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Abstract

The Wyss Institute at Harvard is developing organs-on-a-chip which are able to mimic organ functions
and could even become person-specific. The largest benefit for this kind of chips is the model which is
based on humans instead of animals. The predictions made are realistic and drugs can be tested for
toxicity. The goal of this thesis is to build a basis for the computation of gas exchange between two
fluids, separated by a membrane, to support the development of such a chip. In addition, the effect of
membrane degradation on the gas exchange is implemented and reviewed to provide a starting point
in expanding the model properties.

The open-source CFD software OpenFOAM is used for mathematical simulations of the convective
and diffusive flows of a generic gas species through a membrane. The model is verified with both spatial
and temporal grid refinement studies and their convergence.

Membrane degradation is implemented in the model to apply both time and concentration de-
pendent diffusion coefficient decline. An equation was created and implemented to simulate the
degradation and partial healing of a membrane due to a concentration peak. Due to the adjustable
parameters in this equation, the profile of the concentration dependent diffusion coefficient can be
manipulated to obtain the desired outcome. This provides proof of the applicability of OpenFOAM
as a CFD software to model gas exchange and contributes a basis to apply concentration dependent
membranes in a model.
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Chapter 1

Introduction

Typically the process of developing new drugs is a sequential and lengthy process. Pharmaceutical
companies have several moments where the status of the drug is reviewed and decisions are made on
whether to continue with its development. After the new drug is synthesized, it will be screened for
toxicity in vitro [1] and subsequently tested on animals. Animal lives are lost in this process, and
more importantly, animal testing often fails to predict human responses to the drug because traditional
animal models do not accurately mimic human pathophysiology [2, 3]. One of the downsides of animal
testing is that when the results are unsuccessful in animals, promising drugs are abandoned while it
may work for humans. For example, the widely used drugs aspirin and penicillin would not have
been available if the current animal testing proceedings were in place then [2]. Besides that, the
failure rate of drugs which are successful in preclinical tests and do not proceed to market (including
animal testing) is estimated by the FDA to be close to 96 percent [2]. If the drug is still considered
a promising candidate for further development after the animal testing, the pharmaceutical company
may begin human clinical trials. These clinical trials take years to complete and testing a single drug
can cost millions of dollars [4]. The costs of a clinical trial keep increasing every year, which has
significant implications for the public health, since the willingness of pharmaceutical companies for
clinical trials declines, decreasing the output of new drugs. The reduction in willingness results in
fewer applicable drugs and treatments for patients [5]. Also, human clinical studies have revealed
considerable variability in responses to the drugs between patients. The results are dependent on the
participant and their medical history. The whole concept of drug testing nowadays misses its mark,
and for this reason, a new human-based alternative is required to generate safe and reliable predictions
of drug efficiency.

The Wyss Institute at Harvard University is developing specialized lab-on-a-chip systems which
can mimic some of the complicated mechanical and biochemical behavior of human organs. These
chips present much more realistic models of the human organs than flat layers of cells grown in petri
dishes [6]. Some examples of these micro-engineered models are based on the liver, heart, lung,
intestine, kidney, brain and bone [3]. The team at the Wyss Institute is even exploring the potential
of combining different organ systems. An example is the combination of a “breathing” lung-on-a-chip
with a “beating” heart-on-a-chip. By linking several chips together, researchers can study the effect of
one drug in several organs. A drug that gives beneficial results in treating lung disease, for instance,
might have toxic results on a different organ in the human body. Combining chips could help find
anomalies earlier in the process, reducing the research and money invested in a, for example, toxic
drug, which will never go to market. The combination of organs-on-a-chip may lead to a personalized
linked human-on-a-chip someday, on which drugs can be tested. With this perspective, the necessity
for animal testing would be reduced, and clinical trials would be safer due to the better predictions
of the drugs.
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Figure 1.1: A schematic representation of the lung-on-a-chip developed at the Wyss Institute [3].

The work in this thesis is motivated by a lung-on-a-chip invented by the Wyss Institute team.
This microchip consists of a three-dimensional system based on a living, breathing human lung. This
detailed microchip has two layers of living cell tissue, containing cells of the lung’s alveoli and the
blood vessels that surround them, opposite of each other on a porous, flexible polymer [7]. Air is
delivered to the upper part of the chip where the lung cells are, and a fluid which mimics blood is
delivered to the lower part of the chip (Figure 1.1). Breathing is mimicked by generating a vacuum
which is applied to the chambers adjacent to the cell channels which results in stretching and relaxing
of the membrane. This movement of the membrane is important since it is experimentally shown that
there is a considerable increase in the diffusion of nanoparticles through the membrane when the chip
is mechanically stimulated [3, 7]. From experiments, it became apparent that a lung-on-a-chip gave a
better representation of real life lungs than a static conventional petri dish model.

The lung-on-a-chip at the Wyss Institute is well developed. However, the created lung membrane
has a flat structure. The membrane of an alveoli has a more complex shape, more like small lobes
which are better approximated by a curved geometry. Additional research on a lung-on-a-chip is being
performed at the University of Twente in collaboration with the University of Leiden and Rotterdam
to extend the properties of the membrane in the lung-on-a-chip [8]. In this collaboration, research is
being performed to achieve the same functions but with a curved geometry which is much closer to
reality. Changing the geometry sounds easy. However, the flow of the fluids will change for example
and may become turbulent instead of laminar.

1.1 Problem Statement

The development towards a complete organ-on-a-chip continues by expanding the functionalities and
structure to mimic a realistic organ. To support the development towards an improved chip, the goal
was set to create a mathematical model to understand and predict the working processes that take
place inside a lung-on-a-chip in more detail. This model ranges from the fluid-mechanical transport to
the passage of species through the membrane structure separating the external from the internal lungs,
respectively air and blood. A mathematical model can be very helpful to explain the behavior of a
complex system such as the gas exchange in the alveoli of the human respiratory system. Simulations
can serve as a substitute to traditional experiments and has the benefit that experiments which can
not be done traditionally, impractical or too expensive, can be performed with the use of simulations.
When a simulation model is developed, it is easy to try new ideas to increase our understanding of
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the system at hand or to try and simulate different experimental conditions. The computational fluid
dynamics software used in this thesis is the open-source program OpenFOAM. This software was
chosen as knowledge about this program was already present in the research group.

During the development of the mathematical model in OpenFOAM, it became apparent that due
to the complexity of the system and required computational time, the magnitude of the project was
too large to generate a full model within the given time for this thesis. Therefore, the goal was
adjusted during the research to build a basis for the computation of gas exchange between two fluids
separated by a membrane and the effect of membrane degradation on the gas exchange.

1.2 Structure of this thesis

This thesis is divided into six chapters and is organized as follows. Chapter 1 gives an outline of
the background aspects behind the motivation for this thesis and defines the problem statement. In
chapter 2 some literature and background material is covered which is used in subsequent chapters.
The respiratory system is briefly described which forms the basis of the simulation, followed by an
introduction of the CFD software OpenFOAM. Chapter 3 describes the development of a model of
the gas exchange between the alveoli and the capillaries through a membrane. The chapter provides
the verification of the solver for the velocity and the concentration equations via grid refinements and
looking at the convergence rates for used the numerical schemes. Chapter 4 investigates the behavior
of the diffusion through the membrane when it becomes a function of time and concentration of
species. With the parameter study indicates how the function for the diffusion coefficient can be
manipulated. Chapter 5 and 6 summarizes the main features of the resulting model and presents the
overall conclusions of the research study. Several suggestions are made for future research work since
only the surface is scratched.
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Chapter 2

Theoretical Framework

2.1 Physiology

2.1.1 Respiratory system

Oxygen is a key fuel for the operation of the human body. Oxygen has to be taken from the air
around us and separated from other gasses, bacteria, and other impurities. The organ system which is
responsible for this process is the respiratory system, shown in Figure 2.1. The respiratory system is
defined as a group of organs involved in drawing oxygen into and removing carbon dioxide out of the
body (and cells). Oxygen is required to enable living cells to retrieve energy stored in carbohydrates,
fats, and proteins [9]. Carbon dioxide is the waste product of the metabolism of the cell.

Respiration starts when the diaphragm contracts, the lungs expand and air enters through the
oral cavity or nasal passage and moves through the nasal cavity to the lungs due to compression of
the diaphragm [10]. The nose and the other upper respiratory passages rapidly warm and moisturize
the relatively cold and dry air and filter large particulates from the air by cilia and mucous. Air
flow continues into the bronchi and moves down into an alveolus where oxygen diffuses into the blood
via the capillary beds. Gas exchange between the alveolus and the blood flow is selective since not
everything which enters the lungs should end up in our blood flow. Oxygen is allowed to diffuse into
the blood, where it attaches to the hemoglobin (Hb) in red blood cells. Carbon dioxide diffuses out of
the blood and back into the air in the alveolus where it is expelled out of the body by the depression
of the diaphragm [10].

In the respiratory system, the alveolus is the primary area of gas exchange. Alveoli are hemispheric
structures with diameters that range from 75 to 300 µm [10]. The ∼300 million alveoli have a combined
surface area of 50 to 100 m2 and an aggregated maximal volume of 5 to 6 L [10]. In humans, the lung
surface is so large and so efficient that O2 and CO2 transport across the alveolar wall is ∼3 fold faster
than necessary when the person is resting at sea level [10]. This indicates that the membrane is not
the limiting factor in oxygen uptake rate, but rather the supply of oxygen.

2.1.2 Gas exchange in the lungs

The exchange of both O2 and CO2 across the alveolar blood-gas barrier occurs by diffusion. The
concentration gradients by which O2 and CO2 diffuse through the membrane are created by the
ventilation and circulation of air. The membrane is covered with a film of water on the alveolar
side since diffusion of oxygen through the membrane occurs in the liquid phase. The membrane will
separate a volume filled with moist air from a volume of blood plasma at 37◦C [10].
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Figure 2.1: An overview of the relevant parts of the respiratory system and a closer look at the gas
exchange process in the alveoli [11].
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Fick’s law of diffusion states that the rate of transfer of gas through a sheet of tissue is proportional
to the tissue area (A) and the difference in gas partial pressure (Pi) between the two sides and inversely
proportional to the thickness (d) [10]:

dV

dt
=
A

d
D(PA − PC), (2.1.1)

where dV
dt is the amount of gas that diffuses through the tissue, D the diffusion coefficient, PA stands

for the partial pressure of the alveolar side of the membrane, PC for the partial pressure of the capillary
side. Dalton’s law [12] expresses the fact that the total pressure of a mixture of gasses is equal to
the sum of the partial pressures of the individual gasses in the mixture. Gasses dissolve, diffuse, and
react according to their partial pressures, and not according to their concentrations in gas mixtures
or liquids.

