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Abstract

The goal of this work is to model, implement and test higher order variational methods for pho-
toacoustic tomography. Photoacoustic tomography is a novel imaging method, which is used in
breast cancer and rheumatism diagnosis. The challenges in this tomography problem are the
robust of handling noise and subsampling on the data and reconstructing difficiult data struc-
tures. To addres those the variational methods using Total Variation and Total Generalized
Variation with Bregman iteration are implemented. Moreover, a preconditioned Primal-Dual
Hybrid Gradient algorithm is derived to effeciently solve the non-smooth convex minimization
problems introduced by these reconstruction models. To show the effectiveness of these methods
a careful study is done on both synthetic and experimental data.
Keywords: photoacoustic tomography, inverse problems, variational methods, total variation,
total veneralized variation, bregman iteration, preconditioned primal-dual hybrid gradient al-
gorithm.



Figure 1: Photoacoustic tomography system
This figure shows the photoacoustic tomography
system doing a measurement on a human finger.
A schematic version of this setup is later shown
in Figure 3 & Figure 6.

1 Introduction

Accurate image reconstruction is a fundamental challenge in many scientific fields, such as
biomedicine and microscopy. The challenges with reconstructed images are that they can eas-
ily suffer from artefacts due to noise, measurement designs (e.g. sparsity, sampling), or not
accurate use of prior information. Photoacoustic tomography is a novel image reconstruction
method, with these kind of challenges.
Photoacoustic tomography is a method which combines optical and acoustical properties of an
object to image the optical absorption distribution inside this object. To get the optical absorp-
tion distribution the object is illuminated with a lightsource, creating a distribution of optical
energy in this object (see Figure 1). This optical energy is transformed into outward traveling
pressure waves (ultrasound waves) via fast heat release and thermal expansion, this physical
process is called the photoacoustic effect. The strength of this method is that it works around
the weaknesses of photonic imaging, i.e. relative high scattering through soft tissue, and ultra-
sound imaging, i.e. low penetration through small soft tissue. This offers usefull applications in
diagnosis methods, such as breast cancer diagnosis and rheaumatism diagnosis. In rheumatism
diagnosis one wants to detect small inflammations around finger joints. Some initial research on
this topic is done in [WCJ07] and [vEBM+14]. In Figure 2 one of the results from [vEBM+14]
is shown. This is a healthy finger, shown from sideview and certain slices around the joints.
The challenges for this problem are readily seen in the these slice views of the finger, i.e. the
data has sparse structures, low contrast and noise in the background. Moreover the streaking
artefacts show that there is also a challenge in the subsampling of the data. This shows the
strong need for an image reconstruction method which is robust against noise and subsampling
and can handle difficult data structures. From the theory it is known that variational methods
such as Total Variation (TV) regularization and the higher order version, Total Generalized
Variation (TGV) regularization, with certain extensions can handle such challenges. The goal
of this thesis is the implementation and testing of the image reconstruction models using TV
and TGV for the photoacoustic image reconstruction problem. For the implementation of these
models an algorithm to solve a non-smooth minimization problem is needed, the proposed algo-
rithm in this thesis is a Primal-Dual Hybrid Gradient algorithm, which is chosen for its general
applicability and efficient update rules. For the testing of the models synthetic and experimental
data is used. These data sets are specifically chosen to show how the reconstruction models
handle challenges such as noise, subsampling and difficult data structures.
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This thesis will first focus on introducing the forward model for photoacoustic tomography, this
is done in Chapter 2. Next in Chapter 3 this forward model is translated to a mathematical
problem and the mathmatical models to solve this problem are introduced. To implement these
mathmatical models there is an algorithm needed, in Chapter 4 an algorithm is introduced and
validated. Using this algorithm the results for the reconstruction models are shown in Chapter
5. The thesis concludes with a summary and the conclusions of the research, in Chapter 6,
and an outlook on future research, in Chapter 7.

Figure 2: Initial imaging results on an healthy finger.
The two figures on the second row are respectively a transversal and longitudinal ultrasound
reconstruction of the finger. Whereas the slices of the finger are photoacoustic image recon-
structions, made around the joints and the nail of the finger.
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Figure 3: Schematic visualization of the photoa-
coustic effect
By illuminating a photoacoustic source with a
light, the source heats up. This process can be
modelled with a heat conduction equation (see
(1)). This heating results in thermal expansion
creating outward traveling photoacoustic wave,
for which an explicit relation is shown in (8).
These waves are detected by detectors, resulting
in a measurement.

2 Photoacoustic tomography

As said before photoacoustic tomography is based on the photoacoustic effect, which can be
defined as the conversion of absorbed optical energy to acoustic energy. Many physical effects
influence this conversion, but the most efficient conversion, therefore most influential, is the
thermoelastic effect. The thermal expansion, caused by absorption of optical energy, generates
an initial pressure distribution, which results in outward traveling pressure waves (acoustic
energy). A schematic visualization of this process is shown in Figure 3. Using this knowledge
a forward model is created, which describes the physical process of the photoacoustic image
reconstruction.

2.1 Forward model for photoacoustic tomography

The relation between the heating through absorption of optical energy and the temperature
distribution is modeled by the heat conduction equation,

ρCp
∂T (r, t)

∂t
= λT (r, t) +H(r, t), (1)

where T (r, t) [K] and H(r, t) [J/(m3s)] are respectively the temperature distribution and the
heating function which are spatially and time dependent, ρ [kg/m3] is the density of the material,
Cp [J/(K kg)] is the specific heat and λ is the thermal conductivity. Assuming the pulse of optical
energy is small enough (in the temporal sense) the heat diffusion can be neglected, resulting in

ρCp
∂T (r, t)

∂t
= H(r, t). (2)

This assumption of ‘short enough’ can be quantified in the condition of thermal and stress
confinement (see [WW12]) and can easily be met in practice.
Furthermore the excess temperature distribution can be related to the acoustic pressure p(r, t),

∇2p(r, t)− 1

c2

∂2

∂t2
p(r, t) = −βρ ∂

2

∂t2
T (r, t), (3)

where c [m/s] is the speed of sound and β [K−1] is the volume thermal expansion coefficient.
Combining these two relations and considering that the heating function can be seen as a
product of a spatially dependent optical absorption distribution of the heat, A(r), and a time
profile of the illuminating optical energy source, I(t), one arrives at the following equation:

∇2p(r, t)− 1

c2

∂2

∂t2
p(r, t) = − β

Cp

∂I(t)

∂t
A(r). (4)
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This can be seen as a wave equation with a source term and can be solved with the aid of
Green’s function (see [KLA+95]),

p(r, t) =
β

Cp

∫∫
Rd
A(r′)

∂I(t′)

∂t′
δ(t− 1

c ‖r− r′‖ − t′)
‖r− r′‖

dr′dt′ (5)

=
β

4πCp

∫
Rd

A(r′)

‖r− r′‖
∂

∂t
I(t− 1

c

∥∥r− r′
∥∥)dr′. (6)

Changing to spherical coordinates and t′ = ‖r−r′‖
c gives

p(r, t) =
β

4πCp

∫ (
1

t′

∫∫
A(ct′, θ, φ)(ct′)2 sin(θ) dθ dφ

)
∂I(t− t′)

∂t
dt′ (7)

=
β

4πCp

(
1

t

∫∫
‖r−r′‖=ct

A(r′)dr′
)
∗t
∂I(t)

∂t
. (8)

