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Towards the Infinite Horizon LQ problem

To prepare for the infinite horizon LQ problem (considered in the next section)
we analyze in this section what happens with the solution of the LQ problem
as T →∞. To make the dependence on T explicit we add a subscript T to the
solution of the RDE (4.22):

ṖT (t ) =−PT (t )A− ATPT (t )−Q +PT (t )BR−1B TPT (t ), PT (T ) = S.
(4.28)

Example 4.4.5. Consider again the integrator system and cost,

ẋ(t ) = u(t ), x(0) = x0, J[0,T ](x0,u) =
∫ T

0
x2(t )+u2(t )dt .

The RDE (4.28) in this case becomes

ṖT (t ) = P 2
T (t )−1, PT (T ) = 0,

and its solution was derived in Example 4.4.4,

PT (t ) = tanh(T − t ) = eT−t −e−(T−t )

eT−t +e−(T−t )
.

T

PT (t)

t

Clearly, as T goes to infinity, the solution PT (t ) converges to

P :=1,

and, in particular, it no longer depends on t . It is now tempting to conclude
that the constant state feedback

u∗(t ) :=−R−1B TPx(t ) =−x(t )

is the solution of the infinite horizon LQ problem. It is, as we shall see in the
next section. ä

The example suggests that PT (t ) converges to a constant P as the horizon T
goes to ∞. It also suggests that limT→∞ ṖT (t ) = 0, which in turn suggests that
the Riccati differential equation in the limit reduces to an algebraic equation,

0 = ATP +PA+Q −PBR−1B TP. (4.29)

This is correct, provided that for each x0 there exists an input that renders the
cost J[0,∞)(x0,u) finite:
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Theorem 4.4.6 (Solution of the RDE as T →→→ ∞∞∞). Consider ẋ(t ) = Ax(t ) +
Bu(t ),x(0) = x0, and suppose Q ≥ 0,R > 0, and S = 0, and that for every x0 an
input exists that renders the cost (4.30) finite. Then the solution PT (t ) of (4.28)
converges to a matrix independent of t as the final time T goes to infinity. That
is, a constant matrix P exists such that

lim
T→∞

PT (t ) = P ∀t > 0.

This P is symmetric, positive semi-definite, and it satisfies (4.29).

Proof. For every fixed x0 the expression x T
0 PT (t )x0 is nondecreasing with T be-

cause the longer the horizon the higher the cost. Indeed, for every ε > 0 and
initial x(t ) = z we have

z TPT+ε(t )z =
∫ T+ε

t
xT
∗(τ)Qx∗(τ)+uT

∗(τ)Ru∗(τ)dτ

≥
∫ T

t
xT
∗(t )Qx∗(t )+uT

∗(τ)Ru∗(τ)dτ≥ z TPT (t )z.

Besides being nondecreasing, it is, for any given z, also bounded from above be-
cause by assumption for at least one input uz the infinite horizon cost is finite,
so that

z TPT (t )z ≤ J[t ,T ](z,uz ) ≤ J[t ,∞)(z,uz ) <∞.

Bounded and nondecreasing implies that z TPT (t )z converges as T →∞. Next
we prove that in fact the entire matrix PT (t ) converges as T →∞. Let ei be the
i -th unit vector in Rn , so ei = (0, . . . ,0,1,0, . . . ,0)T, with a 1 on the i-th position.
The preceding discussion shows that for each z = ei , the limit

pi i := lim
T→∞

e T
i PT (t )ei

exists. The diagonal entries of PT (t ) hence converge. For the off-diagonal en-
tries we use that

lim
T→∞

(ei +e j )TPT (t )(ei +e j ) = lim
T→∞

e T
i PT (t )ei +e T

j PT (t )e j +2e T
i PT (t )e j

= pi i +p j j + lim
T→∞

2e T
i PT (t )e j .

The limit on the left-hand side exists, so the limit pi j := limT→∞ e T
i PT (t )e j exists

as well. Therefore all entries of PT (t ) converge as T →∞. The limit is indepen-
dent of t because PT (t ) = PT−t (0).

