: the water
depth H = 0. However, there are some difficulties involved. First, with this condition, the
hyperbolic character of the equations gets lost, because all the propagation speeds coincide, and
it is not so obvious that you are left with a mathematically well-posed problem. Second, some
terms in the flow equations may have a singular character, for example friction terms.

Many numerical models have been developed for these problems and have used different ap-
proaches o accommodate the flooding and drying process. Farly models neglected flooding and
drying and instead placed fixed wall boundaries near the shoreline. Other models were initialized
with a thin layer of water everywhere in the domain. However, with stationary boundaries, the
storage, conveyance and energy dissipation properties of intermittently wetted areas are com-
pletely ignored, while assuming a thin layer of water everywhere results in incorrect propagation
of waves. This means that the flooding and drying fronts should be tracked in some way.

According to Shyy et al. (1996) the techniques for tracking moving boundaries can be clas-
sified in two main categories:

(a) surface tracking or Lagrangian methods and
(b) volume tracking or Eulerian methods.

The most physically realistic solution would be to use a numerical grid that adapts at each time-
step to follow the continuously deforming fluid boundary, a so called Lagrangian method. These
methods require recalculation of nodal positions and antomatic reconfiguration of the grid near
the shoreline. The use of such schemes other than as research tools is not straightforward. This
is the reason why most methods use an Eulerian approach.

The Eulerian methods usually employ a fixed grid formulation and the interface is not
explicitly tracked, but is reconstructed from the variables. This approach supposes that the
mnodeler is able to make an ’educated guess’ about the region that will be affected by the flow
field.

This chapter contains a literature survey of flooding and drying mechanisms as they are used
nowadays. All the methods mentioned here use an Eulerian approach and they are subdivided
into the following techniques:
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s masking out or including whole elements,

¢ introduction of artificial porosity,

¢ modification of the shallow water equations,
e tracking the boundary points,

¢ extrapolation of variables,

¢ modification of the Riemann solver,

In the next paragraphs, the different approaches are explained and outlined by an abstract of
relevant literature. For details of the procedures the literature in question can be consnlted. At
the end of this chapter some recommendations are given for implementing flooding and drying
algorithms in the CCSM-method and the RKDG-method.

Masking out or including whole elements

In this approach the drying and flooding is constrained to follow the sides of the grid cells.
The process of drying and flooding is represented by removing grid points (in finite difference
approach) or cells (in finite volume or element approach) from the flow domain that hecome
*dry’ and by adding grid points or cells that become 'wet’ and no special tracking procedure for
the shoreline is used

In Delft3D-FLOW, see User Manual Delft3D-Flow (2001) and de Goede (1995), a staggered
finite difference method is used. If the total water level drops below a specified threshold, the
velocity point is set to zero. If the total water level at a water level point becomes negative, the
velocity points at the cell sides are set dry. The boundary of the wet area can only move one
grid cell per time step, otherwise oscillations after flooding are generated. Ten models that are
all based on a staggered grid, and are similar to the one used in Delft3D-FLOW, are reviewed
and evaluated in Balzano (1998). With all the methods considered it is possible to advance one
grid at a time.

In Hu et al. (2000) a finite volume model using an approximate Riemann solver is used. A
computational cell is assumed to be dry when its water depth is below a 'minimum wet depth’,
The bottom friction may then become very large and a 'minimum friction depth’ is introduced.
When the water is shallower than this depth, the 'minimum friction depth’ is used to calculate
an equivalent friction loss.

A similar approach is used in Hubbard & Dodd {2002) and Sleigh et al. {1998}. A fully
adapted mesh approach is undertaken in Hubbard & Dodd {2002) in which high grid resolution
is used only where necessary. The shoreline is covered with the finest possible mesh and the
start of the flooding and drying procedure consists of searching for dry cells which are in
imminent danger of flooding. Each cell with this property is then wetted by setting the water
dept H = Hyo and keeping the velocity in this cell at zero. After the update (performing the
rest of the algorithm), the cells in which the water depth has dropped below zero are considered
dry and their depth is reset to zero. A second depth balance Hroy, > Hyy is introduced for cells
that are almost dry. When the water level drops below Hpop the depth is not altered, but the
x- and y-momentum are set to zero.

In Sleigh et al. (1998) the problem is reformulated when the water depths are small but grid
cells are only removed from the calculation when the water depth is very small. Depending on
the combination of wet/dry/partial-dry cells and cell-faces, a choice of flux calculation for cach
cell face is made. A cell-face is a land boundary if the left and the right water depth are smaller
than H,,;. A cell is dry if the water depth is less than H;,; and all cell-faces are land boundaries.
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A cell is partially dry if the water depth of the fluid is greater than Hy, but less than Hror,
or when the water depth is less than H; but one of the cell-faces is not a land boundary. For
a partially wet cell the momentum fluxes are set to zero. The cell is wet if the water depth in
the cell is greater than Hroy .

Introduction of artificial porosity

When using artificial porosity the water level is allowed to drop below the bottom level, due
to a permeable bottom. In this way the flow equations can also be applied in the ’dry’ region.
Some extra conditions have to be imposed in the 'dry’ region to avoid mass balance errors.

In TRITON the concept of the artificial porosity is intreduced by considering a permeable
bottom in the near shore region, see Bonekamp & Borsboom (2002). A porosity layer depth
5d,.y is introduced, which is small compared to the water depth. The total water depth can be
considered as an integral over the porosity variable «,

¢
H —f adz.

The porosity « is modelled as

1, C 2 —h + 6dm B
= h—b
exp (C-'-L;T;'L) s (2 —h+ gy

The porosity model adjust the reference bottom depth h and replaces it by an effective reference
depth Ay which contains the effect of the artificial porosity. A preper functioning of the drying
and flooding procedure requires the introduction of bottom friction, because in this way large
discharges at very low water depths are avoided. This is done by adding an artificial bottom
friction term to the momentum equation that slows down the flow, but only at low water depths.
The model 1s implicit and this means that greater time steps can be chosen. A disadvantage is
that if the porosity layer depth is too small a 'film’ of water is created if the water retreats.

In Ertirk et al. (2002) also a porous layer beneath the bottom level is introduced. The flow
in the porous layer is described by Darcian flow, see for example Faber (1995). The kinematic
momentum balance is substituted into the continuity equation and also the Darcian description
of the porous layer is incorporated. This results in a scalar nonlinear diffusion equation, with
a storage coefficient and a nonlinear diffusion coefficient as functions of the total water depth.
Both coeflicients have a different expression for the porous layer and the water layer.

Nothing is presumed or tested on the water level position in Heniche (2000). By letting
the water level free to plunge under the bed level, positive and negative water depth values
may be encountered. The model is able to reproduce the same problem with either negative
ot positive water depths, but this also means that the model cannot distinguish between the
wet and the dry area. The porosity of the field is taken into account to make the difference
between wet and dry area. In the dry area the porosity is equal to zero and in the wet area it is
equal to one, The mass and momentum equation are modified, by using in the dry area only the
steady state conditions. The flow in the dry area is also frozen in order to have zero discharge
conditions. This is done by increasing the friction coefficient. Problems with the singularity at
the shoreline, where H = 0 are overcome by correcting the water depth as H = max(Hpin, |H|)-

Modification of the shallow water equations

Standard models are usually based on numerical integration of the shallow water equations. The
main drawback of these equations lies in that they strictly apply solely to the wet domain. The
approaches presented in this paragraph attempt to reformulate the flow equations over partially
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wet elements by introducing a scaling coefficient, representing the true volume of water residing
on each element.

In Bates & Anderson {1993) a domain coefficient, 8, is defined that represents the proportion
of the fluid domain available for flow. This varies between 1 (fully wet) and 0 (fully dry) as the
elements de-waters. To approximate the flow boundary, partly wet elements are maintained
within the computation and the domain coefficient is used to scale the simulated elemental
water volume to the true water volume vesiding on the partial wet element. A small positive
water depth is maintained at each node while the element of which it is part remains within the
computation. This is achieved by defining some minimum value of 4, 8.,;,, which is small and
positive and represents nearly dry conditions. This avoids the reduction of stahility through the
incorporating nodes with zero depth. A discontinuity in the value of ¢, when the total water
depth becomes zero, is overcome by allowing & to vary between 6 = 1 and # = 8,,;, over some
small range.

