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Abstract

This thesis is an overview of our investigation of Faraday waves and jets on free
surfaces. Faraday waves are standing waves generated by a parametric oscilla-
tion. We will consider the parametric oscillation of gravity in this study.

A cylinder containing the fluid of interest is mounted on a vibration device
which shakes the entire setup vertically. In this way the effective gravity is
modified which generates period-doubled standing waves in the fluid. Continu-
ous excitation leads to very large amplitudes. The surface of the fluid becomes
unstable and collapses symmetrically. This singularity, caused by inertial focus-
ing, leads to jet formation.

High speed imaging techniques are used to capture the surface profiles of the
standing waves, cavities and jets. The maximum tip velocity found in our setup
was 22ms−1.

The dynamics of the bulk flow, the boundary layers and the contact line are
treated separately. Their contributions are combined in a single model by con-
sidering the mechanical energy.
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Chapter 1

Introduction

1.1 Background and motivation

When being in an elevator, a fairground attraction or an airplane one has the
experience as if gravity is not constant anymore. While the origin of this feeling
is of course some non-gravitational force acting on the human body leading to
a different acceleration, the sensation of a modified gravity is obvious. It is
so natural that all such loads are expressed as a factor times the gravitational
constant, denoted as g-forces. For instance centrifugal forces, the acceleration
of a car or the shock resistance of wrist watches are measured in this unit. All
contributions can be added as vectors to find the effective gravity experienced.

A small vertical vibration seems to be a less exciting version of this concept but
when applied long enough the effects can be devastating. Heavy earthquakes
only reach one to two times the gravitational constant [88] which suggests the
ongoing trembling of the earth’s surface is critical for the result. Other ex-
amples of systems that change the total acceleration continuously are found
in transportation, industrial and household machinery, children’s swings and
music instruments. To investigate the nature of these phenomena, one could
design a system that vibrates along the direction of gravity such that the direc-
tion of the effective gravity does not change. In this study we use the potential
strength of oscillating gravity as an external exciter for waves on liquid surfaces.

On large scales, like the ocean, waves are mostly generated by wind, the moon,
thermal convection, ship movement, etc. However, wave traveling is generally of
a diverging nature. The inertia they carry is distributed and exceptional effects
are rare. Very high waves, known as freak waves like the New Year’s wave [85]
are legendary. In practice wave breaking only occurs at beaches, when the slop-
ing bottom causes most waves to grow in size while slowing down. The critical
amplitude for wave breaking is usually in the order of its wavelength. Another
effective way of creating breaking waves is with the following experiment. A
solid container filled with the liquid of interest is mounted on a vibration sys-
tem which is a driver for surface waves. Considering the long build-up time for
our excitation mechanism we need to retain the inertia of the fluid in order to
investigate high amplitudes. Standing waves a particular suitable for this pur-
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8 CHAPTER 1. INTRODUCTION

pose and they are generated for favorable parameters, which we will discus. The
largest differences with an open domain are the effects of reflection and dissipa-
tion near the edges. Movement along the walls and wetting dynamics may be
involved as well. This complicates the investigation of the system significantly.
When the system is overdriven, the wave become so large that the surface profile
becomes unstable and collapses, which is the equivalence of wave breaking for
traveling waves. This results in a singularity where the inertia is concentrated
and a jet is formed under favorable circumstances. This phenomena is known
as self-focusing as the fluid focuses its inertia while the entire system is excited
[47]. Surface-waves in closed basins are intensively investigated.

Jets are extensively studied and not so uncommon in everyday live as one might
expect; actually all unstable cavities produce jets, like impacts on surfaces such
as rain drops or a dive in a pool. Applications are for instance in ink-jet print-
ing. A high speed jet can also be used to penetrate the human skin which can be
exploited as a drug delivery system. Jets can cause undesired damage as well.
For example, underwater propellers or hydraulic pumps can produce cavitation
bubbles which in turn create jets that can even wear down metals. In the lab
they can be produced with various other methods. The jets in our setup are
unique in the way that they evolve from standing waves, which is a consequence
of the driving mechanism. The cavities and jets are extreme instances of the
troughs and crests of the wave. Their evolution and transition is particularly
interesting. In addition, their generation takes time, whereas the jets in afore-
mentioned examples can be created almost instantaneously. In very short times
large forces are required, while this setup creates extreme phenomena for very
modest parameters.

1.2 Faraday waves

Parametric excited surface waves are named after Micheal Faraday for his fa-
mous work, titled ”On the forms and states assumed by fluids in contact with
vibrating elastic surfaces[39].” Our investigation is as this title describes with the
complement that we consider standing waves in confined, non-elastic containers
and their over excitation as to generate jets in particular. In this graduation as-
signment we will examine the (nonlinear) standing waves in a vertically vibrated
container. The dimensions are such that wall effects are not dominant and the
fluid is not in the shallow regime. In fact, we will especially emphasize on the
cylindrical symmetric ground state, which implies the wavelength corresponds
to the container’s dimension. Overdriving of the standing wave will shape its
trough as a cavity, resulting in a jet upon collapse.

The layout of this report is as follows. In the second chapter, Theoretical As-
pects, we will consider the parametric forcing, the dynamics of surface waves
and cavities and jets. The experimental facilities and procedures are described
in the following chapter, where we will discuss the equipment used to capture
the dynamics of the fluid in the lab. We continue with the analysis and results of
the experiments and, whenever possible, compare them with the model. In the
numerical chapter we consider various methods to exploit the model. Finally, a
conclusion and discussion are provided.
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1.3 Research questions

In this thesis we will focus on to the following research questions.
i) Which contributions have to be taken into account to design a satisfactory
model, that adequately describe experimental observations?
ii) How do we design an experiment that obtains accurate data for a considerably
large parameter range?
iii) What kind of jets can be generated in this setup and are the available
descriptions sufficiently adequate?
iv) Can we design an accurate model describing the whole range of dynamics,
to bridge the gap between wave and jet modeling?

Figure 1.1: A standing wave in sunflower oil transitioning in a cavity and jet
formation.
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Chapter 2

Theoretical Aspects

For the theoretical aspects we will consider a similar outline as in the Introduc-
tion. First the forcing mechanism is investigated. Vibration of the container
is a parametric oscillations that leads to equations of the Mathieu type. The
excitation is a specified function of time and corresponds to uniform motion of
the cylinder containing the fluid. Hence, we consider the harmonic oscillator
before we evaluate the equations of motion of the fluid. This one-dimensional
description of parametric oscillations is a good starting point to examine the
properties of Faraday excitation.

Secondly, the dynamics of surface waves are considered. We will start form
the incompressible Navier Stokes equations and treat two boundary conditions.
We require impermeability and no-slip at solid interfaces and the kinematic and
no-stress conditions at the air-fluid interface. Physical arguments allow us to
distinguish the bulk flow in this problem and corrections are later added to
repair the neglected contributions. The largest part of the flow is irrotational
because inertia is dominant and it initially rotational free. The fluid is restricted
by the container and its surface, so the impermeability and kinematic boundary
conditions are more important. We have to select one boundary condition to
prevent an overdetermined system.

The other conditions are met by rotational flow fields which are denoted as
boundary layers because they are only significant close to the boundaries. The
concept of these layers is well-known, but their influence on the total flow is not
often considered. To do so in this study, we calculated the mechanical energy of
the flow field. Finally, wetting dynamics like contact line movement and pinning
are treated. We assumed that dissipation arising from these effects are at the
expense of the mechanical energy of the fluid.

In the third part cavities and jets are investigated. Several known solutions
and methods describing these phenomena are offered. We will treat various ex-
amples of jets and cavities in other systems, because their dynamics is universal
in specific cases. Often jet creation is preceded by a singularity, which is the
collapse of the cavity in our case. Moreover, a mechanism is needed to concen-
trate enough inertia in a small volume to produce the jet. In many systems
the forcing needs to be designed specifically for this purpose, whereas Faraday
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12 CHAPTER 2. THEORETICAL ASPECTS

waves are characteristic for their self-focusing. The standing waves accumulate
inertia until the surface becomes unstable and a cavity collapse follows. The
surface of the crest before jetting can be unstable as well, e.g. droplet pinch-off,
which may potentially lead to very irregular but beautiful jets.

We would like to make a few notions on possibly uncommon conventions in
this chapter. An integral is often written with for a general variable of integra-
tion, i.e.

∫
dx. x should be interpreted as a general coordinate or coordinates

and it will be clearly stated what the domain and variable of integration specif-
ically is. Often it is written as a subscript with the integration sign, e.g.

∫
F

dx
is an integration over F and the integrand should be evaluated for variables
that are in F . Other subscript denote indices, e.g. ur is the velocity in the r
direction. Derivatives will always be written with a clear differentiation sign,
like ∂ or a dot over the symbol. We often use kinematic constants in this report.
Surface tension and viscosity are denoted by γ and µ respectively, while divided
over the density they are γ̄ and ν.

2.1 Parametric oscillations

Oscillations occur in many physical systems. Engines, electrical circuits or plan-
etary orbits are all examples. In most of the cases some variable, temperature,
potential, displacement, oscillates around a semi stable state. The period and
amplitude of such motions are depended of certain parameters, like conductiv-
ity, gravity, density, etc. They are normally a constant in the system under
consideration, like the length of a pendulum’s rod but certain systems impose
an oscillation on those values, hence parametric oscillations. In the case of the
pendulum one can design the rod such that its length changes over time. Os-
cillatory parameters can drive the system. For instance, a person’s change in
angular momentum drives the motion of a swing.

In this section we will limit ourselves to one dimensional, (semi-)linear un-
damped systems of the Mathieu type. The variable of interest is denoted by
x as a function of t. We start out with the equation of motion and consider
solutions from an intuitive description towards Fourier decomposition. Next we
will include friction and limited nonlinearities. We finish with a notion on the
operator involved in these systems.

2.1.1 Mathieu function

Consider a simple harmonic oscillator. Its acceleration is negatively proportional
to this displacement from its equilibrium, in formula;

ẍ+ Ω2x = 0, (2.1)

with Ω the eigenfrequency of the system, which generally depends on the gravi-
tational constant g as well as on the system dimensions. This parameter is now
harmonically perturbed with dimensionless amplitude f such that eq.(2.1) will
change to

ẍ′ + Ω2 (1− f cosω0t)x
′ = 0, (2.2)
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where ω0 is the driving frequency. It is known as a Mathieu system because of
the harmonic oscillation of the perturbation. A new time coordinate, t′ = ω0t/2,
will help one understand its behavior. The following relation is known as the
canonical form of Mathieu’s differential equation [67].(

∂2

∂t′2
+ p− 2q cos 2t′

)
x′ = 0, (2.3)

with frequency detuning p = 4Ω2/ω2
0 and external action q = 2fΩ2/ω2

0 . Al-
though q is zero when p is as well, hypothetically the last case with q 6= 0
corresponds to an ideal pendulum. The solutions are known as Mathieu func-
tions and are inseparable from Faraday excitation. They were first related with
one another by Benjamin and Ursell [6] and are known for their characteristic
period doubling. This is because p = 1 is the fastest growing mode and the
harmonicity (the motion being period doubled, isochronous or super-harmonic)
generally depends on the ratio Ω/ω0 =

√
p/2. A phase chart is plotted in fig-

ure 2.1, in which one can observe a qualitative amplitude response [67]. One
observes other unstable regions around p = 4, 9, 16..., although very narrow for
small q. We will focus our attention on the region around p = 1.

2.1.2 Solutions

We will first show how this period doubling can intuitively be understood. We
drop the accents on the variables, substitute x = a(t) cosω1t in eq.(2.3) and
obtain

x(p− ω2
1) = a(p− ω2

1) cosω1t =

2aq cos 2t cosω1t = aq [cos(2− ω1)t+ cos(2 + ω1)t] ,

where a is assumed to vary slowly, i.e. its temporal derivatives are neglected.
The system now appears as a forced harmonic oscillator such that solutions with
ω1 = ±1 are in resonance, whereas the other cosine with a frequency of three is
off-resonance. Moreover the driving amplitude is proportional to the function
own amplitude suggesting exponential growth, especially when p is close to ω2

1 .
A solution of eq.(2.3) is plotted in figure 2.2 showing this behavior. Let us now
look at a more exact solution. Put x = a(t) cos(t − ϕ(t)), such that its second
derivative can be approximated as

ẍ ≈ −2ȧ(1− ϕ̇) sin(t− ϕ)− a(1− ϕ̇)2 cos(t− ϕ)

≈ −2ȧ sin(t− ϕ)− a(1− 2ϕ̇) cos(t− ϕ),

neglecting second order derivatives and terms quadratic in the first derivative,
because we still assume slowly varying amplitudes and small q. Next we drop
the off-resonance term by approximating

2x cos(2t) ≈ a cos(t+ ϕ) = a cos(2ϕ) cos(t− ϕ)− a sin(2ϕ) sin(t− ϕ) (2.4)

and substitute the results in eq.(2.3), which we regroup in a term proportional
to sin(t − ϕ) and one proportional to cos(t − ϕ). Both terms should be zero,
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Figure 2.1: Stability chart for Mathieu’s equation [67]. The lines denote the
transition form stable to unstable (growing) solutions. The stable regime are
the areas between the horizontal axis and these lines, also known as Arnold
tongues.

such that one yields for the latter

2ϕ̇ = q cos 2ϕ+ 1− p = q [cos 2ϕ− cos 2ϕ0]

= −2q sin(ϕ+ ϕ0) sin(ϕ− ϕ0).

We defined cos 2ϕ0 = (p − 1)/q. The phase does not depend on the amplitude
and one sees it is stationary and stable for φ = φ0. Hence, the phase of the
signal will lock itself relative to the excitation. For the sine part of the equation
one has 2ȧ = aq sin(2ϕ). When the phase reached its equilibrium, i.e. φ = φ0

we find

2ȧ = aq sin

(
cos−1

(
p− 1

q

))
= a

√
(q2 − (p− 1)2), (2.5)

using trigonometric relations. We find the exponential growth rate

α =
1

2

√
(q2 − (p− 1)2). (2.6)
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Figure 2.2: Unstable Mathieu function for p = 0.992 and q = 10−2.

The solution grows for real α, i.e. |p− 1| < |q|. For example the rate is |q| /2 for
p unity. Imaginary α implies the amplitude oscillates. In figure 2.3 a solution
is plotted for 2πα−1 = −200i. There are large frequency components around
±(1 ± iα) as expected. Their magnitude is not equal though which can be
explained by complications with the relation for ϕ now α is imaginary. Their
nature is described using Fourier theory.

2.1.3 Fourier series

A Laplace series expansion of Mathieu functions seems natural as one expects
growing oscillations. However as the exponential growth rate is predicted to
be of a single unique argument, we can divide the motion and investigate the
oscillations. We use the notation for transformations according to x(t)=̂x̂(ω),
with =̂ denoting the Fourier transform. In the frequency space eq.(2.3) is(

−ω2 + p− q {δ(ω − 2) + δ(ω + 2)} ∗
)
x̂(ω) = 0, (2.7)

which leads to

(p− ω2)x̂(ω)− q {x̂(ω − 2) + x̂(ω + 2)} = 0. (2.8)
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Figure 2.3: Stable Mathieu function for p = 0.936 and q = 10−2.

In here δ is the Dirac delta function and ∗ denotes convolution. We now have a
recursive series for the frequency components of the Mathieu function. A first
try would be frequencies at ω = ±1,±3,±5, ..., like

x̂(ω) =

∞∑
n=−∞

a2n−1δ (ω − [2n− 1]) , (2.9)

with a an array obeying an+2 = an(p− n2)/q − an−2 due to eq.(2.8). However,
this can be a diverging series as real solutions require x̂(ω)∗ = x̂(−ω) or a∗n =
a−n. Hence it is sufficient in the growing region of approximately |p− 1| < |q|,
e.g. the signal in figure 2.2. A more general solution can be found in

x̂(ω) =

∞∑
n=−∞

[
a2n−1δ (ω − [2n− 1− d]) + a∗−2n+1δ (ω − [2n− 1 + d])

]
,

(2.10)
with another form of the detuning, d. In figure 2.4 the spectrum of the signal in
figure 2.3 is plotted. The peaks obey relation eq.(2.10) while we neglect the rest
of the signal which is due to artifacts of the discrete Fourier transform and the
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Figure 2.4: Logarithmic scaling of|x̂| (arbitrary units) for p = 0.936 and q =
10−2.

logarithmic plotting. A phase diagram is obtained after numerical integrating
eq.(2.3) and fitting it to xexp(−βt+ β0) in a least square sense. In figure 2.5 d
and β are plotted for a limited range of p and q. The area where β is non-zero,
is similar to the unstable regime in fig.2.1. Also, the detuning d is zero here,
following the series in eq(2.9). Also, in figure 2.6 the difference with α from
eq.(2.6) is plotted. The shows our prior analysis was reasonable accurate. The
error is mainly due to the symmetry of α in p = 1 which is an oversimplification
for significant q. This can also be observed form the phase chart in figure 2.1.

2.1.4 Friction

Dissipation is straight-forward to include in the original relation of eq.(2.3).

ẍ+ βẋ+ (p− 2q cos 2t)x = 0, (2.11)

with known function β(t). A solution can be transformed to x = x′ exp(−B(t))
with

B(t) = β0 +
1

2

∫ t

0

βdτ (2.12)
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(a) Detuning d. (b) Exponential growth β.

Figure 2.5: Phase diagrams by numerical integration of eq.(2.3).

and β0 a constant, such that

ẍ′ +

(
p− 1

4
β2 − 1

2
β̇ − 2q cos 2t

)
x′ = 0 (2.13)

is our new differential equation. It is a more general parametric oscillation
and only Mathieu like for linear damping, i.e. constant β. Combined with the
unstable solutions from the previous section, one can find a larger region of
(semi-)stable solutions since one may add the contributions of growth (eq.(2.6))
and decay to find the effective exponential argument αt−B(t).

2.1.5 The Sturm-Liouville Operator

Another way to describe the system is to define the Mathieu operator

Mqx = 2q cos 2t′ − ∂2

∂t′2
, (2.14)

such that Mathieu functions are eigenfunctions of

Mqx = px, (2.15)

with real eigenvalues p. The Mathieu function is a special case of the Sturm-
Liouville operator, S : L2

w(0,∞)→ L2
w(0,∞) by

Sx =
1

w(t)
[−∂t(s(t)∂tx) + r(t)x] (2.16)

on domain D(S) = {x ∈ Lw(0,∞) | ∂t (s(t)∂tx) ∈ Lw(0,∞)}. The weight func-
tions, s and w equal unity in our case whereas r = 2q cos 2t′ for Mathieu so-
lutions. With appropriate boundary conditions it is a self-adjoint operator as
can by shown by integration by parts, although real eigenvalues were the only
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(a) d− Im(α). (b) β − Re(α).

Figure 2.6: Difference between phase diagrams in figure 2.5 and eq.(2.6).

interest in the first place. However if we can construct the domain such that it
is, the Sturm-Liouville operator, and therefore the Mathieu operator is densely
defined and closed as well. Sturm-Liouville problems are deeply studied [65].

2.1.6 Faraday waves

Let us now look how parametric instabilities occur in fluid mechanical systems.
Faraday describes wave patterns of fluids in vibrating containers [39]. There are
two driving mechanisms. First, vibrations of the wall itself leading to the so-
called singing wineglass. A recent study, including a historical and publication
overview, was done by Voges [91]. The other approach is a vertical oscillation
the entire container. In this report we will exploit the latter method. Although
the reader may intuitively understand the origin of the modified acceleration,
we will briefly explain the coordinate transformation involved.

Finding the equations of motions prove to be easier after a transformation of
coordinates. In earth’s reference frame the boundaries are moving according to
a known function, i.e. the configured forcing of the container. It follows that the
fluid locally matches the velocity of the walls. One can simplify the boundary
condition by describing the motion in the container’s frame of reference. How-
ever this is at the costs of d’Alembert acceleration. Intuitively, one understands
the acceleration will be opposite to the acceleration of the motion. Here we will
lay out a framework using covariant differentiation such that the equation hold
in all coordinate systems [29].