Clearly, P ≥ 0 because it is the limit of PT (t ) ≥ 0.
Since PT (t ) converges to a constant matrix, also ṖT (t ) =−PT (t )A−ATPT (t )+

PT (t )BR−1B TPT (t )−Q converges to a constant matrix as T →∞. This constant
matrix must be zero because

∫ t+1
t ṖT (τ)dτ= PT (t +1)−PT (t ) → 0 as T →∞. ■
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4.5 Infinite Horizon LQ with Stability

Now we turn to the infinite horizon LQ problem. This is the problem of mini-
mizing

J[0,∞)(x0,u) :=
∫ ∞

0
xT(t )Qx(t )+uT(t )Ru(t ) dt (4.30)

over all u : [0,∞) →Rm under the dynamical constraint

ẋ(t ) = Ax(t )+Bu(t ), x(0) = x0.

As before, we assume that R is positive definite and that Q is positive semi-
definite. The terminal cost xT(∞)Sx(∞) is absent. (For the problems we have
in mind the state converges to zero so the terminal cost would not contribute
anyway.) Obviously, there are links with the finite horizon case, but the theory
that we present in this section is self-contained, that is, can be understood in-
dependently of the theory presented so far in this chapter.

The classic infinite horizon LQ problem does not consider asymptotic sta-
bility of the closed-loop system. For instance, if we choose as cost

∫ ∞
0 u2(t )dt

then optimal is to take u∗(t ) = 0, even if it would render the closed-loop system
unstable, such as when ẋ(t ) = x(t )+u(t ). In applications closed-loop asymptotic
stability is crucial. Classically, closed-loop asymptotic stability is incorporated
in LQ by imposing conditions on Q. For example, if Q = I then the cost contains
a term

∫ ∞
0 xT(t )x(t )dt , and then the optimal control turns out to necessarily

stabilize the system. An alternative approach is to include asymptotic stability
in the problem definition. This is the version that we explore:

Definition 4.5.1 (Infinite horizon LQ problem with stability). Suppose
Q ≥ 0,R > 0, and consider the linear system with given initial state, ẋ(t ) =
Ax(t ) + Bu(t ),x(0) = x0. The (infinite horizon) LQ problem with stability is
to minimize (4.30) over all stabilizing inputs, meaning inputs that achieve
limt→∞ x(t ) = 0. ä

The next two examples reveal that in some cases the LQ problem with sta-
bility has an easy solution.

Example 4.5.2 (LQ with stability). Consider the problem of Example 4.4.5:

ẋ(t ) = u(t ), x(0) = x0, J[0,∞)(x0,u) =
∫ ∞

0
x2(t )+u2(t )dt .

The running cost, x2 +u2, can also be written as

x2 +u2 = (x+u)2 −2xu= (x+u)2 −2xẋ.

Interestingly, the term −2xẋ has an explicit antiderivative, namely −x2, so

x2 +u2 = d
dt (−x2)+ (x+u)2.
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Integrating this over t ∈ [0,∞) we see that the cost for stabilizing inputs equals

J[0,∞)(x0,u) = x2
0 +

∫ ∞

0
(x(t )+u(t ))2 dt . (4.31)

It is immediate from (4.31) that the cost for every stabilizing input is at least x2
0 ,

and that it equals x2
0 iff

u=−x.

Since the state feedback u∗ :=−x indeed stabilizes (because the closed-loop sys-
tem becomes ẋ = −x) we conclude that this state feedback is the optimal con-
trol, and that the optimal (minimal) cost is

J[0,∞)(x0,u∗) = x2
0 .

Done! ä

Also for systems without input the solution is easily determined:

Example 4.5.3 (Systems without input). If B = 0 then the system reduces to
ẋ(t ) = Ax(t ),x(0) = x0. Obviously, the input does not affect the state in this case,
so if this problem is to have a stabilizing input for every x0 then A needs to be
asymptotically stable. The optimal input in that case is u∗ = 0, and the optimal
cost is

J[0,∞)(x0,u∗) =
∫ ∞

0
xT(t )Qx(t )dt

=
∫ ∞

0
x T

0 eAT t Q eAt x0 dt

= x T
0

(∫ ∞

0
eAT t Q eAt dt

)
x0.

This cost is quadratic in the initial state, and we write it as x T
0 P x0 with

P :=
∫ ∞

0
eAT t Q eAt dt . (4.32)

The previous section suggests that P satisfies the quadratic equation (4.29),
which for our case simplifies to the linear equation

ATP +PA =−Q. (4.33)

This equation is called the Lyapunov equation. The P defined in (4.32) indeed
satisfies the Lyapunov equation because

ATP +PA =
∫ ∞

0
AT eAT t Q eAt +eAT t Q eAt A dt

= [
eAT t Q eAt ]∞

0

= 0−Q =−Q.