An important parameter in Fick’s law is the diffusion coefficient of gas, which describes the rate
of diffusion of a specific gas through a particular medium. Two properties of the gas contribute to the
diffusion coefficient, namely the molecular weight (MW ) and solubility of the gas in water (s). Gra-
ham’s law [12] states that diffusion is inversely proportional to the square root of the molecular weight,
and according to Henry’s law [12], the concentration of the gas dissolved in water is proportional to
the partial pressure in the gas phase. There is also a proportionality constant (k) that describes the
interaction of the gas with the membrane. Fick’s law of diffusion then becomes

dV

dt
=

Aks

d
√
MW︸ ︷︷ ︸
DL

(PA − PC), (2.1.2)

where DL is the diffusing capacity for the lung [mL/(min · mm Hg)]. This equation describes the
diffusion of gas between two compartments whose properties are uniform both spatially and temporally.
However, a closer examination of the parameters in real life reveals that this approximation is more
complex than described above. The parameters may vary in the following ways [10]:

• Lung expansion causes the surface area to increase and the thickness of the membrane to de-
crease.

• The thickness of the membrane is not equal everywhere.

• The alveolar partial pressure changes over time due to the respiration.

• The alveolar partial pressure varies among alveoli due to variations in the resistance of the
conducting airways, and the compliance of the alveoli.

• The diffusion of oxygen is maximal at the beginning of the pulmonary capillary and gradually
falls to zero along the capillary.

These complications which arise from Fick’s law with O2 diffusion also apply to CO2 diffusion.
Apparently, a single set of fixed values for DL, PA and PC cannot be inserted into the whole

system, but it can for a single piece of alveolar wall at a single time during the respiratory cycle. Each
cell has an individual diffusion coefficient, and the overall diffusion can be compiled by taking the sum
for all pieces and times.

2.1.3 Capillaries

Blood vessels consist of a system of tubes which transfer blood to and from the heart to all the parts
of the body. The diameter of these blood vessels varies enormously, from a diameter of ∼25 mm in
the aorta to only ∼9 µm in the capillaries [13]. The velocity of blood through the vessels changes
with diameter, and it is naturally the fastest in the aorta. In Figure 2.2 the velocity of the blood flow
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Figure 2.2: The cross-sectional area of different vessels of the vascular bed compared to the velocity
of the blood flow [13].

for each type of blood vessel can be found. The Reynolds number of blood flow in the body varies
from 1 in small arterioles (a small branch of an artery leading into capillaries) to approximately 4000
in the aorta [14].

The capillaries are necessary for the gas exchange in the lungs. These tiny blood vessels allow
for the exchange of substances between blood and the fluids outside of them. The most important
factor for gas exchange is the high density of capillaries around an alveolus which gives a large area
for diffusion.

2.1.4 Membrane

For oxygen to end up in the bloodstream, it has to diffuse through the membrane into the capillaries.
In this work, the diffusion is assumed to be over a homogeneous one layer membrane. However, the
actual membrane is a three-ply structure comprising an alveolar epithelial cell, a capillary endothelial
cell, and the intervening interstitial space containing extracellular matrix [10]. Without going into
the biological background of these structures, each structure contributes a resistance to the oxygen
diffusion rate.

As O2 diffuses from the alveolar air to the Hb inside an erythrocyte (red blood cell), it must cross
12 discrete mini-barriers (Figure 2.3) and contributes to a so-called membrane diffusing capacity, DM .
The 12 diffusive steps are analogous to 12 resistors in series. Electrical current (I) in I = 1

R · ∆V
corresponds to the flow of gas; the reciprocal of resistance corresponds to the diffusing capacity; and
the voltage difference corresponds to the pressure difference. The membrane diffusing capacity DM

can be determined via
1

DM
=

1

D1
+

1

D2
+

1

D3
. . .+

1

D11
+

1

D12
. (2.1.3)

where Di (for i = 1..12) corresponds to the diffusion coefficients of all twelve diffusion steps in Figure
2.3. These parameters vary with location in the lung and position in the respiratory cycle, as discussed
in section 2.1.2.
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Figure 2.3: Transport of O2 from the alveoli to the capillary where it binds to Hb [10].

The final step for most of the O2 entering the bloodstream is binding to the Hb. This occurs at
the finite rate (θ ·VC), where θ is a rate constant that describes how many mL of gas binds to the Hb
in 1 mL of blood each minute. VC is the volume of the blood in the pulmonary arteries. The diffusing
capacity of the membrane in an alveoli can then be expressed by

1

DL
=

1

DM
+

1

θ · VC
. (2.1.4)

2.2 Toolbox

The research presented in this thesis is concerned with the development of a simulation model of
the gas exchange between the alveoli and the capillaries designed in computational fluid dynamics
software. Computational fluid dynamics (CFD) [15, 16] is the analysis of systems involving fluid
flow, heat transfer and so on by utilizing computer-based simulations. In CFD the three fundamental
governing equations of the fluid dynamics are used: the continuity, momentum, and energy equations.
These equations are discretized and solved iteratively till the defined tolerance for the residual is
small enough. To date, no closed form solution to these governing equations is known. Therefore
computers are used to perform the complex calculations required to simulate the interaction between
liquids and/or gasses with surfaces defined by boundary conditions. Matrices with numbers are the
result of a CFD simulation and not an analytic solution. After the simulation is performed, some post
processing can be done to analyze and visualize the solution.

2.2.1 OpenFOAM

OpenFOAM is a free and open source 3D computational fluid dynamics software package. It can be
used for a wide variety of features to solve anything from complex flows involving chemical reactions
to turbulent flows, heat transfer, acoustics and electromagnetism [17]. The programming language in
which this toolbox is written is C++ although it has its own syntax. For example, the equation

∂u

∂t
+∇ · φu−∇ · (ν∇u) = −∇P (2.2.1)
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is written in OpenFOAM as

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));

where fvc:: will calculate the derivative using the current values and fvm:: will discretize the term
into a matrix equation.

Due to the wide range of applications of OpenFOAM, the appropriate available solver has to be
chosen for a particular application. Standard solvers can be found in the OpenFOAM User Guide [18]
and are divided into several categories, e.g. incompressible flow, multiphase flow, combustion, and
particle-tracking flows. The solvers in OpenFOAM use numerical schemes for derivatives in equations
that are calculated during a simulation. To be able to use these numerical schemes, each computational
domain has to be divided into grid cells and each center of the grid cell is used for calculations.

Five of the numerical schemes used in this thesis are explained below. For the spatial discretization,
two schemes are considered: Gauss Upwind and Central Difference [19]. The upwind scheme can be
written in a forward and a backward upwind scheme, depending on the sign of the characteristic
speed. The accuracy of the upwind scheme is first order, as can be seen in the equations below. The
central difference scheme is given by the third equation and is second order accurate in space.

∂u

∂x
=

u(xi+1, tj)− u(xi, tj)

∆x
+ O(h)

∂u

∂x
=

u(xi, tj)− u(xi−1, tj)

∆x
+ O(h)

∂u

∂x
=

u(xi+1, tj)− u(xi−1, tj)

2∆x
+ O(h2)

The temporal grid refinement makes use of three types of numerical schemes, namely Euler, Crank-
Nicolson and Backward Difference (BDF2). The first numerical scheme is a first order scheme while
the other two are second order schemes. The schemes are defined as follows:

• Implicit Euler [19]:
u(xi, tj+1) + u(xi, tj)

∆t
= F (u(xi, tj+1)) (2.2.2)

• Crank-Nicolson [19]:

u(xi, tj+1) + u(xi, tj)

∆t
=

1

2
[F (u(xi, tj+1)) + F (u(xi, tj))] (2.2.3)

• BDF2 [20]:

u(xi, tj+2)− 4
3u(xi, tj+1) + 1

3u(xi, tj)

∆t
=

2

3
F (u(xi+2, tj+2)) (2.2.4)

where F is a function dependent on the ODE system u′(t) = F (u(t)).
In this work, an extension of an existing solver of OpenFOAM was made (named chipFoam) since

creating a new system would take a tremendous amount of additional time. The current solver is
called conjugateHeatFoam which uses two regions. The original solver simulates the heat conduction
from a fluid to a solid. To be able to exchange information between the two regions in the system a
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unique boundary condition named regionCouple is used. This boundary condition is applied where
the interaction between two domains occurs. The same principal is used in the chipFoam solver,
however, a minimum of three layers is required (fluid-solid-fluid). To reduce the complexity of fluid
flows, only two dimensions are considered. Because OpenFOAM is a 3D CFD modeling program, the
length/depth for the third dimension was chosen to be 1/10 of the height of the channel.

An important component of the solver is the way it handles the coupling of the separate regions.
The diffusion coefficient at the interface is computed by an harmonic mean. From Patankar’s book
[21] it is known that when there could be abrupt changes in the diffusion coefficient (or any other
parameter) the harmonic interpolation scheme behaves much better than the linear one. The expres-
sion for the linear and harmonic interpolation between the membrane and a channel are respectively
presented below:

D =
1

2
(DM + DCh) (2.2.5)

D =
2 DMDCh

DM + DCh
=

2
1

DCh
+

1

DM

(2.2.6)

To see the behavior of these two interpolation functions, two limiting cases are studied:

• Let DCh → 0. Then, from (2.2.5) it is clear that D → 1
2 DM and (2.2.6) gives D → 0. This

last one implies that the flux at the face of the membrane becomes zero, where the membrane
is fully stuck, and nothing goes in or out anymore. This would be different if the linear average
were used where a leak from the membrane would always be present.

• Let DM � DCh. This indicates that interface diffusion coefficient is not dependent on DM for
the harmonic interpolation, however, for the linear interpolation, DM would have maintained
an effect on DCh.

With the use of the harmonic interpolation, abrupt changes can be handled without requiring an
excessively fine grid in the vicinity of the change.

To get a better understanding of all components which are needed for a simulation to run, a
small tutorial can be found in Appendix A. In this section, the process of setup, simulation and
post-processing is explained.