In Bates & Hervourt (1999) the same procedure as in Bates & Anderson (1993} is used, but
this time there is also made the distinction between dam break and fleoding types within the
partly dry elements. It consists of the following three components: (1) Identification of partly
dry elements on the basis of a simple two stage analysis of water surface slopes. A distinction is
made between dam break and flooding types. {2) Cancellation of spurious water surface slope
terms in the momentum equation for the partial dry elements. (3} Rescaling of the continuity
equation to represent the true volume of water on partial dry elements on the basis of the
sub-grid topography.

In Defina (2000) the equations are obtained by an average process consisting of multiplying
with a phase function, which is one if there is water and zero if there is no water in an element,
integrating over an element and dividing by the area of the element. For the continuity equation
this results in multiplying the time derivative of H with the wet fraction of the element. 1f
the water depth is large enough, the equations reduce to the normal shallow water equations.
A very thin layer of water is initially ponded in the dry domain to avoid a mathematical
singularity at the beginning of the computation. There are two choices for dealing with partial
dry elements, to either include or exclude them from the computational domain. In both cases,
errors in the mass balance are introduced and lead to unrealistic flow fields neat the wet/dry
houndaries. The approach proposed in Defina (2000) allows gradual floading and drying of cach
computational element. Because the equations apply both to wet and partially dry elements,
correct identification of partially wet elements is not required.

In Horritt (2002) three methods for the treatment of partially wet elements in finite element
models are evaluated. The technique of Defina (2000) is followed, but the continuity equation
is not modified. In the element masking (EM) approach the partially wet elements are masked
out in the calculation. The mass balance error for EM is getting worse for rapid imindation
problems and coarse grids. The mass balance errors can be reduced by adding a correction to
the continuity equations, for the elements next to the partial wet elements, resulting in the
continuity correction {CC) scheme. First, masked elements next to unmasked ones are identi-
fied and then the water free surface elevation is projected across the masked element. This is
implemented as a source term. Rather than masking out elements, the model can also include
all elements in the calculation in order to conserve both mass and momentum in partially wet
elements, Setting the free surface to zero in the momentum equation (free surface correction
(FSC) scheme) avoids accelerations away from the shore line in partial wet elements. A small
positive water depth is used to calculate the friction terms over dry nodes to avoid instabilities
due to the friction term when the water depth tends to zero.
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Tracking the boundary points

The method used in Bokhove (2003} is till now only implemented for the 1D problem in a finite
element method and uses a more Lagrangian approach. The fluid is divided into one or more
distinct patches of fluid. In one dimension, each patch has a left and a right boundary. A dry-wet
boundary is modelled with a finite element where the node at the boundary moves with the
flow. In this moving node the water depth is equal to zero. The finite element formulation is
adjusted to deal with the moving nodes. This is done by taking into account elements of varying
length and the flux is modified for the speed of the moving nodes. For elements which are not
next to a free boundary, the formulation reduces to the normal finite element discretization. In
order to maintain the mostly Eulerian nature of the numerical scheme (1) an edge element is
split when it becomes too large, (2) an edge element is merged with its neighbour if it becomes
too small. Therefore the number of elements may change over time. In addition fluid patches
can also merge and split.

Extrapolation of variables
Another way of dealing with flooding and drying fronts is to extrapolate the values for the flow
variables in the partial wet or dry cells from the values in the neighbouring wet cells,

In the finite volume method of Bradford & Sanders (2002) new velocities are computed in a
fully wet cell only if H > Hy,;. The surface slope in a wet cell bounded by a partial wet of dry cell
is linearly extrapolated from the wet neighbour. In addition the value of the surface level at the
partial wet side of a cell face is extrapolated from the fully wet side. The momentumn equations
are not solved in partially filled cells and instead the velocities are extrapolated from the neigh-
bouring wet cell with the largest water depth. Nemmnann extrapolation (the velocity is taken
the same as in the wettest neighbour) is found to work better than Characteristic extrapolation
(the characteristic in the wet cell is taken the same as that in the wettest neighbour).

Lynch & Gray (1978) uses a fixed grid finite difference model. In this paper a linear ex-
trapolation is used near the wet/dry boundary, thereby allowing the real boundary location to
exist in between nodal points. It would be advantageous if the moving boundary scheme did not
require any sort of special treatment of the derivatives near the wet/dry boundary, With this in
mind, the moving boundary scheme will employ a linear extrapolation of free surface level and
velocity components, through the wet/dry boundary, and into the dry region. With extrapo-
lated values of ¢ and u in the dry region, solving the model equations at wet nodes can proceed.
Although no derivatives are calculated at dry points, the physical values of free surface and
velocity at these points are used to evaluate derivatives at neighbouring wet points. If H > 4§,
the node is assumed to be wet and the model equations will be applied at the node; otherwise,
the physical variables at the node will be extrapolated from a neighbouring node. Tn 1T this
is done by using the two wet points nearest to the boundary to perform a linear extrapolation
into the dry region. The 2D extrapolation is performed by checking the surrounding wet points,
and for each a 1I) linear interpolation is carried out. The free surface value at the dry node is
taken to be the average of the 1D extrapolations. This approach avoids the appearance of 2Ax
waves which occurs if the velocity is simply set to zero in the dry nodes.

In Quecedo & Pastor (2002) a Taylor-Galerkin finite element method is used. The authors
followed the simple method of interpolation within the elements using the nodal variables, con-
sidering a null value for the variables corresponding to dry nodes. In this way, calculations to
accurately determine the position of the boundary within the partially dried-flooded elements
are not done.
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Modification of the Riemann solver

A finite volume method based on an approximate Riemann solver is applied in Brufau et al.
(2002). The moving boundaries are considered as wetting fronts, and hence are included in the
ordinary cell procedure in a through calculation that assumes zero water depth for the dry cells.
As far as we can judge from the paper, the moving boundaries are restricted to follow the cell
faces. This approach provides satisfactory results when dealing with wetting fronts over flat or
downward sloping surfaces but can lead to difficulties in advances over adverse slopes. Wetting
fronts over dry surfaces can be reduced to Riemann problems in which one of the initial depths
is zero. The solution for a sloping bed, when dealing with adverse slopes, identifies a subset of
conditions incompatible with fluid motion (stopping flow). Two situations can be found for a
wetting and drying front over an adverse slope: (1) Hp < Hp, this corresponds to the stopping
conditions and the basic procedure has to be modified, {2) Hy, > Hpg, nothing has to be done
and the basic Riemann solver can be used. When (1} occurs a modification is made in the hed
slope. This is done to satisfy the equilibriim condition

(AH)p = 0= (AQLr = —(AR)LR,

where Azpp = x, — xp. This condition is derived hy the discretization of the mass equation
to cnsure still water steady state at the interface LR. When this condition is not satisfied,
numerical velocities with no physical meaning can occur. The technique proposed is to enforce
local redefinition of the bottom level difference at the interface to fulfil the equilibrium and
therefore mass conservation in the way that (ACYP8? = —(hg — hr). It is also necessary to
reduce the velocity components at the interface LR to zero to avoid too rapid propagation of
the front.

According to Tchamen & Kahawita (1998), a positive depth scheme (PDS) is a scheme that
always ensures a positive depth when applied to the full nonlinear SWE and they are a subset of
the TVD-schemes. Although TVI-schemes are an extension of monotone schemes to a coupled
system, they do not automatically produce a depth positive scheme. A sufficient condition is
that the scheme for the depth relationship may be written in the following form:

H; =b+Zaka (6.1)
k

with the coefficients b and a; being non-negative, but no assumption of linearity is made. When
the Van Leer’s flux is used in the finite volume technique a scheme that belongs to the family
of PDS is obtained. Positive depth is a desirable property, but not sufficient to guarantee stable
bounded solutions. The authors of Tchamen & Kahawita (1998) found a necessary condition
for the existence of a solution

up — 2cgp < up, + 2. (6.2)

Most Riemann solvers display instabilities when this condition is violated. Too strong bottom
curvature may be one of the main reasons for violation. To obtain a stable solution near partly
wet cells, the imposition of zero velocity is still used. To date, this appears to be the only
approach that may be used to stabilize the solution in a specific situation, such as a stable,
partially wet cell, without any recourse to some kind of subcell resolution. However, an imposed
zero front velocity will result in an artificial slowing of the propagation velocity. Tt is not clear
from the paper how the authors deal with the drying process, because a positive depth scheme
avoids the water depth becoming zero or negative.
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Recommendations

When including flooding and drying in the CCSM-method and the RKDG-method it is advisable
to start with a very simple algorithm. Masking out or including whole elements, such as done in
Hu et al. (2000} and Hubbard & Dodd (2002) will be a good start. This algorithm can be easily
implemmented in both the CCSM-method and the RKDG-method and the way both methods
cope with the algorithm can be investigated and compared.

