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1 Introduction

Percept switching during experiments with visual stimuli is a well-studied subject within
psychophysics, neurophysiology and computational neuroscience [2, 21, 9, 24, 3]. Sponta-
neous switches can be triggered by different visual stimuli, such as ambiguous visual stimuli
or binocular rivalry images. An ambiguous visual stimulus has multiple and equally plau-
sible interpretations, such as the Necker cube (figure 1.1). During constant viewing of an
ambiguous visual stimulus, perception naturally switches over time. A typical example of
ambiguous visual stimuli in neurophysiological experiments consist of moving dots within a
transparent circle or cylinder. Due to a mechanism called structure from motion (SFM) the
two-dimensional stimulus is perceived as a 3-dimensional rotating object. MT (middle tem-
poral) is a region of the visual cortex that is thought to play a major role in the perception
of motion, the integration of local signals into percepts and the guidance of eye movements.
Since these SFM-stimuli evoke neuronal activity in area MT, these stimuli enable recordings
of neuronal responses during the perception of the stimuli.

During binocular rivalry experiments, the left and the right eye receive different input
simultaneously. A typical example of stimuli that lead to binocular rivalry are orthogonal
gratings (see figure 1.2). During the stimulus-presentation, only one of the two presented
images is perceived, and the other image is suppressed. During constant viewing of a binocular
rivalry stimuli, perception naturally switches over time. Dominance durations, the time a
percept remains dominant, are typically in the order of several seconds and the dominance
distribution is unimodal and skewed with a long tail at long durations [18].

Figure 1.1: Example of an ambiguous visual stimuli: the necker cube has several equally plausible
interpretations since the two-dimensional intersection allows several depth-configurations (crossing
lines in two dimensions lead to ambiguity in three dimensions). During constant viewing, perception
will typically switch between the two percepts although it should be noted subjects often have a
preferred percept. These effects of learning or voluntary control might influence the switching.

Psychophysical and neurophysiological studies and experiments have resulted in a variety of
neurocomputational models and approaches studying percept-sequences during steady view-
ing conflicting stimuli [24, 16]. In general, adaptation, a decrease in the responsiveness of
a system to a constant stimulus, is attributed a key-role in inducing spontaneous percept
switches. If after stimulus-onset one of the percepts gains dominance, it is hypothesized that
adaptation will lead to a decrease in the responsiveness of the neurons corresponding to the
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Figure 1.2: Example of a stimulus used in binocular rivalry experiments: orthogonal gratings. The
left eye receives vertical gratings whereas the right eye receives horizontal gratings. During constant
viewing, perception will switch between the two percepts.

coding of the dominant percept. Adaptation then eventually destabilizes the dominant per-
cept, allowing the suppressed percept to gain dominance. In mathematical terms, this form
of adaptation is described by regarding the two stable percepts as stable attractors. Since
activity is directly correlated with one of the possible percepts and the attractors are both
stable, there will be neural competition between the two percepts. As such, spontaneous per-
cepts switches are successfully understood (see for example figure 1b in Noest [24]) in terms
of adaptation and noise [24] .

These neural mechanisms leading to alternations during constant viewing do not explain
what happens at the onset of the conflicting stimulus [24]. The question arises how the visual
system chooses one of the options at stimulus onset. Several psychophysical and neurophysio-
logical studies have approached this questions with a different stimulation-paradigm: instead
of constant viewing, stimuli are now presented in interrupted sequences [24, 16, 3] with a cer-
tain on-duration (the duration the stimulus is shown) and off-duration (the time the stimulus
is not shown).

These human psychophysical experiments have shown that percept sequences from inter-
rupted stimulations are often more complicated than the alternating choice-sequence during
constant viewing [24, 16]. At long inter-stimulus intervals, temporarily removing an ambigu-
ous pattern leads to repetitions of the same percept. This phenomenon is called perceptual
stabilization or perceptual memory. This suggests there is a different dynamical structure
between spontaneous percept-switches and choice-sequences after stimulus onset. While it
is currently unclear what happens inside the brain during perceptual stabilization, response
characteristics might be influenced by other processes than adaptation.

A phenomenological approach by Noest in [24] provides a computational approach towards
understanding percept-choice dynamics. It provides a connection between percept choices and
spontaneous switches and furthermore explains in detail their fundamental different dynamical
structure. By applying a mean-field approach, Noest has developed a phenomenological
neurocomputational model in terms of activity and adaptation. The model consists of a set
of non-linear differential equations in terms of average activity levels and average adaptation
levels. The results match psychophysical findings and the model allows mathematical analysis
[24]. Their model provides general insight in the processes and mechanisms underlying choice-
percepts and the question arises whether these mechanisms and processes can be explained
at the neuronal level.
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A recent study by Klink in [17] investigated neuronal response patterns during inter-
mittently presented ambiguous visual stimuli. During Klink’s experiments, awake macaque
monkeys are presented with different types of visual stimuli and their neuronal responses
were measured during intermittently presented sequences of stimuli. Statistical analysis of
the responses suggests neuronal stabilization: a decrease of across-trial neural variability in
responses for longer off-durations. Since Klink’s neurophysiological data-set consists of spike
times and local field potentials, it is natural to consider neuronal network models, since these
models might connect the micro-level of the neuronal data with the macro-level of the per-
ception through mathematical analysis. Recent studies by Wang and Wong in [28] and Laing
and Chow in [18] provide such starting points.