2.2.2 PISO algorithm

There are two widely used algorithms in CFD computing, namely the SIMPLE and PISO algorithm.
SIMPLE stands for Semi-Implicit Method for Pressure Linked Equations and is a guess-and-correct
procedure of the calculation of the pressure and velocity equations on a staggered grid [16]. The other
algorithm is PISO and stands for Pressure Implicit with Splitting of Operators. PISO can be seen as
an extension of SIMPLE with an extra corrector step to enhance its performance per iteration step
[16]. For the solver chipFoam the algorithm PISO is used and the computing steps are explained in
Appendix A.2.
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Chapter 3

Numerical Verification

An important part of computational mathematics is the verification of a model. To verify whether
the solver chipFoam is working properly, a comparison is made between the output of the model and
an analytical solution. First, the equation for the velocity is considered, and secondly, the profile is
analyzed. Subsequently, the analysis of the system is extended by the addition of a species transport
equation.

Both spatial and temporal mesh refinements and their convergence are studied. Examination of the
spatial convergence of a simulation involves performing the simulation on two or more successively finer
grids. As the grid is refined (grid cells become smaller and the number of cells in the computational
domain increases) and the time step is refined (decreased) the spatial and temporal discretization
errors, respectively, should decrease algebraically, creating a straight line in a loglog plot of error
versus resolution. The slope of the line is dependent on the discretization scheme used.

3.1 Velocity

A system is chosen to investigate the behavior of spatial and temporal grid refinements on the velocity
profile. To approach the shape and interactions in a lung-on-a-chip, the system is made from two co-
current flowing channels separated by a membrane (Figure 3.1). Both channels are modeled with
laminar flow considering the Reynolds number in the capillaries. At the inlet of each channel a block
profile is considered, and at the walls, a no-slip condition is imposed. This block profile will converge
to a Poiseuille profile and will be fully developed beyond the entrance length of the channel.

Ch 1

Ch 2

M

10 m

1 m

0.2 m

1 m

D = 0.25 m2/s

D = 1 m2/s

D = 0.25 m2/s

x

y

Figure 3.1: The computational domain of two channels (Ch) separated by a membrane (M).
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3.1.1 Analytic solution

The flow in the channel is assumed to be two-dimensional, incompressible and to have constant
properties. With these assumptions the continuity and momentum equations [22] for steady flow are

∂u

∂x
+
∂v

∂y
= 0 (3.1.1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
(3.1.2)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
(3.1.3)

where u and v are velocity components in respectively the x- and y-direction, ν is the kinematic
viscosity, ρ is the density and P stands for the gas partial pressure.

The flow in both channels is assumed to be a fully developed laminar flow, constrained by flat
parallel walls on the top and bottom of the channel. Each fluid particle moves at a constant velocity
along a streamline and the velocity profile remains unchanged in the flow direction. No velocity
component in the y-direction is possible due to impermeability of the walls which indicates that v = 0
across the system. The continuity equation simplifies to

∂u

∂x
= 0, (3.1.4)

where u = u(y). The momentum equations simplify to:

0 = −1

ρ

∂P

∂x
+ ν

∂2u

∂y2
(3.1.5)

0 = −1

ρ

∂P

∂y
(3.1.6)

Equation (3.1.4) is used to simplify (3.1.2). The only equation left after the simplification is (3.1.5),
which is a linear second-order ODE and this is easily integrated twice to yield

u(y) =
y2

2µ

dP

dx
+ C1y + C2, (3.1.7)

where C1 and C2 are integration constants, and µ is the dynamic viscosity. In order to determine the
integration constants, the no-slip boundary condition is applied at both walls of the channel.

y = 0, y = h u = 0

The final solution then becomes

u(y) =
1

2µ

dP

dx

[
y2 − hy

]
, (3.1.8)

where h is the height of the channel. The velocity distribution in the channel is parabolic and
symmetrical about the center. This exact solution is also called the Poiseuille flow.

This parabolic profile can also be explained physically. When fluid enters a channel at a uniform
velocity across the channel, friction will have an influence on the velocity profile along the channel.
The fluid particles of the layer closest to the surface of the channel will come to a complete stop due
to the no-slip condition imposed at the surface. Due to momentum transfer and the viscosity of the
fluid, the adjacent layers will also be slowed down. However, due to the conservation of mass to hold,
the velocity of the middle layer should increase resulting in a velocity gradient across the cross section
of the channel [23].
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Figure 3.2: Determination of the entrance length to obtain a fully developed Poiseuille flow from a
block profile.

3.1.2 Entrance length

When a block profile is imposed at the beginning of the channel, it will take some space for the
Poiseuille profile to be reached. The length it takes to reach this profile and become fully developed is
called the entrance length. The entrance length is important because only after this the comparison
can be made to the Poiseuille flow.

If the total channel length is long compared to the entrance length the effect of the entrance length
can be neglected and the total channel length can be used in calculations. If the total channel length
is relatively short in comparison with the entrance length the developing stage becomes much more
significant and has to be analyzed separately. For the calculation of the entrance length, the Reynolds
number and the diameter of the channel are required. The Reynolds number (Re) is defined as follows

Re =
umaxd

ν
, (3.1.9)

where umax is the maximum velocity of the parabola and d is the characteristic length of the channel.
These values are chosen such that the Reynolds number becomes 150 and this results in the following
entrance length [22, 23]:

Llaminar = 0.06 ·Re · d = 9 m. (3.1.10)

In Figure 3.2 it is shown that the flow is fully developed after 9m, since the velocity profile does not
change anymore with downstream distance. The entrance length is also checked for a longer channel
(20m, with same grid spacing as before) to confirm that this length stays the same; with the max
values respectively [1.4972; 1.4975]. For most calculations it is important to know when the flow is
fully developed; otherwise, the computed data is not reliable.

To compare the velocity profile computed in OpenFOAM to the analytical solution, the flow should
be fully developed. When a block profile is imposed at the inlet of this system, almost the whole length
of the channel is required to obtain a developed laminar flow and only in the last meter, the flow can
be considered as fully developed. For this reason, a parabolic profile is imposed directly at the inlet. It
takes less than 0.1s to settle to the final numerical solution which differs a little bit from the analytic
solution due to the discretization error (Figure 3.3). All further calculations should be done after 0.1s
to make sure the flow is fully developed.
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Figure 3.3: Required time to obtain a fully developed profile by imposing a Poiseuille flow at the inlet.
The maximum velocity requested is 1.5 m/s.

3.1.3 CFL condition

While solving partial differential equations numerically by the method of finite differences the Courant-
Friedrichs-Lewy (CFL) condition is required for the convergence. The CFL condition [19] is defined
as:

u∆t

∆x
≤ Cmax, (3.1.11)

where u is the local flow velocity, ∆t the simulation time step and ∆x the grid size. The value of Cmax

changes with the method used to solve the discretized equation, especially depending on whether
the method is explicit or implicit. If an explicit solver is used then typically Cmax = 1. Implicit
solvers are usually less sensitive to numerical instability and so larger values of Cmax are tolerated.
Generally, Cmax < 1.0 is a good rule of thumb. With the CFL condition, the ratio between ∆t/∆x
can be determined for several Reynolds numbers. The higher the Reynolds number, the smaller the
cells have to be to resolve the boundary layer. The smaller the cells and the higher the speed, the
smaller the time step that allows for a stable solution. This is a desirable property, otherwise, the
approximation errors may be magnified and the solution explodes.

3.1.4 Conservation of mass

The principal of conservation of mass is used to check if the velocity is the same at different points
in the channel when there is no diffusion possible through the membrane. The conservation of mass
implies that mass can neither be created nor destroyed, although it may be rearranged in space. Due
to the conservation of mass, in the steady state, the flow passing through x = L

4 should be equal to

the flow passing through, e.g., x = L
2 and x = 3L

4 . The conservation of mass can be determined by

QN =

∫ h

0

u(x̂, y) dy, (3.1.12)

where h is the height and x̂ is one of the above specified locations in the channel. A grid of 800× 160
is chosen, which is the finest grid that was simulated in OpenFOAM during this research. The finest
grid is selected to approximate the best solution. As an example, two cases are shown in Figure
3.4 in which a blob of species is covered by a different grid. It can be seen that a finer grid covers
the curves in the boundaries more accurately and that a calculated average concentration would be
approximated better.

All three places in the channel have a value close to 1, which indicates that the conservation law
holds, since the velocity block profile is imposed at the boundary with a value of one.
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Figure 3.4: A blob of species divided by a coarse (left) and a fine (right) grid.

3.1.5 Spatial convergence

To visualize the effect of both mesh quality and size on the results, initial simulations were carried
out with three mesh resolutions, 3 × 7, 5 × 15 and 10 × 30 and with Gauss upwind as the spatial
discretization and Euler as the temporal discretization. Figure 3.5a shows the velocity profile in a
channel for these three different mesh resolutions. The measured values can be found in the grid cell
centers, and therefore the velocity profile can only be determined up till a certain distance from the wall
equal to the distance from the center of the grid to the grid wall. The boundary condition on the wall
is no-slip and there is no velocity in the membrane since exclusively diffusion is present. The coarsest
mesh is not an accurate approximation of the analytic solution. However, when making the mesh
finer, the approximation becomes better. To check whether or not the approximations converges with
the right theoretical order to the analytic solution, the rate of convergence for discretization methods
should be determined. This rate of convergence is defined as:

|fn − f | ∼ n−p. (3.1.13)

A sequence fn is said to converge to f with order p [19]. The error ‖f‖ is measured in the so-called
L1 norm defined as:

1

N

∑
i

|uNi − uref
i |, (3.1.14)

where uNi is the velocity field computed on a mesh size with N grid points and uref
i is the analytical

reference solution or a sufficiently finer grid. It is also possible to determine the L1 norm at one
position in the channel and is then defined as:∑

i

|uNi − uref
i |. (3.1.15)

The convergence rate of the solution on three grid refinements is plotted in Figure 3.5b. This indicates
first order convergence since the numerical data follows the first order line. This is also in agreement
with the theoretical order of the Gauss upwind scheme that was adopted for the simulations.

The convergence of the solver chipFoam is checked with the discretization schemes Gauss upwind
and central difference. Both methods are checked at three positions in the channel (x = 2.5m, x = 5m,
and x = 7.5m). These three points in the channel are chosen as such that they are not too close to the
beginning or the end of the channel, otherwise, the inlet and outlet conditions could have an influence
on the flow. To check the correctness of the implementation of the convective term a uniform velocity
field is imposed at the inlet of the channel. This leads to a region near the inlet where u · ∇u is not
zero. In Figure 3.6 only one position in the channel is plotted as an example. Gauss upwind shows
first order convergence and central difference shows second order convergence in the graph, which is
expected from the theory.