Now, suppose earth’s vertical coordinate (z′) relates to the containers verti-
cal coordinate z = z′ + r(t) with r the container movement and t = t′ the
temporal coordinates in the container’s and earth’s frame respectively. The
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invariant distance in this two-dimensional system is

ds2 = dt′2 − dz′2.

The ’four-velocity’ field, uα
′

is subject to the acceleration

aα
′

= uβ
′
uα

′

,β′ .

For instance, the acceleration in the vertical direction here is ut′∂t′uz′ +uz′∂z′uz′

where summation over indices occurring both in sub- and superscript within a
term is implied. This acceleration equals to the material derivative for unit
ut′ , i.e. for non-relativistic lateral velocities. One reads off the metric: gα′β′ =

diag(1,−1) for xα
′

= (t′, z′). In the new system xα = (t, z) and

gδγ = gα′β′xα
′

,δ x
β′

,γ =

[
1− ṙ2 −ṙ
−ṙ −1

]
, (2.17)

with a dot denoting differentiation. In these coordinates the acceleration in the
vertical direction is

ut∂tuz + u2
t r̈ + uz∂zuz.

Now put r ∼ f cosωt such that we can motivate relations like eq.(2.2).

A note can be made on the flatness of this space. Normally gravity has to
be included in the metric. As our system does not experience relativistic speeds
and has a single gravitational constant we can write the gravitational potential
as −gz. Then one modifies the metric gt′t′ = 1 + 2gz. This is known as the
Newtonian approximation of the space at the earth’s surface. One may also
modify the metric by choosing new coordinates that accelerate upwards, e.g.
z = z′ + gt2/2. Locally this will result in the same acceleration. Another note
is on the invariant distance in the new frame of reference. It ’feels’ unnatural
that there are off-diagonal elements in the metric because it suggests that the
new coordinates are not curvilinear. Well, they are not. It accounts for an
infinitesimal displacement if we added up the contribution of the container’s
movement.

2.2 Gravity Waves

Until now we did not go into the fluid dynamics of our system. First a general
overview of the configuration is presented. We will describe the system, its
governing equations of motion, the basics of surface dynamics and the imposed
boundary conditions. Then we will propose a model based on irrotational bulk
flow with boundary layers. Finally, we will evaluate the mechanical energy of
our system.

2.2.1 The Navier Stokes Equation

An incompressible fluid is located in vertically oriented cylinder. The coor-
dinate system is initially fixed to the center of the undisturbed fluid surface.
Its coordinates are (t, r, θ, z) corresponding to the temporal, radial, azimuthal
and vertical coordinates respectively. We often assume radial symmetry, hence
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ẑ

r̂

θ̂
g(1− f cosω0t)

Figure 2.7: Faraday excitation in the cylinder frame of reference

θ is only considered occasionally, e.g. for integration. As the cylinder is vi-
brated vertically the system experiences a modified gravitational acceleration,
ḡ = g(1 − f cos(ω0t). The control volume ∀ remains constant over time and
since the cylinder has radius L, the fluid has a mean depth of h = ∀/πL2. The
surfaces containing ∀ are ∂∀ containing the free surface, S, the wetted boundary
of the cylinder, W and the bottom, B. The contact line, Γ, is the intersection
of S and W . See figure 2.7.

The fluid is also of the Newton type such that we start with the incompressible
Navier-Stokes equation. The flow field u is subject to

∇ · u = 0, (2.18)

N = Dtu− g −
1

ρ
∇ · τ

= (∂t + u · ∇)u− g +
1

ρ
∇p− 2ν∇Hu = 0, (2.19)

with body force g = −ḡẑ, density ρ, viscosity µ = ρν, stress tensor τ and
pressure p. It seems trivial to introduce the vector N as it is zero, but it will
be convenient later in this section. Sometimes it is convenient to write the
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equations in tensor form.

uα:α = 0, (2.20)

Nβ = uαuβ:α −
1

ρ
ταβ:α = 0. (2.21)

Gravity is included in the coordinates and covariant differentiation is implied
as in section2.1.6.

2.2.2 Surface dynamics

In this section we will present a brief overview of free surface relations. In the
(r, z)-plane, the outward normal and tangential unit vectors are n̂ and t̂. In
absence of a hat they are not assumed to be normalized. Note that because of
the cylindrical symmetry the normal vector is always in this plane and that the
other tangential vector or binormal vector (b̂) is perpendicular to it, i.e. aligned

with θ̂,b̂ = t̂× n̂.

The upper boundary or free surface can locally be expressed by its curvature k,
arclength ξ, tangent angle α or profile F (r, z) = 0, see figure 2.8. They can be
related as

n̂ =
∂t̂

∂α
=

− sinα
0

cosα

 =
∇F
|∇F |

, (2.22)

t̂ = −∂n̂
∂α

=

cosα
0

sinα

 = ∂ξ

rθ
z

 , (2.23)

k =
∂α

∂ξ
=

∣∣∣∣∂t̂∂ξ
∣∣∣∣ = −∇ · n̂ = −∇ · ∇F

|∇F |
. (2.24)

The first relation in eq.(2.24) is known as the Cesàro equation. Also, note that
in general k∂α = ∂ξ and ∂2

α = −1. One can find the relationship between the
curvature and the normal vector by

k =
∂α

∂ξ
=

∂α

∂xj
∂xj

∂ξ
=

∂α

∂xj
t̂j = − ∂α

∂xj
∂n̂j

∂α
= −∂n̂

j

∂xj
.

In literature an alternative definition of the curvature is occasionally used [35,
80]. Also, the arclength can be viewed as one of the surface coordinates in the
surface description of Sriven [80].

2.2.3 Boundary conditions

The kinematic surface condition states the flow is contained in its boundaries;
the fluid has the same velocity as its surfaces. For the solid cylinder walls and
bottom this condition is straightforward as they are stationary in the conve-
niently defined coordinate system, stated u · n̂ = 0. Nevertheless, we will not
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Figure 2.8: Surface variables in the (r, z)-plane

consider the bottom boundary anymore as the fluid is assumed very deep, such
that it is not ’felt’ by the surface motion. In section 2.2.5 we will show that it
indeed the case.

As for the free surface, one notes the Lagrangian derivative of F should be
zero.

0 = DtF = ∂tF + u · ∇F. (2.25)

The mathematical distinctions between boundaries can be omitted if F is defined
as the boundary of the fluid, i.e. F = ∂∀. At the stationary walls, ∂tF = 0
so u · n̂ = u · ∇F . The kinematics condition for all boundaries are now given
by eq.(2.25). The parameterization of F can be utilized. Often there is unique
relation of the profile in one of the coordinates, say F = η(t, r)− z, e.g. fig 2.8,
such that

0 = ∂tη + ur∂rη − uz. (2.26)

This can be especially be convenient in momentum equations, as the local grav-
itational pressure is proportional to η. It also allows to conveniently express the
fluid domain, which will be contained in 0 ≤ r ≤ L,−h ≤ z ≤ η(r, t).

For solid boundaries the tangential velocity component is zero along the walls,
the no-slip condition or u · t̂ = 0. As a consequence the derivative of this com-
ponent in the same direction is zero as well, i.e. t̂ · ∇u · t̂ = 0. Because of
continuity this also results in n̂ · ∇u · n̂ = 0. In fact the only non-vanishing
term is n̂ · ∇u · t̂. At the free surface there is of course a no-slip condition too,
but it is relative to the surrounding air. We assume that the air flow will follow
the liquid motion without influencing nor disturbing it significantly. This can
be explained as follows. If we denote δ(.) as the difference in any quantity of
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both media along the interface, the above relations hold for δu as well. This can
have a large influence on the dynamics. For instance, the densities are added
to find inertia but subtracted to find restoring forces like buoyancy. The stress
tensor has to be evaluated for a difference in properties as well [55]. In our ex-
periments we will use air as the fluid on top of our liquid. At room temperatures
air has the following density ρ = 1.23kgm−3 and viscosity µ = 17.8µkgm−1s−1.
This will be small compared to the properties of the liquid so will neglect this
effect. Turning around, a system where wind is the driving force couples the
motion of the air to the fluid. In many cases the air flow high above the liquid is
known. The investigation then limits to region around the surface that matches
both flow fields. The influence of the wind can be approximated in this way
[69, 13, 16].

In this region not only the no-slip condition has to be met but the surface
forces need to be balanced as well. Any deformation of a free surface generates
viscous stress, hence we have other boundary conditions to account for on the
free surface. The reader probably is familiar with the pressure jump caused
by the curvature of the surface. Tangential forces have to be continuous for
continuous flow fields as well[17]. We would like to summarize the derivation
as proposed by Scriven [80], because it describes the origin of the stresses very
well. The forces on a two-dimensional surface are balanced assuming it is New-
tonian interface. It means the stresses are linear with the the strain rate and all
tensors are isotropic such that only three coefficients are needed to describe the
stress on the surface1. Those are the surface tension γ̄, the dilatation viscosity
κs and the shear viscosity εs. For clean surfaces its only relevant result is the
aforementioned pressure jump of γ̄k. However for an interface with surface ac-
tive elements γ̄ might depend on the lateral coordinates and the viscosities can
be of significant value. Marangoni effects are examples of these dynamics. We
found negligible interfacial viscosities such that the following conditions holds
for the normal and tangential directions.

0 = n̂ · τ · n̂+ γ̄k, (2.27)

0 = (n̂ · τ −∇γ̄) · t̂. (2.28)

Solutions are proposed by using the diffusion relation to relate γ̄ to the flow
field [60, 35]. One finds n̂ · (∇H + λs)u · t̂ = 0 in eq.(2.28) with λs a complex
contamination length depending on surfactant properties [72, 46]2. A clean sur-
face corresponds to a very small value whereas the opposite limit means the
interface actually is an inextensible film.

In our experiments we found that the surface tension of our fluids was close
to value for pure liquids in literature. Furthermore, it did not vary over very
large time intervals (months). Therefore, we will put ∇γ̄ = 0 in this report.
This brief analysis was included since we looked for possible surface effects. If
one suspects an significant contribution from surface stresses, useful experimen-
tal procedures for determining their contribution are suggested, e.g. frequency
analysis of waves in the fluid of interest [35].

1Note the analogy with the stresses for a (three-dimensional) Newtonian fluid, e.g. §4.10
in [56].

2These authors define a length as the reciprocal of λs.
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2.2.4 Equations of Motion

We briefly summarize this section in a system of equations. The flow field u is
subject to

∇ · u = 0 in ∀, (2.29)

Dtu− g −
1

ρ
∇ · τ = 0 in ∀, (2.30)

D

Dt
F = 0, on F , (2.31)

n̂ · τ · n̂ = −γk, on S, (2.32)

n̂ · τ · t̂ = 0, on S, (2.33)

u · t̂ = 0, on W ∪B. (2.34)

Considering the discussion in 2.1 we would like to work towards a temporal
ordinary differential equation. This means that we have to make ansatzes for
the spatial dependences of the flow considering the previous equations. One may
then substitute those in the temporal relations, eq.(2.30)-(2.31) and drop equal
spatial dependences as those relations should hold in the entire domain. Here
we prefer making a projection of Navier-Stokes onto the states of interest. Later
we make physical motivated ansatzes for the flow field, hence we will take the
inner product of Navier-Stokes with the velocity field and integrate it over the
entire domain. In fact, the quantity evaluated is the mechanical power [89, 56].
For convenience we introduce (v1,v2) =

∫
∀(v1 · v2)dx. Then, (u,N) = 0 and

let us evaluate the terms separately. First the kinetic energy

(u, Dtu) =
1

2
∂t(u,u)−

∫
F

1

2
|u|2 vF · n̂dx+

1

2
(∇,u |u|2) (2.35)

= ∂tK −
1

2

∫
F

|u|2 (vF − u) · n̂dx, (2.36)

where we used Leibniz integral rule with vF the velocity of the boundary. As
it equals the fluid velocity at the boundary the second term in eq.(2.36) equals
zero and the kinetic energy is defined as K = 1

2 (u,u).

The body force contributes

(u,−g) = ḡ

∫
F

zu · n̂dx (2.37)

and the stresses

(u,−∇ · τ) =

∫
∀
∇u : τdx−

∫
F

u · τ · n̂dx. (2.38)

On the right hand side the second term increases the kinetic energy while the
first term is dissipative, i.e. it increases the thermal or internal energy. This
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term shows up with another sign in the heat equation,

∂tU +

∫
∀

[∇ · q −∇u : τ ] dx = 0, (2.39)

with q the heat flux out of the system, such that the sum of stored energy (K+U)
changes at the rate of work and heat addition. This is known as the first law
of thermodynamics. The second term in eq.(2.38) is indeed conservative. Put
σ = 2ν∇Hu = τ + pI,

−
∫
F

u · τ · n̂dx =

∫
F

[up− u · σ] · n̂dx =

∫
F

[
uγk + u(n̂ · σ · n̂)− (u · n̂)(n̂ · σ)− (u · t̂)(t̂ · σ)

]
· n̂dx.

We substituted eq.(2.32) and by (2.33) only the first term remains. Divide it
by the density and add the body force (eq.(2.37))

PC =

∫
F

(ḡz + γ̄k)(u · n̂)dx. (2.40)

When the curvature is the main carrier of potential energy the waves are actually
known as capillary waves instead of gravity waves. For the second term in
eq.(2.38)

PD =

∫
∀
∇u : τdx =

∫
∀

[−p∇ · u+∇u : σ] dx (2.41)

= 2ν

∫
∀

[
∇u : ∇Su+∇u : (∇u)∗

]
dx

= ν

∫
∀

[
(∇× u)2 + 2∇ · (u · (∇u)∗)

]
dx

= ν

∫
∀
|ω|2 dx+ 2ν

∫
F

u · ∇u · n̂dx (2.42)

= ν(ω,ω) + 2ν

∫
F

u · ∇(u · n̂)dx. (2.43)

We used the incompressibility condition on the third step and the no-slip condi-
tion on the last step. Note that Lamb ([57], §329) finds the same terms although
he expands the second integrand in eq.(2.43) as n̂ · (2u× ω −∇u2).

We modified Navier-Stokes to a mechanical power equation, rearranged in iner-
tial, conservative and dissipative terms:

∂tK + PC + PD = 0. (2.44)

2.2.5 Irrotational Flow

It is still difficult to find a specific flow field from these equations. Fortunately,
we may use some physical arguments as a kick-start for our model. The flow will
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be highly irrotational because inertial forces are larger than viscous forces. This
ratio is quantified by the Reynolds number, defined as Re = UL/ν, is always
large in this study. The characteristic velocity and length will be U ≈ 100,
L ≈ 10−1 while the viscosity is 10−4 < ν < 10−6. This shows that the majority
of the field can be approximated by a potential:

u = ∇Φ. (2.45)

Combined with the incompressibility condition (eq.(2.29)) this leads to the
Laplace equation for the potential [56].

However, if the fluid is solely irrotational the system (eq.(2.29)-(2.34)) is overde-
termined. Laplace’s equation is a second order differential equation so we need
only one boundary condition on the entire boundary, whereas there are in fact
two on every boundary at least (remember F = S ∪W ∪ B). One can hold on
to the potential in the bulk and allow a complete field close to the boundaries.
These regions are called boundary layers. One way to solve is to solve the po-
tential in the bulk and the complete flow with boundary conditions in the layer
followed by matching the flows. The matching parameters are the size of the
layer and magnitudes of the flows. Another method is to fix the potential to
a single boundary condition and add a rotational flow to meet the remaining
boundary conditions. We will exploit the latter, although it seems that we are
excluding a collection of solutions, i.e. finding the sufficient but non-necessary
ones). We will later show that this is not the case. The flow may be decoupled

u = ∇Φ +∇×Ψ. (2.46)

We now only have to decide which boundary condition should apply to the ir-
rotational bulk flow. It is the kinematic one (eq.(2.31)), because constraining
the fluid in the cylinder is more important. The potential flow without bound-
ary layers is still a good approximation in that case, especially away from the
boundaries.

Let us first look at the potential part of the flow field. A standing wave ansatz
leads to separation of variables

Φ = φ(t)R(r)Θ(θ)Z(z). (2.47)

The Laplacian yields

1

rR
∂r(rṘ) +

Θ̈

r2Θ
+
Z̈

Z
= 0, (2.48)

R̈+
1

r
Ṙ+

(
κ2 − s2

r2

)
R = 0, (2.49)

Θ̈ + s2Θ = 0, (2.50)

Z̈ − κ2Z = 0, (2.51)

where κ and s are the radial and azimuthal wavenumbers, which are constants
with respect to the coordinates. This formulations allows to eventually sum



28 CHAPTER 2. THEORETICAL ASPECTS

s κ1L κ2L κ3L κ4L κ5L
0 3.83 7.02 10.17 13.32 16.47
1 1.84 5.33 8.54 11.71 14.86
2 3.05 6.71 9.97 13.17 16.35
3 4.20 8.02 11.35 14.59 17.79

Table 2.1: Zeros of eq.(2.53).

over all allowed values of κ and s, which are found by evaluating the boundary
conditions.

The fluid is at rest for z → −∞3 such that κ is real and

Z(z) = eκz. (2.52)

For the azimuthal dependence one finds harmonic functions as hyperbolic func-
tions are not allowed because of symmetry and continuity, i.e. Θ(0) = Θ(2π)
and Θ̈ must be finite. Hence s is real for the signs in eq.(2.49),(2.50). Moreover
they are integers since we require continuity at φ(t, r, 0, z) = φ(t, r, 2π, z). We
select Θ = cos sθ because one can always rotate the coordinates system to align
with the motion. The convenience of the cosine is that there are non-trivial
solutions for s = 0 too and that we can limit ourselves to s ≥ 0 without loss of
generality. At r = 0 one requires a finite solution and Rr = 0 due to symmetry,
so R ∼ Js(κr) with real κ and Jn the nth order Bessel function of the first kind.
Although we allow flow along the wall, it cannot flow through it, hence

J̇s(κL) =
s

L
Js(κL)− κJs+1(κL) = 0. (2.53)

Although this condition has to be met by the total flow, this relation has to
be true for all radial wavenumbers independently as they have different vertical
dependences, c.q. eq.(2.52). The zeros for a number of modes are listed in
table 2.1. By convention one denotes modes by two integers between brackets
separated between a comma, the first for the index of the allowed s numbers
and the second for κ, both starting at zero. This is convenient because s will
equal its index. (n,m) is then the state corresponding to sn = n and κm. For
example the so-called slogging state is denoted by (1,1) and the solid body state
by (0,0) (or any (n,0) mode). Other examples are visualized in figure 2.9.

3For an impregnable and stationary bottom at z = −h it is Z(z) = coshκ(z+h)/κ sinhκh.
A fluid is deep for κh ≥ π as tanh(π) = 0.996.
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Figure 2.9: Surface wave modes. Top left is mode (0,1) while the bottom right
is (3,3).

Moreover Bessel functions are often orthogonal and this is true in the special
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case of the zeros defined by eq.(2.53), as long as s > −1 [11].

∫ L

0

Js(κnr)Js(κmr)rdr = δnm
κ2
nL

2 − s2

2κ2
n

J2
s (κnL). (2.54)

With this in mind we normalize R,

R =

√
2

κ2L2 − s2

κJs(κr)

Js(κL)
. (2.55)

We can also construct Fourier-Bessel series exploiting the orthogonality [11].
Considering the possibility of summation over the wavenumbers and the energy
projection this may be a very convenient tool.

2.2.6 Airy theory

The linear approach in the description of gravity waves is commonly known as
Airy wave theory named after G.B. Airy [1, 20]. It assumes the contributions of
viscosity are small, such that the flow is indeed highly irrotational. We use the
surface profile from eq.(2.26) and assume infinitesimal surface elevations such
that surface properties and integrals can be evaluated for z = 0 instead of z = η.
This also implies vertical normal vectors at the surface, hence k = −∇ · n̂ =
−∇2η. In fact, eq.(2.26) itself linearizes to Ṫ = κφ. Although the surface
elevation is small, it should conserve volume because of incompressibility, so we
choose the same separation as for the potential.