Here we used that A is asymptotically stable and that d
dt (eAT t Q eAt ) equals

AT eAT t Q eAt +eAT t Q eAt A. ä
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The matrix P defined in (4.32) is in fact uniquely determined by the Lya-
punov equation (4.33) because of asymptotic stability of A:

Lemma 4.5.4 (Lyapunov equation). Suppose A ∈Rn×n is asymptotically stable.
Then for every Q ∈ Rn×n (not necessarily symmetric) there is a unique solution
P ∈Rn×n of (4.33). In particular, ATP +PA = 0 iff P = 0.

Proof. For every Q ∈Rn×n the matrix P as defined in (4.32) is a solution. To say
it differently, the linear mapping L :Rn×n →Rn×n defined as L(P ) = ATP +PA is
surjective. By the rank-nullity theorem it hence is injective as well. That is, for
every Q the solution P of (4.33) exists and is unique. ■

In the previous two examples we found that the optimal cost is quadratic
in the initial state, and that the optimal input can be implemented as a state
feedback. Inspired by this we conjecture that every infinite horizon LQ problem
has these properties. That is, we conjecture that the optimal cost is of the form

x T
0 P x0

for some matrix P , and that the optimal input equals

u∗(t ) :=−Fx(t )

for some matrix F . With that in mind we define v = u+Fx. (If our hunch is
correct then optimal means v= 0.) Next we write xTQx+ uTRu and −vTRv and
d

dt (xTPx) as quadratic expressions in (x,u):

xTQx+uTRu= [
xT uT

][
Q 0
0 R

][
x

u

]
,

−vTRv=−(uT +xTF T)R(u+Fx)

= [
xT uT

][−F TRF −F TR
−RF −R

][
x

u

]
,

d
dt (xTPx) = ẋTPx+xTP ẋ

= (xT AT +uTB T)Px+xTP (Ax+Bu)

= [
xT uT

][
ATP +PA PB

B TP 0

][
x

u

]
.

Adding them all up, we find

xTQx+uTRu−vTRv+ d
dt (xTPx)

= [
x u

]T
[

ATP +PA+Q −F TRF PB −F TR
B TP −RF 0

][
x

u

]
.

The matrix on the right-hand side is the zero matrix if
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• P is symmetric,

• F = R−1B TP ,

• ATP +PA+Q −PBR−1B TP = 0.

So then

xTQx+uTRu=− d
dt (xTPx)+vTRv.

The cost (4.30) can thus be expressed as

J[0,∞)(x0,u) = x T
0 P x0 +

∫ ∞

0
v(t )TRv(t )dt , (4.34)

whenever the input stabilizes the system. From (4.34) it follows that the optimal
cost is x T

0 P x0 provided that v= 0 corresponds to a stabilizing input. We defined
v as v = u+Fx = u+R−1B TPx, so we have v = 0 iff u = −Fx = −R−1B TPx, and
then the closed-loop system becomes ẋ = (A −BR−1B TP )x. This leads to the
following result.

Theorem 4.5.5 (Solution of the LQ problem with stability). Suppose P ∈ Rn×n

satisfies

ATP +PA+Q −PBR−1B TP = 0 (4.35)

with the property that

A−BR−1B TP is asymptotically stable. (4.36)

Then P is symmetric, and the linear state feedback

u∗(t ) :=−R−1B TPx(t )

is the solution of the LQ problem with stability, and x T
0 P x0 is the optimal cost.

Moreover, there is at most one P that satisfies both (4.35) and (4.36).

Proof. If P satisfies (4.35) then

(A−BR−1B TP )T(P −P T)+ (P −P T)(A−BR−1B TP ) =−Q +Q T = 0.

Since A −BR−1B TP is asymptotically stable, Lemma 4.5.3 guarantees that P −
P T equals zero. That is, P is symmetric. Above we showed that then the cost
equals (4.34) for v :=u+R−1B TPx. Obviously, v = 0 holds iff u = −R−1B TPx,
and this input, by assumption on P , stabilizes the system. Hence this u solves
the LQ problem with stability, and, x T

0 P x0 is the optimal cost.
There is at most one P that satisfies both (4.35) and (4.36) because every

such P is symmetric, and the optimal cost x T
0 P x0 is unique. ■
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Equation (4.35) is known as the (LQ) algebraic Riccati equation (or ARE for
short), and we say that P is a stabilizing solution of the ARE if it satisfies the ARE
and A−BR−1B TP is asymptotically stable.