Another way to establish, quantitatively, the order of accuracy of the numerical scheme is to
estimate the truncation error for successive grid refinements [24]. When the exact solution u is not
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Figure 3.5: (a) Result of three grid refinements converging towards the analytical solution. Two
parabola representing the first and second channel, separated by the membrane (no flow). (b) Con-
vergence plot of the respective grid refinements at x = 0.5 and t = 2s. The variable dx indicates the
size of the grid cell and L1 is the norm defined in (3.1.15) to measure the error.
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Figure 3.6: Convergence measured in the middle of a channel for two difference methods, respectively
Gauss upwind and central difference. L1 is the norm defined in (3.1.14).
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Central Difference Gauss Upwind
x = 1/4 x = 1/2 x = 3/4 x = 1/4 x = 1/2 x = 3/4

u∆x 5.0218 4.0046 3.8615 2.0994 1.9758 1.9778
u∆x/2 3.8429 3.9423 3.9720 1.8222 1.9107 1.9761
u∆x/4 3.8443 3.9919 4.1429 1.3815 1.7447 2.0946

Table 3.1: The convergence rate for two difference schemes at three locations in the channel. The
values in the first column indicate the term u∆x in the expression of (3.1.17).

known there are two main approaches. The first one is to compute a numerical reference solution with
a very small ∆x and subtract this from the solution for a grid of size ∆x and from one of size ∆x

2 :

(u∆x)
n − (u∆xref

)
n(

u∆x/2

)n − (u∆xref
)
n ≈ O ((∆x)n)

O
(
(∆x

2 )n
) ≈ 2n, (3.1.16)

where u∆x represents the solution at a specified grid and n indicates the order of convergence. The
reference grid (u∆xref

) should be sufficiently finer than the used grid in order to have an accurate
estimate of the convergence rate. This can be quite an expensive numerical strategy. The second
approach is to look at ratios of differences between the numerical solutions computed for different ∆x.
Most commonly the solutions are compared where ∆x is successively halved:

(u∆x)
n −

(
u∆x/2

)n(
u∆x/2

)n − (u∆x/4

)n ≈ O (1− 2−n)

O (2−n − 2−2n)
≈ 2n. (3.1.17)

When the difference scheme is first order (n = 1), the ratio should be close to 2 and for second order
the ratio should be close to 4. The convergence ratios for the two difference schemes mentioned above
can be found in Table 3.1. The ratios found in Table 3.1 are similar to the convergence rates found
in Figure 3.6.

3.1.6 Temporal convergence

The temporal grid refinement makes use of three types of ddtSchemes, namely Euler, Crank-Nicolson
and Backward Difference. For the temporal grid refinement, the same system set-up is used as before.
The spatial mesh size is chosen to be 800 × 160 and the spatial discretization scheme is central due
to higher accuracy. This very fine mesh is required to measure the convergence of the temporal error
independently. For the temporal grid refinement study, the flow should still change in time when the
data for the convergence rate is taken, since the derivative in time is considered. To check for which
time steps this is true, six locations in the channel (Lx =

[
1
4 ,

1
2 ,

3
4

]
and Ly =

[
1
4 ,

1
2

]
) are investigated

in terms of an still unsteady velocity profile. In Figure 3.7 the value of u is shown as a function of time
for the given six locations. It can be seen that at 2 seconds the lines have not settled yet, indicating
that the velocity is not established up until then. In OpenFOAM, the simulations for the temporal
grid refinement are run up to 2 seconds and with this data, the convergence rate can be calculated
using (3.1.15). In Figure 3.8 the convergence rates are plotted for two locations in the channel. There
is a clear difference between the convergence rate in the first part of the channel (entrance length) and
when the velocity profile is fully developed. It is expected that this difference is due to the change in
the flow since a block profile was imposed at the inlet which gradually converges to a Poiseuille flow.
When the flow is spatially developed the convergence rate corresponds to the theoretical order.

It is also possible to integrate over the difference of the velocity obtained with a coarse ∆t and a
reference value ∆tref.

1

t̃

∫ t̃

0

∣∣uEN (x∗, t; ∆t)− uEN (x∗, t; ∆tref)
∣∣dt. (3.1.18)
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Figure 3.7: Convergence time to obtain a steady state velocity profile at six location in the channel.

Temporal Time (s)
Euler 7208,43
BDF2 7036,25
Crank-Nicolson 8006,03

Table 3.2: Computation times for all temporal schemes where 800× 160 was the grid used.

The E represents the method which is used, t̃ is the time until which the solution is monitored and x∗

is the position where the value is measured. In Figure 3.9 it can be seen that Euler halves the value for
each mesh refinement in the fully developed part of the channel, while for BDF2 and Crank-Nicolson
the value becomes four times smaller. From the figure, it is clear that the methods correspond to the
theoretically expected convergence rate and is similar to Figure 3.8.

As previously stated, the spatial and temporal grid refinement convergence to their theoretical
order. From this, it is concluded that the solver for the Navier-Stokes equations is implemented
correctly in OpenFOAM.

To determine which difference schemes will be used for further calculations of the velocity deriva-
tives, the accuracy of the schemes is compared. For the spatial part it is quite clear, central difference
is best applicable since the accuracy is much higher. The only case where central difference could fail
is when Pe > 2, but this is not verified in this simulation. For the temporal part, the two second
order schemes are considered. Since the error for both second-order schemes is roughly the same, the
most appropriate scheme is therefore controlled by the computation time. In this case, there is a clear
difference in computation time (Table 3.2), therefore the BDF2 scheme is chosen.
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Figure 3.8: Three time-dependent differential schemes compared to first and second order convergence.
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Figure 3.9: Evaluation of equation (3.1.18) for three different time integration schemes.
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3.2 Concentration

In this section, the behavior of a generic species dissolved in the fluid medium is evaluated in Open-
FOAM. Similar conditions and dimensions are chosen as in the previous section. However, the system
model used (Figure 3.1) was the first design and was mainly focused on verification. The dimensions
of the system are not in proportion with a lung-on-a-chip application. More importantly, the value of
the viscosity is unrealistic and resembles a thick syrup instead of a more blood like viscosity. For this
reason, a new system is chosen and to sustain comparability, the amount of change has to be kept
small; the Reynolds and Péclet numbers are fixed and the dimension of the channel, the viscosity and
diffusivity of the equations are adjusted. The input profile for the concentration is a Gaussian profile,
which will result in a blob of species. The blob will be beneficial to track where the particles end up.

3.2.1 Non-dimensionalized equations

The problem is rewritten to reduce the parameter space in dimensionless form. The advantage of this
is that only the dimensionless numbers need to be varied instead of each parameter itself.

The incompressible Navier-Stokes momentum equation is written as

∂u

∂t
+ (u · ∇) u = −1

ρ
∇P + ν∇2u. (3.2.1)

The equation above can be non-dimensionalized through selection of appropriate scales which are
defined as follows:

x∗ =
x

L

u∗ =
u

V

t∗ =
t

L/V

P ∗ =
PL

µV

where L is a characteristic length, V is a characteristic velocity and P is a characteristic pressure.
Substituting the scales in (3.2.1) and rearranging the constants, the non-dimensionalized Navier-Stokes
momentum equation obtained is:

∂u∗

∂t∗
+ (u∗ · ∇) u∗ = −∇P ∗ +

ν

V L︸︷︷︸
1/Re

∇2u∗.
(3.2.2)

The Reynolds number is defined as the ratio of inertial forces to viscous forces and consequently
quantifies the relative importance of each type of force for given flow conditions [22].

The species transport equation is written as

∂c

∂t
+ (u · ∇) c = D∇2c. (3.2.3)

The only extra scale for this equation is defined as follows:

c∗ =
c

c0

where c0 is the initial concentration. Substituting the scales in (3.2.4), the non-dimensionalized species
equation obtained is:

∂c∗

∂t∗
+ (u∗ · ∇) c∗ =

D

V L︸︷︷︸
1/Pe

∇2c∗.
(3.2.4)
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Figure 3.10: Convergence measured in the middle of the channel for two types of difference methods.

The Péclet number (Pe) is the ratio of the rate of advection of a physical quantity by the flow to the
rate of diffusion of the same quantity driven by an appropriate gradient [22]. It is well known that the
cell Péclet number must be smaller than 2.0 to maintain numerical stability when using the central
difference scheme for the convective term in a linear convective-diffusive problem [19].

3.2.2 Convergence

With the equations dimensionless, the dimensions of the system can easily be changed. The system
should still behave the same as before and the dimensionless numbers play a convenient role in doing
this. For the case in section 3.1 the dimensionless Péclet and Reynolds numbers are determined as
follows:

Pe =
d · u
D

=
1 · 1
0.25

= 4

Re =
d · u
ν

=
1 · 1

1
= 1

In these dimensionless numbers the diameter d is used instead of the length L of the channel, since
a channel flow is assumed. These dimensionless numbers can also be determined for the grid cells
themselves:

Pecell =

√
(10/50)2 + (1/10)2 · 1

0.25
≈ 0.89

Recell =

√
(10/50)2 + (1/10)2 · 1

1
≈ 0.22

For a convection-diffusion problem, both Pe and Re of the cell should be lower than 2 to ensure
stability when using the central difference scheme. The coarsest grid is used, which results into the
highest Péclet and Reynolds numbers.

The dimensionless numbers have to stay in each system to keep it comparable. Indicating that ν
and D should decrease in value when ∆x is decreased. With these new values, grid refinement studies
are conducted again for both the spatial and temporal part. The system defined in section 3.2 shows
the same convergence rate as the system defined in section 3.1 as can be seen from the convergence
rates in Figure 3.10 and 3.11.

A scalar quantity (species) can now be added and verified. The input profile for the concentration
is a Gaussian profile given by A exp

(
kt2 + qx2

)
, which will result in a blob of species. A blob of species

is chosen over a uniform distribution of species to track where the species end up. The constant values
k and q are chosen as such that the blob does not move too fast or too slow through the channel.
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Figure 3.11: Three time-dependent differential schemes compared to first and second order conver-
gence. Taken at time equal to 0.002.
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Figure 3.12: Concentration distribution at 6 points in time. Maximum velocity of Poiseuille flow is
set at 1 m/s. Diffusion constants for each channel is 2.5e-4 m2/s and for the membrane 1e-3 m2/s.