η = T (t)R(r)Θ(θ), (2.56)

where T has dimensions of length and caries the amplitude information of the
wave. This also implies that the mode in figure 2.9 correspond to surface profiles.
Volume conservation checks out;

∫ 2π

0

∫ L

0

ηrdrdθ = 0, (2.57)

because the azimuthal integral yields zero except for s = 0 when
∫
J0rdr = 0

by eq.(2.53). We will now use eq.(2.44) to yield a equation depending on time



2.2. GRAVITY WAVES 31

only. For s=0,

K =
1

2
(u,u) =

1

2
(∇Φ,∇Φ) = πκφ2, (2.58)

PC =

∫
F

(ḡz + γk)(u · n̂)dx

=

∫
S

(ḡ + κ2γ̄)η∂zΦdx = 2π(ḡ + κ2γ̄)κTφ, (2.59)

PD = 2ν

∫
F

u · ∇(u · n̂)dx

= 2ν

∫
S

[∂rzΦ∂rΦ + ∂zzΦ∂zΦ] dx = 8πνκ3φ2, (2.60)

(u,N) = 2πφ
(
κφ̇+ Ω̄2T + 4νκ3φ

)
= 2πφ

(
T̈ + Ω̄2T + 4νκ2Ṫ

)
= 0, (2.61)

where the Mathieu forcing of the dispersion is

Ω̄2 = (ḡ + κ2γ̄)κ. (2.62)

When defining detuning and forcing according to section 2.1 one finds the later
does not depend on the surface tension, because this parameter is not oscillated.4

The terms within brackets in eq.(2.61) may be put to zero and become the
governing equation of the system. Note that the linear kinematics are not
necessary as one can construct a coupled ordinary differential system. In that
case η is not substituted for and eq.(2.19) is then the second equation.

2.2.7 Boundary layers

We will now examine the boundary layers in some detail. We substitute the
decomposition eq.(2.46) in the Navier-Stokes (eq.(2.19)). Here we will neglect
the convective term in the rotational part because it is small with respect to
the temporal derivative, because we expect oscillatory motion due to Mathieu’s
equation.

∇
(
∂tΦ +

1

2
|u|2 + ḡz +

p

ρ

)
+∇×

(
∂tΨ− ν∇2Ψ

)
= 0. (2.63)

Both terms now have to be zero by Hodge theory, hence the terms within brack-
ets have to equal a constant. However, we can always add constants to both
potentials with no consequences for the velocity field. Note that the potential
part is also known as Bernoulli’s equation. We find the rotational differential
equation

1

ν
∂tΨ = ∇2Ψ. (2.64)

4One could design such a system for example by rapidly varying the temperature, as the
surface tension depends strongly on it.
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It is also known as the unsteady boundary layer equation. For cylindrical sym-
metry, separation of variables then gives

Ψ = Cψ exp(αt+ ζz)J1(ξr),

with wavenumbers obeying α/ν = ζ2− ξ2. The real part has physical meaning.
C =

√
2/LJ0(κL) is chosen for easier comparison of the flows, while ψ is a

constant yet to be determined. Compare this to eq.(2.47). This will lead to the
following velocities following eq.(2.46).

u = C

 −κφJ1(κr)eκz − ζψJ1(ξr)eαt+ζz

0
κφJ0(κr)eκz + ξψJ0(ξr)eαt+ζz

 . (2.65)

We will first look at the layer at the side wall W , then at the surface layer S.
The layer at the bottom is neglected completely. This is allowed if the fluid is
deep enough such that the flow is not significant there. We already used this
assumption in eq.(2.52). If both boundary layers are significant we of course had
to adapt one for the other, as they may disturb each other’s boundary conditions.

The problem of a fluid at rest stressed by a infinite oscillating plate is known as
Stokes’s second problem [79]. Since the coordinate transformation to form this
system is only in the (t, z)-plane it will only result in an Alembert correction, but
gravity has no influence on the rotational flow (eq.(2.63)). However, this prob-
lem does not allow vertical dependence of the flow. From eq.(2.65) we clearly
see this dependence in the velocities at the wall. Putting ζ = κ makes sure this
dependence is the same. Next, we meet the impermeable condition J1(ξL) = 0,
which restricts ξ. Finally, we solve for the no-slip condition u · ẑ = 0 at r = L
(or x ∈W ). [

κφJ0(κL) + ξψJ0(ξL)eαt
]

eκz = 0,

ψeαt = −κJ0(κL)

ξJ0(ξL)
φ. (2.66)

As φ is the only function on the right hand side it can be approximated by
the (complex) exponential of the rotational flow. As we know form Mathieu
analysis there often is a single dominant frequency component in solution for
φ. However, the boundary layer will influence the potential in turn because it
contributes to the mechanical energy equation, eq.(2.44). Also, a Fourier ex-
pansion can be made where α is restricted by the allowed values for ξ. In most
cases α/ν >> κ2 and α ≈ iΩ such that the boundary layer wavenumber in the
lowest order is ξ ≈ (1 + i)

√
Ω/2ν. Five times the real part of the reciprocal is

about 1.4mm for water and L = 54mm, see figure 2.10. This is indeed a real
boundary layer as it is very small, although innegligible.

As shown in section 2.2.3 another inconsistency with potential flow is that it
allows viscous stresses along the free surface. Since the fluid has more inertia
than the surrounding air, one can expect a boundary layer of air and liquid sur-
rounding the interface matching the interfacial stresses [13, 14]. We show that
the layer is save to neglect by examining a fluid boundary layer solely meeting
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Figure 2.10: Surface profiles for the (0,1) mode close to the wall; Airy profile
(dotted) and with wall boundary layer correction in the lowest order (solid).
The right edge represents the wall.

the stresses as if the fluid was in a vacuum. Again we start with the rotational
flow from eq.(2.64) but we take ξ = κ to have the same radial dependence as
the irrotational flow. It follows ζ ≈ (1 + i)

√
Ω/2ν. For infinitesimal surface

elevations eq.(2.33) yields

0 =
1

ν
n̂ · τ · t̂ ≈

[
∂(u · r̂)
∂z

+
∂(u · ẑ)
∂r

]
z=0

(2.67)

= −CJ1(κr)
[
2κ2φeκz +

(
κ2 + ζ2

)
ψeαt+ζz

]
z=0

(2.68)

⇒ ψeαt =
−2φ

1 +
(
ζ
κ

)2 (2.69)

ζ/κ is of order 103 so ψ is very small compared to bulk flow, hence the surface
dissipation can be neglected compared to the kinetic energy.
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2.2.8 Meniscus Waves

The boundary layers make sure the stresses are in balance. Most notably is the
no-slip condition implying the vertical velocity at the wall is zero. However,
this also suggests that the surface is always pinned at the contact line Γ. From
experiments we observe that this is not always the case and that the fluid slips
over the cylinder. Its effect is assumed to act on a very small scale such that
the irrotational flow of the bulk is still a good approximation.

First we have to give a more accurate description of the steady state of the
system. In section 2.2.5 we found the (0,0)-state or solid body state. This state
is not entirely flat because close to the walls surface tension forces may counter
gravity and a meniscus is formed [22]. Its profile can be calculated in many
ways but here we use the zero velocity field to find that all contributions to the
mechanical energy (eq.(2.44)) are zero as well. Without forcing the conservative
term (eq.(2.40)) has a homogeneous solution as well, gz+ γ̄k = 0 at the surface,
which is an second order differential equation. We use η again as the parame-
terization and express the curvature in its derivatives ∂rη = η′. One defines the
capillary length λ2

c ≡ γ̄g−1, then in the cylindrical symmetric case

η = λ2
cr
−1

(
rη′√

1 + η′2

)′
, (2.70)

by eq.(2.24). Note that this can be considerably different from Cartesian coor-
dinates. For symmetric surface elevations the second curvature is automatically
accounted for, because the surface is always parallel (no curvature) to θ̂. The
boundary conditions are that η′ = 0 far away from the wall and that tanαE = η′

at the wall. The latter condition is due to the wettability of the material, e.g.
water on a perspex surface has a contact angle of 70.9o resulting in αE = 0.11π
(difference of π/2). The entire meniscus curve can also be described in angles,
e.g. η′(1 + η′)−1/2 = sinα. Linear solutions of eq.(2.70) are

η = aI0

(
r

λc

)
, (2.71)

with In the nth modified Bessel function of the first kind. Objects with a greater
density than a liquid may still float in it, due to the forces originating from the
local meniscus profile around the object. Several floating objects may have mu-
tual attraction or repulsion due to the local curved surface. This is known as
the Cheerios effect [90]. The constant is a = λc tanαE/I1(L/λc) such that the
contact angle at the wall is met, see figure 2.11. Since the amplitudes for menis-
cus waves are expected to be small, we use a linear approach in the remainder
of this section.

The contact angle can be calculated from a force balance of the contact line.
For most surfaces this value is not unique. The contact angle of a pinned con-
tact angle may vary in a limited range, which can be related to microscopic
structures in the solid wall [76, 22]. The limits are the advancing and receding
angles, such that α(L) ∈ [αA, αR], which is a well defined interval in normal
circumstances. We hypothesize that the angle is dynamic and varies within this
interval when the system is weakly forced. This is because waves are generated
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Figure 2.11: Meniscus for water on perspex from eq.(2.71). The length of the
bar is λc and the relative difference with eq.(2.70) is less than 1%.

at the meniscus. When the cylinder moves upwards (downwards) the gravity
is effectively larger (smaller), due to the acceleration of the container and the
meniscus becomes steeper (more gradual). A surface wave is created because
of continuity, which is consequently at the frequency of the excitation. This
was observed by Douady [30], although he did not assumed the contact line was
pinned in his analysis.

Due to the forcing, there actually is a varying capillary length

λ̄−1
c =

ḡ

γ̄
= λ−1

c (1− f cosω0t) . (2.72)

Eq.(2.70) still is the homogeneous solution for λ̄c, but there now is a dynamic
part leading to a traveling wave equation, which we will denote as meniscus
waves. Dynamically, the meniscus waves are generated because of the kine-
matic coupling (eq.(2.26)). There are however some discrepancies with a travel-
ing solution as they are combinations of Bessel functions of the first and second
kind, so-called Hankel functions [11]. The second kind part goes to infinity at
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Figure 2.12: Meniscus waves in a square container of 80 × 80mm2 filled with
2mm of silicon oil taken from [30]. The driving frequency was 20Hz such that
isochronous waves have an expected wavelength of one twelfth of the length,
which is in good agreement.

the origin which is unphysical. This cannot be countered by for instance sur-
face tension, because the profile is a solution of the separated Laplace equation
(eq.(2.49)). If we were not to violate volume conservation and incompressibility
we have to allow a very sophisticated flow field preventing the singularity at
the origin. On the other hand, appropriate standing waves fulfill the incom-
pressibility condition automatically. There already is a required anti-node in
the center since the traveling waves generated at the wall always meet in the
center with the same phase. In fact, when the wave reaches the opposite wall,
it interferes with the meniscus motion such that there are also anti-nodes at the
wall. A boundary layer makes sure the contact line is pinned. With this in mind
the profile is split into the homogeneous meniscus (eq.(2.71) for λ̄c), a profile
corresponding to the irrational flow (eq.(2.56) for s = 0) and one corresponding
to an appropriate boundary layer or in formula η = ηm + ηd + ηb respectively.
We pin the contact line by requiring

0 = ∂tηm(t, L) = ∂t

(
a(t)I0

(
L

λ̄c(t)

))
, (2.73)

0 = ηd(t, L) + ηb(t, L). (2.74)

Since a has to be a function of time, there is a restriction on the contact angle,
which did not have an explicit constraint on its derivative yet.

This discussion shows that the profile near the wall can be very complicated.
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One way of solving this system is to calculate the mechanical energy for the sep-
arated flow field and yield differential equations for the contact angle and the
profiles, where ηd will approximate the surface away from the wall. However,
the most important question is when the system transitions to a real standing
wave state. When are the meniscus waves too large for the contact angle to be
outside its allowed interval? The exact dynamics of this ’solid body’ state are of
minor interest and we will assume that the system will eventually develop in a
standing wave state where Airy waves with appropriate boundary layers suffice.
However, there is a large difference with Mathieu forcing, because there are now
terms in the mechanical energy depending on the meniscus profile, which now
acts as a classical driving force for oscillators. This corresponds to the quali-
tative description mentioned earlier that the meniscus generates waves due to
parametric oscillation. The fact that the meniscus is a wavemaker changes a
lot; the solution will be forced to follow the excitation which is different from
Mathieu theory which may result in solutions with other temporal dependences.

Let us assume that the mechanical energy with the Airy approach leads to
a temporal differential equation that can be split in a Mathieu part and a part
behaving as a forced harmonic oscillator. The response of the second part is
isochronous, i.e. of the same frequency as the excitation, and depends on how
close the driving frequency is to eigenfrequency of the system given by the dis-
persion relation (eq.(2.62)). Note that the responses of both parts can both be
significant. Most interestingly are isochronous Faraday waves which are found
around p = 4, which one can particularly expect in large rectangular systems.
For standing waves Ω2 ≈ κg with wavenumbers κ = 2πnL−1 for integer n. As-
sume κ = κ0 is a period doubled Faraday wave (p = 1) then κ = 4κ0 leads to
p = 4 while the corresponding dispersion equals the driving frequency.

2.2.9 Wetting effects

When the contact angle exceeds the allowed interval, the fluid tends to slip over
the wall. The direction in which this happens is a priori unknown, but one can
think of a flow field that moves over solid interfaces without ’real’ slipping. Like
caterpillar tracks there never will be tangential velocities at the wall and per-
pendicular flow corresponds to deposition or extraction of fluid particles from
the wall. The complications this flow has on a molecular scale are immense,
but we think this is a nice visualization. Real slipping of fluids on interfaces in
studied in for instance [45].

In our setup the fluid will move up against the wall eventually and wet an
area proportional to the amplitude of the wave. The exact dynamics are com-
plicated and beyond the scope of this study. However, in a macroscopic setting
the dynamic contact angle (α) results in a kinematic force per unit length given
by γ̄ (sinα− sinαE) [76, 22]. As the length of the contact line for symmetric
motion always equals the circumference this force equals

FΓ(α) = 2πLγ̄ (sinα− sinαE) . (2.75)
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Microscopically it will not act on a line but on a small volume and determine
the shape of the fluid and wall on this scale. We assume that the energy needed
for the contact line to move against this force comes from the fluid’s mechanical
energy. We expect that the angle equals the advancing angle while wetting the
wall, because the line does not have to move when the angle is in its allowed
interval again (α ∈ [αA, αR]). It appears that the contact angle is actually
velocity depended for slipping lines, but the critical speed when αA is reached
is very small, c.q. order of mm/s [69]. The energy needed for the fluid to move
up to height h is now approximated by

EΓ = FΓ(αA)h. (2.76)

It gives rise to hysteresis in the transition from solid-body to standing wave
states. Assuming the amplitudes for standing waves are so large that the con-
tact line cannot be pinned the system has to ’invest’ energy to wet the walls
whereas this is not the case in the transition to the solid-body state. There is
also an energy loss involved when the amplitude growths. Moreover, this de-
scription supports the pinned contact angle for meniscus waves in the solid-body
state.

(a) Steady meniscus. (b) Upward motion. (c) Downward motion.

Figure 2.13: Schematic surface profiles (blue) in a full slip model. The shapes
and angles are not proportional to the setup.

We investigated two possibilities for the contact line movement when the fluid
moves downward. We will first base a model on the restriction that the contact
line moves with the fluid, which is denoted as the full-slip model. If the contact
line is pinned at its new height a thin film will be deposited on the container
wall. We will briefly treat the dynamics of thin films by comparing the system
to plates that are pulled and withdrawn from a liquid reservoir. Finally, we
will propose modifications to this model such that it is better applicable to our
system.

Following our discussion the natural assumption is that the contact angle equals
the receding angle in downward motion, leading to the force FΓ(αR), see fig-
ure 2.13. Miles calculated the dissipation in such a system by assuming the
velocity at the contact line is given by the potential bulk flow [69]. The con-
tact angle changes instantaneously from advancing to receding angles and vice
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versa if the sign of the velocity changes. The vertical velocity at the wall is
w(t) = ∂zΦ(t, L, η). The force is averaged as

F̄Γ =
FΓ(αR)− FΓ(αA)

2
sgn(w) = 2πLCγ̄sgn(w), (2.77)

where the constant C only depends on the advancing and receding angles, e.g.
C = 0.31 for water on perspex. The power absorbed from the mechanical energy
is the velocity of the contact line times this force.

PΓ = F̄Γw = 2πLCγ̄ |w| (2.78)

This dissipative power has to be added to eq.(2.44), i.e. ∂tK + PC + PD +
PΓ = 0. In contrast to the other mechanical power terms this dissipation is
not proportional to a square of the velocities which means PΓ is amplitude
depended. In fact, we can recalculate the Airy result (eq.(2.61)) including this
term. Then w = ∂zΦ(t, L, 0) =

√
2L−1φ and sgn(w) = sgn(φ) resulting in

2πφ
(
κφ̇+ Ω̄2T + 4νκ3φ+

√
2Cγ̄sgn(φ)

)
= 0. (2.79)

In a period averaged evaluation of the friction terms one has to group all dissi-
pative terms with φ and the prefactor determines the damping coefficient, e.g.
4νκ3 (also see section 2.1). When dividing φ from the contact line term one finds

sgn(φ)φ−1 = |φ|−1
. Hence, one finds that the contribution of the contact line is

inversely proportional to the amplitude of the motion. This potentially leads to
very large dissipation. For very small velocities, when the contact angle varies
continuously with the line velocity, this is of course not the case and the model
should be modified accordingly. Also, the contact line dissipation becomes more
dominant for smaller containers, as they have a relatively larger circumference.
Keulegan commented on both issues, ”With a liquid not wetting the walls [...]
losses from surface activity, of some obscure origin, outweigh many times the
losses due to viscosity in the basins of smaller sizes” [53].

Many of our experiments show that the fluid wetting the wall does not fol-
low the bulk flow and a thin film remains on the wall. Gravity incites drainage
of the film but this is slowed down by significant viscous forces because of the
small length scales.5 If the contact line moves downward slowly there is only a
small distance for the contact line force to act on. This results in considerably
smaller dissipation than in the full slip model. With this in mind, we have to
look for models predicting the contact line velocity and describing the dissipa-
tion is these layers.

First of all we have to note that contact line velocities are not easily estimated
from system parameters. The velocity of the layer of liquid molecules adjacent
to the wall is proportional to the velocity gradient at the wall times a slip length,
which is generally of the order of a few molecule sizes [26]. The difficulty lays
in matching the microscopic profile to the macroscopic flow.

Liquid moving down a solid wall can be transformed to a problem where a flat

5This also implies that we have to wait long enough in between experiments for the film
to drain.
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plate is pulled out of a liquid, which is intensively studied [49, 58, 27, 24, 82].
More recently, Maleki et al. experimented with a plate that is first puled out
and subsequently pushed into a liquid [64]. The approach generally consists out
of two parts; the assumption that the layer is very small such that a Poiseuille
ansatz can be made and an estimation of the contributions in the Navier-Stokes
equation which leads to a balance between dominant forces.6 De Ryck and Quéré
published a detailed overview of the regimes involved in a plate withdrawn at
velocity W [24]. In a two-dimensional system (y, z), with y the distance from
the wall, the velocity is approximated by u = [0, w(t, y)], since the layer is as-
sumed small such that the horizontal velocity and the vertical derivatives in
the film can be neglected. Navier-Stokes leads to a balance of viscous forces
(ν∂yyw) with inertial and pressure terms that do not depend on y. The bound-
ary conditions are no-slip at the wall and no stress at the free surface (eq.(2.28)).
Since the film is almost flat, there is a horizontal normal vector, the latter is
approximated by ∂yw = 0, such that

w ∼
1
2y

2 − ye
ν

, (2.80)

where the surface is parametrized by y − e = 0.