For a more realistic representation a flooding and drying procedure which modifies the
shallow water equations can be used. In this way a better handling of partial wet cells is
achieved and it is also possible to use implicit time integration. The approach used in Defina
(2000) is a good starting point and later issues discussed in Bates & Hervourt (1999) can be
included. In both the CCSM-method and the RKDG-method it is possible to do the necessary
modifications of the shallow water equations.

It wonld also be interesting to investigate the more Lagrangian approach of Bokhove {2003).
In Bokhove (2003) only the RKDG-method is considered, but the procedure must also be
possible for the CCSM-method, because a linear approximation of the variables is used.
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Chapter 7

Test cases

In this chapter some numerical test cases are presented for which the exact solution is known.
These problems will be used to test the numerical methods by comparing the numerical solution
with the exact solution. Also one more realistic test case without exact solution is done in
which tidal wave movement is mimicked. We will start in Section 7.1 with some preliminary
information in order to be able to compare both numerical methods and to define a way in which
the numerical solutions will be compared with the exact solution. In Section 7.2 we will look at
the solution of the linearized equations for a small perturbation of an initial constant condition.
This test case is used to check the convergence of both methods and examine the time step
restrictions. Transition in time from continuous sclutions to solutions containing discontinuities
is examined in Section 7.3, by looking at the solution when one of the Riemann variables is
taken constant. Two different Riemann problems are solved in Section 7.4. The first one is a
dam break problem and the second one involves two rarefractions and a nearly dry bed. In
Section 7.5 a tidal wave is mimicked by enforcing a sine-shaped boundary condition at the left
boundary of the domain. The last two test cases take into account the source term caused by a
non-flat bottom. In Section 7.6 the ability of the methods to deal with changes in the bottom
level is tested. Flow over an isolated ridge, as is examined analytically in Houghton & Kasahara
(1968), is the subject of Section 7.7.

7.1 Preliminary information

In order to compare both methods described in Chapter 5, the number N and the location
of the grid points are taken the same in both methods. However, the control volumes in the
CCSM-method do not ceincide with the elements in the RKDG-method. This means that the
value of N is equal to N — 1 in the RKDG-method and equal to N in the CCSM-method.
In this way the domain of computation of the CCSM-method will be larger than that of the
RKDG-method. This is because the boundaries in the RKDG-method coincide with the first
and the last grid point, but the boundaries in the CC8M-method coincide with the boundaries
of the control velumes around the first and the last grid point, see Figure 5.1. Only for the test
case with the tidal wave this has to be dealt with, because in the other test cases we are only
iuterested in the part of the solution far from the boundaries.

[n each test case we start with a given analytical initial condition Up(z), with U = {H, ¢},
that has to be approximated on the discrete grid. The graphical representation of the difference
in the approximation used in both methods for the first order case is given in Figure 7.1. The
initial vector for the first order RKDG-method, UF*P®, contains the mean values of Up(x) in
each element and has length (N —1). For the CCSM-method the initial vector, U§"*", of length

[}
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Fig. 7.1: Approximation of a function in the first order RKDG- and CCSM-method.

N contains the values of Uy(z) in the grid points.

For each of the test cases deseribed in the next sections we know the exact solution, U, (x),
{or a good approximation of it} at a given time. The numerical solutions at the end-time, T4,
of the computation will be compared with the exact solution at that time, both graphically and
numerically. The numerical comparison will be done by looking at the error in the max-norm,
L. and in the Li-norm which are defined as follows

By

Eo = max([U — Ussl), By = f U = U] d, (7.1)

Ty

where U7 is the numerical solution. The exact solution U, is evaluated in the grid points
and also in M — 1 points, with M an even integer, equally spaced between the grid points x;
and zj+1. The number of points, Ng,, in which Uy, is evaluated is then given by the relation
(Nez — 1) = M(N —1). In this way M is the factor between the nunber of grid cells of the
exact solution and the numerical solution. The value of A has to be chosen big enough to get
a reasonable value for the error and is normally chosen larger than 20.

The max-norm of the error will be approximated in the following way

Ex= max (|U; = Uesil): (7.2)

1< N
The L-norm of the error can be written as follows
TN N=1 i N1 M/2
E = / U - Ul de = Z/ U= Ulds= S Z[ R U _Lide (7.3)
S j=1"%;

_1: 2z
J=1 =0 "4 gy

where the integrals in the last term can be approximated by Simpson's formula

/c;bf(a:)dw%(b—a) (f(a)+4f (a;b) +f(b)). (7.4)

This is also the reason why we used M/2 in the summation in (7.3) because in this way the
point (a+6)/2 in Simpson's formula coincides with a point in which U, is evalnated, since this
points were equally spaced.
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7.2 Linear wave solution

In this test case an almost linear wave is considered and we check the order of convergence of
the methods and examine the time step restrictions. We will start with the 1D SWE (2.38a) and
(2.38b) without source terms (i.e. flat bottom) and look at their linearized form. By assuming
H=Hy+ H and u = ug + &, with Hy and «g constants and H and @ small perturbations we
find the linearized equations

& H + w8, H + Hotwt = 0, (7.5)
it + uoOyii + gz H = 0, (7.6)

where only the first order terms in H and @ are taken into account. Taking wg = ¢, and
manipulating the equations by differentiating in time or space, multiplying by g or Hp and
adding and subtracting give the following uncoupled equations

O H ~ 28, H =0, (7.7)
Bestl — 30t = 0, (7.8)

with ¢g = +/gHp. A general solution of (7.7) and (7.8) is of the form
1 1 T
O(z,t) = 5@(}(:6 — cot) + E@o(x + cot), ¢ ={H,u}, (7.9)

with given initial condition $¢(z), an arbitrary function of z. So the solution exists of two waves
travelling in opposite direction with speed ¢y and half the amplitude of the initial perturbation.
We start with a small and symmetric initial perturbation of the form

Hy(z) = ge==)", (7.10)

with 3 the maximal amplitude of the perturbation, v a measure for the width of the perturbation
and x, the location of the centre of the perturbation. The value of 3 has to satisfy 7 < Hp,
otherwise the linear approximation is not valid.

Convergence We first look at the order of convergence of both methods. The order of con-
vergence can be found by looking at the factor r with which the error in the numerical solution
decreases when the grid size is divided by a factor 2. So if E is the error between the numerical
and the exact solution in either the L or L, norm, then the order of convergence p of the
numerical method can be found through

 EQ2Az)

"= Fan) = 9P (7.11)

The following values for the parameters are used: (N — 1) = {20, 40,80, 160, 320, 640},
{Nep — 1) = 12800, z; = 0m, zy,, = 100m, 1, = 50m, Hy = 10m, § = 0.001m, v = 0.01m™2,
Tong = 1s, 8, = 051 for i = {d,e, g}, onkpe = 0.3 for the first order RKDG-method and
o = 1.6-1073 for the second order RKDG method and we used the same time step for the
CCSM-method. The time-steps are chosen small enough to be able to look at the convergence
without considering the contribution of convergence in the time-step. The second order RKDG-
method is used without slope lmiter, because the solution is almost linear and slope limiting
is not necessary. In the CCSM-method Picard linearization is sufficient, because the changes of
the velocity in time are small, and the central approach to discretize the advection term in the



continuity equation is applied, because the problem is subcritical and does not involve great
changes in the velocity. Since the boundaries are chosen far enough from the domain of interest,
transmissive boundary conditions are sufficient for all the variables at both boundaries.