The simulation is run with Poiseuille flow in both channels, with a maximum velocity of 1 m/s.
The diffusion coefficient in the membrane is four times higher than in the channels. The result of this
simulation is shown in Figure 3.12. The species enters channel one and starts diffusing towards and
into the membrane to the second channel. The scale of the concentration is adjusted in each graph to
visualize the changes in the overall concentration profile, rather than the actual concentration at each
specific location. After 0.2 seconds, the concentration is distributed almost evenly over the system.
It ’s hard to see whether the convection is larger than the diffusion. Neither force seems to dominate
when looking at the moving concentration blob in channel one. This can be verified by reviewing
the Sherwood number [22] in channel one. The Sherwood number shows the ratio of the convective
and diffusive forces. For particular simulation the Sherwood number is 1.067, indicating that the
convection is only slightly higher than the diffusion. There is no velocity in the membrane itself which
explains the slower behavior of the species seen in Figure 3.12. Due to the tendency of concentration
distributing evenly over a system, it can be explained that the highest concentration will agglomerate
in the center of the membrane. Due to these observations, it is concluded that the system behaves as
expected.

Spatial and temporal grid refinements are applied to the new system, and the convergence rates in
Figure 3.13 correspond to the theoretical rate for almost all schemes. When looking at Figure 3.13 it
can be seen that for the Crank-Nicolson scheme the slope deviates from the declining trend when ∆t
becomes too small. To check if something else is interfering with the convergence, the tolerance of the
solver is adjusted to see the convergence at several tolerances. Both the BDF2 and Crank-Nicolson
schemes are run with ascending tolerances for the BiCG solver with a Cholesky preconditioner in
Figure 3.14. It becomes clear that decreasing the tolerance has a positive effect on the convergence
rate of the scheme. However, the anomaly for the Crank-Nicolson scheme stays to exist and due to
the positive results from the previous section, BDF2 is adopted as the difference scheme from now
on. For the spatial part, the central difference scheme is best applicable since the solution is more
accurate. The only case where central difference could fail is when Pe > 2, but this is not verified for
this simulation.
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Figure 3.13: Grid refinement for both the spatial (left) and temporal (right) parts of the species
equation.

10-6 10-5 10-4 10-3

dx

10-9

10-8

10-7

10-6

10-5

10-4

L 1

second order
tol -6
tol -8
tol -10
tol -12

10-6 10-5 10-4 10-3

dx

10-9

10-8

10-7

10-6

10-5

10-4

L 1

second order
tol -6
tol -8
tol -10
tol -12

Figure 3.14: Comparison of simulations run with ascending tolerance for two schemes BDF2 (left)
and Crank-Nicolson (right).
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Chapter 4

Membrane Fouling

The International Union of Pure and Applied Chemistry defines fouling as follows [25]: “The process
that results in a decrease in performance of a membrane, caused by the deposition of suspended or
dissolved solids on the external membrane surface, on the membrane pores, or within the membrane
pores.” Membrane fouling can cause severe flux decline and affect the quality of the membrane itself.
Flux decline is the decrease of the permeation through a membrane.

Fouling is also possible in the lung membrane, think for example about smoking which causes fine
particles and tar to “stick” to the membrane and possibly block the pores through which the oxygen
should diffuse. Because this affects the overall performance, it is an important aspect to investigate.
The mathematical description of membrane fouling can be based on different fouling mechanisms.
However, the membrane is often seen as a black box in literature [26, 27, 28] where only the overall
diffusion is affected regarding the flux, rather than localized fouling by actual particulates. In this
thesis, fouling is first approached by a mathematically described decay of the diffusion coefficient
which goes to zero. However, it is not favorable for the diffusion to stop completely which resulted
in a bounded diffusion coefficient. The chapter concludes with a function for the diffusion coefficient
which is dependent on the concentration diffusing through the membrane. The membrane degrades
when concentration is present in the membrane and partially recovers after the concentration moves
away again.

4.1 Declining diffusion coefficient

First, a linearly decaying diffusion coefficient is implemented. It is a good way to verify that the
diffusion coefficient is behaving as expected and hence can be implemented correctly. A second and
more realistic function to approach fouling in the membrane is an exponentially decaying function.
As the flux is affected by both the diffusion coefficient and the driving force due to concentration
differences, an exponential decay would be more applicable. The functions are defined as

Dlin = D0

(
1− t

τ

)
(4.1.1)

Dexp = D0 exp

(
−αt
τ

)
(4.1.2)

where D0 is the initial diffusion coefficient, α is a constant and τ the time when the diffusion coefficient
becomes zero (t = τ means D = 0). The simulation does not stop when t = τ , to see the effect over
time on the concentration of species.
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Figure 4.1: The effect of the decline in diffusion coefficient on the concentration in both channels and
the membrane. The dashed line indicates t = 0.15s when the diffusion coefficient becomes zero for
the linear decline.

Both the linear and exponential function of the diffusion coefficient are implemented and compared
to a system with a constant diffusion coefficient which is taken as a reference. The result of this
comparison is given in Figure 4.1 for each part of the system. In the left figure, the change in the
diffusion coefficient of three functions are given, with at t = 0.15s an approximately zero diffusion
coefficient for the linear and exponential decay. This point in time is chosen since the blob of species
has not yet left the channel, when there would be no diffusion through the membrane, and the diffusion
coefficient is not instant zero which leaves us with some change in the concentration. The effect of
the changing diffusion coefficient on the concentration profile can be seen in the next three figures in
Figure 4.1 where the concentration is plotted respectively in channel one, the membrane and channel
two. The sum is taken of the concentration of the species in each part of the system for each time
step. Each result is observed and compared with what would be theoretically expected to happen to
determine whether the simulation is correct. As an indication, the time at which the diffusion is zero
for the linear decay (and near zero for exponential) is shown with the striped blue vertical line.

With a decaying diffusion coefficient, the concentration slightly builds up in channel one. This
increase is expected as less concentration can exit channel one via the membrane before the outlet of
the channel is reached. This effect is only minor for the exponential decay and negligible in case of the
linear decay. The opposite happens later in time where the concentration for the constant diffusion
(reference) is higher. Since the diffusion has become (almost) zero, only convection is present and the
species will leave the channel. As a confirmation of this behavior, a comparison between constant and
zero diffusion through the membrane is made in Figure 4.2. The (s-)shape of the red curve is mainly
driven by the concentration blob entering and exiting the channel due to convection.

In view of the decreasing diffusion coefficient in the membrane, more and more of the species
slows down and is “trapped”, which results in the higher peak of concentration. This increase is more
significant for the exponential than for the linear decay. A significant part of this “trapped” species
reaches the other end of the membrane and diffuses to channel two. The concentration profiles stagnate
at a particular value as D goes to zero as is visible from the graph. The exponential decay moves much
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Figure 4.2: The sum of the concentration at each time step for two diffusion cases: constant diffusion
and no diffusion.

faster towards zero in channel one compared to the reference, the change in the concentration profile
in contrast to the reference is much more significant. However, the exponential diffusion coefficient
does not actually reach zero which results in some leakage of the species in channel two. When the
linear diffusion coefficient becomes (near) zero in the membrane, it is expected that the concentration
in the membrane shows a sharp turn towards a particular value, as the species should not be able
to move anymore. The line for the linear decay indicates that there is a significant change in the
profile, however, the concentration moves slowly towards a specific value and most importantly only
starts after the diffusion coefficient becomes zero. The concentration field at t = 0.15s is compared
to the steady-state field at t = 1s and only at the boundaries, a concentration difference is present,
indicating leakage to both channels. To see what happens at the boundaries of the membrane, the
central discretization around the boundary is studied and a sketch can be found in Figure 4.3. The
flux (~j = −D∇c) at the boundary is determined by the diffusion coefficient and the derivative is
discretized by the central discretization scheme. When looking at the left node from the membrane,
the flux will always be zero due to the D, however, the right node of the membrane will create a
flux since both nodes have concentration. Due to this discontinuity concentration is generated and
to bypass this generation a one-sided discretization should be applied only at the first node in each
channel. Correcting this in OpenFOAM requires a lot of changes in the solver and is therefore not
favorable. In addition, it is assumed that the flux will not be equal to zero and therefore the case of
D→ 0 is not realistic.

The concentration of both linear and exponential decay in channel two are expected to go towards
zero, just as the reference concentration profile for a constant diffusion coefficient. Either nothing
comes through the membrane anymore or the species is held inside the membrane and all the species
exit at the outlet. The higher peak in species for the exponential function is caused by a faster decay of
the diffusion in the membrane. The decline of both profiles is less steep after about 0.15 seconds than
for the reference concentration profile. When looking at Figure 4.4 the center of the concentration
blob present in the membrane is located much further along the length in the case of the constant and
the linear diffusion coefficient compared to the exponential diffusion coefficient. Therefore, most of the
species enters channel two earlier in the channel for the exponential diffusion coefficient, explaining
the shift in time and reduced decay of the concentration in the channel.
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D = 0 m2/s

D 6= 0 m2/s

Figure 4.3: The discretization around the right boundary of the membrane.

Figure 4.4: The effect of the linear, exponential and constant diffusion coefficient profiles on the
concentration distribution over time. Each graph consists of channel one, the membrane and channel
two from left to right. The concentration enters the system in the lower left corner.
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Figure 4.5: Cross-sections of the concentration profiles taken at y = 100 from Figure 4.4. Concentra-
tion profiles plotted for the linear (blue) and exponential (red) function at different times.

When looking at Figure 4.4 at the concentration profiles for the linear and exponential diffusion
functions, the shapes are different but not very clear from the top. For this reason, the concentration
profiles are plotted over time in Figure 4.5. The linear function reaches faster the steady state solution
than the exponential function. When the diffusion coefficient becomes (near) zero, the concentration
in the membrane “freezes” and the species in both channels exit through the outlet without continued
exchange with the membrane. This results in two different profiles inside the membrane. It is evident
that the solver needs more time to reach the steady-state solution in the second channel than for the
first channel. For this case, the computation time should be over 1.5s to reach steady state. The
concentration in the channels goes to zero with time, as expected.

The leakage at the boundaries of the membrane is a numerical error and should not happen. Besides
that, a zero diffusion coefficient in the lungs is very deadly and therefore, another approximation of
the membrane should be considered, e.g. a bounded linear and exponential function for the diffusion
coefficient.

4.2 Bounded diffusion coefficient

To prevent the diffusion coefficient from going to zero, a bounding parameter is required. Both the
linear and exponential function need to be bounded by this function and are defined as

Dlin = max

{
D0

(
1− t

τ

)
,D1

}
(4.2.1)

Dexp = D1 + (D0 − D1) exp

(
−αt
τ

)
(4.2.2)

with
D1 = D0 exp(−α). (4.2.3)
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The parameter D1 is the bounding parameter and α is a constant determined by the negative log
of the ratio D1/D0. This ratio determines at which percentage of the initial diffusion coefficient the
diffusion becomes constant. For now the ratio is chosen to be 1

10 so the behavior of the species can
be examined when the diffusion coefficient becomes small.