The dimensionless numbers involved are the capillary (Ca) and Reynolds (Re)
numbers,

Ca =
µW

γ
=
νW

γ̄
, (2.81)

F =
1

µ2

√
ργ3

g
=

1

ν2

√
γ̄3

g
, (2.82)

where Re = FCa5/3. A negative capillary number corresponds to downward
motion of the plate, but we will first limit the description to positive capillary
numbers. When Reynolds is small and Ca < 10−3 we are in the visco-capillary
regime and the film thickness is proportional to Ca2/3. The prefactor can be
found by matching the profile to the static meniscus, which is known as the
Landau-Levich-Derjaguin (LLD) solution. The visco-gravitational regime is for
Ca > 103 when gravity drains the film, the horizontal position of the surface
scales as

√
−νz/gt with maximum thickness

e = λcCa1/2 =

√
νW

g
. (2.83)

The crossover regime between both described concerns six decades. Interpola-
tion is suggested such that the thickness gradually goes from a 2/3 to a 1/2
power law as the capillary number increases. For a Reynolds number of order
unity inertial effects are considered, but this leads to very cumbersome equations
without a clear relation for the thickness as function of the system’s parame-
ters. In figure 2.14 one observes it causes thickening of the film which should
be compared with eq.(2.83).

6In a sense the potential flow was a comparison between inertia and pressure, while rota-
tional flow compared inertia and viscosity, which we encountered in sections 2.2.5 and 2.2.7.
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Figure 2.14: Thickness parameter T = eλ−1
c Ca−1/2 as a function of the capillary

number in the inertial regime for F = 0 (1), F = 104 (2, alkane) and F = 2.105

(3, pure water) taken from [24].

In our experiments we consider pure water (F = 2.105) and sunflower oil
(F = 27). The characteristic velocity is estimated as the maximum vertical
velocity of the potential flow at the wall like in the slip model. Assuming the
maximum elevation in the middle is the reciprocal of the wave number and
we are exiting the system at p = 1 for the (0,1) state (2.2.5) we approximate
|W | ≤ J0(κL)ω0/2κ ≈ 0.15m/s. This results in |Ca| ≤ 2.10−3, |Ca| ≤ 2.10−1

and |Re| ≤ 6.6, |Re| ≤ 2.0 for water and sunflower oil respectively. Maleki et
al. report the surface remains smooth (no bumps or so) for small downward
velocities of the plate, i.e. −1 < Ca < 0 [64]. Since we meet this requirement
we find film thicknesses of 5.10−5m and 5.10−4m using the trend in figure 2.14.

We can now estimate the slip velocity of the contact line. The velocity gra-
dient at the wall scales ∂yw ∼ e/ν by eq.(2.80) which is of order 101s−1. In the
visco-gravitational regime the prefactor is g ([24]) but multiplied by a slip length
of order 10−9m, the length of a few molecules, we find a speed of order 10−7m/s.
This model predicts the contact line is practically fixed, although it seems an
underestimation. Experimental observation have to be conclusive whether the
contact line is pinned compared to the interval of one period of the fluid motion.

In estimating the dissipation in this layer we use eq.(2.43). Since the hori-
zontal velocity is small we omit the second term. We assume the height of the
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layer varies between the irrotational flow and the fixed contact line at z = h,
such that the domain is 0 ≤ y ≤ e, η(t, L) ≤ z ≤ h and W = ∂tη. We use
eq.(2.80) with again g as a prefactor and assume the thickness does not vary
much over time because of the small period of oscillation.

PΓ = ν

∫ h

η

∫ e

0

(∂yw)2dydz =

∫ h

η

g2e3

3ν
dz ≈ e3

3ν
(h− η)

≈ √gν(∂tη)3/2h− η
3

. (2.84)

In the vertical integration we used a steady homogeneous thickness without the
prefactor that we used to determine the thickness earlier. Maleki et al. find
a difference in the profile for upward or downward motion, but we think this
integration is a good approximation since the flow profile (eq.(2.80)) does not
change. It is because of two things; first we want to compare the nature of this
dissipation with the slip model, eq.(2.78). The difference is the velocity expo-
nent, the origin (surface tension or gravity and viscosity) and the dependence
on time. Period averaged the amplitude goes with exponent 5/2 such that this
dissipation is proportional to the square root of the amplitude in an Airy ap-
proach compared to the inversely proportionality in eq.(2.79).

Secondly, we have to point out the many discrepancies of this plate model with
our setup. The relations involving plate withdrawal are based on boundary
conditions assure a smooth coupling between the film and the static meniscus.
However, in our setup we have to match the film with a moving fluid, subject
to parametric oscillating gravity, while even the boundary layer is a few orders
of magnitude thicker than the film, by comparing eq.(2.83) to eq.(2.66). Prob-
ably a correction for the film is not realistic enough and we have to find a new
boundary layer for appropriate boundary conditions at the wall and surface. Fi-
nally, we doubt whether the dissipation inside the film decreases the mechanical
energy of the fluid, because the bulk fluid is relatively far away while the field
inside the layer is dissipative. This is contrast to the slip model where it is clear
the fluid has to overcome the corresponding forces. Moreover, it is strange that
the dissipation depends on terms related to surface tension and gravity when it
only depends on the vorticity if the normal velocity of the surface is negligible
due to eq.(2.43). In plate withdrawal the corresponding forces can require work
done by the system, but in our system the flow field is similar over one period.

We propose a third model that is motivated by this discussion. Since we are
only interested in the relevant dissipation for the bulk flow and the argument
that it only depends on vorticity we look for the rotational part of the flow in
the film. The decoupling of the flow is by eq.(2.46) and the equation of motion
is the same as for the boundary layers, eq.(2.64). Surface tension and gravity
are indeed not involved while inertia and temporal dependence is. We impose
a pinned contact line with a no-slip condition over the entire wetted wall. The
solution is straight-forward; we add a steady profile to the surface elevation like
a meniscus. That it is stationary is not inconsistent since it are conservative
forces that incite the drainage of film. In the solid-body state (like figure 2.10)
the contact line was pinned at z = 0, but here we ’lift’ the entire boundary
layer to the new contact line. In fact both the boundary layer and the thin
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film have the same no slip boundary condition, so it is natural to see combine
them is one flow field. In figure 2.15 the surface elevation η for a harmonic
motion of the (0,1) state is plotted for several instances. The profile is a sum
of the irrotational bulk flow, wall boundary layer (eq.(2.66)) and a static film,
in this case equal to the wall boundary layer at its maximum elevation. This

Figure 2.15: Several surface elevations close to the wall (L = 53.9mm).

model meets all required conditions, a smooth transition to the bulk flow and
boundary layer, a pinned contact line, but it suggests that only a small amount
of dissipation is involved, namely the contribution of the elevated part of the
boundary layer. This might be an oversimplification. On the other hand we
argued that dissipation in the film is probably not relevant for the main fluid
motion. Dissipation analysis of fluid motion in containers without accounting
for the contribution from the film show good agreement with experiments [68].
Other problems are that the boundary layer is much thicker than the expected
real film thickness at some locations and that the film is only drained when the
bulk motion is downward.

2.3 Cavities and Jets

Free surface interfaces are not necessary smooth. Especially at larger ampli-
tudes they can become unstable, like ocean waves breaking as they approach
a beach. Processes like air entrapment, foam creation and modification of the
bottom show that wave-breaking is of a violent nature. In the standing wave
case troughs and crests will become cavities and jets for larger amplitudes. Cer-
tain Mathieu’s solutions grow uninhibitedly which motivates the investigation
into the dynamics for larger surface waves. In fact, Faraday systems are often
associated with jets. In this section we will first give an introduction with a
qualitative description of cavities and jets. Next we will give examples of cavi-
ties in other systems and look for similarities. We treat solution offered, both
analytical as numerical and go into the relation of jetting in relation with the
solid and standing wave states.
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2.3.1 Introduction

In the case of standing waves a deep trough can be formed that does not move
upward ’normally’ to form a crest. These unstable troughs are usually denotes
as cavities. It collapses, i.e. the free surface moves radially inward faster than
vertically upward, such that it connects with itself over the depth of the cavity.
However, this contradicts the continuity requirement in the exact center and
a singularity is formed. In a very short time scale the radial inertia has to be
converted in the vertical direction, which is now concentrated in a small volume.
This part of the fluid will move very fast in a thin, needle shape; the jet. The
direction of the jet is upward in general but there are cases that the cavity closes
and creates an entrapped air-bubble under the surface. This is called a cavity
pinch-off. A second jet originates from the top of the bubble directed downward
and it will penetrate the entire bubble if strong enough, creating a donut-like
vortex ring.

Figure 2.16: From left to right: a trough, crest, cavity, its collapse and a jet
in sunflower oil. The relative timing is [0, 131, 265, 271, 369]ms and the driving
frequency was 8.303Hz.

Any hole in a surface is unstable when the restoring force is gravity, but it
depends on the inertia and geometry whether this leads to a jet or a wave. For
jet formation the side walls have to move inward and meet before the upward
motion prevents this. One of the ways a jet can form is when a submerged
bubble rises and forms an open cavity upon coalescence with air [61, 9]. It is
like instantaneously introducing a concave surface. Jets are also created when
a fluid moves upward in a cylindrical tube that is partly submerged in the fluid
[23, 62]. These tubular jets are however not always preceded by cavities. An-
other method is when a test tube falls on a solid surface due to gravity. Upon
impact a jet is formed but only when the surface was initially curved [2]. A
cavity is always created by forcing the bottom to move downward, e.g. by the
impact of a solid object on the surface. Everyone is familiar with the cannon-
ball dive in a swimming pool 7 and it is well known subject in fluid physics

7’Bommetje’ in Dutch.
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[43, 42, 41, 40]. This will always result in a pinch-off about halfway down the
cavity with jets in both directions. Liquid impact, like drops or other jets, on
the surface can create open cavities without pinch-off [44]. Both impact meth-
ods can also result in eruptions, like crown like shapes [48, 78]. Examples of
jetting methods without any cavity collapse are shockwave impact on a surface,
the expansion of laser-induced vapor bubbles or ink-jet printing.

The main difference between the above examples and a Faraday setup is the
transition from wave to cavity in the latter. The triggering mechanisms in
above systems is better controlled and the jet follows almost immediately. The
time scales are very different in our setup. The system can be in a wave state
for a long time while the dynamics of a single cavity with a jet is about one
period. Therefore the exact jetting location is much harder to predict as well.

The specific singularities in Faraday systems is also associated with self-focusing.
The entire system is driven but the fluid itself focuses most of its inertia in con-
trast with diffusive processes which are more common in nature [47]. Faraday
excitation in a flat container show less focusing effects, e.g. [2]. We would like
to stress that jetting is still free surface dynamics and the equations of motion
found earlier still apply. That is up to topological changes, like bubble and
droplet creation. Some equations can be simplified, as there is not enough time
for some forces to have significant effects. On the other hand, the closure of the
cavity can be accompanied by inneglegible air flow [43, 40].

2.3.2 Similarity solutions

Singularities are often associated with similarity solutions, i.e. all solutions are
similar to each other in a particular way. Barenblatt showed for a function of
interest F (x, y)

lim
x→0

x−αF (x, y) = f(y), (2.85)

with constant exponent α [5]. Physically, the variables need to be dimensionless.
If f(y) exists, is finite and nonzero than we may write F (x, y) = xαf(y)+O(xα).
This is a similarity condition of the first kind. O, the quantity of order tα, is
dropped close to the singularity. To apply this relation to equations all variables
should first be made dimensionless for a free use of exponents and we need to
make sure we are indeed close to the singularity to apply eq.(2.85). Compared to
the dimensional original coordinates (t, r, θ, z) the new coordinates (t′, r′, θ, z′)
are scaled by characteristic time and length scales while the singularity occurs
at (0, 0, θ, 0). The azimuthal does not change as we will evaluate cylindrical
symmetric systems.

Zeff et al. proposed a potential flow neglecting all viscous and gravitational
forces in a Faraday setup. There are three equations describing this system;
Laplace equation for the potential, the vertical parameterization of the kine-
matic boundary condition (eq.(2.26)) and Bernoulli’s equation (the potential
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part of eq.(2.63)).

∇2Φ = 0, (2.86)

∂tη + ∂rΦ∂rη − ∂zΦ = 0, (2.87)

∂tΦ +
1

2
|∇Φ|2 + γ̄k = 0. (2.88)

Now we actually need more than two exponents to prevent an overdetermined
system. We write η(t′, r′) = η′(t′, r′t′β) for another exponent β. The same
method is applied to the potential such that we can apply eq.(2.85) for smooth
functions χ and Ψ.

η(t′, r′) = t′αχ(r′t′β), (2.89)

Φ(t′, r′, z′) = t′εΨ(r′t′β , z′t′δ), (2.90)

where we find the values of the four exponents by substituting them in eq.(2.86)-
(2.88) and requiring the same temporal dependence, resulting in 2/3 = α =
−β = 2ε = −δ. These constants can also be found by dimensional analysis.
Since the two forces are surface tension and inertia, the dimensionless potential
and length are obtained after scaling by Φ0 = (γ̄2t)1/3 and η0 = (γ̄t2)1/3 respec-
tively [52]. By scaling Bernoulli’s equation the surface tension changes to the
reciprocal of the Weber number, which physically is the ratio between kinetic
and surface energies.

1

We
=
γ̄η0

Φ2
0

= 1.

This shows the Weber number is itself self-similar and that the ratio between
surface tension and inertia is conserved in the singularity.

2.3.3 Other solutions

Hogrefe et al. proposed a method that does describe the transition form cavity
to jet analytically [47]. They assumed the cavity shape directly before the singu-
larity was cylindrical shaped, as in figure 2.16. This leads to the approximation
that neglects any vertical velocity of the cylinder before the singularity, such
that u = [−c/r′, 0, 0] because of continuity. In here c is a positive constant,
such that the cylinder wall collapses as ζ ∼

√
−t′ (remember that t′ is negative

before the singularity). This velocity field blows up at r′ = 0 which is repaired
by assuming the radial changes to −cr′/(1 + r′2), which goes to zero smoothly
at r′ = 0 and approximates the initial relation for large r′, so no other constants
appear. The vertical velocity can be found by continuity and is approximately
2cz′ around r′ = 0. Although this leads to a strong vertical velocity in the
center, there is no further argumentation why the velocity profile near the sin-
gularity should change as proposed.

Og̃uz and Prosperetti used Green’s third identity to find an implicit surface
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integral for a potential flow [77].

Φ = −
∫
F

(G∇Φ− Φ∇G) · n̂dx,

with 4πG = − |x− xF |−1
for all xF ∈ F and x′ ∈ ∀.The relation becomes an

integral of sources and dipoles

4πΦ =

∫
F

(
1

|x− xF |
∇Φ− Φ∇ 1

|x− xF |

)
· n̂dxF .

Gekle et al. used this integral over a free surface in a cavity pinch-off after
solid impact [42]. Close to the pinch-off the cavity can be seen as a shrinking
cylinder, i.e. ∇Φ · n̂ = ∂tζ with ζ(t, z) the radial position of xF ∈ F , such that
a surface element is dxF = 2πζdζ. We neglect the dipole term and approximate
|x− xF | =

√
r2 + (z − ζ)2 which modifies eq.(2.3.3) to

2Φ =

∫
qdζ√

r2 + (z − ζ)2
,

with q(t, ζ) a distribution of sinks. The integral still has to be handled with
care as the surface splits in the moment of pinch-off. Also, the sink distribu-
tion is altered for more realistic results. Together with the kinematic boundary
condition this leads to a coupled ordinary differential system. Integrals over an
infinite interval are evaluated over a large cut-off length scales.

Eq.(2.3.3) can also be solved numerically which is nowadays known as the bound-
ary integral method (BIM). The boundary is discretized and at every boundary
grid point Φ or ∇Φ · n̂ is known. At the free surface Bernoulli finds Φ while the
normal derivative at solid surface is equal to the velocity of the boundary. The
integral finds the unknown variable, but the factor of 4π is variable and depends
on the concavity of the surface. Through the kinematic surface condition the
velocity of the free surface is found, such that the grid points can be relocated
after a certain number of time steps.

2.3.4 The jetting state

We already remarked that Faraday excitation needs considerable time to pro-
duce a jet. When our setup (chapter 3) is excited at a small and constant
amplitude, some experiments remained in a solid body or standing wave state
for more than hundred cycles before a jet occurred. If the amplitude is held
constant or is slowly decreased jets will keep forming although it is hard to pre-
dict what exactly will happen, because the falling jet will impact on the surface
and distort it in the process. If the effect of the impact is mild we can expect a
continuous jetting state with jets on a regular interval. This will also happen if
the impact destroys a surface profile of a standing wave. The system will repeat
growing again until the cavity, followed by a jet and its impact. If we assume
a dissipation which depends on the amplitude of the wave we can expect hys-
teresis in the transition from wave to jet as well. The waves grow because their
amplitude is bellow the stable amplitude. If they can grow far enough beyond
this value before dissipation keeps up, a cavity will form whereas a wave at its
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stable amplitude stays in the standing wave state. On the other hand the jet
impact might just alter the growing standing wave. For instance it may trigger
lasting asymmetric motion, preventing normal growth of the waves.

2.3.5 Surface irregularities

Keller and Eggers separately proposed description of surface modes on jets
[51, 37, 38]. In our system we can also expect capillary and meniscus waves,
Rayleigh instabilities and other distortions of the free surface, like in figure 4.4.
Their characteristic length is much smaller than the container radius such that
their influence on the standing waves is small. The shape of the surface can still
be altered significantly and may possibly be difficult to analyze. Especially in
a low viscous fluids instabilities are to be expected. We also found small irreg-
ularities near large curvatures (figure 4.5), but which exact origin is unknown.
They were also observed by Zeff et al. [95].

At the top of crest there can be a thickening which is also known as a type of
Rayleigh instability. It can influence the cavity shape, because of the increase
in curvature when it moves down. In the extreme case there is a pinch-off and
a droplet will fall into the closing cavity. This can have an enormous effect on
the jet.



Chapter 3

Experimental Aspects

Faraday waves are of complex nature and experiments are necessary to validate
our model and hypotheses. In this chapter we will describe the experimental
facilities and procedures. First the setup and its components is treated. A
secondary setup, to measure the surface tension of a droplet in ambient air, is
described as well. We did not perform experiments to confirm the viscosity of
the fluids.

3.1 Setup

The main components of the experimental setup are the shaking apparatus,
accelerometers, a high speed camera and a liquid in a perspex container. The
setup is sketched in figure 3.1.

3.1.1 Components

The fluids considered are demineralized water and sunflower oil. Small vol-
umes (< 0.2%) of food dye can be added to the water for better contrast. Two
long perspex cylinders and one rectangular perspex container are available. The
height of the cylindrical containers is approximately 0.5m while the inner diame-
ters are L = 107, 90±0.05mm or L = 108, 50±0.05mm respectively. The height
of the fluid can be calculated from its volume which has a measurement uncer-
tainty of 1%. The cylinder is sealed with a perspex lid to prevent evaporation,
contamination or liquid escaping due to jetting. The fluid level was measured
over time and its decrease was minimal, i.e. the droplets on the lid and wall ex-
plained most of the volume loss. It is mounted vertically on a vibration system,
the shaker (TV 50301, Tira GMBH, Schalkau, Germany). Vertical placement
of the shaker and the cylinder is obtained with the help of a spirit level. An
accelerometer (Endevco 751-10, Meggit, Dorser, UK) is attached to the shaker
mount and measures the vertical acceleration. It is mainly used in the internal
feed-back loop of the apparatus to control its motion. It is also connected to an
acquisition module (NI USB-4432, National Instruments Corporation, Austin,
USA) although that connection is not drawn in the figure. All connectors to
the module are standard BNC coaxial cables. Another accelerometer (Endevco
2228C, Meggit) obtains measurements for all three directions. It is attached to

49



50 CHAPTER 3. EXPERIMENTAL ASPECTS

Figure 3.1: Schematic of the experimental setup. The thin lines represent data
cables.

the lid and also connected to the module. The fluid dynamics are recorded by
a high speed camera (Fastcam SA1.1, Photron Limited, Tokyo, Japan). The
record trigger and exposure time of the camera are measured by the module
on the same channel. The optics only consist of a 60mm lens (Makro-Planar
T*, Carl Zeiss AG, Jena, Germany) which mounted on the camera. The light
source consists of three xenon lamps (Mega Beam Xenon, Hella Inc., Peachtree
City, USA) in front of a large diffusive plate. A computer downloads the data
from the camera, shaker (via Ethernet connection) and the acquisition mod-
ule (via USB connection) and is also able to give certain commands to these
apparatuses.