To measure the generated pressure wave, consider an ultrasound transducer at a certain position
r. The measured signal can be expressed as:

p̃ (r, t) = p (r, t) ∗ hIR(r, t), (9)

where hIR(r, t) is the impulse response of the transducer. To simplify the model the diffraction
effects are ignored, This simplification leads to a pure time dependent impulse response of
the transducer. Now one can reconstruct the optical absorption distribution A(r) from the
measurements p̃(r, t), given there is a description of the illumination profile I(t) and the impulse
response hIR(t). In practice these descriptions are difficult to measure. To solve this, a practical
solution is proposed in [WXZC04]. The idea is to consider an optical absorption distribution

which one has control over and derive an expression for ∂I(t)
∂t ∗t hIR(t). Take a photoacoustic

point source at rp this will result in a simple absorption distribution, A(r) = δ(r− rp). Plugging
this in (8) gives:

pδ(r, t) =
β

4πCp

∫
Rd

δ(r′ − rp)

‖r− r′‖
∂

∂t
I(t− 1

c

∥∥r− r′
∥∥)dr′, (10)

=
β

4πCp ‖r− rp‖
∂

∂t
I(t− 1

c ‖r− rp‖), (11)

rearranging this expression,

∂I(t)

∂t
=

4πCp ‖r− rp‖
β

pδ(r, t− 1
c ‖r− rp‖), (12)

convolving both sides with hIR(t) and using (6),

∂I(t)

∂t
∗t hIR(t) =

4π ‖r− rp‖Cp
β

p̃δ(r, t− 1
c ‖r− rp‖). (13)

Combining (8), (6) and (13) gives

p̃(r, t) = ‖r− rp‖
(

1

t

∫∫
‖r−r′‖=ct

A(r′)dr′
)
∗t p̃δ(r, t′), (14)

where t′ = t− 1
c ‖r− rp‖. Since in this thesis only the 2-d case is considered the physical model

symplifies to

p̃(r, t) = ‖r− rp‖
(

1

t

∫
‖r−r′‖=ct

A(r′)dr′
)
∗t p̃δ(r, t′) (15)

This physical model is the basis for photoacoustic image reconstruction.
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3 Modeling

In this chapter the mathematical modeling of the photoacoustic tomography problem is adressed.
First the mathematical structure of the problem is studied and how this problem will be treated.
Next the current methods are introduced and at last the new modeling suggestion is introduced.

3.1 Coupled problem

Most image reconstruction problems can be described in the form of an inverse problem, Ku = f ,
where K is the forward operator defined through the physical process, u is the desired image
and f is the measured data. To represent the image reconstruction problem in this way there
has to be an efficient way to describe K. In theory one can just concatenate the operations, in
practice this concatenation results in a nonsparse linear operator K ∈ Rnmp×np (where nmp is
the number of measurement points and np is the number of pixels in the reconstructed image),
which is far to big for practical use. Therefore the problem is split into a multistage inverse
problem.

K2K1u = f, (16)

where

K1x ∼
‖r− rp‖

t

∫
‖r−r′‖=ct

x(r′)dr′, K2x ∼ p̃δ(r, t′) ∗t x(r, t), (17)

u ∼ A(r), f ∼ p̃(r, t). (18)

This modeling structure gives way to two solving procedures. The first would be considering
both inverse problems simultateneously. As seen in [BMPS14] and [BBLS15] such a strategy can
improve the reconstruction results in certain cases, however in this paper the other approach will
be considered. This approach is simply solving the two inverse problems sequantially, i.e. first
solving the outer problem and plugging that solution in the inner inverse problem

K2f̃ = f, K1u = f̃ . (19)

By splitting the problems for both inverse problems a model can be designed for both problems
separately and if both of these problems can be solved very precisely the reconstruction itself
is very precise. However a problem for this solving method is that if one of these two problems
cannot be solved precisely the whole reconstruction suffers.

3.2 Direct inversion models

The current image reconstruction model solves the coupled inverse problems in series with two
direct methods.
For the outer inverse problem the convolution theorem is used. The convolution theorem reads,

f ∗ g = F−1 {F {f} · F {g}} . (20)

Applying (20) to (15) gives a direct way of solving the outer problem,

F−1
{
F{p̃(r,t)}
F{p̃δ(r,t′)}

}
= ‖r− rp‖

1

t

∫
‖r−r′‖=ct

A(r′)dr′. (21)
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However this expression might be undefined when F {p̃δ(r, t′)} vanishes. Moreover any noise

on the denominator can have big influence on the value of F{p̃(r,t)}
F{p̃δ(r,t′)} when the denominator is

small. Therefore instead of this simple division, the following method is used,

F−1
{
F{p̃δ(r,t′)}F{p̃(r,t)}
|F{p̃δ(r,t′)}|2+ε

}
≈ ‖r− rp‖

1

t

∫
‖r−r′‖=ct

A(r′)dr′, (22)

where |F {p̃δ(r, t′)}|2 � ε > 0. In the form of the inverse problem this becomes,

K1u = Kdeconvf = f̃ , (23)

where f̃ is the input for the inner inverse problem.
For the inner inverse problem the filtered backprojection (FBP) model is used. The idea is to
apply the backprojection KT

1 to the measurements. Since the backprojection is not the inverse
operator of K1 there will be artefacts resulting from this process. To limit this artefacts a linear
filtering operator Kfilt is introduced, i.e.

u = K∗1Kfiltf̃ , (24)

where u is then the reconstructed image. Notice that since Kfilt is a linear filter, any filtering
done to remove noise from the data will result in losing significant edges, and the other way
around, preserving the edges will result in not handling the noise in any way. Moreover the
structure of this direct inversion model does not give enough room for imposing more sophisti-
cated regularization on the reconstruction.

These modeling choices give an easy to implement and fast direct way of reconstruction. How-
ever due to the ill-posedness of the inverse problems the simplicity of these direct methods lose
quality in their reconstructions. Therefore more precise reconstruction models are proposed in
this paper.

3.3 Variational methods and regularizers

In this section the proposed models are discussed. These models focus on solving the inner
inverse problem, i.e. K1u = f̃ , more precisely.

Whereas FBP is a direct method, variational methods are indirect approaches. Instead of
directly computing the reconstruction, a minimization problem is constructed based on the
priors of the problem. The general structure of such a problem is

argmin
u

{
λD(K1u, f̃) +R(u)

}
, (25)

where D(K1u, f̃) is the data fidelity, R(u) is the regularization term and λ is the regularization
parameter. The data fidelity represents the distance between the reconstructed image after ap-
plying the forward problem and the noisy data. The regularization term is a penalty term which
grows when certain prior assumptions are violated. By minimizing these two terms an image
u close to the data is reconstructed following the priors imposed through the regularization.
Through the choices of priors a variational method can be tailored to fit a certain problem.
A widely used variational method, which is based on the findings in Rudin, Osher and Fatemi
[ROF92], is the L2/TV model, the popularity of this model is due to the fact that it can handle
noise and still allows the reconstructed image to have edges. The L2 in L2/TV refers to the
choice of data fidelity, this data fidelity has as an underlying assumption that the noise on the
data is additive Gaussian white noise. For all the variational methods considered in this thesis
the L2 data fidelity will be chosen, therefore the L2 will be omitted in future references.
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3.3.1 Reconstruction model with Total Variation regularization

This reconstruction model is based on the Total Variation regularizer, this regularizer has as
underlying assumption that the true image is piecewise constant. As said before these kind of
models are defined through a minimization problem. The minimization problem related to this
model is:

u = argmin
u∈BV(Ω)

{
λ

2

∥∥∥K1u− f̃
∥∥∥2

L2(Ω)
+ |u|BV (Ω)

}
, (26)

where BV(Ω) denotes the space of functions with bounded variation on Ω and | · |BV (Ω) denotes
the BV seminorm, formally given by

|u|BV (Ω) = sup

{∫
Ω
u div v dx

∣∣∣v ∈ C1
c (Ω, Sym1(Rd)), ‖v‖∞ ≤ 1

}
, (27)

When u ∈W 1,1 this formal definition simplifies to

|u|BV (Ω) =

∫
Ω
|∇u| dx, (28)

with |g| =
√
g2

1 + g2
2 + ...+ g2

2. This |u|BV (Ω) is sometimes called the total variation of u.
This last expression (28) for the total variation of u indicates how this regularization penalizes
non piecewise constant structures, since this term is minimized and therefore the gradient of
u is also minimized. Note that a piecewise constant u cannot be an element of W 1,1, however
within W 1,1 on can get very close to a piecewise constant reconstruction. The technical details
around this, the space of BV and the BV seminorm are beyond the scope of this thesis, for
further reference one could look at [AV94], [CKP99] and [ROF92].