The results of the bounded functions are given in Figure 4.6. In the figure it can be seen that
the amount of concentration in each part of the system behaves similarly compared to the reference
constant diffusion coefficient. When making τ smaller, the diffusion coefficient goes faster to zero
and the behavior of the species changes. In Figure 4.6a, τ is taken the same as in Figure 4.1. Again
the exponential function has a higher concentration in the membrane and in channel two than the
reference diffusion coefficient. The concentration of species in all parts of the system goes to zero
as expected. However, comparing to Figure 4.1 the decline in concentration is a bit faster for the
linear and exponential function in the membrane and in channel two, due to the concentration going
to zero in the membrane. When τ is halved, the linear and exponential function behave the same.
When τ is halved again, the exponential function reaches almost instant D1 which results in a smaller
concentration of species diffusing into the membrane. In contrast, the linear decay has a higher
concentration in the membrane compared to the previous case. This concludes that the tipping point
of τ lies at the point where the concentration is highest in the membrane. Where the low diffusion
coefficient at τ before the concentration peak in the membrane has a trapping effect for the linear
equation and a blocking effect for the exponential.

A spatial grid refinement is utilized for both functions and they behave according to their theoret-
ical convergence rate (Figure 4.7). The temporal grid refinement is not shown since the error becomes
smaller than the machine error and will not have a meaning other than that the used time step is
guaranteed to be small enough.

A parameter study is done for the three parameters which have an influence on the function of the
diffusion coefficient. Only the exponential function is considered since the function is more general
than the linear case. The parameter study is worked out in Appendix B.

4.3 Coupled function for the diffusion coefficient

In this section, a model for the diffusion coefficient is developed to include the dependency on the
concentration. The developed model in this section is not based on an actual case but rather builds a
platform and basis for a coupled system. The goal is to model the degradation of a membrane which
is locally affected by a generic gas species. The diffusion of the membrane should directly be affected
by this species and more importantly progress back towards its original value, mimicking the partial
healing of the membrane.

This model can be created by applying a specific equation with a dependency on local species
concentration in the membrane. The membrane would be negatively affected by this species and when
the concentration decreases the diffusion coefficient should move towards a set lower concentration,
representing permanent damage to the membrane.

The bounded exponential function in the previous section is a solution of

dD

dt
= −α

τ
(D− D1) (4.3.1)

with D(0) = D0 as initial condition. This equation is implemented in OpenFOAM and the species
exchange is simulated. The result of this model is compared to see if the result matches the decay of
the exponential diffusion function defined in (4.2.2). The results of both functions match perfectly,
indicating a correct implementation of (4.3.1). The only difference was that the simulation employing
(4.3.1) had a smaller ∆t, otherwise the residual for the species equation did not become small enough.

To create a diffusion coefficient in the membrane which is dependent on both time and concentra-
tion, equation (4.3.1) is tailored to include the concentration of species. The constants α and D1 are
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(c)

Figure 4.6: Concentration profile of two functions for the diffusion constant, bounded by D1, respec-
tively linear and exponential decay compared to a constant diffusion. The sum is taken over the
concentration in each part of the system. The parameter τ = 0.15 (infliction point by striped line) is
halved consecutively in (b) and (c).
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Figure 4.7: Spatial grid refinement of the linear and exponential function of the diffusion coefficient.

replaced by a linear equation, such that:

dD

dt
= −θ(c)

τ
[D− D2(c)]

θ(c) = α+ β · c
D2(c) = γ + ε · c
D(0) = D0

(4.3.2)

where α, β, γ, ε and τ are parameters. The values of the parameters have to be determined, to obtain
the requested behavior of the diffusion coefficient while with varying concentration. To determine the
magnitude of α and γ, a simplified model is studied first, by setting β and ε to zero in (4.3.2). In
addition, both parameters have restrictions:

α > 0

0 < γ < D0

The parameter α can not be negative as an increase of the diffusion coefficient is not considered. The
parameter γ should not be larger than D0 as again the diffusion coefficient would increase over its
maximum value D0. In addition, γ can not be smaller than zero since the diffusion can not physically
be negative. To determine the values of the parameters for the first simulation, the values for α and
γ are taken such that the decay of the diffusion coefficient is equal to the exponential function in the
previous case. For simplicity, the parameter τ is also taken the same as before.

To obtain values for both β and ε in the right order of magnitude, the values are taken equal to α
and γ respectively. The order of magnitude is sufficient to assess the effect of the diffusion coefficient
and the behavior of the affected concentration distribution. Comparing the results for each simulation
in a 2D form would be difficult and for this reason, the average of one specific row in the matrix of the
membrane is chosen and compared to the same row in another calculation with different parameter
values. A row near the inlet of the channel is preferred to apply the effect of a high concentration
on the diffusion coefficient via the parameters. The effect of each parameter is therefore increased in
magnitude in each evaluation to make comparison more effective. Figure 4.8 compares the result of
three chosen grid rows near the inlet of the channel. Mind that only the diffusion in the membrane is
evaluated and shown. The row of the grid cells at x = 25 is chosen as an arbitrary row as the results
are quite similar.
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Figure 4.8: Comparison of the average diffusion coefficient over time of a specific grid cell row in the
membrane

To confirm the difficulty of assessing a 2D plot the results for a simulation is shown in Figure
4.9 with the parameters β = α and ε = −γ. Although difficult to compare, this form of assessment
does show that the diffusion coefficient is affected by the main concentration blob moving along the
channel. After some time it becomes visible that the diffusion coefficient starts to increase again and
that the damage done is partly being reversed (see the color bars). The simulation is run till 1 second,
however, to recover the entire membrane more time is needed.

The parameters β and ε are both simulated with a positive and negative value and the curves are
visible in Figure 4.10a. When one of the parameters is considered, the other one is taken as zero to
exclude interference on the behavior. These curves for β and ε are compared to the function in which
the parameters are both zero. All curves end up at the asymptotic value γ, however, the curve with
ε < 0 has a faster decline than the curve with ε > 0 which is more evident in Figure 4.10b. Both
curves for β deviate from the reference line and β > 0 will reach the asymptotic value ahead of β < 0.

It is not immediately clear what the effect of these parameters is on the diffusion coefficient and for
this reason, the values for both parameters are increased. In Figure 4.11 the parameter β is increased
significantly and the inflection point appears earlier in time. However, when the value of β becomes
negative, an increase in diffusion coefficient can be seen, which can be explained by looking at the
analytic solution of equation (4.3.2).

D(c, t) = (γ + ε · c) + [D0 − (γ + ε · c)] exp

(
− (α+ β · c) t

τ

)
(4.3.3)

When the term α + β · c becomes negative due to β, the exponent becomes positive which results in
an increasing diffusion coefficient. When the concentration increases, the term could become big and
the simulation explodes.

The values for ε are increased to see the behavior in more detail, see Figure 4.11. This figure
shows that ε causes a kind of damping effect of the diffusion coefficient, a clear overshoot is seen when
moving towards the bounded value. When ε becomes negative, the function becomes underdamped
and approaches zero faster than in the case of critical damping (the other lines), but has an overshoot
and then approaches the bounding function. The diffusion coefficient comes close to the zero, so
increasing the value of ε could make for an interesting case. The value for ε is made twice as big and
this results in a negative diffusion coefficient. In Figure 4.12 the diffusion coefficient profile and the
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Figure 4.9: The diffusion coefficient profile as a function of concentration over the membrane. With
β = α and ε = −γ.
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Figure 4.10: (a) Average diffusion coefficient on row 25 of the membrane over time with different
parameter settings. (b) Log of the diffusion coefficient minus the bounding parameter over the time
with different parameter settings.
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Figure 4.11: The diffusion coefficient over time for different parameter values of β and ε = 0 (left).
The diffusion coefficient over time for different parameter values of ε and β = 0 (right). Both with a
striped reference line where β = ε = 0.
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Figure 4.12: The diffusion coefficient over time for ε = −20γ and β = 0 with the corresponding
concentration. Showing unrealistic values due to a too negative value for ε.

associated concentration profile are depicted. When the diffusion coefficient becomes negative, the
concentration increases drastically and with this increasing concentration, the diffusion coefficient rises
far beyond the reference diffusion coefficient. It is clear that the final concentration in the membrane
can never be negative, so the diffusion coefficient should not become smaller (or equal) to zero.

The result in which ε is the negative of γ already shows the required effect of a “repairing”
membrane which was introduced earlier. However, the diffusion coefficient which is reached over time
is very low, almost 10%, which would result in nearly 90% irreversible damage to the membrane. It
is assumed that irreversible damage would not be of such a significant amount and therefore about
20% of irreversible damage is chosen as a target. A new calculation is made in which the bounding
function (parameter γ) is 80% of D0. The result of this base case can be found in Figure 4.13. The red
line marks the line to which the curve should converge and it is visible that the diffusion coefficient
decreases fast due to the concentration and passes the bounding parameter before recovering slowly.
The results in this figure show that the goal of this section is reached as the diffusion coefficient in
the membrane is affected by the concentration in a negative way after which the membrane “repairs”
and is left with specific irreversible damage. To expand the application options of the equation the
parameters can be adapted to manipulate the shape of the curve.

A parameter study is applied to find the effect of each parameter on the shape of the curve. The
parameters and the shape of Figure 4.13 are taken as a reference. In Figure 4.13, the parameter β
is taken as zero, however, during the following parameter study β will be given a value to see if the
curve can be optimized. The parameters α and γ are taken for a specific value since the line to which
the curve should converge is set to 80% of D0. For this reason, both ε and β can be adjusted based on
respectively γ and α. The values are respectively multiplied and divided by 10 to determine which of
the three manipulations can be used to adjust the shape. For instance, ε = −γ, ε < −γ, and ε > −γ
are compared to each other in Figure 4.14a. The striped line corresponds to the reference from Figure
4.13 and will be called the reference from here on out. For ε it is clear that the manipulation ε > −γ
can be used to produce the overshoot. The same is done for β, where the value is taken equal to
α, divided by 10 and multiplied by 5. The parameter α is multiplied by 5 instead of 10 due to the
large positive jump in diffusion which can not be compared to the other simulations. With increasing
β, the minimum of the curve decreases which results in a steeper recovery of the diffusion coefficient
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Figure 4.13: Base case diffusion coefficient for parameter study with corresponding concentration
profile. Parameters: γ = 0.8 · D0, α = − log (γ/D0), β = 0, ε = −8e− 3 and τ = 0.6.