The errors in the total water depth when the gridsize is decreased with a factor 2 for the
first order RKDG-method are given in Table 7.1, for the second order RKDG-method without
slope limiter in Table 7.2 and for the CCSM-method in Table 7.3,

Table 7.1: Convergence results in the total water depth for the first order RKDG-method for the linear

wave,

IN-1] B | r [ p ] EBw | r|op]
20 3.52-10 1.34- 1071
40 219-107F | 161 [ 0691 7.60.-107° [ 1.76 | 0.82
80 1.11-1079 [ 1.96 | 0.97 || 4.34-10"° | 1.75 ] 0.81
160 [[6.16-10771.81] 0861 2.60-10"° ] 1.67]0.74
320 [[3.02-107%[204[1.03] 1.25-10°%|2.08]1.06
640 [ 151-1079 (201101 567-10°% 220 1.14

Table 7.2: Convergence results in the total water depth for the second order RKDG-method without
slope limiter for the linear wave.

IN-1] B [ r ] pfl Bs | r [ 0p|
20 4.58-1074 2.77-107°
40 1.00-10 % 422208 [ 859-107%] 3.22 | 1.67
80 261-107° [ 4.16 ] 2.06 || 2.37.107% [ 3.62 | 1.86
160 [[667-1075 (39211971 6.19.1077 [ 3.84 | 1.04
320 || 1.94-107° [ 343 {178 [ 1.57-1077 [ 3.95 | 1.98
640 || 1.08 1077 [ 2.41{1.27 [{ 4.53-1078 | 3.46 | 1.79

Table 7.3: Convergence results in the total water depth for the CCSM-method for the linear wave.
(N1 B i r[p [ B | r|p |
20 [[1.13-107° 4.04-107°
40 260-10~7 ] 436 [ 212 || 9.67-107° | 4.18 | 2.06
80 £.35.107° | 4.10 | 2.04 || 2.44-107° | 3.96 | 1.99
160 1.54-107° [ 4.11 | 2.04 || 5.98 . 1077 | 4.08 | 2.03
320 3.76-107°% [ 4.10 [ 2.04 || 1.43- 1077 [ 4.17 | 2.06
640 1.08-107% [ 348 | 1.80 [[ 4.92-107% [ 2,92 | 1.55

We can see that the first order RKDG-method is indeed first order, and that the second
order RKDG-method converges with order two. The CCSM-method also converges with order
two, where we would expect a convergence of order one because it is a first order method. This
can be explained by the fact that we look at almost linear soluticons. In this case the contribution
of the non-linear terms is very small and the only reason why the CCSM-method is a first order
method is because of the first order upwind scheme used for the non-linear advection term in
the momentum equation. So if the non-linear terms are negligible the method will converge with
order two.

For both the second order RKDG-method and the CCSM method the order of convergence
hecomes smaller when using 320 or more grid-points. This is probably caused by rounding



errors, because the error in the numerical solution is already becoming very small when using
such a fine grid. Another reason can be that the exact solution is the solution to the linearized
equations and the numerical methods are solving the nonlinear equations.

The graphical results for the first order RKDG-method are given in Figure 7.2, for the second
order RKDG-method without slope limiter in 7.3 and for the CCSM method in Figure 7.4. The
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Fig. 7.2: Total water depth for N — 1 = 20 and
7 = 0.9 for the first order RKDG method.

Fig. 7.3: Total water depth for N — 1 = 20 and
o = 0.3 for the second order RKDG method
without slope limiter.
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Fig. 7.4: Total water depth for N 1 = 20 for the CCSM method and using the same timestep restriction
as for the second order RKDG-method.

initial condition is given by the dotted line, the dashed line represents the exact solution to the
linearized equations and the numerical solution is represented by the solid line. The following
values for the parameters are used: (N — 1) = 20, Teng = 2 s and ggyxpg = 0.9 for the first order
REKDG-method, ¢ = 0.3 for the second order RKDG-method and we used the same time step
restriction for the CCSM-method. The other parameters are kept the same. We chose for hoth
RKDG-methods the largest possible value of ¢ as given in Table 5.4, because this gives the
best results. Using the same value of ¢ (¢ = 0.3) for the first order method as for the second
order method causes the numerical solution to become much more diffusive. However reducing
the value of & for the second order RKDG-method does not give this diffusion, so it is only a
problem for the first order method.
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In the figures the difference hetween the different approximations of the variables can he
clearly seen: the discontinuous approximations for the RKDG-methods and the linear approx-
imation for the CCSM-method. As expected the second order RKDG-method gives the best
result, but the results of the CCSM-method are similar and the first order RKDG-method
produces the least accurate results.

Time step variations Because the RKDG-method is an explicit method the time step is
restricted by the following expression

At < Az
0-—’
= |u| + VgH

with the CFL-number ¢ < 1 as given in Section 5.2.2 and Table 5.4. In the CCSM-method
the time step is only restricted because of accuracy reasons and because of lincarization of the
nonlinear terms. No theoretically time step restriction as for the RKDG-method is known, and
is probably impossible to derive. We will now lock what happens if we use the time step as given
in (7.12) for both methods, but take a value for o larger than one, where we will only consider
the first order case. The same values for the parameters are used as in the previous section only
with (N — 1) = 80 and for ¢ we used the value 5. The results are shown in Figure 7.5.
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Fig. 7.5: Solutions of the first order RKDG- Fig. 7.6: Solutions of the CCSM-method for o =
method {solid staircase lne) and CCSM-method {5,10,20.40} with (N — 1) = 400.

(solid smooth line) for ¢ = 5 with (N — 1) = 80.

The nmmerical solution of the RKDG-method is given by the solid staircase line, that of the
CCSM-method by the solid srnooth line and the initial and exact solution are given by the dotted
and dashed line respectively. The numerical solution of the CCSM-method remains much closer
to the exact solution for ¢ = 5 than the mumerical golution of the first order REKDG-method as
was expected from theory.

The numerical solutions of the CCSM-method for (N — 1) = 400, when the value of o is
increased even more, are shown in Figure 7.6, where o = {5, 10,20, 40}. For a CFL-number up
to 10, the numerical solution stays quite close to the exact solution. For o = 20 the shape of the
numerical solution is still right, but it is less accurate. For ¢ equal to 40 the numerical solution
is not accurate anymore. So for this linear problem the time step for the CCSM-method can be
chosen 10 times as large as the one for the RKDG-method to get still a quite accurate solution.

For the CCUSM-method with upwind approach in the continnity equation, the CFL-number
cannot be increased that much. Only values up to ¢ = 1.4 give good results. This can he caused
by the fact that a simple upwind scheme is used. When the velocity changes sign, this can cause
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oscillations in the numerical solution. A possible way to overcome this is by using the Engquist-
Osher flux for the scalar case, see Engquist & Osher (1981), instead of the simple upwind
scheme, but this is not investigated any further in this thesis. There is also no explanation
for the fact that no errors occur with the CCSM-method with the central approach in the
continmuity equation, because there also the upwind approach is used for the advection term in
the momentum equation.

Conclusions The first order RKDG-method converges with order one and the second order
RKDG-method is indeed second order for this linear test case. The CCSM-method is second
order in space because of the linearity of the solution.

The second order RKDG-method and the CCSM-method give similar results and the first
order RKDG-method gives the least accurate results.

By increasing the time step, the first order RKDG-method produces wrong results when
o > 1 as expected from theory. The time step for the CCSM-method can be chosen a factor 10
larger and still produce quite accurate results.

7.3 Transformation to Burgers equation

Solutions of the inviscid Burgers equation may contain discontinuities. In this section we rewrite
the 1D SWE to the invicid Burgers equation and examine the transition in time of a solution.
We will look at the SWE written in the form of equation (2.51) without source terms (i.e. flat
hottom}, with the Riemann invariants as the variables given by

Or(u — 2¢) + (u ~ ¢}dp(u ~ 2c) =0, (7.13a)
Or(u+ 2¢) + (u + c}x(u + 2¢) = 0. (7.13b)

The special case where the Riemann invariant «+ 2c is equal to a given constant K is considered.
Then equation (7.13b) is always satisfied and (7.13a) can be written in the following form

K — 4c) + (K — 3¢)0,(K — 4c) = 0. (7.14)
Because K is constant we can derive from (7.14) that
Qe+ (K —3¢)0c=0. (7.15)
Subtracting {7.15) from (7.14) gives
MK —3¢) 4+ (K — 3¢)0,(K —3¢c) =0, (7.16)
which is equal to the invicid Burgers equation
Opv + vipv = 0 (7.17)

with v = K — 3c. The solution of the invicid Burgers equation (7.17) can be written implicitly
as

v =gz — vt), (7.18)

with given initial condition vg(x), an arbitrary function of z. The value for H is then given by

H= (ﬁ;ﬁ”)z, (7.19)
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as can be calculated from the relation v = K — 3¢, with ¢ = 4/gH, and the discharge ¢ can be
derived from w + 2¢ = K and ¢ = uH to be

g=KH-2H\/gH (7.20)

If we start with smooth initial data ve(z) for which u(z) is somewhere negative, then the wave
will break at time

1

-,
min Uy

T, = (7.21)

which means that the solution contains a discontinuity at that time. We will start with the
initial condition

— sin { 222 7.22
v =sin { —— |, (7.22)

with I = xzn — o the length of the domain, and then the breaking time will be at T, = L/27 =~
0.159L.