3.3.2 Reconstruction model with Total Generalized Variation regularization

A more general version of Total Variation is Total Generalized Variation (TGV). In [BKP10]
this model was introduced, to also allow higher order regularity in the reconstructed images.
The idea of total generalized variation is creating regularization term that penalizes not only
the first order derivatives but also higher order derivatives. Looking at the formal definition

TGV2
β(u) = sup

{∫
Ω
u divkv dx

∣∣∣v ∈ Ckc (Ω,Symk(Rd)), ||divlv||∞ ≤ βl, l = 0, ..., k − 1

}
, (29)

one can see that the choice of k influences how much regularity is allowed in the reconstructions
and the choice of βl influences the priority put on a certain regularity level. Note that by
taking k = 1, β = 1 the definition of TGV coincides with the definition of TV. From the set
of regularizers defined through this definition, TGV2

β is the one used in this thesis, since from
practice there is no reason to expect higher order regularity needed than the linear regularity
provided in this case. Rewriting the formal definition for TGV2

β(u) gives

TGV2
β(u) = min

w,v∈BV(Ω),∇u=v+w

{∫
Ω
|w| dx+ β

∫
Ω
|E(v)| dx

}
, (30)

where | · | is defined as done in the previous section and E(·) is the symmetric gradient. This
splitting of ∇u = v+w shows how TGV2

β still penalizes but also allows a part of the gradient (v)
to be nonzero. Moreover, by penalizing the derivative of v a balance between linear structure
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and piecewise constant structures is ensured. This balance can be influenced by the choice
of β. Combining this with the data fidelity, the minimization problem related to the TGV2

β

reconstruction model is

u = argmin
u,v,w∈BV(Ω),∇u=v+w

{
λ

2

∥∥∥K1u− f̃
∥∥∥2

L2(Ω)
+

∫
Ω
|w| dx+ β

∫
Ω
|E(v)| dx

}
. (31)

3.3.3 Simultaneous contrast enhancement via iterative regularization

A well known problem for TV and TGV2
β models is that with strongly imposed regularization

the reconstructions suffer from significant contrast loss. An inverse scale space method solving
this problem is presented in [OBG+05], which was later also implemented for the TGV2

β case
in [BBBM13], however only for the case of denoising, i.e. K1 = Id.

Bregman iterative procedure Consider a general variational problem (25) the contrast
enhancement procedure for this general problem is shown in Model 1. Instead of solving the
minimization problem once, a sequence of minimization problems is solved and per step one has
more information about the noise on the image, which is used in the next iteration.

Initialization:
u0 = 0 and p0 = 0 ∈ ∂R(u0)
for k = 0, 1, 2, · · · until stopping criterion is fulfilled do

uk = argminu {λD(u, f) +R(u)− 〈u, pk−1〉}
Update pk ∈ ∂R(uk)

end
Model 1: Iterative regularization via a sequence of variational methods.

Without specifying R(u), besides being convex and 1-homogeneous, and taking D(K1u, f̃) =

1
2

∥∥∥K1u− f̃
∥∥∥2

2
as data fidelity one can simplify the Bregman iterative procedure for the general

L2/R(u) model, just as done in [Bru10]. The minimization problem in this case would be,

argmin
u

{
λ

2

∥∥∥K1u− f̃
∥∥∥2

2
+R(u)− 〈u, pk−1〉

}
. (32)

First of all an update rule for pk is needed. From the first order optimality condition of (32) an
expression for ∂R(uk) is derived,

0 ∈ ∂R(uk)− pk−1 + λK∗1

(
K1uk − f̃

)
, pk−1 − λK∗1

(
K1uk − f̃

)
∈ ∂R(uk), (33)

which gives a simple an update rule for pk,

pk = pk−1 − λK∗1
(
K1uk − f̃

)
, (34)
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Substituting pk := λK∗1 (fk − f̃), the auxiliary variable pk gets encorperated in the data fk,
giving the minimization problem

uk = argmin
u

{
R(u) + λ

2

∥∥∥K1u− f̃
∥∥∥2

2
− 〈u, λK∗1 (fk−1 − f̃)〉

}
(35)

= argmin
u

{
R(u) + λ

2

(
〈K1u,K1u〉 − 〈K1u, f〉 − 〈f,Ku〉+ 〈f̃ , f̃〉

)
− 〈u, λK∗1

(
fk−1 − f̃

)
〉
}
,

(36)

= argmin
u

{
R(u) + λ

2 ‖K1u− fk−1‖22
}
, (37)

and the update rule,

fk = fk−1 + f̃ −Kuk. (38)

The resulting algorithm is shown in Model 2 where a stopping criterion is still not specified,
this will be discussed in 5.4.

Initialization:
u0 = 0 and f0 = f̃
for k = 0, 1, 2, · · · until stopping criterion is fulfilled do

uk = argminu

{
R(u) + λ

2 ‖K1u− fk−1‖22
}

fk = fk−1 + f̃ −K1uk.
end

Model 2: Simplification of the iterative regularization via a sequence of variational methods
for L2/R(u) reconstruction model

This chapter discussed and introduced the reconstruction models. However, to actually imple-
ment these models, an algorithm that can effciently solve the non-smooth convex minimization
problems shown in (26), (31) and Models 1 & 2, has to be derived. In the next chapter such
an algorithm is derived, discussed and validated.
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4 Numerical Methods

Now that the mathmatical models are introduced, the implementation of these models has to
be discussed. The current reconstruction method is staightforward in its implementation and
will therefore not be discussed. However the proposed models TV and TGV2

β do need some
additional attention. These variational methods have an intermediate step, the minimization of
a convex non-smooth functional, which is a challenging problem on itself. The general strategy,
within the image reconstruction field, is to solve these kind of minimization problems through
rewriting it as a sadde point problem and use a primal-dual procedure to solve it. In this paper
a primal-dual hybrid gradient (PDHG) alogrithm, as introduced in [ZC08], is used. There
are several reasons for chosing this specific algorithm. First of all the applicability of this
method, due to the simple general setup of the method (see 4.1), this method can be applied
to a broad spectrum of saddle point problems. Also the modular structure of this method,
gives way to easily adapt the algorithm implemented for a certain problem to an algorithm
for a similar problem (see [CP11], [SJP12]). Comparing this method to, alternating direction
method of multipliers (ADMM) [Gab83] and forward backward splitting (FBS) [Tse91], it has
the advantage that the update steps are ‘easier’, i.e. ADMM and FBS solve stepwise simpler
minimization problems where PDHG has a direct solution every step (see Algorithm 4 & 5).
Furthermore it can be shown that PDHG has a convergence rate of at least O(n) and can even
be O(n2) (see [CP11], [PC11], [LP14]).
In the remainder of this chapter a specific PDGH will be explained and algorithms for the TV
and TGV2

β model will be derived and analyzed.