(Figure 4.14b). In addition, the parameter τ is halved consecutively and this has also an influence
on the minimum of the curve as well as the width of the overshoot, as can be seen in Figure 4.14c.
Therefore, the deeper the minimum, the faster the rise back to the bounding parameter. A gloss
upon these restrictions is that the diffusion coefficient should never become zero, due to physically
impossible results.

There are three things in Figure 4.13 which may be manipulated to get the result you want. How
low the minimum goes is dependent on the parameters ε, β and τ , the width of this minimum is
reliant on the parameter τ and the height of the bounding function is determined by γ.

39



0 0.2 0.4 0.6 0.8 1
time (s)

7

8

9

10

D
iff

us
io

n 
co

ef
fic

ie
nt

10-4

(a)

0 0.2 0.4 0.6 0.8 1
time (s)

6

7

8

9

10

D
iff

us
io

n 
co

ef
fic

ie
nt

10-4

(b)

0 0.2 0.4 0.6 0.8 1
time (s)

2

4

6

8

10

D
iff

us
io

n 
co

ef
fic

ie
nt

10-4

(c)

Figure 4.14: Results of the parameter study of (a) the parameter ε, (b) the parameter β and (c) the
parameter τ .
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Chapter 5

Conclusion

The goal of this thesis was to build a basis for the computation of gas exchange between two fluids
separated by a membrane and the effect of membrane degradation on the gas exchange. The foundation
of this thesis is based on the lung-on-a-chip technology developed by the Wyss Institute.

An existing solver in the open-source software OpenFoam was adjusted to create three regions
(fluid-solid-fluid) to mimic the interior of the chip. A first basic (large) model containing a Poiseuille
velocity profile in both channels was made and the correct theoretical order of accuracy was obtained.
Subsequently, the dimensions of the system were reduced to centimeters to approach a more realistic
size. The theoretical order of accuracy was determined for the new system and found equal to the
previous case. Concluding that the system was indeed scalable and the same solutions could be
obtained. The next step was the implementation of the species transport equation to include gas
exchange in the model, by means of diffusion through the membrane. Based on each determination
of order of accuracy, a difference scheme was successfully chosen for the spatial and temporal part of
the velocity and concentration derivatives.

To extend the properties of the model, a basic form of membrane fouling was added to the sim-
ulation. The diffusion coefficient in the membrane was changed via a specific equation, in this case
a linear and exponential decaying function. These equations were first set to be only dependent on
time and to decay to zero. Results showed that with this decay towards zero, there was a numerical
error at the boundaries of the membrane. For this reason the case of diffusion to zero was discarded.

A bounded decay equation, dependent on time, was considered to circumvent the previous problem.
This bounded function was progressively expanded to include dependency on concentration. The final
model consisted of a concentration and time dependent equation with adjustable parameters which
could be manipulated to obtain a desired diffusion decay.

The goal of this thesis was reached by creating a basis for the computation of gas exchange and by
providing a basis to simulate membrane degradation via a concentration dependent diffusion equation
with adjustable parameters.
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Chapter 6

Discussion and Recommendations

The application of OpenFOAM as a computational fluid dynamic simulator has shown to be time-
consuming. The solver is far from working as the lab-on-a-chip designed by the Wyss Institute. There
are several things which should be added/changed to make it more applicable:

• The control over the diffusion in the membrane is an important aspect of the model. Diffusion
should only promote transport in the y-direction, while in the current application it also diffuses
in the x-direction across the membrane. This is not representable for a lung-on-a-chip application
as the diffusion through the membrane can be seen as small “vertical” portals through which
the particles diffuse.

• The direction of flow through the channels are driven by the blood flow and air in the alveoli.
Depending on the application in the lung-on-a-chip this could also be counter-current flow. When
the blood and air channels flow counter-current of each other, a better overall mass transfer can
be achieved. A higher concentration gradient between both channels is created as the oxygen-
poor blood outlet is contacted with an oxygen-rich air inlet. An extension of the model would
be the implementation of this counter-current flow and comparison with a co-current flow to
evaluate the advantages.

• The concentration profile is a blob of species entering the channel at one time in the simulation.
Breathing does not happen once and the condition should be changed to a periodic condition.
To implement the behavior of exhaling and inhaling, the species inlet and profile should become
a function of time. Cascaded simulations could mimic the actual respiration cycle.

• The exchange between oxygen and carbon dioxide should be implemented to evaluate the effect
of multiple species in the model.

• The diffusion is dependent on the concentration of the air, while air is not toxic to the lung
membrane. An extra specie should be introduced to mimic the tar in smoke to reduce the
diffusion coefficient. The effect of the reduced diffusivity can then be studied for the oxygen
concentration in the blood vessel. The other way around is also an option; medication can be
added to an injured membrane.

• The shape of the simulated membrane is still flat, while the initial goal was to change the
geometry of the membrane into a curved or a sine wave. A simple simulation of a flat membrane
posed several challenges which will only be expanded when changing in shap of the membrane.
Laminar flow might not be applicable (realistic) any more and different models may need to be
applied.

• The membrane simulated in OpenFOAM consists of only one layer, while in Figure 2.3 it became
apparent that there are three layers through which the concentration should diffuse in 12 diffusion
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steps. A literature study should be done to check whether there is any information about these
diffusion steps which can be simulated.

• The viscosity in the channels should be different from each other and should mimic air and blood
in the channels. This will result in different flow rates and the species will be slower/faster in
the channel.
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List of Symbols

A tissue area m2

c concentration of some species mol
Cmax maximum ratio for the Courant number
d thickness of the membrane m
D diffusion coefficient m2 s−1

D0 initial diffusion coefficient m2 s−1

D1 bounded function for the diffusion coeffi-
cient

m2 s−1

DL diffusing capacity for the lung mL/(min mm Hg)
DM membrane diffusing capacity m2 s−1

h height of the channel m
~j concentration flux mol m−3

L length of the channel m
n order of convergence
N amount of grid points
P partial gas pressure kg/(ms2)
Pe Péclet number
Re Reynolds number
s solubility of the gas in water
∆t time step s
u x-direction velocity m s−1

u∆x solution at a specified grid
v y-direction velocity m s−1

Vc volume of blood in the pulmonary arteries
x, y, z coordinates m
∆x x-direction width of the control volume m

ν kinematic viscosity m2 s−1

µ dynamic viscosity kg/(ms)
ρ density kg m−3

τ time at which the diffusion coefficient becomes zero s
θ rate constant for the binding of O2 to Hb
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Appendix A

Quick guide for OpenFOAM

A.1 Pre-processing

OpenFOAM has the following case structure which is used for the pre-processing:

solver
0

T

U

constant

polymesh

blockmeshDict

boundary

transportProperties

system

controlDict

fvSchemes

fvSolution

In these files the data for the simulation can be found, e.g. mesh, fields, properties, control
parameters etc. The structure is the same for most solvers and when a sufficient solver is chosen,
the files in the case structure should be altered to match the new simulation. At first, the geometry
should be modified in blockMeshDict to the block structure of the mesh. Then the initial, boundary
and simulation parameters should be defined. Below the different files in the directories are explained
in a bit more detail. This simplest thing to do, is explain the files based on a simple example. We
have a closed box with some heat properties. When t = 0, the temperature is decreased on one side
of the box which will result in a temperature gradient over time.

A.1.1 blockMeshDict

In OpenFOAM, all geometries are generated in 3 dimensions, but since our case is in 2D we make the
depth of the cube small compared to the length and the width (1m × 1m × 0.1m) with a uniform
mesh of 20×20×1. With this knowledge the file blockMeshDict can be adapted as in the code found
below. In line 1-15 some general information about OpenFOAM is printed, and for the remainder of
this document these lines will be removed from the quoting of the case files.

The blockMeshDict file starts with vertices, where the coordinates of each point of the outline
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Figure A.1: Block structure of the mesh.

of the block are placed. The order in which you number the corners is free to choose, however, the
common manner is depicted red in Figure A.1. In the brackets behind blocks the numbering of the
points is written, behind that the mesh size in each direction and the cell expansion ratios.

In line 40-76 (boundary patch) four regions are defined and the name is the user’s choice (keyword),
for this case the keywords are chosen as depicted in Figure A.2. These names will be used as identifiers
throughout other data files. The line below the keyword says type and here you have several options
(with preprogrammed conditions) which can be found on page 139 of the OpenFOAM User Guide [18].
In this example, it is chosen to use wall since the box is closed. In the faces patch the corresponding
side of the block structure is entered.

4 5

67

fixedWalls

leftWall

rightWall

frontAndBack

Figure A.2: 2D block mesh.

There are two input fields which are left open, edges and mergePatchPairs. If the geometry
contains no curved edges, edges may be omitted. If the mesh is created by more than one block, the
mergePatchPairs will “glue” the patch together, which is not necessary in this case.

1 / * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* - C + + -* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*\

2 | = = = = = = = = = | |

3 | \ \ / F i e l d | O p e n F O A M : T h e O p e n S o u r c e C F D T o o l b o x |

4 | \ \ / O p e r a t i o n | V e r s i o n : 2 . 2 . 0 |

5 | \ \ / A n d | W e b : w w w . O p e n F O A M . o r g |

6 | \ \ / M a n i p u l a t i o n | |

7 \* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * /

8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c lass d i c t i ona ry ;
13 ob j e c t blockMeshDict ;
14 }
15 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /
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16
17 convertToMeters 1 ;
18
19 v e r t i c e s
20 (
21 (0 0 0)
22 (1 0 0)
23 (1 1 0)
24 (0 1 0)
25 (0 0 0 . 1 )
26 (1 0 0 . 1 )
27 (1 1 0 . 1 )
28 (0 1 0 . 1 )
29 ) ;
30
31 b locks
32 (
33 hex (0 1 2 3 4 5 6 7) (20 20 1) simpleGrading (1 1 1)
34 ) ;
35
36 edges
37 (
38 ) ;
39
40 boundary
41 (
42 f ixedWal l s
43 {
44 type wal l ;
45 f a c e s
46 (
47 (2 3 7 6)
48 (1 0 4 5)
49 ) ;
50 }
51 l e f tWa l l
52 {
53 type wal l ;
54 f a c e s
55 (
56 (0 3 7 4)
57 ) ;
58 }
59 r ightWal l
60 {
61 type wal l ;
62 f a c e s
63 (
64 (1 2 6 5)
65 ) ;
66 }
67 frontAndBack
68 {
69 type empty ;
70 f a c e s
71 (
72 (0 1 2 3)
73 (4 5 6 7)
74 ) ;
75 }
76 ) ;
77
78 mergePatchPairs
79 (
80 ) ;
81
82 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

A.1.2 boundary

The boundary file contains the boundary specifications to construct the mesh. The number at the
beginning of the file is the amount of patches defined. The types of the patches are the same as in
blockMeshDict. The next entry is nFaces which is the number of faces in the patch, e.g. fixedWalls
has 20 grid points at the top and 20 grid points at the bottom which result into 40 nFaces. The last
entry is startFace which is the index into the face list in the patch. startFace is not necessary to
determine and you can leave it blank. These values will be added during the simulation itself.