The theorem does not say that the ARE has a stabilizing solution. It only
says that if a stabilizing solution P exists, then it is unique and symmetric, and
then the LQ problem with stability is solved, with u∗(t ) :=−R−1B TPx(t ) being
the optimal control. It is not yet clear under what conditions there exists a sta-
bilizing solution P of the ARE (4.35). In Lemma 4.4.3 we managed to express
the solution P (t ) of the RDE in terms of the Hamiltonian matrix H . For the
infinite horizon case there is such a connection as well, and it provides nec-
essary and sufficient conditions under which a stabilizing solution of the ARE
exists. Starting point is to rewrite the ARE: a matrix P satisfies the ARE (4.35) iff
−Q − ATP = P (A−BR−1B TP ), or, equivalently, iff

[
A −BR−1B T

−Q −AT

]

︸ ︷︷ ︸
H

[
I
P

]
=

[
I
P

]
(A−BR−1B TP ). (4.37)

(This defines the Hamiltonian matrix H .) This is an interesting form because in
the case that all matrices here are numbers (and H hence a 2×2 matrix) then it
says that

[
I
P

]
is an eigenvector of H , and that A−BR−1B TP is its eigenvalue. This

connection between P and eigenvectors/eigenvalues of the Hamiltonian matrix
H is the key to most numerical routines for computation of P . This central
result is formulated in the following theorem. The subsequent examples show
how the result can be used to find P concretely.

Theorem 4.5.6 (Computation of P ). Define H ∈ R(2n)×(2n) as in (4.37), and as-
sume that Q ≥ 0,R > 0. A stabilizing solution of the ARE exists iff (A,B) is stabi-
lizable and

[ A−λI
Q

]
has rank n for all λ ∈ iR. In that case

1. H has no imaginary eigenvalues, and it has n asymptotically stable eigen-
values and n unstable eigenvalues. Also, λ is an eigenvalue of H iff so is
−λ,

2. matrices V ∈ R(2n)×n of rank n exist that satisfy H V = VΛ for some
asymptotically stable Λ ∈Rn×n ,

3. for any such V ∈ R(2n)×n , if we partition V as V = [V1
V2

]
with V1,V2 ∈ Rn×n ,

then V1 is invertible,

4. the ARE (4.35) has a unique stabilizing solution P . In fact

P :=V2V −1
1 ,

is the unique stabilizing solution (and, hence, it is also symmetric).
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Proof. This proof is involved. We assume familiarity with stabilizability as ex-
plained in Appendix A.6. The proof again exploits the remarkable property that
solutions of the associated Hamiltonian system (now with initial conditions,
possibly complex-valued),

[
ẋ(t )
ṗ(t )

]
=

[
A −BR−1B T

−Q −AT

][
x(t )
p(t )

]
,

[
x(0)
p(0)

]
=

[
x0

p0

]
∈C2n (4.38)

satisfy

d
dt (p∗x) =−(x∗Qx+p∗BR−1B Tp), (4.39)

(see the proof of Lemma 4.2.2). Note that we consider the system of differential
equations over C2n , instead of over R2n , and here p∗ means the complex con-
jugate transpose of p. The reason is that eigenvalues and eigenvectors may be
complex-valued. Integrating (4.39) over t ∈ [0,∞) tells us that

∫ ∞

0
x∗(t )Qx(t )+p∗(t )BR−1B Tp(t )dt = p∗

0 x0 − lim
t→∞p∗(t )x(t ), (4.40)

provided the limit exists. In what follows we denote by
[ x(t )
p(t )

]
the solution

of (4.38). We first assume that (A,B) is stabilizable and that
[ A−λI

Q

]
has rank

n for all λ ∈ iR.