4.1 Primal-Dual Hybrid Gradient methods

The specific version of a Primal-Dual Hybrid Gradient algorithm used in this paper is explained
in [CP11].
Let two finite-dimensional real vector spaces be equipped with an inner product 〈·, ·〉 and norm

‖·‖ = 〈·, ·〉
1
2 . The map A : X → Y is a continuous linear operator with induced norm

‖A‖ = max {‖Ax‖ : x ∈ X with ‖x‖ ≤ 1} . (39)

The general saddle point problem is then

min
x∈X

max
y∈Y
〈Ax, y〉+G(x)− F ∗(y), (40)

where G : X → [0,+∞] and F : Y → [0,+∞] are proper, convex, lower-semicontinuous (l.s.c.)
functions, F ∗ being itself the convex conjugate of a convex l.s.c. function F . Note that this
saddle point problem is the formulation of the nonlinear primal problem

min
x∈X

F (Ax) +G(x), (41)

in combination with the corresponding dual problem

max
y∈Y
− (G∗(−A∗y) + F ∗(y)) . (42)

Considering a general problem of this form the PDHG algorithm would be as shown in Al-
gorithm 3. For simple subproblems resolvent operators RHγ (z) can be obtained through the
following proximal point method:

RHγ := (I + γ∂H)−1 (z) = argmin
z′

{
H(z′) +

‖z − z′‖22
2γ

}
. (43)
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The convex conjugate of an operator can be computed through the Legendre transform (see
[Roc15]) and the original function can be recovered by applying the transformation again.

H∗(z) = max
z′

{〈
z, z′

〉
−H(z)

}
. (44)

Initialization:
Choose

(
x0, y0

)
∈ X × Y, τ, σ > 0, s.t. στL2 < 1, with L = ‖A‖ and set x̄0 = x0.

for n = 0, 1, 2, · · · do
yn+1 = (I + σ∂F ∗)−1 (yn + σAx̄n)

xn+1 = (I + τ∂G)−1 (xn − τA∗yn+1
)

x̄n+1 = 2xn+1 − xn

end
Algorithm 3: General Primal-Dual Hybrid Gradient algorithm

4.1.1 Primal-Dual Hybrid Gradient algorithm for the TV model

To derive an algorithm the minimization problem corresponding to the TV model has to be
written in the same form, recall (26), the discrete version in R2 would be

min
u

λ

2

∥∥∥K1u− f̃
∥∥∥2

2
+ ‖∇u‖1,2 , (45)

with

‖u‖22 = 〈u, u〉 , ‖∇u‖1,2 =
∑
i,j

|(∇u)i,j | , |(∇u)i,j | =
√

((∇u)1
i,j)

2 + ((∇u)2
i,j)

2. (46)

In a likewise manner as done in [SJP12], F,G and A are set as follows

F (Ax) =
λ

2

∥∥∥K1x− f̃
∥∥∥2

2
+ ‖∇x‖ , G(x) = 0, A =

[
K1

∇

]
. (47)

For the computation of the resolvent operators, split F into F1 and F2

F (y1, y2) =
λ

2

∥∥∥y1 − f̃
∥∥∥2

2
+ ‖y2‖ = F1(y1) + F2(y2), (48)

and consider the resolvent operators for F1 and F2 separately. Before the resolvent operator
can be computed, the convex conjugates have to be computed, first for F1

F ∗1 (z) = max
z′

{〈
z, z′

〉
− λ

2

∥∥∥z′ − f̃∥∥∥2

2

}
. (49)

Computing the first order optimality condition gives

0 = z − λ
(
z′ − f̃

)
, =⇒ z′ =

z

λ
+ f̃ . (50)

Checking the second order optimality condition, shows that the z′ found maximizes (52), plug-
ging in the result gives:

F ∗1 (z) =
1

2λ
‖z‖22 +

〈
y, f̃
〉
. (51)
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Computing the convex conjugate for F2

F ∗1 (z) = max
z′

{〈
z, z′

〉
−
∥∥z′∥∥} . (52)

Note that

0 ≥ 〈x, y〉 − ‖x‖1 , when |y| ≤ 1, (53)

0 < 〈x, y〉 − ‖x‖1 , when |y| > 1. (54)

Therefore F ∗2 becomes

F ∗2 =

{
0 if |y| ≤ 1,

∞ if |y| > 1.
(55)

Now the resolvent operators can be computed for F ∗1 and F ∗2 , first for F ∗1

(I + γ∂F ∗1 )−1 (z) = argmin
z′

{
1

2λ
‖z‖22 +

〈
y, f̃
〉

+
‖z − z′‖22

2γ

}
. (56)

Computing the first order optimality condition and checking the second order optimality con-
dition gives

0 =
z′ − z
γ

+
z′

λ
+ f̃ , =⇒ (I + γ∂F ∗1 )−1 (z) =

z − γf̃
1 + γ

λ

. (57)

Using equation (55) the resolvent operator for F ∗2 can be computed as

(I + γ∂F ∗2 )−1 (z) = argmin
z′

{
F ∗2 (z′) +

‖z − z′‖22
2γ

}
, (58)

= argmin
|z′|≤1

{
‖z′ − z‖22

2γ

}
, (59)

=
z

max (1, |z|)
. (60)

It remains to compute the resolvent operator for G

(I + γ∂G)−1 (z) = argmin
z′

{
‖z − z′‖22

2γ

}
= z. (61)

Using (57), (60) and (61) and Algorithm 3 the PDHG algorithm for the TV model is derived
(see Algorithm 4).

4.1.2 Primal-Dual Hybrid Gradient algorithm for the TGV2
β model

In a likewise manner as done in the previous paragraph a CP-PDHG algorithm can be derived
for the TGV2

β model. First of all recall (31) and consider its discrete version,

min
u,v

λ

2

∥∥∥K1u− f̃
∥∥∥2

2
+ ‖∇u− v‖1,2 + β ‖Ev‖1,2 , (62)
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Initialization:
Choose

(
u0, p0, q0

)
, τ, σ > 0, s.t. στL2 < 1, with L = ‖A‖ and set ū0 = u0.

for n = 0, 1, 2, · · · do
pn+1 = (I + σ∂F ∗1 )−1 (pn + σK1ū

n)

qn+1 = (I + σ∂F ∗2 )−1 (qn + σ∇ūn)

un+1 = (I + τ∂G)−1 (un − τ (K∗1pn+1 − div qn+1
))

ūn+1 = 2un+1 − un

end
Algorithm 4: Primal-Dual Hybrid Gradient algorithm for the TV model

where E is the discretised symmetric gradient and the constraint ∇u = w + v is incorporated
in the problem. Setting F,G and A as follows

F (Ax) =
λ

2

∥∥∥K1x1 − f̃
∥∥∥2

2
+ ‖∇x1 − x2‖1,2 + ‖Ex2‖1,2 , G(x) = 0, A =

K1 0
∇ −I
0 E

 , (63)

and repeating the reasoning for the resolvent operators, one gets

(I + γ∂F ∗1 )−1 (z) =
z − γf̃
1 + γ

λ

, (I + γ∂G1)−1 (z) = z, (64)

(I + γ∂F ∗2 )−1 (z) =
z

max (1, |z|)
, (I + γ∂G2)−1 (z) = z, (65)

(I + γ∂F ∗3 )−1 (z) =
βz

max (β1, |z|)
. (66)

With these resolvent operators and the general algorithm a PDHG algorithm for the TGV2
β

model is derived (see Algorithm 5).