16 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

17
18 4
19 (
20 f ixedWal l s
21 {
22 type wal l ;
23 nFaces 40 ;
24 s tar tFace 760 ;
25 }
26 l e f tWa l l
27 {
28 type wal l ;
29 nFaces 20 ;
30 s tar tFace 800 ;
31 }
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32 r ightWal l
33 {
34 type wal l ;
35 nFaces 20 ;
36 s tar tFace 820 ;
37 }
38 frontAndBack
39 {
40 type empty ;
41 inGroups 1( empty ) ;
42 nFaces 800 ;
43 s tar tFace 840 ;
44 }
45 )
46
47 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

A.1.3 transportProperties

Thermal diffusivity (in OpenFOAM defined as DT and in literature as α) is the thermal conductivity
(k) divided by density (ρ) and specific heat capacity (cp) at constant pressure:

α =
k

ρcp
. (A.1.1)

The unit of thermal diffusivity is m2/s and this can be seen in the code in between the brackets.
The format for this dimensionset is [kg m s K mol A cd] and each of the values corresponds to the
power of each of the base units of measurement. The dimensions are important since they are checked
for every run. If there is a dimension mismatch, the simulation will not run.

16 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

17
18 DT DT [ 0 2 −1 0 0 0 0 ] 0 . 0 1 ;
19
20
21 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

A.1.4 T

The internalField is set to uniform 273K, which means that the initial temperature is uniformly
distributed in the bulk. fixedWalls has type zeroGradient, which indicates that there is no flux
to the surrounding. leftWall and rightWall have type fixedValue which allows to specify the
temperature at that wall. For this case, the leftWall and the bulk have the same temperature,
and the rightWall has a different temperature which will result in a gradient over time since the
internalField will adjust.

15 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

16
17 dimensions [ 0 0 0 1 0 0 0 ] ;
18
19 i n t e r n a lF i e l d uniform 273;
20
21 boundaryField
22 {
23 f ixedWal l s
24 {
25 type zeroGradient ;
26 }
27
28 l e f tWa l l
29 {
30 type f ixedValue ;
31 value uniform 273;
32 }
33
34 r ightWal l
35 {
36 type f ixedValue ;
37 value uniform 100;
38 }
39
40 frontAndBack
41 {
42 type empty ;
43 }
44 }
45
46 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /
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A.1.5 U

There is no flow in this example only temperature is of the essence, so internalField and all walls
are set to uniform (0 0 0). When flow is present, this file can be modified in the same manner as is
done for the temperature.

15 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

16
17 dimensions [ 0 1 −1 0 0 0 0 ] ;
18
19 i n t e r n a lF i e l d uniform (0 0 0 ) ;
20
21 boundaryField
22 {
23 f ixedWal l s
24 {
25 type f ixedValue ;
26 value uniform (0 0 0 ) ;
27 }
28
29 l e f tWa l l
30 {
31 type f ixedValue ;
32 value uniform (0 0 0 ) ;
33 }
34
35 r ightWal l
36 {
37 type f ixedValue ;
38 value uniform (0 0 0 ) ;
39 }
40
41 frontAndBack
42 {
43 type empty ;
44 }
45 }
46
47 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

A.1.6 controlDict

When all files are modified, it is time to set the time control and data writing. The input data includes
time information such as start time, end time and time step, and controls for reading and writing data
such as write interval, format and compression. The write interval is the output of information to a
file and the number 50 indicates that after 50 time steps a folder is built. This reduces the amount
of printed data. Furthermore, during each simulation information is written into a log file where the
residuals and Courant number can be found.

16 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

17
18 app l i c a t i on scalarTransportFoam ;
19
20 startFrom startTime ;
21
22 startTime 0 ;
23
24 stopAt endTime ;
25
26 endTime 0 . 1 ;
27
28 deltaT 0 . 0001 ;
29
30 wr i teContro l timeStep ;
31
32 wr i t e I n t e r v a l 50 ;
33
34 purgeWrite 0 ;
35
36 writeFormat a s c i i ;
37
38 wr i t eP r e c i s i on 6 ;
39
40 writeCompression o f f ;
41
42 timeFormat genera l ;
43
44 t imePrec i s i on 6 ;
45
46 runTimeModifiable true ;
47
48
49 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /
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A.1.7 fvSolution

The equation solvers, tolerances, and algorithms are controlled from the fvSolution dictionary in
the system directory. The solvers defined below are used for each discretized equation.

15 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

16
17 s o l v e r s
18 {
19 p
20 {
21 s o l v e r PCG;
22 pr e cond i t i one r DIC ;
23 to l e r anc e 1e−10;
24 r e lTo l 0 ;
25 }
26
27 U
28 {
29 s o l v e r PBiCG;
30 pr e cond i t i one r DILU ;
31 to l e r anc e 1e−10;
32 r e lTo l 0 ;
33 }
34
35 c
36 {
37 s o l v e r BiCG;
38 pr e cond i t i one r Cholesky ;
39
40 minIter 0 ;
41 maxIter 1000;
42 t o l e r anc e 1e−12;
43 r e lTo l 0 . 0 ;
44 }
45 }
46
47 PISO
48 {
49 nCorrectors 2 ;
50 nNonOrthogonalCorrectors 0 ;
51 pRefCel l 0 ;
52 pRefValue 0 ;
53 }
54
55 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

PCG/PBiCG/BiCG stands for preconditioned (bi-)conjugate gradient, with PCG for symmetric
matrices and PBiCG for asymmetric matrices. The solvers are iterative which means that they are
based on reducing the equation residual over successive solutions. The residual is a measure of the
error in the solution so that the smaller this becomes, the more accurate the solution becomes. It is
also normalized to make it independent of the scale of the problem.

The preconditioners for the conjugate gradient solvers used in the simulations are DIC/DILU which
stand for diagonal incomplete-Cholesky (symmetric) and incomplete-LU (asymmetric) respectively.

The tolerance represents the level at which the residual is small enough that the solution can be
considered sufficiently accurate. The relTol is set to force the solution to convergence and maxIter

is optional and defines the maximum amount of iteration loops.
The PISO algorithm will be explained in more detail in section A.2.

A.1.8 fvScheme

In this directory all numerical schemes used for the simulation are defined. Gauss linear represents
the central difference scheme and backward is the BDF2 scheme for the time derivative.

15 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

16
17 ddtSchemes
18 {
19 default backward ;
20 }
21
22 gradSchemes
23 {
24 default Gauss l i n e a r ;
25 grad (p) Gauss l i n e a r ;
26 }
27
28 divSchemes
29 {
30 default none ;
31 div ( phi ,U) Gauss l i n e a r ;
32 div ( phi ,T) Gauss l i n e a r ;
33 }
34
35 laplac ianSchemes
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36 {
37 default Gauss l i n e a r co r r e c t ed ;
38 }
39
40 inte rpo lat ionSchemes
41 {
42 default l i n e a r ;
43 }
44
45 snGradSchemes
46 {
47 default co r r e c t ed ;
48 }
49
50 f luxRequired
51 {
52 default no ;
53 p ;
54 }
55
56 / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / /

A.2 Simulation

Before the simulation can be started, some other steps need to be completed first. At first the previous
data should be erased otherwise the results may be partially overwritten resulting in a incorrect
solution. With cleaning, the parameters such as the mesh, boundary conditions and initial conditions
are reset. The next step is to generate the mesh with blockMesh and then the simulation is ready to
be started. The only thing left is to type in the solver you want to used and let the program solve
the equations.

The simulation is run with a solver which is based on the PISO algorithm. The steps the algorithms
takes are explained below:

1. Computation starts, initial U and p fields are guessed

2. Starting time loop

3. Boundary conditions are set

4. Linear discretized system is solved M · U = −∇p, where M is the momentum matrix

5. Obtained new U

6. Building matrix A and vector H

7. Mass flow over cell faces is computed

8. Pressure correction is applied

9. Obtained new p

10. Mass flow over cell faces is corrected

11. Momentum correction is applied

12. Obtained new corrected U on the basis of new pressure field

13. Boundary conditions are updated

14. Steps 6 - 13 are repeated with respect to nCorrectors value

15. Ending time loop

A.3 Post-processing

As soon as results are written to time directories, they can be viewed using ParaView or Matlab.
Animations of several parameters can be seen in ParaView and profiles can be extracted from these
animations. However, when you want to make some specific plots, it is advanced to use Matlab.
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Appendix B

Parameter study D 9 0

This parameter study is done to see the behavior of these three parameters on the diffusion coefficient
and how they influence the species concentration in each part of the system.

The first parameter is D0 called the reference value and is halved and doubled. The point where
D reaches the bounding function D1 stays the same, thus when D0 is increased the function decreases
faster. This can also be seen in the left graph in Figure B.1a. In the membrane and channel two,
the concentration is highest corresponding to the highest diffusion coefficient and this is a logical
consequence. The higher the diffusion coefficient, the more concentration is able to diffuse through
the membrane.

The second parameter is D1 which is defined by the following ratio

D1

D0
=

[
1

2
,

1

4
,

1

5
,

1

16

]
. (B.0.1)

This ratio tells for which diffusion coefficient the function is bounded. In the left graph in Figure B.1b
the bounded function is lowered, however, τ stays the seem resulting in a steeper decline of the diffusion
coefficient. There is a small difference in the concentration in channel one, where it is first higher,
the lower and finally higher again. This behavior is the same as in section 4.1. The concentration
of species decreases in the membrane and channel two with decreasing bounding function. Due to
the fast decreasing diffusion coefficient, less time is available for the concentration diffuse through the
membrane before the diffusion coefficient reaches its final value.

The last parameter which will be studied is τ . The value for τ is made a lot bigger and a lot
smaller, which results in the point where D reaches D1 moving further away. It seems that when
τ → ∞, the function behaves more and more like the constant diffusion coefficient as can be seen in
Figure B.1c. The effect of the parameter on the concentration in the membrane and channel two is
very small. Only making τ smaller results into a decrease of concentration due to diffusion.
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Figure B.1: Parameter study for D0,D1, τ .
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