Boundary conditions At the left boundary the flow is directed inwards and for this reason
we use a Dirichlet boundary condition at the left boundary. We know the exact solution in this
point, which is given by (7.19) and (7.20) with v = 0 and these values will be imposed. At the
right boundary the flow is directed outwards so we can simply apply transmissive boundary
conditions.

Convergence of CCSM-method We look again at the convergence of the CCSM-method,
because this time the equations contain a reasonable amount of nonlinearity. The end time of
the computation is taken far before the breaking time T3, so the solution will still be smooth,
the following values for the parameters are used: zp = Om, zn,, = Lm, Tppq = 0.5T3, 6, = 051
for i = {d,c.,g}, K = 2m/s and o = 0.01 for the time step restriction given in (7.12). The
results are given in Table 7.4 for the total water depth. The convergence of the CCSM-method

Table 7 4: Convergence results in the total water depth for the first order CCSM method for the Burgers
equation.

IN-1]] B [ r | p | Ex | r | D |
20 9.41.104 4.32. 1077
40 433-107% 217112 ] 2.18-107% | 1.98 | 0.99
80 227-1071 110100934 1.12-1077 | 1.904 | 0.96
160 |[[1.13-10°F | 2.01 | 101 5.58.10~1 [ 2.01 [ 1.01
320 [[519-107° [218 112 262.-10°7[213[1.09
640 [ 255.107% [ 2.04 | 1.03 || 1.27-10~7 | 2.06 | 1.04

is in this case indeed of order one.

Evelution in time In Figures 7.7 till 7.11 the evolution in time is given until the breaking
time T}, for the different methods and in Table 7.5 the errors in the total water depth and
velocity are given at the breaking time 73, The following values for the parameters are used
for the computation: (N — 1) = 40, 2o = 0m, an,, = 10m, Tone = {0.3375,0.66T7;, T}, } where
Ty = 1.59s, 6; = 051 for i = {d,c,g}, K = 2m/s, M = 0 for the TVB correction constant
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of the slope limiter and ¢ = 0.3 for the time step restriction given in (7.12) for the second
order RKDG-method and the CCSM-method and o = 0.9 for the first order RKDG-method.
Figure 7.7 shows the solution for the first order RKDG-method, Figure 7.8 for the second order
RKDG-method without and Figure 7.9 with slope limiter. The solution of the CCSM-method
with central approach in the continuity equation and 8; = 0.51 is shown in Figure 7.10 and with
upwind approach and 8; = 1 in Figure 7.11,
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Fig. 7.7 Solutions of the first order RKDG-method with N — 1 = 40 and ¢ = 0.9 for the Burgers
equation.
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Fig. 7.8: Solutions of the second order RKD{G-method without slope limiter with N—1 = 40 and & = 0.3
for the Burgers equation.

Table 7.5: Errors of the methods at time T}, for the total water depth and the velocity. The addition
'+ §' stands for 'with slope limiter’.

| Method || E water depth | E,. water depth ” E1 velocity | E. velocity |
first order RKDG 1.94 1077 3.57-1072 3.14- 1071 | 5.34-107!
second order RKDG 2.18 .10~ 1.98- 102 429102 | 3.27-107"
second order RKDG 4 8 3.03-1073 1.89- 1072 5401072 | 2.55.107!
central CCSM 1.89- 1072 3.40-10~7 1.00.107Y 2.35.10°0
upwind CCSM 2.74. 104 2.34.102 5.07 - 1071 4.93-1071
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Using a slope limiter in the second order RKDG-method improves mainly the L,.-error, but
the Lj-error becomes slightly bigger, so the slope limiter has a diffusive effect. This can also be
seen in Figure 7.9 where the solution is smoother than in Figure 7.8, where no slope limiter is
used.

Configuration of the CCSM-method In the present paragraph features of the CCSM-
method are changed to see what effect they have on the numerical solution where we look at
the solution at time Tj,.

When using the upwind approach in the CCSM-method for the advection term in the con-
tinuity equation, the solution gets smoother, but also more diffusive. The Iy-norm of the water
depth becomes slightly bigger but the other errors are smaller, especially for the velocity.

Using an iterative process instead of Picard linearization in case of the central approach
makes the solutions a little bit more accurate, only the L-norm of the velocity becomes larger.
When using the upwind approach the numerical solution gets slightly worse when an iteration
process with one step is used. Using more then one iteration step does not improve the solution
much more.

Applying the ‘fully implicit’ method (8, = 1 for i = {d, ¢, g}) the solution of the method
with the upwind approach in the continuity equation becomes again slightly better. Making
the method "fully explicit’ (6; = 0 for i = {d,¢,g}) gives also slightly better results than for
#; = 0.51, but worse then when the 'fully implicit’ method is used.

Conclusions  All methods are able to cope with the steepening of the wave, but with the
second order RKIDG-method a slope limiter has to be used and the upwind approach has to be
used in the CCSM-method to avoid overshoots in the neighbourhood of large gradients.

As expected, the second order RKIG-methad with slope hmiter gives the hest results.
The first order RKDG-method and the CCSM-method with upwind approach give both quite
accurate results with an error of the same order of magnitude, but they are both more diffusive
than the second order RKDG-method.

When the end time of the computation is far before T}, then the CCSM-method converges
with order one.

7.4 Riemann problems

In this section two test problems are presented that can be solved exactly. The initial data for
the Riemann problem is given by

up = { up oz <az, (7.23)
up if x> mp,

with z,, the location of the initial discontimity. The solution to this problem is calculated by
using the exact Riemann solver given in Toro (2001). In Table 7.6 the data are given for two
different test problems as given in Schwanenberg (2003) and Toro (2001). The first test case is

Table 7.6: Data for the two test problems.
Test | Hr(m) | up(m/s) | Hr(m) | up(m/s) | L(m) | z,(m) | Tenals)
1 6.0 0.0 2.0 0.0 2500 | 1500 70
2 1.0 -5.0 1.0 5.0 80 40 2

a so called dam break problem and the second one contains two rarefractions and a nearly dry
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bed. The main goal of these test cases is to investigate how well the numerical schemes deal
with the initial discontinuity.

7.4.1 Test 1: Dam break problem

This test case mimiecs a dam break problem in 1D. The initial condition consits of two areas
with a different water depth and no flow, separated by a so called dam located at z,. The water
level at the left side of the dam will be higher than that on the right side. At ¢ = 0 the dam is
removed and the water starts to flow. The solution consists of a shock wave propagating to the
right, a rarefraction wave to the left and a constant water level in between,

The number of elements we use is (N — 1) = 40, transmissive boundary conditions are
implemented, the TVB correction constant is taken to be M = 0 apd & = 0.3 for the second
order RKDG-method and the CCSM-method and o = 0.9 for the first order RKDG-method.
The values of the other parameters are listed in Table 7.6.

Figures 7.12 till 7.16 show the numerical solutions at T,,q = 70 s for the different pumerical
methods. Figure 7.12 shows the solution for the first order RKDG-method, Figure 7.13 for the
second order RKDG-method without and Figure 7.14 with slope limiter. The solution of the
CCSM-method with central approach in the continuity equation and 6; = 0.51 is shown in
Figure 7.15 and with upwind approach, one iteration step and #; = 1 in Figure 7.16. Al the

total water depth velaocity

— numarlcal
initel

To 500 1000 1500 2000 2S00 [o] 500 1000 TEQO0 zZooo 2500
=x(rm} »>{TT)

Fig. 7.12: Test 1: Total water depth and velocity for the first order RKDG method for N — 1 = 40 and
o =10.9.

methods can cope with the discontinuous problem. Again the smoothening cffeet of the slope
limiter can be seen in 7.14 for the second order RKDG-method.