1. Suppose
[ x0

p0

]
is an eigenvector of H with imaginary eigenvalue λ. Then[ x(t )

p(t )

] = eλt
[ x0

p0

]
. Now p∗(t )x(t ) is constant, hence both sides of (4.39) are

zero for all time. So both x∗(t )Qx(t ) and B Tp(t ) are zero for all time.
Inserting this into (4.38) shows that λx0 = Ax0 and λp0 = −AT p0. Thus[ A−λI

Q

]
x0 = 0 and p∗

0

[
A+λI B

] = 0. Stabilizability and the fact that
[ A−λI

Q

]

has rank n, implies that then x0 = 0, p0 = 0, but
[ x0

p0

]
is an eigenvector, so

nonzero. Contradiction, hence H has no imaginary eigenvalues.

Exercise 4.19 shows that r (λ) :=det(λI −H ) equals r (−λ). So H has as
many (asymptotically) stable eigenvalues as unstable eigenvalues.

2. Since H has no imaginary eigenvalues and has n asymptotically stable
eigenvalues, linear algebra tells us that a (2n)×n matrix V exists of rank n
such that H V =VΛ with Λ asymptotically stable. (If all n asymptotically
stable eigenvalues are distinct then we can simply take V = [

v1 · · · vn
]

where v1, . . . , vn are eigenvectors corresponding to the asymptotically sta-
ble eigenvalues λ1, . . . ,λn of H , and then Λ is the diagonal matrix with
these eigenvalues on the diagonal. If some eigenvalues coincide then one
might need a Jordan normal form and use generalized eigenvectors.)

3. Suppose, to obtain a contradiction, that V has rank n but that V1 is singu-
lar. Then the subspace spanned by the columns of

[V1
V2

]
contains an

[ x0
p0

]

with x0 = 0, p0 6= 0. The solution
[ x(t )
p(t )

]
for this initial condition converges
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to zero1. Hence the integral in (4.40) equals p∗
0 x0 = 0. That can only be if

Qx(t ) and B Tp(t ) are zero for all time. Equation (4.38) then implies that
ṗ(t ) =−ATp(t ),p(0) = p0. We claim that this contradicts stabilizability. In-
deed, since B Tp(t ) = 0 for all time, we have

ṗ(t ) =−(AT −LB T)p(t ), p(0) = p0 6= 0 (4.41)

for every L. By stabilizability there is an L such that A−BLT is asymptoti-
cally stable. Then all eigenvalues of −(AT −LB T) are anti-stable, and thus
the solution p(t ) of (4.41) diverges. But we know that limt→∞ p(t ) = 0.
Contradiction, so the assumption that V1 is singular is wrong.

4. Let P = V2V −1
1 . Since H V = VΛ we have that H

[
I
P

] = [
I
P

]
V1ΛV −1

1 . Also
V1ΛV −1

1 is asymptotically stable because it has the same eigenvalues as Λ
(assumed asymptotically stable). Hence

[
A −BR−1B T

−Q −AT

][
I
P

]
=

[
I
P

]
Λ̂ (4.42)

for some asymptotically stable Λ̂ ∈ Rn×n . Premultiplying (4.42) from the
left with

[−P I
]

shows that

[−P I
][

A −BR−1B T

−Q −AT

][
I
P

]
= 0.

This equation is nothing else than the ARE (verify this for yourself). And P
is a stabilizing solution because A−BR−1B TP = Λ̂ is asymptotically stable.
Uniqueness and symmetry of P we showed earlier (Theorem 4.5.5).

Conversely, suppose P is a stabilizing solution. Clearly, (A,B) must then be sta-
bilizable. Also, since

[
I 0

−P I

]
H

[
I 0
P I

] = [
Λ −BR−1B TP
0 −ΛT

]
(for Λ := A −BR−1B TP ) we

have that H cannot have imaginary eigenvalues. But every imaginary λ for
which

[ A−λI
Q

]
loses rank is an eigenvalue of H . So

[ A−λI
Q

]
must have rank n

for all imaginary λ if a stabilizing solution P is to exist. ■

Realize that any V ∈R(2n)×n of rank n for which H V =VΛ does the job if Λ
is asymptotically stable. That is, even though there are many such V , we always
have that V1 is invertible and that P follows uniquely as P = V2V −1

1 . As already
mentioned in the above proof, in case H has n distinct asymptotically stable
eigenvalues λ1, . . . ,λn , with eigenvectors v1, . . . , vn , then we can take

V = [
v1 v2 · · · vn

]

1If
[ x0

p0

]=V z0 for some z0 then
[x(t )
p(t )

]=V z(t ) where z(t ) is the solution of ż(t ) =Λz(t ),z(0) =
z0. If Λ is asymptotically stable then z(t ) → 0 as t →∞.