Initialization:
Choose

(
u0, v0, p0, q0, r0

)
, τ, σ > 0, s.t. στL2 < 1, with L = ‖A‖ and set

ū0 = u0, v̄0 = v0.
for n = 0, 1, 2, · · · do

pn+1 = (I + σ∂F ∗1 )−1 (pn + σK1ū
n)

qn+1 = (I + σ∂F ∗2 )−1 (qn + σ (∇ūn − v̄n))

rn+1 = (I + σ∂F ∗3 )−1 (rn + σE v̄n)

un+1 = (I + τ∂G1)−1 (un − τ (K∗1pn+1 − div qn+1
))

vn+1 = (I + τ∂G2)−1 (vn − τ (E∗rn+1 − qn+1
))

ūn+1 = 2un+1 − un

v̄n+1 = 2vn+1 − vn

end

Algorithm 5: Primal-Dual Hybrid Gradient algorithm for the TGV2
β model

4.1.3 Parameter selection and Preconditioning

The last point, which has to be discussed before the validation of the algorithms, is the choice
of stepsize parameters τ and σ. In the basic algorithm those are chosen spatially constant, and
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moreover they must satisfy τσL < 1 for the algorithm to converge. The combination of these
constraints does not give a lot of room to make an optimal choice for the stepsize parameters.
In [PC11] a smarter strategy for chosing the values of these stepsize parameters is introduced.
Instead of taking a spatially constant parameter, the choice is now spatially dependent on the
weight given through the continous linear operator A, i.e.

Definition T = diag(τ), where τ = (τ1, ..., τn) and Σ = diag(σ), where σ = (σ1, ..., σm). In
particular,

τj =
1

r
∑m

i=1 |Ai,j |
, σj =

r∑n
j=1 |Ai,j |

, (67)

where r > 0.

Note that the size of these parameters are still limited, this has again to do with assuring
that the algorithm converges. For the more technical details see [PC11].
In Algorithm 6 the implementation of this new parameter choice strategy is shown. This new
algorithm is called the preconditioned PDHG, since matrices T and Σ function as precondition-
ers for the linear operators A and A∗.

Initialization:
Choose

(
x0, y0

)
∈ X × Y, r > 0, and set x̄0 = x0.

for n = 0, 1, 2, · · · do
yn+1 = (I + Σ∂F ∗)−1 (yn + ΣAx̄n)

xn+1 = (I + T∂G)−1 (xn − TA∗yn+1
)

x̄n+1 = 2xn+1 − xn

end
Algorithm 6: General preconditioned Primal-Dual Hybrid Gradient algorithm

4.2 Algorithm validation

This section discusses the validation of the algorithms. Whereas the PDHG algorithm and the
preconditioned PDHG are discussed in the previous section, in this section only the validation of
the preconditioned version will be shown. This is due to the fact that only the preconditioned
version is used for the experiments. Note that the normal PDHG works fine, however it is
significantly slower, which makes it less useful in practice.

4.2.1 Validation criteria

To validate the algorithm there are two critera used. To see if the variables converge the relative
residual is used and to see if the primal-dual problem is solved the primal-dual gap is considered.

Residuals Given a sequence of variables xn the residual xnres is defined as

xnres =

∥∥xn−1 − xn
∥∥

2

‖xn−1‖
. (68)

If xnres → 0 when n→∞ then xn−1 → xn and therefore the sequence xn converges.
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Primal-dual gap From the theory it is known that the primal-dual problem is solved when
the solution of (41) value coincides with (42). This gives reason to consider the difference
between these two values for every step, i.e. the primal-dual gap PDn

gap

PDn
gap = F (Axn) +G(xn)− (−G∗(−A∗yn)− F ∗(yn)) . (69)

So if the sequence PDn
gap converges to 0, if n → ∞, then the primal-dual problem would be

solved.

Using (44) and the results in 4.1, explicit expressions for the primal-dual gaps are derived,
for L2/TV

PDn
gap =

λ

2

∥∥∥K1u
n − f̃

∥∥∥2

2
+ ‖∇un‖1,2 +

1

2λ
‖pn‖22 + 〈pn, f〉+G∗(div qn −K∗1pn) + F ∗2 (qn),

(70)

and for L2/TGV2
β

PDn
gap =

λ

2

∥∥∥K1u
n − f̃

∥∥∥2

2
+ ‖∇un − vn‖1,2 + β ‖Evn‖1,2 +

1

2λ
‖pn‖22 + 〈pn, f〉 (71)

+G∗(div qn −K∗1pn) +G∗(qn − E∗rn) + F ∗2 (qn) + F ∗3 (rn), (72)

with

G∗(z) =

{
0 if z = 0

∞ if z 6= 0
, F ∗2 (z) =

{
0 if |z| ≤ 1

∞ if |z| > 1
, F ∗3 (z) =

{
0 if |z| ≤ β
∞ if |z| > β

. (73)

where the functions G∗, F ∗2 , F
∗
3 can be considered as constraints that need to be fulfilled. So

instead of considering the primal-dual gap as defined above, a conditional primal-dual gap
(cPDn

gap) will be considered, wherein the contributions of G∗, F ∗2 , F
∗
3 are ommited and the

constraints relating to these functions will be monitored separately.

4.2.2 Convergence behaviour

In Figures 4 & 5 the behaviour of the residuals, conditional primal-dual gap and constraints
are shown for the L2/TV and L2/TGV2

β method. First of all note that in all of the cases
the primal and dual variables converge, the primal-dual gap vanishes (these values shown are
relatively small compared to the functional values of ±3.2 ·104) and the constraints are satisfied
as the number of iterations n is big enough. Most notable is the oscillating behaviour for small
n, this is due to the preconditioning and has also been observed in [PC11] and [LP14].

Something not observed in Figures 4 & 5 is the influence of certain parameters on the
convergence behaviour. By changing the regularization parameters λ and β the amount of
iterations needed to convergence changes, i.e. the more emphasis on the regularization terms
the bigger n needs to be to see convergence. Which is not surprising, since the more emphasis
on the non-smooth terms the more ill-posed the minimization problem becomes. Furthermore
the choice of r greatly influences the behaviour primal-dual gap. This can be explained by
interpreting the functionality of r in the context of this algorithm. For both the primal and
dual problem there is a stepsize needed. However due to an implied size constraint (see Lemma
2 in [PC11]) in the preconditioning matrices the stepsizes for the primal and dual problem cannot
be chosen separately. Considering this, r can be interpreted as the relative stepsize between
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the primal and dual problem, which explains that the choice of this parameter r influences the
behavior of the primal-dual gap.
Although the convergence behaviour is not the same in every case, the general behavior which
implies that the algorithms converge to the solution of the problem can be seen in all of these
different cases.
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Figure 4: Convergence results for the TV model.
These figures show the convergence results for the TV model applied to a 200×200 Shepp-Logan
phantom with added Gaussian noise (with a standard deviation 5% of the maximum value of
the input data). The regularization parameter is set at λ = 50. Furthermore the amount of
iterations done is set at n = 2000 and the relative stepsize parameter is r = 1.
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Figure 5: Convergence results for the TGV2
β model.

These figures show the convergence results for the TGV2
β model applied to a 200 × 200 Shepp-

Logan phantom with added Gaussian noise (with a standard deviation 5% of the maximum value
of the input data). The regularization parameters are set at λ = 50, β = 1.5. Furthermore the
amount of iterations done is set at n = 2000 and the relative stepsize parameter is r = 1.
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5 Results

The results and experiments are mostly focussed on the inner inverse problem. Sections 5.2, 5.3
and 5.4 focus on showing the limitations of the models discussed in Chapter 3 for the inner
inverse problem. In 5.5 the outer inverse problem is also considered, a realistic synthetic data set
is introduced and the reconstructions with FBP, TV and TGV models on this set are discussed.
But before the results are shown, the experimental setup and several other technicalities need
to be adressed.

5.1 Experimental setup

In this section the complete experimental setup is discussed. To ensure control over all the
uncertainties within the problem, all the assets in the experimental setup will be computer
modelled. A synthetic data model will be given to study the inner inverse problem independently
of the outer inverse problem. Furthermore the data structures, reconstruction criteria and
parameter estimation methods will be analyzed.