Configuration of the CCSM-method In this paragraph we change features of the CCSM-
method to see what effect they have on the numerical solution.

When using the upwind approach in the CCSM-method, the solution gets more accurate,
but also more diffusive.

Using an iterative process instead of Picard linearization in case of the central approach
makes the solutions more accurate, especially for the Lj-norms. When using the upwind ap-
proach the numerical solution also gets better when an iteration process with onc step is used.
Using more then one iteration step does not improve the solution very much more,

Applying the ’fully implicit’ method (8; = 1 for ¢ = {d, ¢, g}) the solution of the method
with the upwind approach becomes smoother but also more diffusive. Making the method fully
explicit (8; =0 for i = {d, ¢, g}} deteriorates the solution.
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Fig. 7.16: Test 1. Total water depth and velocity for the *fully implicit” CCSM method with upwind
approach and one iteration step for N —1 =40 and ¢ = 0.3.

In Figure 7.16 the sclution of the 'fully implicit’ CCSM-method with upwind approach
is given. Comparing it with the solution of the CCSM-method with central approach, Picard
linearization an 6; = 0.51 shows indeed the diffusive effect of the upwind approach and the *fully
implicit’ procedure.

The cause of the wiggles most visible around z = 500 in Figure 7.16 is not known yet.
The wiggles propagate from the initial discontinuity to the left and right. Lumping the mass
matrix removes these wiggles but gives a less accurate solution in the rest of the domain. When
the initial condition for the CCSM-method is taken to be the exact solution of the problem at
T =95 or later, then there are no wiggles anymore. So the wiggles are probably caused by the
initial discontinuity.

Conclusions The second order RKDG-method with slope limiter gives again the best solu-
tion, but needs a slope limiter to avoid over- and undershoots. The 'fully implicit’ CCMS-method
with upwind approach and one iteration step gives practically the same result as the first order
RKDG-method. Only some small wiggles which are probably caused by the initial discontinuity
are generated by the CCSM-method.

7.4.2 Test 2: Two rarefractions and nearly dry bed

This test case is performed because it tests the ability of a method to deal with very shallow
water depths. The solution consists of two rarefractions waves travelling in opposite direction
leaving a very shallow water level in between. It turns out that this test does not crash with the
first order RKDG-method, the second order RKDG-method with slope-limiter and the CCSM-
method with upwind approach. If no slope-limiter is used in the second order RKDG-method
or the central approach is used in the CCSM-method, the water depth becomes negative and
this causes a run-time error in the computation.

Again (N — 1) = 40 elements and transmissive boundaries are used. For the TV correction
constant we take the value M = 0,01 and for the CFL-numbers we use o = 0.3 for the second
order RKDG-method and the CCSM-method and ¢ = 0.9 for the first order RKDG-method.
The values of the other parameters are listed in Table 7.6.

Figure 7.17 shows the solution for the first order RKDG-method and Figure 7.18 for the
second order RKDG-method with slope limiter. The solution of the COSM-method with upwind
approach in the continuity equation and #; = 0.51 is shown in Figure 7.19.
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For the upwind CCSM-method the configuration with one iteration step and #; = 0.51 for
¢ = {d,c,g} gives the best results. Making the method fully implicit does not improve the
solution.

Conclusions A slope limiter has to be used for the second order RKDG-method to avoid
negative water depths and this method gives as usual the best results. The first order RKDG-
method does not stay behind much and the upwind CCSM-method with one iteration step gives
also good results but is a bit more diffusive.

7.5 Tidal movement

Tidal maovement typically involves low Froude numbers. To mimic tidal movement we consider
a domain with a flat bottom and an initial flat water level with no flow. At ¢t = 0 a sine-shaped
boundary condition is imposed at the left boundary for both the total water depth, H;, and
the discharge, qr. They are given by the following relations

2mt

Hyp = Hy+ Agsin (-—%:—-) , (7.24)
. {2t

qr. = Agsin (T) : (7.25)

with Hg the initial total water depth, Ay and A, the amplitudes of the imposed sines and T
the period of the tidal movement. Given the amplitude of the total water depth, the amplitude
for the discharge must fulfil the following relation

A, = Ageo, (7.26)

with g = /gHp the speed of the tidal wave, as can be derived from the linearized equations.

The typical period for tidal movement is T = 12 h and the initial total water depth is taken
to be Hy = 50m. The wavelength is given by A = epT" = 957 k. The length of the domain is
chosen to be L = 3500 km, so that two tidal periods (Teng = 24 k) can be examined. For the
amplitude of the total water depth we take Ay = 5m and this gives A, ~ 110.7m?/s.

Using the imposed boundary conditions for the CCSM-method as described in Section 5.1
causes the generation of 2Az-waves, also called odd-even decoupling, as shown in Figure 5.2.
To overcome this problem we impose the boundary condition on the first grid-point in the
domain and alse a boundary condition, modified for the shift in place, at the real boundary. As
a consequence, the place of the imposed boundary condition in the CCSM-method is the same
as for the RKDG-method, namely in the first grid point.

There exists no exact solution to this problem, but according to the Burgers test case of
Section 7.3 we expect the sine to move into the domain and then to steepen, because the problem
is nonlinear. The solution calculated by the second order RKDG-method with slope limiter on
a fine grid ((N — 1) = 1600) is used as the approximation to the exact solution.

In Figure 7.20 the numerical solution of the first order RKDG-method is shown, in Fig-
ure 7.21 the second order RKDG-method with slope limiter, in Figure 7.22 the central CCSM-
method and in Figure 7.23 the upwind CCSM-method with one iteration and #; = 0.55. For the
first order methods o timestep with ¢ = 0.9 is used and for the second order RKDG-method
o =0.3. The TVB correction constant is taken to be M = 0.

For the upwind CCSM-method at least one iteration step is needed, otherwise the soluticn
gets unstable. Taking the upwind CCSM-method *fully implicit’ makes the method very dif-
fusive, but some diffusion is necessary to get rid of unwanted oscillations. For this rcason the
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Fig. 7.23: Solution of the upwind CCSM-method with one iteration step and 8, = 0.55 for N — 1 = 100
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values of the 8;'s are slightly increased to 8; = 0.55 for ¢ = {d, ¢, g}. In both Figure 7.22 and 7.23
wiggles appear at the right boundary. The cause of these wiggles is not known yet, but they
are probably caused by the boundary condition. The solution of thus obtained CCSM-method,
shown in Figure 7.23, is practically the same as the solution of the first order RKDG-methad,
depicted in Figure 7.20, but the solution of the second order RKDG-method with slope limiter
gives better results.

Increasing the time step substantially is still not possible for the upwind CCSM-method, see
also the paragraph "Time step variation’ in Section 7.2, So we look at the central CCSM-method
and use one iteration step and 6; = 0.55 for i = {d, ¢, g} to make the solution more accurate. The
results for o = {1, 2,4} when Ay = 5m are shown in Figure 7.24 and for a smaller amplitude.
Ay =0.8m, in Figure 7.25.
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Fig. 7.24: Solution to the tidal wave problem for different values for the time step, ¢ = {1,2.4} for
the central CCSM-nethod with one iteration step and 6, = 0.55 for N — 1 = 100 at T,py = 24 h and
AH =hm.

As can be seen the solution gets more diffusive if the time step is increased also with a small
amplitude, but the shape of the solution remains right. So if only a global idea of the wave
structure is necessary a larger time step can be used.
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Conclusions An cxtra boundary condition has to be imposed for the CCSM-method to avoid
odd-even decoupling,

The first order RKDG-method and the upwind CCSM-method using one iteration step and
8, = 0.55 give practically the same results. As usual the second order RKDG-method gives the
best solution, but a slope limiter is needed to avoid overshoots.

Increasing the time step is not possible for the npwind CCSM-method. Doing this for the
central CCS5M-method makes the method much more diffusive, although the shape of the solu-
tion remains still right when the time step is increased by a factor four.