146 4 LINEAR QUADRATIC CONTROL

for then Λ is diagonal with

Λ=




λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn


 ,

and this matrix clearly is asymptotically stable.

Example 4.5.7 (n === 1). Consider once more the integrator system ẋ(t ) = u(t )
and cost

∫ ∞
0 x2(t )+ u2(t )dt . That is, A = 0,B = Q = R = 1. The Hamiltonian

matrix for this case is

H =
[

0 −1
−1 0

]
.

Its characteristic polynomials is λ2 − 1, and the eigenvalues are λ1,2 = ±1. Its
asymptotically stable eigenvalue is λas =−1, and it is easy to verify that v is an
eigenvector corresponding to this asymptotically stable eigenvalue iff

v :=
[

v1

v2

]
=

[
1
1

]
c, c 6= 0.

According to Lemma 4.5.6 the stabilizing solution P of the ARE is

P = v2v−1
1 = v2

v1
= c

c
= 1.

As predicted, P does not depend on the choice of eigenvector (the choice of c).
Also, the (eigen)value of A −BR−1B TP = −1 as predicted equals the asymptoti-
cally stable eigenvalue of the Hamiltonian matrix, λas =−1. The optimal control
is u∗ =−R−1B TPx=−x. This agrees with what we found in Example 4.5.2. ä

Example 4.5.8 (n === 2). Consider the stabilizable system

ẋ(t ) =
[

0 1
0 0

]
x(t )+

[
0
1

]
u(t ),

with standard cost
∫ ∞

0
x2

1(t )+x2
2(t )+u2(t )dt .

The associated Hamiltonian matrix is (verify this yourself)

H =




0 1 0 0
0 0 0 −1
−1 0 0 0
0 −1 −1 0


 .
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Its characteristic polynomial is λ4 −λ2 +1, and the four eigenvalues turn out to
be

λ1,2 =−1
2

p
3± 1

2 i, λ3,4 =+1
2

p
3± 1

2 i.

The first two eigenvalues, λ1,2, are asymptotically stable so we need eigenvec-
tors corresponding to these two. Not very enlightening manipulation shows that
we can take

v1,2 =




−λ1,2

−λ2
1,2

1
λ3

1,2


 .

Now V ∈C4×2 defined as

V = [
v1 v2

]=




−λ1 −λ2

−λ2
1 −λ2

2
1 1
λ3

1 λ3
2




is the V we need. (Note that this matrix is complex; this is not a problem.) With
V known, it is easy to compute the stabilizing solution of the ARE,

P =V2V −1
1 =

[
1 1
λ3

1 λ3
2

][−λ1 −λ2

−λ2
1 −λ2

2

]−1

=
[p

3 1
1

p
3

]
.

The optimal input is u∗ = −R−1B TPx = −p21x1 −p22x2 = −x1 −
p

3x2. The LQ-
optimal closed-loop system is described by

ẋ∗(t ) = (A−BR−1B TP )x∗(t ) =
[

0 1
−1

p
3

]
x∗(t ),

and its eigenvalues are λ1,2 =−1
2

p
3± 1

2 i (which, as predicted, are the asymptot-
ically stable eigenvalues of H ). ä

In the above example the characteristic polynomial λ4 −λ2 +1 is of degree
4, but by letting µ= λ2 it reduces to the polynomial µ2 −µ+1 of degree 2. This
works for every Hamiltonian matrix, see Exercise 4.19.

Example 4.5.9. In Example 4.5.8 we found the stabilizing solution

P =
[p

3 1
1

p
3

]

via the eigenvectors of the Hamiltonian. This solution must be positive semi-
definite because optimal costs, x T

0 P x0, obviously are nonnegative. Clearly, P is
symmetric, and since p1,1 = p2,2 =

p
3 > 0 and det(P ) = 2 > 0 it is positive semi-

definite (in fact, positive definite, see Lemma A.1.1). ä
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Theorem 4.5.6 establishes that a stabilizing solution of the ARE exists iff
(A,B) is stabilizable and

[ A−λI
Q

]
has rank n for all λ ∈ iR. If we replace the latter

condition with the slightly stronger condition that (Q, A) is detectable then we
can characterize P in a couple of other ways:

Theorem 4.5.10 (Three ways to solve the LQ problem with stability). If (A,B)
is stabilizable and (Q, A) detectable, then the stabilizing solution P of the ARE
can be characterized in the following three equivalent ways:

1. P = limT→∞ PT (t ) where PT (t ) is the solution of RDE (4.28) for S = 0,

2. P is the unique symmetric, positive semi-definite solution of ARE (4.35),

3. P is the unique stabilizing solution of ARE (4.35).

Proof. We first show that the three P ’s are the same. Uniqueness is commented
on afterwards.