5.1.1 Synthetic data model

By applying the forward model to a ground truth figure (also ‘computer phantom’) and adding
noise a model for synthetic data model is created, i.e.

fsyn = K2K1uGT + ε, (74)

where uGT is the ground truth figure and ε is the added noise to the measurement. This noise
is modeled as Gaussian noise with zero mean and variance based on the maximum values of the
ground truth figure

ε ∼ smax (K2K1uGT )N (0, 1), (75)

with s ∈ [0, 1].
Using (74), the outer inverse problem can be tested without any influence of the inner inverse
problem. Moreover the combination of the outer and inner inverse problem can be tested.
However the goal was to create a synthetic data model, such that the inner inverse problem
could be studied independently. To solve this problem assume there is a perfect way to solve
the outer inverse problem (K−1

2 ) and apply this to (16) to get

K−1
2 fsyn = K−1

2 (K2K1uGT + ε) , (76)

f̃syn = K1uGT + ε̃., (77)

with ε̃ ∼ smax (K1uGT )N (0, 1), where N (0, 1) denots a normal distribution with zero mean
and standard deviation 1 and s ∈ [0, 1]. This way the synthetic data is not dependent on K2

and gives a method of purely testing the models for the inner inverse problem.

Using synthetic data with this kind of procedure is called ‘commiting an inverse crime’. This
will result in reconstructions that are better than those that can be achieved in a more realistic
situation in general. However this will still give a good indication of the limitations of the
methods.
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Figure 6: Schematic visualization of a measure-
ment partition
A sinogram is built up from 12 measurement
partitions, i.e. this measurement setup does a
measurement from this angle, then rotates 30
degrees does a new measurement, creating a full
360 degree view of the object.

5.1.2 Data

In the experiments there will be different data sets used, the ground truth images of these sets
are shown in Figure 7 and the corresponding sinograms are shown in Figure 8. To test the
limitations of the image reconstruction models the influence of uncertainty on these data sets
is tested. First of all on a simple case as Figure 7a, to limit the influence of structure in the
data (see 5.2). In 5.3 the datasets shown in Figures 7b, 7c, 7d are used to show the influence
of a challenging structure, the need for higher order models and contrast enhancement. In 5.5
realistic data will be considered, however this will not be discussed here.
Before discussing the data sets itself, it is good to understand how the measurements are done
and related to the sinograms. The measurement method considered in this thesis consists of
12 smaller measurements done with 32 detectors. These smaller measurements (partitions) are
identical in structure except for having a different angle view on the object (Figure 6 shows a
schematic visualization of a partition of the measurement). In a measurement partition the 32
detectors collect data every timestep for a fixed amount of time. Combining these 12 partitions
creates a sinogram, which is used as input for the reconstruction model.
There are several ways of considering uncertainty in these sinograms, in these experiments there
are two main uncertainties considered, namely additive Guassian noise and subsampling.
The Gaussian noise is defined as in (75), here the s is the standard deviation of the noise and
it is a fraction of the maximum value of the data structure itself. In Figure 9 several partial
sinograms are shown with different noise intensities.
Subsampling is having less than the maximal obtainable data. Most subsampling is periodic
subsampling, e.g. leaving certain data periodically out of the data set on purpose to limit the
size of the data set or doing a measurement with a few broken detectors (see Figure 10a).
Another common subsampling case is limited angle subsampling. This is where a coherent part
of the data cannot be considered, in this case it means that certain partitions would not be
considered (see Figure 10b).

Since the focus does not lie on the handling of all possible versions of uncertainties on the
data, a limited amount of cases is considered here. The cases chosen here are done to fit the
data fidelity choice, other noise types could lead to data fidelities. More restrictive subsampling
strategies would imply new strategies on the use of forward operators and regularization, for
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Figure 7: Different data structures
In these figures the ground truths for the considered data are shown.
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Figure 8: Partitions of the sinograms
In these figures the first measurement partition from the sinogram is shown, the full sinogram
consists of 12 of these measurement partitions.

more information on this subject one could look at [BBLS15]. This work goes deeper into the
limited angle subsampling topic and suggests an interesting strategy to tackle this problem.

5.1.3 Reconstruction criteria and parameter estimation

To compare the reconstructions there are criteria needed to judge the quality of the reconstruc-
tion. One of these criteria is obviously the reconstructed figure itself, but in some cases this is not
suffiicient. Therefore two additional criteria are considered, which quantify the reconstruction
quality. First of all the relative distance to the groundtruth, defined as

dnGT =
‖uGT − un2‖

uGT
. (78)

The smaller this relative distance to the ground truth, the better the reconstruction.
The last criteria is the peak signal-to-noise ratio (PSNR), which shows the ratio between the
maximum possible power of a signal and the power of distorting noise that affects the quality
of its representation expressed in dB,

PSNRn = 10 log10

(
(max (uGT ))2

MSE(un)

)
, MSE(un) =

‖uGT − un‖22
npixels

(79)

where MSU(un) is the mean squared error of the reconstruction and npixels is the amount of
pixels in the image. Note that a lower mean squared error implies a better reconstruction,
therefore a higher PSNR implies a better reconstruction.

5.1.4 L-curve parameter estimation

The choice of regularization parameter for the variational methods influences the quality of the
reconstructions greatly, therefore there has to be a structural way to chose these parameters.
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Figure 9: Sinograms with added noise
For visibility only the first measurement partition of the sinogram is shown. This is a sinogram
related to Figure 7a. Furthermore due to the huge amount of timesteps compared to the amount
of detectors, the width of the elements in the x-direction is elongated, resulting in the strange
discontinuities.
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(a) Periodic subsampling
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(b) Limited angle subsampling

Figure 10: Subsampling strategies
Periodic subsampling as seen in Figure 10a is when certain detectors are not working anymore,
in this case detector 15-18 are not working. Limited angle subsampling is when for example
certain measurement partitions are not considered, in Figure 10b measurement partitions 4
and 5 are not considered. (see 1 for more information on the measurements)

For this the L-curve parameter estimation is chosen. In this method one simply computes the
reconstructions for several parameter values and looks for the optimal choice in this case, for
this the quantative criteria are used. Due to the nature of the minimization problems, the
results of this method show an L-shaped curve (see Figure 11).
This method will most likely not give the optimal choice of the parameter, but in practice this
method shows to be sufficient.

5.2 Influence of uncertain data

In this section the influence of uncertainty in the data is tested. The results are split up into a
part about the noise and a part about subsampling.

5.2.1 Noisy data

To test the influence of the noise a simple data structure is used (see Figure 7a). Since this is
a piecewise constant figure only the TV and FBP models will be considered in the results. In
Table 1 the quantative results for the noise experiment are shown. An interesting thing to see
in these results is that the relative difference in the FBP results is a lot smaller than for the
TV model. Moreover the noise-free FBP has worse quantative results than the noisiest case for
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Figure 11: L-curve parameter estimation for the TV model applied to Figure 7a with s = 0.05
(see (75)) and n = 2000. In this case λ = 30 would be the best choice. For the TGV2

β model
the L-curve method would give a two dimensional version of these figures (since there are two
parameters to estimate)

dGT PSNR

L2/TV

s = 0, λ = 1000 8.30 · 10−4 81.04
s = 0.01, λ = 100 7.25 · 10−3 62.33
s = 0.05, λ = 30 2.21 · 10−2 52.55
s = 0.1, λ = 25 4.04 · 10−2 47.30
s = 0.2, λ = 12 7.51 · 10−2 41.91
s = 0.3, λ = 7 0.109 38.67
s = 0.4, λ = 5 0.127 37.36
s = 0.5, λ = 4 0.163 35.20

dGT PSNR

FBP

s = 0 0.835 21.06
s = 0.01 0.835 21.06
s = 0.05 0.840 21.01
s = 0.1 0.854 20.86
s = 0.2 0.911 20.31
s = 0.3 0.995 19.54
s = 0.4 1.11 18.63
s = 0.5 1.23 17.68

Table 1: Reconstruction results for TV and FBP applied to noisy data

TV. In Figure 12a the noise-free FBP reconstruction is shown. Looking at this reconstruction
the reason for the low quantative results is the contrast loss in combination with the streaking
artefacts. What the quantitative results did not indicate is that the contours are reconstructed
very well. Moreover comparing the reconstruction to the noisiest reconstruction for the TV
model (see Figure 13c), there is much to say for prefering the FBP reconstruction. Which
implies that the quantative reconstructions should not always be leading in the determination
of the quality of a reconstruction. Obviously this is an unfair comparison and comparing the
FBP reconstructions to the TV reconstructions for the same noise levels shows that the TV
model clearly outperforms FBP.