7.6 Stationary solution with bottom elevation

In this and the next test case we take into account the source term as the result of a non-zero
bottom. If the system starts in rest, with a constant water level and no flow, and there is no
disturbance coming from the outside world the system should remain in rest, even if there are
changes in the bottom level. In Figure 7.26 the solution is shown at T.,4s = 1 s for the first order
RKDG-method. The bold line represents the bottom and it can be seen that in the numerical
solution the total water depth in each element is constant, resulting in a non-constant water
level. This causes the water to flow and results in a non-zero velocity. Figure 7.27 shows the
solution of the second order RKDG-method at T,,q = 10s. It can be seen that the water level
remains constant and thus the velocity remains zero, as it should be. The solution of the CCSM-
method is the same of that of the second order RKDG method: nothing happens. This means
that the first order RKDG-method can not be used when there are changes in the bottom level.
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7.7 Flow over an isolated ridge

In this test case we look at flow over an isolated ridge as is examined in Houghton & Kasahara
(1968). We consider a smooth convex obstacle which is symmetric with respect to its crest and
the bottom is defined by the following relation

- {5(1 —z)? i = /he/8 < (z—2p) < W/ R/, (7.27)

he otherwise,

with z, the location of the crest of the obstacle and A the height of the crest and the reference
level ¢ = 0 is at the top of the ridge. To represent the height of the obstacle, we use the parameter
M, indicating the ratio of the height of the crest, k., over the depth of the approaching fluid,
Hy,

M. =— {7.28)
so if M. > 1 the flow is totally blacked.
The initial condition consists of a constant water level and a constant velocity. There are four

possible solution domains of the flow, depending on the initial Froude number (Fro = wy/vgHp)
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and the value of M., see Houghton & Kasahara (1968). For increasing values of Fry by constant
M, subsequently the following solution domains will be gone through:

I The flow is everywhere subcritical and the free surface of the steady state dips symmet-
rically over the symmetrical obstacle, see Figure 7.28.

II' The flow is discontinuous and is critical at the crest of the obstacle. At the lee side the
How is supercritical and a stationary lee jump on the downstream side of the obstacle
crest occurs together with a rarefraction wave. At the upstream side a bore propagates
away from the obstacle, see Figure 7.29.

III The flow is almost the same as in Domain II only the lee jump moves away from the
obstacle, see Figure 7.30.

IV The flow is everywhere supercritical and the free surface of the steady state rises symmet-
rically over the obstacle, see Figure 7.31.
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Fig. 7.28: Solution in Domain L.
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Fig. 7.31: Solution in Domain IV,

The values of the parameters, depicted in the figures, can be calculated analytically as can
be found in Houghton & Kasahara (1968). We will compare these analytical values with the
values calculated by the numerical models and also look at the graphical representation of the
numerical solutions.

Flow over a flat plate When /i, = 0 in (7.27) we have flow over a flat plate. In this case
the CCSM-method with the central approach in the continuity equation produces uncorrect
solutions when Fr > 1.1, but there is no restriction on the Froude number when the upwind
approach in the continuity equation is used. So when the Froude numnber is expected to exceed
1 it is better to use the upwind approach in the continuity equation. And for this reason we use
the upwind approach in this test case throughout.

The following values for the parameters are used in all the domains: N — 1 = 100, zg = 0m,
zn = 100m, Ho = 0.2m, he = 0.1m (this gives M, = 0.5), 8 = 0.05m™1, z, = 40m, Typg = 205
and in the different domains we use:

[ ug=028m/s (Frog=02),
IT wg=042m/s (Frog=10.3},
I up =0.98m/s (Frg=0.7),
IV wy=2.66m/s (Frg =1.9).

At the boundaries transmissive boundary conditicns are used, because they arce far cnough away
from the domain of interest to have no influence on the solution.

The Figures 7.32 till 7.35 show the solutions for the four cases for the both methods. The
bold line represents the solution of the CCSM-method and the thin line the solution of the
second order RKDG-method. A slope limiter with TVB correction constant M = 11072 is
used in Domain IT and ITT for the second order RKDG-method and no slope limiter is applied
in Domain I and IV. The CCSM-method uses the upwind approach in the continuity equation,
one tteration step and ¢; = 0.51 for 7 = {d, ¢, g}. The same time step with ¢ = 0.3 is used for
both methods in all domains. In the fizures we zoomed in on the area of interest.

The slope limiter, as it is given in Section 5.2.3, does not account for changes in the bottom
level. This cau be seen in Figures 7.33 and 7.34 where the slope limiter is used, because there are
still overshoots and undershoots when there are large changes in the bottom. This is explained
by the fact that the slope limiter limits the slope in the total water depth, not in the water
level,
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method with upwind approach (bold line) for case IV with N — 1 = 400,

By comparing the solutions in the Domains IT and III it can be seen that the CCSM-method
is more diffusive than the RKDG-method. Especially the lee jump in Figure 7.33 for the CCSM-
method than for the RKDG-method. In Figure 7.35 the solution of the CCSM-method is not
symmetrical as it should be. This is caused by the fact that the upwind approach is used in
the CCSM-method which gives a diffusive effect. Refining the grid decreases the diffusion in the
CCSM-method.

In Tables 7.7 till 7.10 the analytical as well as the numerical valies of the different parameters
in the subsequent domains are given.

Table 7.7: Comparison of analytical and numerical values in Domain [

| Parameter || Analytical | RKDG-method | CCSM-method |
e 7.26- 1071 7.26- 1071 6.00- 1071
H, 71077 | 7721077 8.67- 1072
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Table 7.8: Comparison of analytical and numerical values in Domain II.

| Parameter || Analytical | RKDG-method | CCSM-method |

Uy 3.27-10°1 3.97.1071 3.40-1071
H, 2.13. 1071 2.13-107% 2.12-107°
e 8.82. 1071 8.61-1071 7.60-1077
H, 7.93- 1072 8101072 9.01-1072
u_ 1.49-10° 1.47 107 1.07 - 1Y
H_ 4.68-107° 4771072 7781072
U 5.62- 1077 4.86-10°T 4,80 - 101
H. 1.24 - 1071 1.26 - 10~1 1.65- 1071
h. 5.83. 107 60910~ 7.50-107°
ux 364 101 3.65-10°1 3.74- 1071
Hx 1.92. 1071 1.92.10°2 1.94 - 102

Table 7.9: Comparison of analytical and numerical values in Domain III.

| Parameter || Analytical [ RKDG-method | CCSM-method |

Up 5.01- 10! 501-1071 5.26- 1071
Hy 2.73-10°1 2.74.1072 2.70- 1072
e 1.10- 107 1.08 1071 9.93.1072
H, 1.24-1077 1.26-10°° 1.36- 102
up 2.08 - 10° 2071071 1.91-1071
Hp 6.59 - 10~2 8.61-10772 7.31-1072
nx 8.77- 1071 8771071 8.71-10"1
Hx 1.87- 10" 1.86-10 2 1.85- 102

Table 7.10: Comparisen of analytical and numerical values in Domain IV,

| Parameter || Analytical ] RKDG-method | CCSM-method |
U 1.80- 109 1.80 - 100 1.85. 10%
H, 2,96 . 1071 2.96- 1071 2.81-10"1

In Domain I, the velocity at the crest is too small for the CCSM-method. This can also be
secn in Figure 7.32 where the velocity seems shifted downwards. The water depth at the crest
in contrary is too big, so mass is still conserved. In Domain IV it is just the other way arcund.
The velocity at the crest is too high and the water depth too small, but still mass is conserved.
The velocity and water depth at the crest for the second order RKDG-method in Domain I and
IV match very well with the analytical values.

The CCSM-method produces in Domain II the best results for the values of ws and Ha
before the ridge and the values of ux and Hy after the ridge. For the values in between, at the
erest and at the lec jump, the velocity is structurally too low and the water depth too big. The
place of the lee jump is also too far to the right. In Domain III the errors are smaller, and again
the values at the locations A and X are the best and the velocity is again structurally too low
and the water depth too big,

For the second order RKDG-method the best results in Domain II are also obtained at the
locations A and X. Just as for the CCSM-method the velocity is lower and the water depth
higher in the regions in between, but less severe than for the CCSM-method. The lee jump is
also slightly shifted to the right. In Domain III the RKDG-method has less problems and the
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numerical values are very close to the analytical ones.

Conclusions For the CCSM-method only the upwind approach can be used, because the
ceniral method cannot deal with supercritical flow. For the RKDG-method the second order
method has to be used, because the first order method cannot deal with changes in the bottom
level. A slope limiter has to be applied in Domains IT and III, but, as can be seen in the figures,
the slope limiter has to be adjusted to deal with changes in the bottom level.