3.1.2 Faraday excitation

The shaker is a high powered machine (up to 36A and 100V) with applications
in (heavy) industry. The are four main parts, an exciter, an amplifier, the con-
trol equipment and the blowers. The control equipment sends a signal to the
amplifier which drives the exciter in turn, see figure 3.3. In the exciter there is
a field coil fixed to the casing and a vibrating coil that can move vertically. On
top of this coil there is the armature table. It is shown in figure 3.2b with the
cylinder mount and the 751-10 accelerometer attached to it. This accelerometer
is connected with the control equipment which is used in a feedback loop. The
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(a) Cylinders with 0.1% food dye solution (left)
and sunflower oil.

(b) Armature table with accelerometer and
cylinder mount.

Figure 3.2: Components of the shaker.

blowers (not shown) prevent the machine from overheating.

It is important to realize the practical limitations of the mechanical motion.
The system can be loaded with a maximum vertical weight of 350N , has a
maximum acceleration of 108g and its frequency range is [2, 4000]Hz. We are
only close to the lower limit of the frequency range as our experiments are in
the interval [3, 12]Hz. Also, the apparatus seems to have difficulties for small
amplitudes with a limit at about 0.02g. We can expect that the motion is less
accurate near the edge of system’s variables. Manually observed acceleration
values as seen by the machine software differed up to 5% relative to the demand
(i.e. desired acceleration). Furthermore the shaker has a tolerance for horizon-
tal movements. This is precisely to prevent damage from horizontal forces on
the exciter (80N maximal). In case of a fluid these forces originate from non-
axisymmetric motion, e.g. the slogging state (the (1,1) state in section 2.2.5).
Finally, the response time of the shaker can be long (order of a period), be-
cause the motion is controlled by a feedback loop that is based on the frequency
spectrum. If a signal with a varying amplitude is required, one has to take
convolution and artifact effects into account.

To test the performance of the shaker we recorded the movement of an empty
cylinder at 8.6Hz. The acceleration was suddenly increased from 0.25g to
0.40g.1 The displacement is plotted in figure 3.4. One sees it takes approx-

1Actually there are two sweeps in the software in this case. The first changes the frequency
gradually from 8.59Hz to 8.60Hz at 0.25g and the second goes from 8.60Hz to 8.61Hz at
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(a) Amplifier (b) Exciter

Figure 3.3: Components of the shaker.

imately 12 cycles (1.4s) for the amplitude to adapt. The temporal range was
much larger than in the figure, from which we concluded the frequency was
at least accurate up to approximately 0.1Hz. The frequency settings can be
specified up to µHz, so we assume the accuracy is much higher than this. The
amplitude appears to be very accurate as well, although the spatial resolution
is limited as can be seen from the plot. We cannot see the behavior at high am-
plitudes because we cannot change the amplitude fast enough or instantaneous
in a zero-crossing. The fluid will always travel through a jetting regime before
reaching the desired value. Because of the non perfectly vertical placement the
jet will move asymmetrical counteracting succession jets.

To prevent undesired motions, e.g. in the horizontal direction, we make
sure there is a lot of inertia, by using a large volume. The inertia of non-
axisymmetric motion is then relatively small. This does of course limit the
measurements to dispersively deep liquids. We have to make sure that the
cylinders are still mostly filled with air otherwise the lid may act as a boundary
for the air flow and in turn influence the fluid. Secondly, the measurements of
the accelerometers are evaluated after every experiment and the experimentis
discarded if they signal is not close enough to the demand. Figure 3.5 shows the
excitation amplitude as a function of the camera time, while the left edge of the
graph is the start of the run. It was set at ω0 = 8.4Hz, f = 0.2 with a 10s start
up interval. The interval here is 9.03s and it is normal that the machine is off

0.40g. This should instantly change the amplitude, since the levels only require the frequency
to be continuous.
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Figure 3.4: Displacement of the empty cylinder, measured using high speed
imaging, for instantaneous acceleration change, i.e. instantaneous according to
the software.

by a few seconds. This is a characteristic profile, i.e. all runs have a maximum
deviation of about 5% of the desired signal.

3.2 High speed imaging

We experimented with two camera positions. One is just above the level of the
fluid at rest at about 1m away from the center of the cylinder. The other is from
a higher position under an approximately 45o angle and at a close distance. The
second method can be used to study the profile close to the equilibrium posi-
tion as the fluid at the walls can obstruct light paths in the other camera setup.
Examples of such profiles are capillary and meniscus waves. The first method
is used to focus on the vertical cross-section in the center of the cylinder. The
camera is positioned somewhat higher to avoid refraction effects when viewing
through the fluid. In this setup the camera is also tilted because the height
of the image is easier to adapt, while we want more flexibility for the width.
This is used for instance in parameter sweeps, when only a small portion of the
resolution is required, allowing longer images to be recorded.

In figure 3.6 the contour for a crest and through is plotted for a wave in (1,0)
mode. All image analysis procedures are in fact matrix manipulations. These
contours are found by the class of morphological structuring in Matlab. The
profiles appear to be very accurate except for the edges of the crest and a small
curve on the left of the trough. The droplets on the inside of the wall cause little
problems in this method. The algorithm is able to extract the surface profile as
a function of time by means of a for-loop. The computational expense is mainly
due to the loading of the frames from the recordings.
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Figure 3.5: Forcing amplitude as measured by the shaker software. The excita-
tion frequency was 8.40Hz and the time interval is rescaled to align with that
of the camera recordings.

The top and bottom contours are found separately because they are influenced
differently by refraction. In figure 3.7 the effect is visualized for a millimeter
spaced grid. It appears a linear scaling of the bottom contour is sufficient. This
calibration image is recorded after every repositioning of the camera. It is a
grid printed on a transparent sheet and attached to a perspex bar. We placed
it manually in the cylinder but placeholders on the top and bottom of the bar
make sure it is in the center and vertically aligned. The azimuthal alignment is
obtained by placing a rod over the camera and cylinder. If the rod is parallel
with the camera the bar grid should be perpendicular to it.

We like to point out that high speed imaging is expensive in memory and down-
loading time. Other methods have been proposed in the investigation of Faraday
waves. For instance, figure 3.8 shows the amplitude in the center of a square
container with a 92% glycerin mixture [81]. Here a laser sheet technique is used,
such that the amount of light measured at the other side of the container is a
measure for the wave height. The method is very fast and efficient, but one-
dimensional and therefore only applicable if one expects a single wave state.
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(a) Crest (b) Trough

Figure 3.6: Images of a (1,0) mode at 8.6Hz and the contour found in Matlab.

3.3 Automation

In order to do a lot of measurements in a large parameter space, our exper-
iment is partially automated. All equipment, with the exception except the
light sources, is connected to the computer in a way such that both data can be
downloaded and commands can be send. We use a Matlab algorithm to commu-
nicate the devices. The acquisition module is fully compatible, while the shaker
software can only be run using keyboard and mouse commands. Photron has
drivers available such that various scientific programs can initiate and download
recordings. Matlab can be used to call a Java robot which commands mouse
movements and keyboard strokes. As this functionality had to be employed to
operate the shaker software, it was used to communicate with the camera as
well. Besides, it was found that algorithms communicating with the Photron
are difficult to design, have less functionality compared to the original software
and are less stable.

The layout of the algorithm is as follows. The software of the shaker and camera
are active next to Matlab. The necessary mouse positions are saved as a location
on the screen. For the Photron and the acquisition module sub-algorithms are
written that start, stop and save a measurement. The latter uses the National
Instruments Toolbox available in modern versions of Matlab. For the shaker
there is also the possibility to adjust the settings for every run. When it is done
the software’s data is saved as well. It lists for instance the demand and actually
response of the system. As this only concerns data in the vertical direction the
other accelerometer is still needed.

It is actually necessary to use a computer to trigger the experiments in or-
der to relate the data of the various devices. The acquisition module measures
when the camera is triggered but its timing relative to the shaker is unknown.
The algorithm therefore saves the time (with millisecond accuracy) when a start
command to the three devices is made. This is done just before and after be-
cause the computer needs some time to process the command.
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Figure 3.7: A millimeter grid in sunflower oil.

Other advantages are better time management. As lab time is limited our au-
tomated system makes it possible to give an accurate prediction of the duration
of the experiments.

3.4 Surface tension measurements

Surface tension can be measured is various ways. A pendant drop experiment
exploits the balance of surface tension and gravity of a drop hanging from a
syringe. A video-based contact angle measurement device (OCA 20, Future
Digital Scientific, Garden City, USA) is used to record the shape of the drop.
It is assumed that the top cross-section of the drop is a disk of the size of the
syringe. Its width is also used to calibrate lengths in the recorded images. The
radius as function of the vertical coordinate (z) is fitted to a balance of Laplace
pressure and gravity, i.e.

gz + γ̄k = 0,

where the curvature is a function of z as well by substituting the profile of the
drop. The best fit of this linear equation gives the value for γ̄ as the gravita-
tional constant is known.

We used this to perform surface tension measurements before and after ex-
periments. A small sample volume from the cylinder was taken to this setup.
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Figure 3.8: Time series of the wave height at a driving frequency of 7.4Hz with
amplitudes [0.48, 0.51, 0.52, 0.53]g for (a) through (d) respectively (taken from
[81]). Mathieu behavior is clearly visible in (b), while (d) is a jetting state.

Also, a Matlab automated experiment was designed to measure the surface ten-
sion over very long time scales. This is to investigate the rate in which the
surface is contaminated by for instance dust particles from the ambient air.
The automation is in refilling the evaporated volume. This cannot be done by
setting a constant flux into the drop, as the device cannot handle this small
fluxes. Anyhow, the volume can be very different on a large time scales with
this method. Too large drops will fall from the syringe and the accuracy drops
for smaller drops.

If there is contamination we might have to include the corresponding tangential
stresses following the discussion in section 2.2.3. However, our setup is sealed
from the surrounding air and there is only a small volume of air inside the cylin-
ders. On the other hand, the samples can not be taken from the surface or will
not likely be on the surface of the drop since when in the device. This means
that we will only measure the surface tension of the bulk fluid and not of the
possibly contaminated surface.
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Chapter 4

Analysis and Results

In this chapter we will discuss the experimental data. As an introduction we
will first go into the results in a qualitative way. Next we will explain how the
data is analyzed and we present the experimental results. The three regimes,
solid-body, standing wave and jetting, are treated separately as well as their
transition. The dissipation in the system in compared to the model.

All experiments were conducted in cylindrical containers, with the exception
of surface tension measurements and experiments in the rectangular container.
The latter were performed to investigate the thin film as the curvature of the
cylindrical containers prevents the recording of film from a side view.

The acceleration of the shaker is fg for dimensionless f which we will use
throughout this report. The dimensionless detuning and forcing are correspond-
ing to section 2.1, i.e. p = 4κ(g+γ̄κ)2ω−2

0 and q = 2fκgω−2
0 . All digital analysis

were performed in Matlab.

4.1 Qualitative observations

For the cylindrical containers we recorded the motion in a horizontal side view
and under an angle. The latter proved to produce valuable data for meniscus
waves and the shape of troughs and cavities as this was poorly visible with the
other method. In that case, the air-fluid interface close to the wall, like the
meniscus, obstructed the light paths, see figure 4.2. In the case of standing
waves there was an elevated profile near the wall and a deposited film compli-
cating images of the profile in the center, see figure 4.1. We were not able to
determine the thickness of the film because it is not visible from a side view
in a cylindrical container. We can however assume the contact line is practi-
cally pinned in the interval of one period for constant driving amplitude as is
visualized in figure 4.23. Standing waves are relatively simple to produce in
cylindrical containers at small excitation amplitudes. Mathieu theory predicts
the excitation frequency correctly and the profiles show good agreement with
irrotational flow. In figure 4.3 several modes are visualized which should be
compared with figure 2.9. As expected more irregularities are generated in wa-
ter than on sunflower oil. For instance on crests (figure 4.4) and around large
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(a) (b)

Figure 4.1: Two images of sunflower oil in a (0,1) standing wave state. The
profile in the middle is subject to refraction (a) and almost invisible for small
elevations (b). The interval between images is 60ms, which is half a period of
the excitation.

(a) Horizontal image (b) Tilted image

Figure 4.2: Two images of water in solid-body state showing that meniscus
waves are actually only visible in the tilted view and only due to reflection of
the surface. This image can be related to the capture of Douady in figure 2.12.

curvatures (figure 4.5) they are clearly visible. Jets also tend to break up earlier
in water than in sunflower oil, which may lead to beautiful recordings of the
impact as visualized in figure 4.6. Jets for other modes than (0,1) were recorded
as well. They are generally slower but surprisingly stable. For instance the (1,2)
mode produces two jets of different velocities closely after each other. The (3,1)
mode was found to produce wall jets, which simultaneously moved along the
cylinder wall. Droplet ejection and bubble capture were encountered during
experiments. The dynamics seems to be a combination of the standing wave
with irregular waves, hence their creation is rather uncontrollable. A smaller
wave can form a cavity on top of the crest of a larger wave. This can result in a
small jet, intermediately contracted to a droplet by surface tension, or in bub-
ble entrapment just below the surface by the wake of the jet pulled in the fluid
when it does not detach. Once created they are very stable. Bubbles remain
steady just under the surface and droplets may bounce of the surface instead
of coalescing, see figure 4.7. Bubbles created by cavity collapse or jet impact
can be very stable as well. The stability of droplets can be utilized. For smaller
Faraday waves the experiment is more controllable such that droplets are able
to survive for very long times. The droplet itself can be the trigger of Faraday
waves in its surrounding and move over the surface as well. These droplets are
known as walkers [19]. These effects did not seem to have significant influence
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(a) (0,1) (b) (1,2)

(c) (1,3) (d) (2,2)

(e) (3,1) (f) (3,2)

Figure 4.3: Several standing wave patterns in water recorded under an angle.
The number within brackets denotes the state, while the detuning was almost
unity for all cases.

on the standing waves.

4.2 Solid-body state

As described in chapter 2 the fluid will be in a solid-body state at the beginning
of experiments. The characteristic fluid motion for this state are meniscus waves.
It is natural to start here because this will always be the first state the system
is in. Hence, we will examine how they arise from fluid profile at rest and how
their amplitude stabilizes. Their parasitic presence in other states, e.g. fully
developed standing waves, is commented on later.

4.2.1 Meniscus waves in water

In figure 4.8 a series of recordings are visualized for the forcing for 0 ≤ f ≤ 0.2
as plotted in figure 4.10. This forcing is enough to trigger Faraday waves but
they are not observable before t = 12s. It is very difficult to extract the exact
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Figure 4.4: Surface irregularities in water one cycle before jetting. The time
between frames is 26ms, which corresponds to a phase difference of 0.44π.

(a) Water (b) Sunflower oil

Figure 4.5: Two cavities and their surface profile recorded under an angle.
Surface disturbances on the expected profiles are clearly visible in water due to
its smaller viscosity.

profile of these waves because only the reflection is visible which only reveals
potential information about the slope of the surface. Even the way the waves
travel is hard to determine. At the startup the waves travel from the walls to
the center as they are created by the meniscus.1 The waves appear as travel-
ing in the remainder of the frames but we find that the initial disturbance is
’taken over’ by a standing wave. As mentioned in section 2.2.8 a real travel-
ing wave should go to infinity at r = 0, but the recordings show the curvature
is very small where the profile should at least tend to go to infinity if surface
tension was a force countering this behavior. The traveling nature of the wave
is because standing waves are actually a superposition of traveling waves. A
combination of the standing waves may appear as a traveling wave, for instance

1When the frames are shown subsequently as to form a movie this is much clearer.
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Figure 4.6: Jet and its impact in water for p = 1.04, q = 0.104. The number
denotes the phase relative to the excitation in radials.

in our tilted camera setup.2 The wave profile can be better understood when
we take a small vertical strips along the center and paste them together for a
number of consecutive frames. This is done in figure 4.9 for an interval that the
excitation amplitude is constant. The waves are indeed isochronous, i.e. of the
same frequency as the excitation.

The (0,3) standing wave state appears to approximate the profile correctly.
The system is driven at ω0 = 8.4Hz and linear dispersion yields Ω = 7.70 and
Ω = 9.46 for the (0,3) and (0,4) states respectively. They correspond to p = 3.36
and p = 5.07 while q is small such that there is no Mathieu excitation for these
modes according to the phase plot in figure 2.1. The strips can also be com-
bined for a larger interval. In figure 4.10 they are visualized combined with the
forcing obtained form the shaker software. The motion of the contact line and
the surface profile show corresponding behavior.

4.2.2 Meniscus waves in sunflower oil

For sunflower oil approximately the same results are obtained, which is expected
as fluid properties are less important in this low amplitude behavior. However
the higher viscosity lead to higher damping and the reflective properties of the
oil result in ill images. In figure 4.11 a few instances of the meniscus wave in
sunflower oil are plotted for f = 0.25 and 8.303Hz.

2One can easily check this for oneself; define more than one standing wave on an arbitrary
spatial interval, each with an unique temporal periodic dependence. Now add them together
and plot the result for several appropriate time steps.
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(a) Bouncing droplet (b) Stable bubbles under the surface

Figure 4.7: a) Zoomed image of a crest in the (0,1) mode. Two droplets (inside
red circles) that bounced of the surface in previous cycles and a new droplet at
the moment of ejection. The jet shape on the crest in clearly visible. When the
droplet does not detach the jet is pulled inward and a bubble is formed under
the surface. b) The (0,1) standing wave moving through it equilibrium showing
multiple entrapped bubbles created by this process.

4.2.3 Transition to the Faraday waves

In figure 4.10 not only the solid body state is visible but also the evolution of
the system to a standing wave state and even to a jet. The standing wave can
be clearly observed from the motion at the edges, especially after t = 14s. It is
period doubled and the amplitude is larger than the excitation of the cylinder,
showing the contact line is in motion. We hypothesized that the contact line
cannot be pinned when the amplitude is significant since the contact angle be-
comes too large. For this low amplitude waves we assume the contribution to
the profile of the (0,1) mode is given by the combination of an Airy wave and a
boundary layer to the lowest order, c.q. the profile in figure 2.10. In that case
the derivative at the wall is |∂|r η(L) = 1.62 ·103A with A the elevation at r = 0
(and the prefactor of units m−1). The hysteresis from the equilibrium contact
angle is 0.334rad such that |∂rη(L)| ≤ 0.34, resulting in |A| ≤ 0.21mm. This is
a very small wave and not recordable form a side view as it is 5 times smaller
than the meniscus height. The meniscus wave contributes to the elevation as
well so the angle can be too large even for smaller waves. Its wavelength is longer
but of the same order so we can expect the amplitude is also of the same order
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(a) t = 0.000s, f = 0.00 (b) t = 3.168s, f = 0.04 (c) t = 3.228s, f = 0.04

(d) t = 6.008s, f = 0.07 (e) t = 6.068s, f = 0.07 (f) t = 7.428s, f = 0.16

(g) t = 7.488s, f = 0.17 (h) t = 10.838s, f = 0.20 (i) t = 10.898, f = 0.20

Figure 4.8: Meniscus waves in water recorded under an angle corresponding to
the forcing in figure 3.5. The time of the images is such that there are pairs that
are approximately half a period from each other, except for (a). The forcing is
read from the shaker signal at the instant of the image. The images are recorded
at 500fps, with a closure time of 3000−1s for 512× 1024 pixels.

when the contact line is pinned. In fact, it appears that the meniscus waves
is already at the contact angle limits as the Faraday wave in figure 4.10 is not
visible before the contact line is unpinned, i.e. the period doubled components
are always larger than the meniscus wave. Apparently, the meniscus wave can
not trigger the movement of the contact line, which supports the interpretation
that the dynamic meniscus actually is a wavemaker. If the contact line would
move the meniscus wave generation mechanism has subsided. This can also be
seen from the fact that the isochronous component decays for 16s ≤ t ≤ 19s,
when there is no pinned contact line anymore.