5.2.2 Subsampling data

Looking at the sinogram structure (see Figure 14a) there is a lot of information in every
partition and the partitions overlap in information. This indicates that the methods can prob-
ably handle signifcant subsampling. In Figure 14b and Figure 14c respectively a significant
periodic and limited angle subsampling strategy are shown. Here in the case of periodic subsam-
pling all partitions are considered, but only one detector is used. In limited angle subsampling
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Figure 12: Reconstruction results for FBP applied to noisy data
As is known from filtered backprojection it creates streaking artefacts, which can cleary be seen
in Figure 12a, and it has no efficient way to handle noise, which can be seen in Figure 12b
and Figure 12c.
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Figure 13: Reconstruction results for TV applied to noisy data
Looking at these figures shows that the TV model can handle noise in an efficient way if the
regularization parameter is chosen correctly. However the more regularization that is needed the
more the well known contrast loss problem occurs, which can best be seen in Figure 13c.

all detectors are considered, but only the last partition is. In Figure 15 and Figure 16 the
reconstruction results for both of these strategies are shown for FBP and TV. There is a strong
difference between the FBP and the TV models, for both subsampling strategies the TV has
enough information to do a good reconstruction, whereas FBP loses a lot of contrast, creates
significant artefacts and cannot reconstruct the contours. It only remains to see how much
information TV needs to still do an adequate reconstruction.
In Table 2 the reconstruction results for both subsampling strategies are shown, where for the
periodic subsampling the amount of partitions used is lowered and with limited angle subsam-
pling the amount of detectors used is lowered. As can be seen in the results again roughly 70%
of this data can be thrown away before the reconstructions are showing significant artefacts (see
Figure 17).

5.3 Difficult data structures

In the previous sections it is shown that for simple data structures a lot of uncertainty can be
handled, in this section three challenging data structures tested.
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(a) Full sinogram,
12 partitions, 32 detectors
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(c) Limited angle subsampling
1 partition, 32 detectors

Figure 14: Sinograms with subsampling strategies
Figure 14a shows a full sinogram of a the simple block structure (see Figure 7a without any
subsampling. Figure 14b & Figure 14c show significant subsampling for the periodic and
limited angle subsampling strategies.

One detector dGT PSNR

# partitions

6 4.72 · 10−2 45.94
5 5.90 · 10−2 44.01
4 8.90 · 10−2 41.26
3 0.120 37.86
2 0.514 25.21
1 0.883 20.51

One partition dGT PSNR

# detectors

11 4.81 · 10−2 45.78
9 4.94 · 10−2 45.55
7 5.43 · 10−2 44.73
5 0.145 36.21
3 0.728 22.18
1 0.883 20.51

Table 2: Reconstruction results for TV applied to subsampled data
In these reconstructions a small noise (s = 0.01) is added to have less influence of the inverse
crime. For all the reconstructions λ = 1000 is chosen, compared to the previous section this
seems not a lot, however since there is significant less information in the data, the data fidelity
in the functional is smaller in absolute values, therefore the regularization has relatively more
influence.

5.3.1 Low contrast and sparse data structures

Figure 7b and Figure 7c show the data structures considered in this section. The challenge
for both of these structures is that if there is significant noise it is hard to distinguish the noise
from the data. Both Figure 18 and Figure 19 illustrate this problem well. In Figure 18b the
lines in the block start fading due to this problem. It is not strange that this is happening, since
there is a 3% contrast difference between these blocks (going clockwise from the top left) in the
ground truth and the noise here has a standard deviation of 20% of the maximum value of the
data. In Figure 19b the problem is that the sparse dot in the bottom left behaves the same
as the noise, i.e. a small deviation of the surrounding, not significant in size and not significant
in intensity. In both cases the problem with s = 0.1 noise gives a good reconstruction.

5.3.2 Linear data structure

Since the TV model has the assumption that the ground truth data is piecewise constant, this
sort of data should be very difficult to reconstruct. In Figure 20a the result is shown. The
‘staircasing’ artefacts can be clearly seen, other than that the reconstruction is very clean.
Looking at the TGV2

β reconstruction (see Figure 20b) the linear part inside the figure is
reconstructed very good. However at the contour there seems to be a kind of reflection, creating
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Figure 15: FBP subsampling
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(a) Limited angle subsampling
12 partitions, 1 detector

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Limited angle subsampling
1 partition, 32 detectors

Figure 16: Subsampling TV
Figure 15 & Figure 16 show the reconstructed images for respectively FBP and TV (λ = 1000)
with the significantly subsampled data and a little noise (s = 0.01) as shown in Figure 14b
and Figure 14c. It shows that FBP cannot handle such significant subsampling, whereas TV
still performs very well.

a circle around the figure with more intensity than the background and less than the contour
itself. This kind of artefacts are also seen in real data sets, so this could be an artefact created
by the operator. This type of artefact is not seen that significantly in the TV reconstructions
since these reconstructions do not allow this gradual change of intensity. However looking back
at all the TV reconstructions all the cases, where not a perfect reconstruction is shown, the
contours and their surroundings go gradually down.
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Figure 17: Reconstruction results for TV applied to highly subsampled data
These figures show that at some point the TV model will introduce artefacts from subsampling,
first the contrast is lowered and later on the structure itself is lost. Note that in the cases where
the TV model breaks down there is approximately 1.5% of the original data left.

5.4 Contrast loss

As known from the theory and seen in the previous results TV & TGV2
β have problems with con-

trast loss when a high amount of regularization is needed. To tackle this problem the Bregman
iterative procedure was introduced in [OBG+05]. Earlier in this thesis (see 3.3.3) this procedure
was worked out for a general L2/R(u) method, but without a specified stopping criterion. In
[OBG+05] a stoppig criterion based on the amount of noise on the problem is introduced, the
so-called discrepancy principle. In practice it might be a challenge to use such a stopping cri-
terion, however in this case the amount of noise is readily avaiable. The TV Bregman iterative
procedure with discrepancy principle as stopping criterion is shown in Model 7. In Figure 21
an example illustrating the effectiveness of this contrast enhancement is shown.

Initialization:
u0 = 0 and f0 = f
while ‖f −K1uk‖22 > ‖f −K1uGT ‖22 do

uk = argminu

{
R(u) + λ

2 ‖K1u− fk−1‖22
}

fk = fk−1 + f −K1uk.
k = k + 1

end
Model 7: Bregman iterative procedure for TV reconstruction model
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Figure 18: Reconstruction results for TV applied to low contrast data
The reconstructions in these figures show noise artefacts at the contours, moreover the hard
discontinuities in the ground truth are mostly lost in these reconstructions.
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(b) s = 0.2, λ = 14
dGT = 0.19, PSNR = 35.06

Figure 19: Reconstruction results for TV applied to sparse data
The contours in these reconstructions are recovered very well in this cases, however the contrast
loss is clearly visible in the smaller dots, up to even the bottom right dot even disappearing in
the background (see Figure 19b).