(1 =⇒ 2). Since (A,B) is stabilizable, there is a state feedback u = −Fx
that steers the state to zero exponentially fast for every x0, and, so, renders
the cost finite. Therefore the conditions of Theorem 4.4.6 are met. That is,
P := limT→∞ PT (t ) exists and it satisfies the ARE, and it is positive semi-definite.

(2 =⇒ 3). Assume P is a positive semi-definite solution of the ARE, and let
x be an eigenvector of A−BR−1B TP with eigenvalue λ. We show that Re(λ) < 0.
The trick is to rewrite the ARE as

(A−BR−1B TP )TP +P (A−BR−1B TP )+Q +PBR−1B TP = 0.

Next, postmultiply this equation with the eigenvector x, and premultiply with
its complex conjugate transpose x∗:

x∗(
(A−BR−1B TP )TP +P (A−BR−1B TP )+Q +PBR−1B TP

)
x = 0.

Since x is an eigenvector of A−BR−1B TP the above simplifies to a sum of three
terms, the last two of which are nonnegative,

(λ∗+λ)(x∗P x)+x∗Qx +x∗PBR−1B TP x = 0.

If Re(λ) ≥ 0 then (λ∗+λ)x∗P x ≥ 0, implying that all the above three terms are in
fact zero: (λ∗+λ)x∗P x = 0, Qx = 0, and B TP x = 0 (and, consequently, Ax =λx).
This contradicts detectability. So it cannot be that Re(λ) ≥ 0. It must be that
A−BR−1B TP is asymptotically stable.

(3 =⇒ 1 & uniqueness). Theorem 4.5.6 shows that the stabilizing solu-
tion P of the ARE exists and is unique. This equals P := limT→∞ PT (t ) because
1. =⇒ 2. =⇒ 3.. Since every symmetric, positive definite P is stabilizing, and
stabilizing solutions are unique, also the symmetric, positive semi-definite so-
lution is unique. ■
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Theorem 4.5.10 shows that we have several ways to determine the solution
P that solves the LQ problem with stability, namely (a) limT→∞ PT (t ), (b) the
unique symmetric positive semi-definite solution of the ARE, and (c) the unique
stabilizing solution of the ARE.

Example 4.5.11 (LQ problem with stability of the integrator system solved in
three ways). Consider again the integrator system

ẋ(t ) = u(t ), x(0) = x0

and cost

J[0,∞)(x0,u) =
∫ ∞

0
x2(t )+u2(t )dt .

This system is stabilizable, and (Q, A) = (1,0) is detectable. We determine the LQ
solution P in the three different ways as explained in Theorem 4.5.10:

1. In Example 4.4.5 we handled the finite horizon case of this problem, and
we found that P := limT→∞ PT (t ) = 1.

2. We could have gone as well for the unique symmetric, positive semi-
definite solution of the ARE. The ARE in this case is

−P 2 +1 = 0,

and, clearly, the only (symmetric) positive semi-definite solution is P = 1.

3. The ARE has two solutions, P = ±1, and Theorem 4.5.10 guarantees that
precisely one of them is stabilizing. The solution P is stabilizing if A −
BR−1B TP =−P is less than zero. Clearly this, again, gives P = 1.

ä

While for low-order systems the 2nd option (that P is positive semi-definite)
is often the easiest way to determine P , general numerical recipes usually ex-
ploit the 3rd option.

4.6 Controller Design with LQ Optimal Control

In five examples we explore the use of infinite horizon LQ theory for the design
of controllers. The first two examples discuss the effect of tuning parameters on
the control and cost. The final three examples are about control of cars.

Example 4.6.1 (Tuning the controller). Consider the system with output,

ẋ(t ) = u(t ), x(0) = x0 = 1,

y(t ) = 2x(t ),