The CCSM-method is diffusive caused by the use of the upwind scheme. The second order
REKDG-method only has some minor difficulties with the lee jump in Domain II.
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Chapter 8

Conclusions and Recommendations

In Chapter 2 the derivation of the shallow water equations (SWE) from the Navier-Stokes
equations is given. The final result of this derivation are the one-dimensional shallow water
equations which are the equations of interest in this thesis. The assumptions, to derive the 1D
shallow water equations from the Navier-Stokes equations, are:

o the horizontal length and velocity scales of the flow are much larger than the vertical ones,

o the length scales are much larger than the scales related to the width variations of the
flow,

¢ the width of the flow is constant.

The primary variables in the 1D SWE are the average discharge and the total water depth.
Only changes in the bottom level are taken into account, while for example viscosity, Coriolis
forces and turbulence are neglected in this thesis.

Unstructured grids are introduced in Chapter 3 and their greater geometric flexibility com-
pared to structured grids is the reason why the interest in this work is on numerical methods that
are applicable to unstructured grids. Because of the ease of implementation, obtaining higher
order accuracy of the advection terms and the knowledge present in literature, a collocated grid
is preferred over a staggered grid. The choice for a vertex-centred approach is made, because
in this way a unique linear interpolation can be defined within a grid cell and the evaluation of
the gradients at control volume edges is easier than when a cell-centred approach is used.

Four different numerical methods that can be used to solve the shallow water equations are
outlined in Chapter 4. The finite difference method and spectral method are quite difficult to
apply on unstructured grids in contrast with the finite volume method and the finite element
method for which this is much easier, For this reason a finite volume and a finite element method
are further examined and compared. The two methods are outlined in detail in Chapter 5.

The first method, the so-called Collocated Coupled Solution Method (CCSM), is a collo-
cated, vertex-centred finite volume method in which a linear approximation of the primary
variables is used. Due to the use of a first order upwind scheme in the momentum equation the
method is first order accurate in space. Discretization of the advection term in the continuity
equation is either done by means of a central or a first order upwind approach. The system of
ordinary differential equations is written in matrix form. The time marching procedure is based
on solving the coupled system of equations at once by means of a §-method. It is quite simple
to make changes in the discretization, because it only implies a change in the computation of
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certain matrix elements and not of the solution procedure. When & equals a half, the linearized
system is second order in time. Picard linearization or an iterative process is used to deal with
the nonlinear terms and for this reason the CCSM-method is semi-implicit, which allows for
relative large time steps. The choice for the time step is only limited by accuracy reasons.

The Runge-Kutta Discontinuons Galerkin finite element method is the second method exam-
ined in this thesis. It uses a discontinuous piecewige polynomial approximation for the variables,
and the method is very local. More degrees of freedom are involved relative to finite volume
methods. The HLLC approximate Riemann solver is used to locally solve the Riemann problem
between two cells, as is common in most finite volume methods. A diagonal mass matrix is
obtained by the use of orthogonal Legendre polynomials and this avoids the necessity to solve
a local matrix system. For the solution procedure an explicit TVB Runge-Kutta scheme is used
and this gives a CFL-restriction on the time step, which becomes more severe when the order of
the method increases. A slope limiter can be applied to avoid unphysical oscillations in higher
order schemes.

In Chapter 7 some numerical test cases are performed to test the numerical methods and to
compare them with each other. A linear wave is examined for which the first order and second
order RKDG-methods indeed converge with respectively order one and two. The CCSM-method
converges also with order two, even though it is a first order method. This is caused by the
linearity of the solution, because the CCSM-method is only a first order method due to the
first order upwind scheme used for the nonlinear advection term. When the solution contains a
reasonable amount of nonlinearity, such as in the test case with one of the Riemann variables
being constant, the convergence of the CCSM-method is, as expected, of order one. Because the
RKDG-method is explicit, the method becomes unstable when the CFL-number exceeds one.
The time step of the CCSM-method with a central approach in the continuity equation can
be chosen up to a factor 10 larger and still produce quite accurate results for the linear wave
problem. For the upwind approach this is not possible, probably due to the simple design of the
upwind scheme.

For accurate solutions of the problem with one of the Riemann variables being constant,
the second order RKDG-method needs a slope limiter and in the CCSM-method the upwind
approach in the continuity equation must be applied to avoid overshoots in the neighbourhood of
large gradients. As expected, the second order RKDG-method with slope limiter gives the best
results. The first order REDG-method and the CCSM-method with upwind approach in the
continuity equation give both similar results, while being both more diffusive than the second
order RKDG-method.

For the dam break problem the second order RKDG-method gives again the best solution
and needs a slope limiter to avoid over- and undershoots. The CCSM-method with upwind
approach in the continuity equation and one iteration step gives practically the same result
as the first order RKDG-method. Only some small wiggles, which are probably caused by the
initial discontinuity, are generated in the CCSM-method.

The solution to the other Riemann problem consists of two rarefractions and a nearly dry
bed. A slope limiter has to be used for the second order RKDG-method to avoid negative water
depths and this method gives the best results. The first order RKDG-method does not stay
behind much and the upwind CCSM-method with one iteration step also works well, but is a
bit more diffusive. A central approach cannot be used in the CCSM-method, because then the
water depth becomes negative.

To mimic tidal movement a time dependent boundary condition is imposed. The implemen-
tation of the boundary condition for the CCSM-method is modified in some ad hoe fashion to
avoid odd-even decoupling. The first order RKDG-method and the npwind CCSM-method us-
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ng one iteration step give practically the same results. The second order RKDG-method gives
the best solution, but a slope limiter is needed to avoid overshoots. Increasing the time step is
not possible for the CCSM-method with upwind approach as was also the case for the linear
wave. Increasing the time step for the central CCSM-method makes the method very diffusive,
although the shape of the solution even remains correct when the time step is increased by a
factor four.

When changes in the bottom level are present, the first order RKDG-method, as used in this
work, can not be applied, because water starts to flow even when it should remain stationary.
The second order RKDG-method and the CCSM-method do not have this problem.

When examining flow over an isolated ridge, the CCSM-method can only be applied with
the upwind approach, because the central method cannot deal with supercritical flow. For the
RKDG-method the second order method has to be used, since the first order method inherently
cannot cope with changes in the bottom level. A slope limiter has to be applied when the flow
contains discontinuities, but the slepe limiter has to be adjusted to deal with changes in the
bottom level. The CCSM-method is diffusive which is probably caused by the diffusive effect of
the upwind scheme. The second order RKDG-method only has some minor difficulties with the
lee jump in one of the solution domains.

It can be concluded that both the RKDG-method and the CCSM-method are capable of
computing 1D shallow water flows. For flow involving low Froude numbers the CCSM-methaod
introduced in this report can use larger time-steps than the RKDG-method used in this M.Se.
thesis, but the RKDG-method is better suited to deal with discontinuities in the flow.

Recommendations for further investigations

- The implementation of Newton-Raphson iteration in the CCSM-method, instead of the
Picard linearization or the simple iteration process, will give a better treatment of the
nonlinearity in the method.

- Investigation of the reason why no large time steps can be used when the CCSM-method
with upwind approach in the continuity equation is used. The cause of the oscillations
that occur when using the CCSM-method should also be investigated.

- The implementation of the scalar Engquist-Osher flux in the CCSM-method, instead of
using the simple upwind scheme, may avoid the problems that are encountered when the
velocity changes sign.

- Using a second order discretization for the advection term in the momentum and mass
cquation, will make of the CCSM-method a second order scheme. In this way a better
comparison between the two methods can be made.

- The slope limiter in the RKDG-method has to be modified to be able to deal with changes
in the bottom level, see Schwanenberg (2003).

- In this thesis only a comparison between the accuracy of the both methods is made, but
the efficiency of the methods is not considered yet.

- The RKDG-method and CCSM-method are only able to deal with positive water depths.
To be able to deal with moving boundaries due to flooding and drying, a flooding and
drying algorithm has to be implemented. Investigation and testing of such algorithms is
thus a important field of research.
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- Problems on non-uniform grids should be investigated, because they show some of the
problems that one encounters when geing to unstructured grids in 2D,

- Other processes involved in shallow water flow should be implemented, such as viscosity,
bottom roughness and turbulence to get a more realistic approximation.
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