5.5 Realistic data

This section focussed on a more realistic case. The idea is to take a real data set reconstructed
with FBP, then creating a synthetic data set that looks like this real data set when it is recon-
structed with FBP. Obviously to make this comparison fair the outer inverse problem should
also be considered here. Therefore the synthetic data is now computed from (74). So first the
outer inverse problem needs to be solved, this is done with the current solution strategy (see

28



0

0.2

0.4

0.6

0.8

1

1.2

(a) Reconstruction result for TV applied to linear
data
s = 0.1, λ = 20
dGT = 4.75 · 10−2, PSNR = 31.15

0

0.2

0.4

0.6

0.8

1

1.2

(b) Reconstruction result for TGV2
β applied to lin-

ear data
s = 0.2 λ = 14
dGT = 0.19, PSNR = 35.06

Figure 20: Linear data
Interestingly enough the quantative results indicate that the TV recosntruction is better than
the TGV2

β reconstruction. This is due to the ’staircasing’ artefacts in TV reconstruction being

less influential than this big ’reflection’ artefact in the TGV2
β reconstruction on the quantative

reconstruction criteria.
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(b) TV reconstruction with Bregman iteration
s = 0.5, λ = 3, β = 5

Figure 21: TV reconstruction for strong noise data with and without Bregman
Comparing these reconstructions to the ground truth, Figure 7a, the reconstruction with the
Bregman iterative procedure shows almost the correct intensities and is far closer to the correct
relative intensity.

3.2). In Figure 22 the solution of the outer inverse problem is shown without and with low
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noise (s = 0.01). Notice that very little noise on the original data introduces a lot of noise on
the solution of the outer problem, moreover the noise structure is more coherent than the simple
additive Gaussian noise. This has to be taken into account in finding this synthetic realistic
data set.
In Figure 23 the realistic synthetic data and the real finger data are shown. The synthetic
data has a lot of similarities to the real data, except for the finer structures inside the finger
itself. Looking at this data set, it is quite challenging, it has thin low contrast lines, small high
intensity points and a bit of linearity in the background.
Figure 24 shows the reconstructions of the different methods on the synthetic realistic data set.
Looking at these reconstructions the same behavior is observed as in the previous experiments.
However in the TV and TGV2

β there are more ‘patchy’ artefacts. This is most likely due to
how the noise on the original data is propogated in the outer inverse problem. These ‘patchy’
artefacts are more seen in the TGV2

β reconstruction, this is due to the method interpreting these
patches as a linear structure and therefore leaving them in.
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Figure 22: First partition of the solution to the outer problem
In this figure the solutions to the outer inverse problem are shown for the simple blocks data set
(see Figure 7a and Figure 8a). Notice that the case without noise shows already an artefact
around the data and the case with very little noise is full of artefacts.
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Figure 23: Creation of the realistic data set
The synthetic data is very similar to the real data, except for the fine structures inside the finger
itself. This reconstruction is done with solving the outer and inner inverse problem.
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Figure 24: Reconstruction results on realistic synthetic data
Looking at these reconstructions the FBP reconstruction shows significant contrast loss and not
handling the noise. The TV reconstruction shows not a lot of influence of the noise, but inside
the finger there are ‘staircasing’ artefacts. At last the TGV2

β reconstruction does not show any
artefacts, but it does show a bit more influence of noise.

6 Summary and Conclusions

In this thesis L2/TV and L2/TGV2
β are implemented in the reconstruction model for photoa-

coustic tomography. Moreover the limitations of these models are carefully tested for problems
such as uncertain data and difficult data structures.

In the first part the forward model describing the physical process for photoacoustic tomog-
raphy and the mathematical model are introduced. Where the structure of the forward model,
i.e. the measured data being the time convolution of the calibration measurement with the
projection integral

p̃(r, t) = p̃δ(r, t
′) ∗t

(
‖r− rp‖

t

∫
‖r−r′‖=ct

A(r′)dr′
)
, (80)

gives way to the coupled inverse problem mathmatical model. This model has several solution
strategies. The solution strategy considered in this thesis seperates the coupled inverse problems
and uses the solution of the outer problem as input for the inner problem. The inner problems
is perfectly suitable for implementing variational methods such as L2/TV and L2/TGV2

β .
The big challenge with this kind of nonlinear variational methods is to implement them in an
efficient way. This is due to the nonsmooth nature of the saddle point problems introduced in
these models. In this thesis a Primal-Dual Hybrid Gradient algorithm is chosen to implement
the L2/TV and L2/TGV2

β models. This algorithm is chosen for its general applicability for this
kind of problems, giving room for improvements on the model. Simple updating rules making
the implementing easier and the possibility of using preconditioning on the algorithms. As seen
in 4.2 this algorithm solves the saddle point problems efficiently and correctly.
At last the reconstruction models are tested on cases that closely relate to problems in prac-
tice. Recalling Figure 2 the reconstructions showed sparse, low contrast data with noise and
streaking artefacts possibly from subsampling. In Chapter 5 it is shown that the L2/TV
model can handle noise efficiently up to contrast loss (see Figure 13). Moreover combining
the L2/TV model with the Bregman iterative procedure results in reconstructions without the
ealier observed contrast loss (see Figure 21). Also the experiments for subsampling showed
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that the L2/TV model can handle a lot of subsampling. In the cases where the FBP recon-
structions seemed to completely break down (see Figure 15) with significant subsampling, the
L2/TV reconstructions showed no artefacts (see Figure 16). The L2/TV reconstructions for
low contrast and sparse data structures showed difficulties distinguishing data from noise when
the noise was strong enough (see Figure 18 & Figure 19). However, in the case where the
L2/TV still showed good reconstructions the standard deviation of the noise was already higher
than significant parts of the data. As expected the L2/TGV2

β reconstruction outperformed the

L2/TV reconstruction when reconstructing a linear data structure (see Figure 20), since the
L2/TV model has as underlying assumption that the true image is piecewise constant. The last
results shown are on a more realistic data set. This data set was created to have likewise fea-
tures as real data. These last results, show precisely what all the previous experiments showed,
i.e. the variational methods clearly outperform the FBP. Moreover the L2/TGV2

β model shows

better results for linear data structures than the L2/TV model.

The final conclusion of this thesis is that variational methods, such as L2/TV and L2/TGV2
β ,

can be implemented in the reconstruction model for photoacoustic tomography and the initial
results are promising for improving the quality of the reconstructions.
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7 Outlook

All those results are done through generating synthetic data with the same forward operator
as used in the reconstruction. This implies that the reconstructions will most likely not show
all the artefacts that the mathematical forward operator might introduce. Therefore the next
step would be to create the synthetic data with another forward operator, such as the k-wave
toolbox [TC10], and performing the reconstructions with the models suggested in this paper.
This gives the same controlled environment for the experiments, but works around the ‘inverse
crime’.
In the realistic data results (5.5) it is shown that the current method to solve the outer inverse
problem is not optimal. Finding a method that solves this problem more precisely will help
the overall reconstructions greatly. As suggested in 3.1 an interesting way to solve this outer
problem is trying to solve it simultaneously with the inner problem. Another strategy that
might give great results is finding an effecient way to concatenate the outer and inner inverse
problem operator, to simplify the inverse problem, if there is a way to do this, the methods for
the current inner problem can probably be implemented for this new simpler inverse problem
without a lot of change of the current framework.
The suggested models have a well known problem that in practice the choice of regularization
parameter is not very straightforward. Therefore it is important to find a consistent way of
determining those.
Something not yet discussed in this paper is that in the real data there are problems with
the bone reflecting the light back to the detector. This might result in objects shown in the
reconstructions that should not be there. A way to handle this is to determine where the bone
is located and removing all the data in the sinograms that might be data reflected by the bone
and trying to inpaint (interpolate) this data, in a likewise manner as done in [BBLS15].
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