The measurements confirm the existence of meniscus waves. They are gravity
waves, as they obey the corresponding dispersion relation and they are exter-
nally driven as they are isochronous. The recordings support our hypothesis
about the generation mechanism but are inconclusive. As long as we can not
extract the exact surface profile this analysis remains rather qualitative in na-
ture. A measuring method can be developed based on the reflection of the
surface, to study meniscus waves more deeply.
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Figure 4.9: This image is constructed out of the recordings visualized in figure
4.8. From those images of 512 × 1024 pixels a vertical strip of 512 × 4 pixels
is taken from the middle. Here 500 consecutive strips are combined together,
which consequently correspond to a temporal interval of 1s as the frame rate was
500fps. The horizontal axis shows the camera time, i.e. t = 0 corresponds to the
start of the recording. From this image one observes the isochronous behavior
of meniscus waves. The waves appear to be generated at the top boundary and
to be traveling to the other side (bottom boundary). However, the system is
symmetric so the waves are generated along the entire circumference equally.
The (0,3) mode has three wavelengths in this spatial interval, which is in good
agreement, although the term ’wavelength’ is a little strange for cylindrical
waves.

4.3 Standing wave state

The state of stable Faraday waves is denoted as the standing wave state. We
will first examine the profile of the waves and compare their temporal response
with Mathieu functions. Then we will analyze the boundaries of the regimes
and measure the dissipation. Finally we will take a closer look at the transi-
tion to other states. In this section we will emphasize on the (0,1) state for
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Figure 4.10: This image is constructed in the same way as figure 4.9, i.e. a
combination of vertical strip of 512× 4 pixels. In this case there are 105 strips
over an interval of 20s. The forcing for this run is plotted as well (white line).
The horizontal axis shows the camera time and the vertical axis shows the
forcing amplitude f . From this image it is hard to observe the individual waves
and we would like to focus on the amplitude, which is easiest observable near
the edges of the cylinder (at the top and bottom of this image). The meniscus
waves follow the forcing almost instantly. After t = 14s Faraday waves are
visible which can be observed from the period doubled motion. Simultaneously
the meniscus waves decay, which can be seen from the vanishing isochronous
component. At t = 19s the isochronous component has disappeared completely.
At approximately t = 20s a jet is formed.

water and sunflower oil. As the cylinders vary slightly their wavenumbers are
κ = 71.0rad/s and κ = 70.6rad/m respectively. The depth was 162mm and
considered infinity deep for the linear dispersion relation.
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(a) t = 0.000s (b) t = 30.1ms (c) t = 60.2ms

Figure 4.11: Meniscus waves in sunflower oil recorded under an angle at
8.303Hz. The images show three images of a cycle at [0, 0.5, 1]π. The im-
ages are recorded at 1000fps, with a closure time of 4000−1s for 384 × 1024
pixels. In contrast to figure 4.8 it is much harder to observe waves in oil. This
is because of the reflective properties of the fluid and due to the larger viscous
damping resulting in smaller waves. If observed carefully, the intensity of the
light just above the middle of the images changes in every frame. A movie of
consecutive images makes it much easier to observe meniscus waves.

4.3.1 Mathieu function

For smaller waves we expect the profile of the waves to behave as modes pre-
dicted by irrotational flow. The Airy approach predicts their evolution to be like
a Mathieu function. However, waves in water are distorted by parasitic waves
as seen in figures 4.3 and 4.4 and for sunflower oil low amplitudes are hard to
visualize. The profile of the viscous fluid is visible for higher amplitudes but in
this case nonlinearities are significant, see figure 4.12.

On the other hand the modes obtained from irrotational flow, match reasonable
to the shape of the standing waves. Their excitation frequencies is also correctly
predicted by Mathieu theory, like in figure 4.3. We were always able to excite
specific modes considered here around p = 1 for small excitations (f < 0.2).
This suggests that the irrotational mode is excited by the Mathieu forcing and
other (nonlinear) effects are in turn created by this motion. Therefore we can
still expect period doubling as the dominant term. To confirm this the camera
resolution was set to a very small width such that a vertical strip of the center
is recorded, while focused at the center. We recorded the height profile for the
(0,1) state by exciting the system for 0.2 ≤ f ≤ 0.4. When the system transi-
tions out of the solid-body state the forcing amplitude was lowered to a certain
value. The system was held at this value until the motion was stabilized, i.e.
when the amplitude was constant according to the experimentator, which was
generally in the order of 10s.

One of the results is plotted in figure 4.13, for the same detuning as in fig-
ure 4.12. The period doubling is obtained but the growth rate is much too
small, implying dissipation is significant. Also, the plots for q = 0.088, 0.13
stabilize at a certain amplitude, suggesting that the dissipation is amplitude
depended as well. Even for large amplitudes the standing waves are stable.
Nonlinear effects, like thin crests and shallow troughs are always observed. In
fact, pure linear waves were never observed (except for meniscus waves) because
the amplitude required for standing waves was always significant.

In water the results are similar. In figure 4.14 the surface elevations for wa-
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Figure 4.12: Two images (104 × 256) of sunflower oil in a standing wave state
for p = 1.04. The width is approximately L/2 and the height of each image is
21mm. In the left image a crest is visualized. The arrows next to the image
indicate a strip that is distorted due to oil on the inside of the cylinder wall. The
surface profile in this area is therefore not representative. The height of this strip
is approximately 3mm in this case. Above the strip the image is not affected,
while under the strip the surface profile appears to be stretched due to refraction
effects of the oil-perspex interface. We have to use the calibration images to
relate these parts to each other. The three red lines are fits to the (0,1) mode
(R from eq.(2.55)) using this calibration image. The bottom line corresponds
to the value of the profile at r = L, which is a straight line because of the
cylindrical symmetry. The other two lines correspond to the radial dependence
of R which are scaled such that at r = 0 they relate to the height of the crest and
at r = L to the bottom line. The top line is corrected for refraction effects using
the calibration image, while the middle line is not corrected. The dimensionless
excitation is found by multiplying the excitation at r = 0 with the wavenumber,
yielding 0.78.
In the right image a trough is visible. Here no distortion is present because the
whole image is seen through the oil-perspex interface. Again the profile of the
(0,1) mode is plotted but the the uncorrected line is left out. The dimensionless
excitation is −0.61. Both values are too large for the waves to be considered
linear. In this case the top line corresponds to the contact line. This position
corresponds to the location of the distorted strip in the left image.

ter are plotted. They require smaller driving amplitudes but are also less stable
as expected for a less viscous fluid. In the third plot one can observe that the
jets are more violent, since irregular motions are less damped as well.

The (0,1) standing wave state is relatively stable and is susceptible for fre-
quencies predicted by (linear) Mathieu functions. This is even true when the
system is in a jetting state. Nonlinear effects are clearly present for amplitudes
that the system is in a standing wave state.

4.3.2 Parameter sweeps

To further investigate the stability of the standing wave state we performed
sweeps through the parameter space. We will slowly vary the frequency and
amplitude to find the borders of this regime. From Mathieu theory we know
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Figure 4.13: Surface excitation in sunflower oil for p = 1.04 and q = 0.088,
0.13 and 0.15. The highest elevation is extracted such that plot is actually an
overlap of the crest and profile near the wall which causes the wiggles. Other
irregularities are caused by droplets falling down or asymmetric motion. In the
third plot, the highest excitations represent jets, but due to possible asymmetric
motion their captured elevation may be smaller.

that the response depends heavily on both parameters. At low amplitudes we
expect the transition of the solid-body and standing wave state. Here nonlinear
effects are the smallest which makes it useful to study dissipation. At higher am-
plitudes jets will occur, which phenomenon is an interesting part of our study,
hence the involved transition as well. Moreover, other modes than the (0,1)
mode will be excited in experiment. The (2,1) and (3,1) modes are the first to
be excited as their eigenfrequencies are close to that of the (0,1) mode. Their
wavenumbers are 56.5, 77.8 (water) and 56.2, 77.4rad/m (sunflower).

This parameter space is large. We found jets in water for q = 0.1 but more
forcing is probably required at larger detuning. The (2,1) and (3,1) modes have
a detuning unity for respectively p = 1.27 and p = 0.90 for the (0,1) mode.
Their presence will probably be observed for values closer to unity. The edges
of the parameter space are where these states become dominant. The largest
disadvantage of such a large space is the limited measurement time. Since we
are provisionally interested in the borders of this mode and the standing waves
are clearly distinguishable as are jetting and solid-body states, we performed
the observations ourselves. The frequency was held constant and the amplitude
was changed with steps of 0.2dB. We waited 10 to 20s on average in a pa-
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Figure 4.14: Surface excitation in water for p = 1.04 and q = 0.036, 0.083 and
0.099, which is similar to the results in figure 4.13. In the third plot, the highest
excitations represent jets as well.

rameter point. We first increased it from the solid-body state then decreased it
from the jetting state and noted the values for which transitions occurred. The
result is plotted in figure 4.15. The modes are placed in their corresponding
regimes and the stars denote transition locations. For instance, for almost the
entire frequency range the fluid is in the solid-body state, (0,0) below q = 0.04.
Jetting occurs in the top area but is still denoted by a (0,1) state. At the edges
of the chart, the system changes to a (2,1) mode for small frequencies and to
a (3,1) mode for higher frequencies. The (0,1) mode was only observable for
higher amplitudes and higher frequencies. We did not define a transition here
because the exact location was unclear.

The region where both the (0,1) and the (0,0) mode occur, is particular in-
teresting. The existence of a standing wave mode completely depends on the
previous state of the system, which means the upper transition is one from
solid-body to a jetting state. Since instant jets are impossible and a few waves
are observed in the transition recordings of this transition is necessary.

An experiment using high speed imagining was also designed. We varied the
frequency and the amplitude simultaneously and proportionally in order to scan
through the space of 2π.8.0 ≤ ω0 ≤ 2π.8.9Hz (or 1.14 ≥ p ≥ 0.92) with forc-
ing amplitudes 0.02 ≤ f ≤ 0.4. Four sets of 81 diagonals of varying length
are performed to cover the entire the space and hysteresis effects. At a rate of
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Figure 4.15: Phase plot as a function of frequency and amplitude. All stars
denote individual measured transitions. A few are obtained for the same fre-
quency, implying this measuring method is not adequate. The modes denote the
state of the fluid in the corresponding area. According to section 2.1 the growth
rate should strongly depend on p with a maximum at p = 1. However, the
transition form standing wave state to solid-body state is nearly independent of
p. This could also have been a discrepancy of the measuring method.

11.5mHz/s or 4.87 ·10−3gs−1 (m for milli) the experiment takes about 15 hours
including downloading of recordings. The images are 1024×16 pixels (minimum
width) and the frame rate is 1000fps. Two of the sets in water are visualized
in figure 4.16. The space was divided into smaller areas and the average crest
height is calculated for the time the parameters are in this particular region.
The left image shows some similarity with figure 4.15 but for the bigger part
the results are completely different. Firstly, there is some randomness in the
plots. The overall trend is visible but adjacent diagonals are not smooth tran-
sitions to one another. Some runs go into a standing wave state while others
skip this state altogether. On the top right of the left image some runs lost too
much amplitude that the remainder of those runs in the right image are again in
the solid-body state. In general, the dynamics are clearly determined by their
previous states. We conclude that the sweep rate is much too fast for a phase
plot. This was also the case in other runs. Also the direction of the sweep was
important as the results in this plot differed from those in a backward diagonal
sweep (not plotted) or in a vertical sweep (for fixed frequency, e.g. figure 4.15).
This experiment suggest we have to lower the sweep rate drastically. We could
lower the resolution by a factor of two and choose a smaller sweep rate. For ac-
ceptable spatial and temporal resolution this might result in a data reduction by
16. However, this only affects download times which are about two third of the
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Figure 4.16: Average wave height for a forward parameter sweep (bottom left
to top right and back). The scale is millimeters and the space was divided into
a 41×41 grid, which corresponds to about eight cycles of the standing wave per
cell. The run starts at the left or bottom border of the left image and sweeps
until it reaches the top or right edge. The experiment continuous by sweeping
back to the start position which results are plotted in the right image. The axis
are not rescaled to p and q because the machine only allows the rates to be
proportional, hence the diagonals. The corresponding p, q space would be like
a trapezoid.

experimental time in this setup. If the download rates are decreased linearly the
recording time is increased by eight thirds. As the sweep rate can be decreased
by the same factor this is very like to be slow enough for our requirements.
Another factor is that the direction of the sweep is an important factor as well.
One actually has to include the sweep-rate and the ratio of the amplitude-rate
to frequency-rate as parameters for to find a correct phase representation.

As we are forced by limited experimental time we choose only two parame-
ters to vary. As the standing waves grow the fastest around p = 1 we keep
the frequency fixed and only vary the sweep rate. The direction parameter now
only has two values, namely up or down. We still have all three states. The
previous experiments are still valuable; we know when the (1,2) and (1,3) state
join in approximately and that sweeps suffer from some irreproducibility, so we
have to perform each sweep a multiple of times.
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Figure 4.17: The wave height as a function of the excitation amplitude at a sweep
rate of 0.5 · 10−3gs−1. The forcing was increased to f = 0.30 (red solid line)
and than decreased at the same rate. The transition from a solid-body state to
a standing wave is accompanied by 4 jets. The other transitions are smoother.
The jetting state starts at f = 0.18 (left red dashed line) for increasing forcing
and ended at f = 0.21 (right red dashed line) for decreasing forcing. On the right
of the graph the relation of the wave amplitude to the forcing amplitude seems
linear, before the motions transitions to the solid-body state. The transitions
were confirmed by manually watching the recordings.

4.3.3 Transitions and Hysteresis

In the following experiment the camera resolution was again of small width,
512× 48 pixels while the frame rate was smaller at 125fps. We chose p = 1.04
which corresponds to 8.400 and 8.303Hz in water and sunflower oil respec-
tively. At different sweep rates the amplitude is gradually increased and again
decreased. Also, the intervals slightly varied to determine if this was a fac-
tor, but we did not find significant influence, as long as all regimes are passed
through. As we know the excitation as a function of the camera time when can
relate it to the wave height. As mentioned before there is some fluctuation on
the forcing signal. A result is plotted in figure 4.17 for the slowest sweep rate
of 0.5 · 10−3gs−1 for the interval 0.01 ≤ f ≤ 0.30 in water. Most notably are
a few jets at the transition from a solid-body to a standing wave state. The
results are combined in figures 4.18 and 4.18 where the transitions locations are
denoted. The direction of the sweeps is from bottom to top and this is how one
should read the plots. For every rate there are three runs for water and two for
sunflower oil.

The results for oil are much more regular than for water, which can be expected
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Figure 4.18: Transition locations in water plotted as function of the sweep rate
and the excitation. The graph should be read as follows. As the frequency is
constant for every run, we start at a small excitation at a certain sweep rate,
say 1.3 · 10−3gs−1. As the excitation increases we move up in a straight line.
At f = 0.15 the wave transitions into a jetting state. At f = 0.3 (solid red line)
the sweep direction is reversed, i.e. the excitation is now decreasing, but in the
plot we keep moving upward. When the excitation returns to approximately
f = 0.2 the fluid transitions in the standing wave state and in the solid body
state at f = 0.05. At a small excitation, f = 0.01 in this case, the run ends.
The experiment was performed three times for every sweep rate.

as irregularities survive much linger in a low viscous fluid. For both fluids there
is overlap of the regimes for faster rates. In some instance the jetting state is
only reached when the excitation amplitude is already decreasing. For water at
small rates there also seems to be overlap but these are merely a few jets formed
in the transition from a solid-body to a standing wave state, like in figure 4.17.
Apparently, jets are always created in water for the transition from solid-body
state. For sunflower oil this is only the case at faster rates where there is clear
separation of the transition mechanism around 3 · 10−3gs−1. At lower rates the
system transitions smoothly into a standing wave from the solid-body state.
Water has a similar division for smaller rates than 1.5 · 10−3gs−1. For both
fluids this transition is at lower excitation for lower sweep rates, although it
seems that this transition in oil has not yet reached it asymptote. Even more
slower sweep rates are not possible at this system’s settings.

The transitions from jetting to standing wave to solid-body (the upper half of
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Figure 4.19: Transition locations in sunflower oil plotted as function of the
sweep rate and the excitation. At f = 0.37 (solid red line) the sweep direction
is reversed. The experiment was performed twice for every sweep rate.

the graphs, when the forcing decreases) are well defined and show little depen-
dence on the sweep rate, except the latter case in oil. In that case the transition
is at higher excitation for lower sweep rates as one would expect since the system
has more time to react the the decreasing excitation. The system transition the
the solid-body state eventually, but this evolution is slow compared to faster
sweep rates. For water the trend is slightly in the opposite direction for small
rates. For the jetting to standing wave transition there is apparently not much
time needed to adapt. In the experiment with 4.87 · 10−3gs−1 and varying fre-
quencies (figure 4.16) this was not the case. Evidently, the system behaves very
differently when varying the parameters discarded in this experiment.

We observe that the system has enough time to adapt to the forcing at small
sweep rates. Hence, we confirm the presence of hysteresis in our setup. Let us
denote the size of the hysteresis by ∆f , which is calculated by subtracting the
excitation of the transitions for increasing and decreasing forcing. In figure 4.20
the hysteresis for both transitions is plotted as function of the sweep rate. For
transitions of the solid body and standing wave states the minimum difference
in excitation amplitude are approximately 0.09 for water and 0.05 for oil. The
hysteresis in this transition depends on the sweep rate. For oil the trend is
steeper which means that waves in oil react slower to a change in excitation. If
we look at figure 4.19 we observe that especially the transition for increasing
forcing is depended on the sweep rate. It is unknown why this is different in



4.3. STANDING WAVE STATE 77

Figure 4.20: The difference in forcing (∆f) for both transitions in water and
sunflower oil plotted as function of the sweep rate. The points are obtained from
the average of the transitions locations in figures 4.18-4.19 and then taking the
difference. A positive value means the transition occurred for higher values
of f when increasing the amplitude. For instance the solid-body to standing
wave transition for sunflower for 0.5 · 10−3gs−1 is at f = 0.20 when the forcing
increases and at f = 0.15 when decreasing, yielding ∆f = 0.05.

water. We would expect a constant value for the hysteresis at very small sweep
rates as the change of the excitation will be very slow compared to the dynamics
of the fluid. Apparently, the sweep rate is not small enough, although the trend
is flattening at the left of the graph. At the smallest sweep rate considered
here, the hysteresis is approximately twice as large for water. In section 2.2.9
we based that the energy required for the initial wetting on the movement of
the contact line. We found that it should be proportional to the surface tension.
The value for water is appropriately twice the value for oil.

In this transition we observed a few number of jets, in water for all sweep rates
and for larger rates in oil. We explain this as follows. The contact line force can
keep the system in a solid-body state for a long time and when it breaks loose the
friction decreases with increasing amplitude, temporally leading to practically
unbounded growth, resulting in jets before a standing wave stabilizes. Both
results supports the hypothesis that the hysteresis in this transition is mainly
due to the initial wetting motion. More investigation in the transition, like the
influence of meniscus waves is required to be conclusive. One should also vary
the values for surface tension and contact angle hysteresis in experiment.



78 CHAPTER 4. ANALYSIS AND RESULTS

The transitions of the standing wave and jetting states show an irregular trend
for the hysteresis. At the smallest sweep rate, the values are 0.01 and 0.02 for
water and oil respectively, but vary in both directions. In section 2.3 we argued
that the hysteresis should be positive (∆f > 0) but we are inconclusive about
the exact mechanism.

A final note is on the smoothness of the jets. The ones created from a solid-body
state are better reproducible and show less asymmetric motion as for standing
wave transitions to jets. This can be expected as there are more irregularities
is standing wave. Jets created in a jetting state are completely exposed to this
effect.

4.4 Dissipation

There are four sources of dissipation in our setup. They originate from the
bulk, the wall and surface boundary layers and from wetting effects. In this
section we will estimate their contribution and relate it to experiments. We
assumed that the surface layer is negligible for uncontaminated surfaces and we
will investigate the contamination first. The contribution from the bulk and the
wall layer are evident and we calculate their influence. We already mentioned
that the standing waves are non-linear, which one should keep in mind for our
(linear) approximations. We will continue with wetting effects. For instance, we
will examine whether the contact line is pinned for the interval of one period.
Lastly, this analysis are compared with the transitions for the (0,1) mode.

4.4.1 Surface tension measurements

The surface tension measurements of samples from the fluid in the cylinder
showed no difference before and after experiments. However, the samples can-
not represent the surface of the fluid as mentioned in section 3. The long term
experiment confirmed the influence of ambient In figure 4.21 the surface ten-
sion of a pendant drop as a function of time is plotted. The surface tension
clearly drops although there is apparently no lower limit, which means the sur-
face contamination is not saturated over the length of the experiment. The
larger deviations results from refilling the drop since the measurements assume
a constant volume. The surface area (20 ± 1 · 10−6m2) is large compared to
volume (8.7± 0.4 · 10−9m3) in this experiment.

The volume of the liquids in the cylinders are practically constant. Hence,
there is insignificant evaporation and consequently no replenishment of contain-
ment particles in the air inside the cylinder. Since the rate of the decrease of
surface tension is so small we assume the contaminating effect of the air inside
the cylinder is negligible. Moreover, the fluid in the cylinder is contained for a
large number of experiments such that any initial contamination has a constant
influence. Also, the experiments of the next section 4.4.2 were repeated after a
day with no notable difference in the results. This also suggest that the surface
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Figure 4.21: Surface tension of a water (with dye) droplet in ambient air.

is not contaminated (further).

Although no such experiment was conducted for sunflower oil, the same rea-
soning applies. Since this experiment is inconclusive, we did not find grounds
to perform it. We also have to note that contamination can have other sources,
like particles that break loose from the cylinder wall and travel to the surface.
We can never really exclude it, although the cylinders are extensively cleaned
before experiments.

4.4.2 Flow dissipation

The mechanical energy (eq.(2.44)) can be calculated in an Airy approach with
boundary layer. We will compare to the forcing needed in a Mathieu theory
2.1.4 such that the growth is countered. For the kinetic energy we will only
consider the potential contribution, such that we can relate to eq.(2.61) provided
that we add the contribution from the wall boundary layer. The wall layer is
given by eq.(2.66) and again we will only consider the period doubled frequency
component as it is the largest for Mathieu excitation around p = 1, i.e. α ≈
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iω0/2. We calculate eq.(2.43) from the first term as it is one order higher than
the second one. First we approximate ω = −∇2Ψ ≈ ξ2Ψ and evaluate the
integral for the fluid at rest.

|ω|2 =
∣∣ξ2Cψeαt+κzJ1(ξr)

∣∣2 = 2κ2φ2

∣∣∣∣ ξJ1(ξr)

LJ0(ξL)

∣∣∣∣2 e2κz, (4.1)

ν(ω,ω) = 2π · 2νκ2φ2

∫ L

0

∣∣∣∣ ξJ1(ξr)

LJ0(ξL)

∣∣∣∣2 rdr ∫ 0

−∞
e2κzdz = 2πνκξ2

0φ
2, (4.2)

where ξ0 is a form factor determined by the radial integral. For our variables
numerical integration approximates ξ0 ≈ 260m−1 and ξ0 ≈ 95m−1 for water
and sunflower respectively. Eq.(2.61) becomes

(u,N) = 2πφ
(
T̈ + Ω̄2T +

{
4κ2 + ξ2

0

}
νṪ
)

= 0, (4.3)

which is a contribution of the same order. Now to transform the part within
brackets to a dimensionless equation as in section 2.1

0 = T̈ ′ +
2ν

ω0

{
4κ2 + ξ2

0

}
Ṫ ′ +

4

ω2
0

Ω2T ′ = T̈ ′ + βṪ ′ + {p− 2q cos 2t′}T ′,

with β the constant dimensionless friction coefficient; for water β = 0.0033, for
oil β = 0.059. Put new detuning p′ = p − β2/4 and α = 1

2

√
(q2 − (p′ − 1)2)

from eq.(2.6).3 The argument of the of the period doubled component will be
(α−β/2)t′ = (α−β/2)ω0t/2. We find growth (nonzero argument) for f ≥ 0.076
and f ≥ 0.14 for water and sunflower. If p′ = 1 the values would have been
f ≥ 0.0066 and f ≥ 0.116. Note that the dissipation outweighs the effect of a
more favorable detuning.

In a comparison with experiment, we observe low sweep rate transitions the
standing wave disappears around f = 0.05 and f = 0.15, which is in good
agreement for oil and reasonable for water compared to the predicted contribu-
tion from the interior flow and wall boundary layer combined.

4.4.3 Dissipation experiments

Only for infinitesimal waves the dissipation is amplitude independent. We
looked at the amplitude of the standing waves as a function of the excitation
amplitude at the lowest sweep rate of 0.5g/s. For water we can only do this
for decreasing forcing amplitude because of jets found in the transition to a
standing wave state. For oil the increasing forcing can be considered as well. A
linear fit was very reasonable in all instances, like in figure 4.22. We calculated
the dispersion for infinitesimal wave amplitudes in which case wetting effects
should be absent. Therefore, the extrapolation of these lines to an amplitude
of zero should correspond to the minimal excitation amplitude required, if the
linear relation is valid for a larger interval. However, there was a large spread
in the obtained values, while the calculated dissipation was always larger. For
sunflower the absolute value of the steepness for decreasing forcing was larger

3α will now be reserved for the Mathieu growth rate.
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Figure 4.22: The response of the amplitude in sunflower for a sweep rate of
0.5mg/s (compare to figure 4.17). At f = 0.37 (solid red line) the direction
was reversed. The red dashed lines are a fit to the standing wave regimes
(approximately 0.20 ≤ f ≤ 0.28). The line on the right is 9% steeper. The
lower response around f = 0.32 is caused by asymmetric jets which are not
fully captured by our recording system.

than for increasing forcing. We assume this is caused the growing wave wetting
a new portion of the wall for increasing excitation.

Other comparisons are the decay of the wave when the excitation is abruptly
stopped. In this experiment a standing wave in water at f = 0.070 and
p = 1.04 was recorded and fitted to an exponential decay with transient fre-
quency of exp((iωt − β̄/2)t) with data from 18 wave periods.4 We found
β̄/2 = −0.40±0.03s−1 and ωt = 4.39±0.02Hz, strangely this is higher than the
value form the dispersion relation, Ω = 4.28Hz. The decay rate is also much
larger than found at the beginning of this section β̄/2 = βω0/4 = 0.043s−1.
Is has to be noted that the machine does not stop immediately and that the
influence from the thin layer can be expected to be significant.

Henderson and Miles compared calculated dissipation with experiments with
a fixed contact line, obtained by filling the cylinder up to its rim [46, 68]. In
the (0,1) mode their model found a ratio of interior to the wall layer 1.64 but
the measured dissipation was 1.3 times the total estimated value.5 Short wave

4β̄ has dimensions of one over second while β is the dimensionless friction coefficient.
5Note that a fixed contact line with a standing wave mode and overflow prevention implies

very small amplitudes. The more flexible contact line leads to slightly different dynamics
although the wavenumbers are identical. For instance, there is no report on meniscus waves.
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experiments will likely show better agreement with calculated interior damping.
So called walker droplets are able to trigger Faraday waves in the standing wave
state [19, 34]. The surface waves decay over distance from the droplet such
that wall effects can be neglected and the dissipation can be measured form the
lateral profile.

We also performed experiments with an annulus tightly secured to the wall.
Its height was 60mm and it was submerged in the fluid such that the fluid
above the annulus was 2mm. In this way we hoped to minimize contact line
movement in a standing wave state. However, it showed that an anti-node above
the edge of the annulus could not be maintained for significant amplitude. The
system transitioned into a standing wave in the entire cylinder. The dispersion
can be found in the relation Ω(κ1, h1) = Ω(κ2, h2) as the wave has different
wavenumbers inside and above the annulus.

We have to note that the machine excitation is not very accurate, as men-
tioned before. At these small values of excitation the relative deviation from
the demanded amplitude can be large, generally in the order of 10% at f = 0.05.
A final notion is on the free surface. As frequencies or decay rates did not differ
after a day, the elasticity of the surface did not change. This also suggests that
the surface is not contaminated as mentioned before.

4.4.4 Wetting effects

The calculated dissipation for both fluids is in good agreement with experiment.
Recordings in sunflower oil suggest that the contact line speed is negligible
compared to the wave velocity at the wall, like in figure 4.23. This supports
the hypothesis that the bulk fluid moving over the thin film is responsible for
little dissipation. For water it is much harder to observe whether the contact

Figure 4.23: Two images of sunflower oil in a (1,2) standing wave state over half
an interval of the fluid motion for p = 1.01 and q = 0.145. The arrows point at
the contact line at the wall closest to the camera. It has not moved even in this
asymmetric state.

line moves or is pinned. Recordings suggest the latter, but the thin film is near
invisible. Experiments in a rectangular container show that the contact line
does not move down with fluid immediately, as in the slip model, but they are
not conclusive about the exact movement either. If the contact line slips for a
small amount we have to consider the slip model for the velocity and distance
of its motion. So it is important to determine its dynamics, if one is to estimate
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this contribution to the dissipation accurately. To this end the profile of the film
should be measured during Faraday experiments. This can for instance be done
by reflectometry when the device is placed on the cylinder not to obstruct the
camera’s view. Also, the cylinder could be mounted in a rectangular container
filled with the same liquid such that the film can be recorded.

4.5 Cavities and Jets

Figure 4.24: A cavity collapse with resulting jet in sunflower oil following a
solid-body state at q = 0.149. In frame 4 part of the liquid column is still falling
and the moment before the singularity is clearly visible in frame 6.

Jets are a very interesting phenomenon but somewhat hard to describe quan-
titatively. Different shapes and various jetting methods are classifiable and ob-
served in experiment. We subscribe this to the random-like conditions prior to
the mechanism, which are due to the long time for a cavity to form in our setup,
since we do not control the exact wave motion when the system transitions into
the jetting regime. For instance, the crest height and shape of the last wave
can be different in similar runs. Further, the amplitude of the period-doubled
component in Mathieu like motion can be slightly time depended. This requires
us to perform a number of runs per parameter setting.

4.5.1 Transitions to jets

It is important to realize that jets occur following two types of transitions. We
now know that the system reacts slowly to a change in excitation amplitude, so
we can bring the system in a solid-body state with forcing of the jetting regime
such that we can investigate the influence of the forcing on the jet. We know
from the previous section that jets formed in this transition are more symmet-
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Figure 4.25: A cavity collapse with resulting jet in water following a solid-body
state at q = 0.125. The cavity collapse is very close to a real pinch-off.

Figure 4.26: A pinch-off where the collapse is just moments later than the liquid
column falling through (frames 3-5). The resulting jets are very fast; in frame
7 some smaller droplets reached the top of the image while the downward jet
penetrates the bubble completely. Experiment in water following a solid-body
state at q = 0.125.

ric. Hence we will primary use this desired transition. Again we take 8.400 and
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Figure 4.27: A falling liquid column with double droplet pinch-off. The second
coalesces with the fluid before the cavity pinch-off (frame 4) while the first
impacts on the jet (frame 6). The symmetry is not broken although the surface
of the jet is irregular (frame 8). Experiment in water following a solid-body
state at q = 0.100.

8.303Hz in water and sunflower oil respectively and record the jet formed at
two excitation values.

However, it was found that there is a limit of the forcing we could apply and still
produce smooth jets. For instance, other modes would start to dominate the
profile or air entrapment would happen before jet creation. To produce more
extreme jets at the excitation of the machine limits we used a transition from
the standing wave state. The forcing would be safely below the jetting regime
(f = 0.08 and f = 0.16 for water and sunflower oil respectively) and the wave is
maintained for 180s to reduce artifacts in the flow. Then the forcing is suddenly
increased at the maximum possible rate. Apart from a non-ideal transition there
are two downsides; the exact excitation is ill-defined and a rather long downtime
is required for the air and fluid to separate as a mixture is created at these large
amplitudes. The machine rate at our settings is approximately 1.2s−1 so the
excitation increases with 0.15 per cycle. The machine limit was f = 3 but the
jets are always formed for f < 1.4 with this method, since the fluid will react
faster to the forcing in a standing wave state.

4.5.2 Morphology of collapsing cavities

The crest before the cavity determines most of the dynamics of cavity collapse.
Large crests will be thin, long shaped and when it is over its maximum value
it can be seen as a falling liquid column. It will interfere with the collapse of
the cavity. Figures 4.24-4.30 show different kinds of collapsing types. They
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Figure 4.28: A cavity pinch-off in sunflower oil following a solid-body state at
q = 0.199. The top of the falling column impacts the surface just after a jet
is created (frame 3). Two things happen; the jet is in the shape of a hollow
sheet with several secondary jets and satellite droplets emerging from the rim
(frames 3-4). In frame 6 the rim is closed leading to a irregular shaped top
and a hollow middle which reaches it maximum volume in frame 7. The other
effect is the creation of a second cavity which collapses between frames 6-7. A
second jet is created, moving upward in the hollow inside of the first jet (frame
8), eventually impacting on the tip of the first jet. Frame 9 is a few moments
before the coalescence of both jets. The shape of the jets is reasonably conserved
in downfall (frame 10).

are obtained from the method just described and the relative timing is given
for each frame. 4.24 shows a normal collapse, while the others show increasing
complications, producing rather astonishing pictures. The crests are heavily
subject to Rayleigh instabilities. Extreme instances are when the curved top of
the column detaches and forms a droplet. As expected, asymmetric collapse is
found in the standing wave transition (4.31-4.30). The difference between the
two liquids is large. Water shows more irregularities and fast jets are actually
more like a spray. Sunflower oil has very smooth surfaces, but the jets can be
so thin that they are near invisible. It also proved to be hard to find an ideal
illumination of the experiment. Cavities need much light to be recorded but
this can cause overexposure of the jets.

4.5.3 Tip velocity

Now that we found that the falling liquid column is of much importance we
will look for a relations between the last crest and the jet. The maximum crest
height can be easily measured and we will characterize the jet by its tip velocity.
The latter is measured by dividing the change in vertical position by the expired
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Figure 4.29: A double pinch-off in the cavity in sunflower oil following a standing
wave state. The second pinch-off is a result of the droplet falling into the cavity
before a jet is formed (frames 3-5). The pinch-offs are not entirely symmetrical,
resulting in bended tip of the jet and secondary pinch-offs of both droplets.

time. If the tip of the jet was too fast to observe just above the fluid level the
measured distances were the tip of the cavity or pinch-off and the jet tip at
the top of the image. If there were complications with the falling column the
velocity was undefined and set to zero. The measurement uncertainties are the
exposure time for the time and two pixels for distances. The result is plotted
in figures 4.32 and 4.33, with corresponding errorbars, where the width relates
to the uncertainty in the crest height. The recordings of all jets are shown in
figures 4.35-4.40. In all cases the crest at its maximum, the cavity and the jet
are visualized. There is approximately one period of the forcing frequency in
between the images.

The magnitude of the velocities and the trend are very similar for both flu-
ids. There is an optimal crest height for which maximal velocities are reached
(49mm for water and 47mm for sunflower oil). We found that on the left there
are cavity collapses and on the right are pinch-offs, while the transition be-
tween the regimes is not abrupt, like in figure 4.25. The jet speed increases
with cavity dept, but if it is too deep it can not sustain itself and a pinch-off
occurs resulting in a slower jet. The forcing does not influence the tip velocity
in the cavity collapse regime. This suggests that the collapse mechanism is in-
dependent of gravitational forces. For sunflower oil there is a clear difference in
the pinch-off regime where less excitation corresponds to slower jets. For water
there are not enough data points in this area. The data points on the right
relate to complicated collapses as expected for larger crest heights. Especially
crests in sunflower oil are able to grow large without jetting first. This can also
be a consequence of the larger driving amplitude required for this liquid. For
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Figure 4.30: An asymmetric cavity pinch-off in sunflower oil following a standing
wave state. The impact of the top of the column on the jet (frame 4) results
in a crown like eruption. It is also asymmetric; the sheet does not completely
encircle the air in the middle which is clearly visible in frames 6-7. It closes in
frame 8 resulting in a small jet emerging from the top left of the rim. The rim
is relatively stable without jets emerging from it in frames 5-7. When the jet
closes under it, the rim rearranges in low velocity jets leading to a ’helicopter’
jet.

water there is a data point for a large crest, at 73mm, which corresponds to
the series in figure 4.27. This shows that instabilities of the falling column do
not necessarily disturb the jetting process. It appears that the experiments are
randomly concentrated. There is no indication that the system prefers a certain
regime. More experiments are required to confirm this and will result in a better
coverage of the interval.

A similarity scaling was not found to be a good method in comparing cav-
ity shapes. It is a method based on the assumption of a singularity, while we
observe a large number of experiments where the surface collapse is only local,
i.e. where only a small portion of the surface experiences large velocities. Zeff
et al. denote such instances as near-singularities [95], such that only a small
number of the considered experiments are real singularities. The profile of such
a collapse is shown in figure 4.34. We could not find a good fit for the variables
found in section2.3.2, but our temporal and spatial resolution might not be large
enough. On the other hand, we found that the tip velocity is independent on
the forcing. The similarity scaling is independent of the gravity so also of the
modified gravity in our Faraday system. This suggests that the similarity might
be a correct approach to the shape of the collapsing cavities. Moreover, in the
pinch-off regime the tip velocity depends on the forcing. For this regime the
similarity scaling can be related to gravity if surface tension can be neglected
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Figure 4.31: An asymmetric cavity pinch-off in water following a standing wave
state. The impact of the top of the column on the jet (frame 5) results in a
crown like eruption with a lot of secondary droplets. An irregular jet in the
middle is also formed, catching up with the liquid sheet in frame 7 and finally
coalescing with it in frame 9.

[41]. So both regimes actually agree with these properties of self-similarity so-
lutions. We did not investigate if the solution fitted to the shapes in pinch-off
regime.
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Figure 4.32: Tip velocity for jets in water.

Figure 4.33: Tip velocity for jets in sunflower oil.
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Figure 4.34: Extracted profiles of the cavity in sunflower oil for q = 0.149.
Every profile closer to the center is at a later instance while the relative timing
is [0, 2, 4, 6, 8, 9, 10, 11, 12]s at 8.303Hz. This cavity is a real singularity as the
resulting jet has a velocity of 9.2ms−1.
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Figure 4.35: Largest crest, cavity and jets in water for q = 0.100.

Figure 4.36: Largest crest, cavity and jets in water for q = 0.125.
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Figure 4.37: Largest crest, cavity and jets in water for the standing wave tran-
sition.

Figure 4.38: Largest crest, cavity and jets in sunflower oil for q = 0.149.
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Figure 4.39: Largest crest, cavity and jets in sunflower oil for q = 0.199.

Figure 4.40: Largest crest, cavity and jets in sunflower oil for the standing wave
transition.



Chapter 5

Numerical Aspects

In this chapter we will investigate numerical models appropriate for the dynam-
ics of our system. In previous chapters we found that the largest part of the flow
is irrotational. This is especially true in the center of the cylinder, where most of
our measurements are focused on. However, nonlinearities are still significant as
shown by figure 4.12. The period doubled component is the most dominant up
to the collapse cavity. This periodic behavior suggest that they are still waves
at these extreme appearances. We will first give a short background of surface
wave modeling and describe the principles of our approach. The implementation
of numerical operators is treated next.

5.1 Introduction

The key in numerical modeling is to produce the most accurate results at the
lowest computational costs. In order to derive a decent model we should go
analytically as far as the equations of motion can take us. A good principle is
to eliminate all lateral coordinates from the equations, without destroying their
influences on the flow. Physically motivated assumptions, like incompressibility,
are necessary. Surface waves generally exploit irrotational flow. In applications,
the viscously susceptible shorter waves are often of little interest as they are
damped faster. Moreover, a vorticity-free fluid can often be assumed to remain
irrotational during the experiment when there are no boundaries present, like in
ocean modeling. One may often neglect tangential stress as well, such that the
interface is a real free surface. In that case Bernoulli’s principle can be evaluated
at the surface. Luke proposed to interpret it as a Lagrangian function [63]. The
equation is integrated over the lateral and temporal intervals to find an action
functional. A problem with the evaluation of this integral is that the integration
volume is not a nice strip as it depends on the surface elevation. To prevent
implicit relations there are two main paths to go on. We already encountered
the Airy approach where the surface deviation from the fluid at rest is neglected
and a convenient integration interval can be used. Boussinesq proposed to use a
Taylor series expansion to approximate variables at the surface in expansions of
their values at the equilibrium position [10]. There are many Boussinesq-type
models including the Kortewegde Vries equations [54]. Another method is to
use a change of variables such that surface in the new coordinates is static. This

95
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convenient goes at the expense of more complicated dynamics. Stokes used a
conformal transformation to achieve this [59, 83].

We will begin with the separation of variables from section 2.2.5 and include all
allowed radial wavenumbers, as given by eq.(2.53). We will limit the model to
cylindrical symmetric motion, i.e. the azimuthal wavenumber (s) equals zero.

Φ =

M∑
m=1

φ̂m(t)Rm(r)Zm(z), (5.1)

η =

M∑
m=1

η̂m(t)Rm(r), (5.2)

with Rm =
√

2L−1J0(κmr)J
−1
0 (κmL) and Zm = exp(κmz). The truncation

number M is necessary for discrete implementation, but is assumed to be infi-
nite for now. We now would like to find a coupled differential system for the
arrays φ̂ = [φ̂1, φ̂2, ...] and η̂ = [η̂1, η̂2, ...]. The wavenumber is an array as well,
i.e. κ = [κ1, κ2, ...], which one can use to represent the arrays as a function of
κ. We will denote corresponding transformations as η=̂η̂.

We will use (, ) for the integration of the inner product over the entire volume,

i.e. (v1,v2) =
∫
∀(v1 · v2)dx. Furthermore, let

∫ L
0
f1(r)f2(r)rdr = (f1, f2)r

denote the integral of the multiplication of two scalar functions with weight r.

5.2 Transformations

These equations are actually transformation from the wavenumber space to the
lateral space. We still need to deal with Zn but for η it is clear that if one knows
η̂(t, κ) one is able to find η(t, r) by eq.(5.2). We will denote this relation as the
backward transformation. The forward transformation is found in a similar way.
Then for arbitrary m > 0,

(Rm, η)r = (Rm,

∞∑
n=1

η̂nRn)r = η̂m, (5.3)

by the orthonormality of the Bessel functions. The difference between the trans-
formations is that the wavenumbers are restricted while r ∈ [0, L].

There is wavenumber equal to zero in this case. It can be included by let-
ting the sum start at n = 0 while defining κ0 = 0. This relates to the offset in
the transformation since J0(0) = 1. We require conservation of volume so the
zero component of the elevation has to be zero, i.e. η̂0 = 0. For the potential
the zero component corresponds to a constant, which has no physical mean-
ing. Since numerical artifacts can excite this component, excluding κ0 from the
wavenumber array forces the our requirement on the system.

5.2.1 Implementation

The analogy with Fourier series is clear and our representation is known as the
Fourier-Bessel expansion [11]. We can construct orthonormal basis functions
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for other roots of Bessel functions, e.g. J0(κL) = 0.1 Fourier transformations
imply that the lateral and wavenumber interval is dense and unbounded.2 The
Fourier-Bessel analog is for r ≥ 0 and κ ≥ 0. In that case

η(r) =

∫ ∞
0

η̂(κ)Js(κr)κdκ, (5.4)

η̂(κ) =

∫ ∞
0

η(r)Js(κr)rdr, (5.5)

since Bessel functions are originally designed to be normalized on this interval.

A discrete Fourier transform conserves the number of points in the lateral and
wavenumber spaces in general. The arrays are often assumed to be equally
spaced as well. This is straight-forward, as the waves or basis functions repre-
sent a signal between the grid points as well. The wave corresponding to the
smallest nonzero wavenumber has a wavelength of two note distances and for
the largest wave number it is the entire lateral interval. The transformation of
a lateral array of length N involves a matrix of size N ×N . Properties of this
square matrix can reduce the computation costs to order N log(N) instead of
N2 [18, 86].

The restriction on the wavenumber array in our case requires a thoughtful ap-
proach. We require a high resolution for r but this is not necessary for κ, since
we expect the (0,1) mode and only a few harmonics to approximate the standing
waves. In this way we can leave the forward transformation as in eq.(5.3) if we
can calculate the integral for sufficient resolution. The transformation can be
represented by T = J0(κr), an N ×M matrix, where N and M are the number
of points in the lateral and wavenumber array. Then, in the discrete setting for
an arbitrary lateral array h,

ĥ = T
2rh

NLJ2
0 (κL)

= Tfh, (5.6)

h = T ∗ĥ = Tbĥ. (5.7)

All the weight of the normalization now is in the forward transformation, such
that the amplitudes of the transformed signal relate to the original signal, i.e.
J0(κnr)=̂δn. The forward transformation involves element-by-element multi-
plication of the arrays h, r and J−2

0 (κL) all of length N , while the backward
transformation needs the transpose of matrix. These operations can be included
in the matrices such that we yield a simple matrix operation.

There may be instances that the radial derivative of the potential or elevation
is needed, e.g. for the radial velocity. In a Cartesian system we can multiply
the transformed signal by iκ, with i =

√
−1 to calculate derivatives, because

the derivatives of cosines and sines are themselves. For Bessel function this is

1Usually only a few zeros of the Bessel function are documented. To find higher orders we
use an m-file exploiting Halley’s method [92].

2More common is to apply Fourier transforms in temporal space and in its corresponding
frequency space.
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different since
∂rJ0(κr) = −κJ1(κr).

Therefore it makes sense to introduce yet another transformation

∂rη =

M∑
m=1

η̂m(t)Ṙm(r) = Sbη̂,

with the dot denoting the derivative. Sb is implemented similar to the normal
backward transformation, eq.(5.7).

Figure 5.1: Logplot of the errors as function of the number of grid points in
each space, M = 2j , N = 212−j . The stars denote the transformation error (e1)
while the dots correspond to the inverseness of the matrices (e2).

5.2.2 Testing

We experimented with the locations and spacing of the lateral array. We found
that the best results were obtained for an equally spaced grid, i.e. the distance
between points is ∆r = L/N , and for locations r = [∆r/2, 3∆r/2, ..., L−∆r/2].

These transformations are tested for a function with wave properties, but that
are not basis functions. For L = 1 and h = cos(6πr) we calculated the nor-
malized error e1 = |h− Tb(Tfh)| / |h| /N and the ’inverseness’ of the matrices
e2 = |TfTb − I| /M2, with I the identity matrix. We know that for Fourier
transformations this is of the order of the machine precision. We choose M = 2j

and N = 212−j such that the computation time is about the same in each run.
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The error is plotted in figure 5.1 and the computation time was 42±8ms for these
runs. We find that our implementation indeed requires a lot of lateral grid points
for an accurate transformation. Artifacts are never completely absent which we
describe to the nature of the transformation. Apparently Bessel-functions are
not very nice functions.

5.3 A simple system

To find differential equations for both arrays we use the mechanical energy
(eq.(2.44)) and the kinematic surface condition (eq.(2.25)). The first equation
involves integration, while the second should be evaluated at the surface. Since
it is a function of r the vertical integration should be performed first. In this
implementation we use a Taylor expansion to approximate the domain while
evaluating at z = 0.

We will treat the kinematic condition first as it is less complicated. In the
potential case,

0 = DtF = ∂tη − ∂zΦ + ∂rη∂rΦ, (5.8)

at the surface. This relation is already independent of z, since it is evaluated
at z = η. However, the vertical flow matters as Z is still involved, which we
approximate as

Zm(η) ≈ 1 + κmη +
1

2
κ2
mη

2 + ..., (5.9)

where the full surface elevation has to be taken into account. To eliminate the
radial dependence an arbitrary basis function, Rm, is projected on this relation.
For all m ≥ 1

0 = (Rm,DtF )r

=

Rm, M∑
n=1

∂tη̂nRn −
M∑
n=1

φ̂nRnŻn +

(
M∑
n=1

η̂nṘn

) M∑
j=1

φ̂jṘjZj


r

= ∂tη̂m − κmφ̂m −

Rm,( M∑
n=1

κ2
nφ̂nRn

) M∑
j=1

η̂jRj


r

− ...

+

Rm,( M∑
n=1

η̂nṘn

) M∑
j=1

φ̂jṘj


r

+ ...,

where another summation dummy (j) has been introduced for clarity. The
higher order terms are potentially very complicated and expensive to imple-
ment.

In the second order the implementation will be

∂tη̂m = κmφ̂m + Tf

[
((Tbκ

2φ̂)(Tbη̂)− (Sbη̂)(Sbφ̂)
]
, (5.10)
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which we will later use to test the system. To determine the evolution for the
potential we have to use a test function for both the radial and vertical direc-
tions. Here we will evaluate (∇(RmZm),N) (see section 2.2.4). This is harder
to treat than an integral over the pressure, where the equations of motion are
found by variational calculus, like in Luke’s variational method [63]. In this case,
we want to include dissipation, which makes the problem more challenging. To
simplify matters, we use a linear approach for the mechanical energy (eq.(2.44))
and approximate the boundary layer as in section 4.4.2. Other contributions to
the dissipation are neglected. We already know all terms by the Airy approach
(section2.2.6) where all cross terms conveniently drop out due to orthogonal-
ity, except for the contribution from the wall layer, which is given by eq.(2.66).
We will only consider the most dominant frequency component which we will
assume to be the eigenfrequency of the mode, i.e. α ≈ igκn. Then rotational
terms can also be represented by the functions J1(ξnr) for 1 ≤ n ≤ M with
ξn =

√
κ2
n − igκnν−1. Next we assume that the cross terms of these functions

are small, such that they are almost orthogonal. Without dwelling too much on
the details we obtain

0 = ∂tφ̂n + ν
{

4κ2
n + ξ2

0,n

}
φ̂n + ḡη̂n, (5.11)

with ξ2
0,n form factors similar to section 4.4.2. They are evaluated numerically

before solving the differential system. One of their properties is that they are
monotonically increasing for increasing n approximately proportional to the
square root of κn, which can be expected in this approximation. Together with
eq.(5.10) this system can now be solved, which is done by Matlab’s ode45. We
implemented a cut-off wavenumber; components for n ≥ M/2 are discarded at
the end of every time step.

A result for sunflower oil, f = 0.2 with M = 24 and N = 28 is plotted in fig-
ure 5.2. Non-linear behavior, like larger crests and wider troughs are obtained.
However, the system could not produce larger amplitudes than approximately
10mm, because the numerical implementation became unstable.

To improve the performance the equations could be expanded up to higher
orders. However, it is unlikely that we are able to get close to a real cavity with
this model. From experiments we observe that the crest and the cavity before
jetting are always very steep, which is very difficult for the system to get at. In
some instances the surface is even multivalued for r which is a shape these basis
functions can never approximate.

5.4 Coordinate transformations

Here we will briefly consider numerical methods that are based on a coordinate
transformation. Since the frequency response of the waves up to the cavity col-
lapse is dominant in the period doubled component, a functional model seems
to be possible. To approximate the steeper surfaces one should explore other
possibilities. The following implementation is taken form [32, 31]. An viscous-
free irrotational fluid in two-dimensional Cartesian coordinates is considered
and the model is based on a conformal transformation, while dissipation can
later be added in a phenomenological way. Another difference with our model
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Figure 5.2: Surface profiles for sunflower oil for consecutive crests (solid) and
troughs (dashed) at local extrema. The last crest is just before the system
blows up. The horizontal axis denotes the radial coordinate while the vertical
axis denotes the elevation. The profile is mirrored in the center.

is that surface tension is accounted for.

A result for water with f = 0.2 is plotted in figure 5.3 for 25 basis functions
in water. Also in this case the nonlinear effects are clearly visible. Before the
implementation becomes unstable the trough leaves the domain and the crest
is intertwined with itself. This is of course unphysical. Indications of cavity
formation are also absent for this method.
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Figure 5.3: Surface profiles for water for consecutive crests (solid) and troughs
(dashed) at local extrema. The last crest is intertwined, but the last trough is
already outside the domain at the edges (which is responsible for the odd interval
on the horizontal axis). The horizontal axis denotes the horizontal coordinate
while the vertical axis denotes the elevation.



Chapter 6

Conclusion

In this thesis we investigated Faraday waves and jets theoretically, experimen-
tally and numerically. In this final chapter we will provide discussions, conclu-
sions and recommendations.

6.1 Discussion

Dissipation is a large factor in this project. Most of the phenomena are now in
reasonable agreement with the estimated dissipation, especially for the majority
of our experiments, which are slightly off-resonance at p = 1.04. Around p = 1
other experiments showed that there is much smaller growth than Mathieu the-
ory predicts, like in figure 4.15. Hence, we must be cautious when applying
this model to a larger parameter space, as we might have chosen an appropriate
regime accidentally.

On the other hand, the experiments are surprisingly reproducible given the
acceleration accuracy of the shaker at these small amplitudes and frequencies.
The amplitude fluctuations are of course of a higher frequency that do not excite
standing wave modes. Jets could occur after 20 to 100s for the same settings,
which is very inconvenient experimentally, i.e. difficult to capture with the high
speed imaging device, because we do not know when to trigger it in advance.

We considered clean water with food dye and sunflower oil as experimental
fluids. There were chosen because they do not interact with the perplex cylin-
ders or vapor in the air, like ethanol or glycerin. The downside of water is that it
evaporates quickly which causes the ambient air to be of varying humidity. Both
fluids are easily contaminated, which was minimized by sealing the cylinders.
Also, considerable amounts of droplets could hang from the lid or walls, which
can disturb the jet formation significantly upon impact. Especially in a con-
tinuous jetting state droplets would fall down regularly. A minor problem was
that the temperature fluctuated, because of the high power equipment, like light
sources and the shaker amplifier, resulting in slightly varying fluid properties.
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6.2 Conclusion

Parametric excitation of a fluid in a cylindrical container is a convenient driving
mechanism of non-linear standing waves. Linear analysis correctly predicted
the excitation frequencies leading to amplitude growth and, ultimately, to jet
formation. Besides the jetting state, the standing wave and solid-body state
have been identified and all of the three regimes experience characteristic flow
fields.

The fluids were considered to be Newtonian and incompressible with dynamic
and impermeable boundaries. The Navier-Stokes equation was used to find the
flow field of the fluid, which was found to be irrotational for the largest part.
The liquid-air interface can be treated as an ideal free surface: there were no
indications of contamination and a surface layer imposed by the no-stress con-
dition was negligible.

Near the walls of the container rotational flow and wetting effects are important.
The wall boundary layer was predicted to satisfy the no-slip condition. A linear
estimation of the dissipation was in good agreement with experiment. The con-
tributions of the interior flow field and the boundary layer, i.e. the irrotational
and rotational motion respectively, were of the same order. The bottom of the
container was assumed to be of no influence and there were no indications for it.

At the beginning of an experiment the wall is wetted up to the height of the
meniscus. The capillary length varies due to the parametric oscillations which
causes the meniscus to act as a wavemaker. The generated waves behave ac-
cordingly to linear dispersion and have been clearly observed in water. However,
they are too small to be observed from a horizontal view point, due to the pres-
ence of the meniscus. The maximum amplitude of these waves was estimated
in the order of 0.1mm by a comparison of their slope at the wall to the allowed
interval, corresponding to the contact angle hysteresis.

For larger waves the contact line has to move to obey the restriction on the
contact angle. However, it was predicted that this motion is met with large
resistance, because the no-slip condition is violated. We assume that it is the
main cause of hysteresis in the transition of the solid-body to the standing wave
state, because the wall is already wetted in the backward transition. The full
slip model can be used to calculate the required energy related the initial wet-
ting, but we cannot relate it to the size of the hysteresis, i.e. the difference in
excitation acceleration for the forward and backward transition.

When the bulk fluid recedes, the contact line does not move along and a thin
film is formed. Experiments for sunflower oil confirm that it is even pinned at
its new height compared to the interval of a period of fluid motion, but in water
observations are inconclusive. However, this contact line is most likely to be
pinned as well, since we found a negligible contact line velocity in an estimation
based on the shear stress at the wall. Moreover, the dissipation in the film in
the case of a pinned contact line is assumed to be small, while the contributions
from interior and boundary layer flows are already sufficient. Also, the full-slip
model does not predict hysteresis.
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The second transition is from the standing wave to the continuous jetting state.
There is also hysteresis in this transition, but considerable smaller. It is prob-
ably due to surface destruction, i.e. the dissipation for standing wave may
be more efficient and continuous, whereas a destroyed surface profile initially
grows without limitation, transitioning to a jet quickly and follows the same
cycle again.

The jetting state is similar to the standing wave state in the sense that the
period doubled component is dominant and that surface modes can be identi-
fied. We focused on the (0,1) mode, although jets in other modes were created
as well. A variety of cavity collapses and corresponding jets have been observed,
in which the difference between the pinch-off regime and real collapses is the
most important. At their transition there is an optimum for the velocity of the
tip of the jet, 22 and 17ms−1 for water and sunflower respectively. The regimes
and tip velocities can be related to the maximum height of the latest crest before
jetting. The tip-velocity in the cavity regime does not depend on the forcing of
the system. In the pinch-off regime lower forcing relates to lower tip velocities.
Beyond the normal pinch-off regime Rayleigh instabilities complicates the col-
lapsing mechanism.

A numerical method was based on the mechanical energy. However, the im-
plementation was started too late in the project to produce adequate results.
Nonlinear behavior was observed in a relatively simple model, but the properties
of this approach remain largely unknown. Nevertheless, it is doubtful whether
this implementation is able to get close to jet formation.

6.3 Recommendations

There are four parameters in the Faraday experiment. They are the excitation,
sweep rate, sweep direction and frequency. We excluded the latter, which also
restricted the sweep direction to two possibilities, namely increasing or decreas-
ing excitation. We recommend to consider the entire parameter space around
the (0,1) standing wave mode. As the largest part of the flow is irrotational
only extracting the amplitude is sufficient in most cases. One could use other
experimental techniques, like reflectometry, and save the amplitude as an one-
dimensional array. This data can probably be analyzed in real time which could
be connected to a high-speed camera and light sources to capture interesting
dynamics.

Another experimental improvement is to measure the film thickness during the
experiment. Reflectometry is a non-intrusive technique and it should be im-
plemented in a way such that its construction is attached to the outside of the
cylinder wall. Since we assume symmetric motion one such device is sufficient,
perhaps two or three to be sure. Not only will this allow us to investigate the
thin film but also the profile of the meniscus close to the wall, which should
give better insight in the origin of meniscus waves. Actually, these phenomena
deserve their own studies. The dynamics of standing waves moving over thin
films and the generation of meniscus waves are both very interesting.
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The Faraday waves in this setup were able to reproduce very exotic jets. Rayleigh
instabilities on the crests led to droplets that fell inside the cavity, just before
or after the collapse. Phenomena observed were double cavity pinch-offs, hol-
low jets with a smaller secondary jet on the inside and bubble breakup due to
downward jets. Research into these extraordinary jets is worthwhile as well.
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