Laing and Chow’s neuronal network represents a higher-level of visual cortex such as LIP
(or MT [18]. These areas receive input from lower-level areas. Activity in higher-level areas is
typically more correlated with the percept than is the case for lower level areas [20]. Neurons
can be either excitatory or inhibitory and are based on Hodgkin-Huxley-dynamics. When two
conflicting stimuli are presented, the network is unable to sustain activity centered around
both inputs simultaneously. As a result, activity alternates between one focus of activity
and the other. This switching is the neurophysiological correlate of binocular rivalry, caused
by two slow processes, spike frequency adaptation and synaptic depression. Spike frequency
adaptation reduces the frequency of rhythmic tonic firing, and sometimes terminates the
firing. Synaptic depression is a form of short-term input-specific plasticity exhibited by many
synapses. Their model reproduces several psychophysical findings of studies of binocular
rivalry [18].

We focus on developing a neuronal network model that allows us to connect the human
psychophysics experiments in [24, 16] with the new neurophysiological data-set in [17] through
a mathematical model. We first will discuss several phenomenological and neurobiological
computational models describing perceptual choice dynamics. We will argue that since the
human psychophysics studies by Noest and Klink showed their results and conclusions hold for
both ambiguous stimuli and binocular rivalry stimuli, we can take the approach by Laing and
Chow for binocular rivalry as a starting point for our neuronal network. Before we include the
on-off-structure in the Laing and Chow model, we will first test our basic version of the Laing
and Chow model against their three main results (distribution of dominance durations, largest
Lyapunov exponent and second Levelt proposition). We then include the on-off-paradigm and
explore the model’s behavior over a wide range of values for the on-durations and off-durations.
We will show our on-off-network model provides a connection with the human psychophysics
experiments by Klink and Noest in [16, 24] and allows spike-train analysis as in Klink [17]. We
will argue the calcium-evolution is the main candidate key-player in understanding percept
choice at the onset of stimuli. Although a reduced approach and bifurcation-analysis were not
directly applicable to determine qualitative insight in the calcium-dynamics, this is a crucial
and interesting question for future work. Our model can function as a basis for neurobiological
experiment, such as calcium-imaging. Such experiments can hopefully guide the process of
bridging the gap between the macro-scale of perception and micro-scale of neuronal responses
during sequential stimulation with conflicting visual stimuli.
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2 Literature visual perception

Since we want to develop a neuronal network model for repeated sequences of visual stimuli
that connects to psychophysics, neurophysiology and neurocomputational models, we will first
discuss the human psychophysical results that led to the development of mathematical models
and neurophysiological experiments. We will then present an overview of the important
different mathematical approaches that reproduce the psychophysical results and as such
present possible explanations of the underlying neural mechanisms.

2.1 Psychophysics

During human psychophysics experiments with intermittently presented conflicting stimuli
(figure 2.1), it was found that choice-sequences depend crucially on the length of the off-
duration [24, 16]. The off-duration determines whether perception stabilizes (choice sequence:
A, A, A...) or alternates (choice sequence: A, B, A...), and these effects are found approx-
imately independent from the on-duration. Alternations typically occur for relatively short
off-durations (< 0.5s) whereas repetitions emerge for longer off-durations (> 0.5s). The effects
during increasing off-durations were found both during the rotating sphere and the orthogo-
nal gratings. Since this suggest an underlying neural mechanism in the visual system during
perception of conflicting stimuli, neurophysiological studies that record neuronal responses
during the same stimulation-paradigm provide a starting point for investigating this neural
mechanism.

Figure 2.1: Stimulation paradigm in human psychophysics experiments by Klink in [16]. Stimuli
were intermittently presented with a fixed on-duration and a fixed off-duration that was varied over
blocks of trials. During the on-duration, the subject reported the current perceived percept (from
[16]).

2.2 Neurophysiological experiments

A recent neurophysiological study by Klink analyzed the underlying neuronal mechanisms
during repetitive stimulation (figure 2.2) of visual stimuli [17]. To investigate the neuronal
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activity during perceptual stabilization, electrodes were placed in the motion-sensitive brain
area (MT) of two awake macaque. In total 94 single units were used, recording spike-trains and
local field potentials (LFP). In addition to ambiguous rotating cylinders, two non-ambiguous
stimuli were included as control-groups, with the same stimulation-paradigm (figure 2.3).
Klink hypothesized that if MT-neurons participate in encoding visual stimuli and if longer
off-times lead to perceptual stabilization, then neuronal response patterns of the MT-neurons
should stabilize accordingly.

Figure 2.2: Stimulation paradigm in neurophysiological experiments by Klink in [17]: stimuli were
placed in a neuron’s receptive field during experiments. Stimuli were intermittently presented with a
fixed on-duration of 500 ms and a variable off-duration that was varied over blocks of trials between 250,
500, 1000 and 2000 ms. During the off-durations no stimulus was presented and neuronal responses
were measured during the entire sequence of trials. The experiments consisted of sequences of 80 trials
and within a sequence of 80 trials, the on- and off-duration were fixed and the neuronal activity was
recorded during the entire sequence (from [17]).

Figure 2.3: Stimuli in [17]. (left): an ambiguous structure-from-motion (SFM) cylinder stimulus,
(middle): a dynamic random dot pattern (coherence 0%) with random starting position on every
presentation, and (right): an opaque SFM cylinder, similar to the ambiguous cylinder, but only the
dots that moved in the neuron’s preferred direction were presented on the screen (from [17].

2.2.1 Results

For all three stimuli, Klink finds that neuronal responses increase when off-times increase
systematically (from 250 to 2000 ms). This can be explained with neuronal adaptation: when
off-durations increase, adaptation levels of neurons have more time to recover to baseline
values during blank times and the amount of neuronal activity will be higher.

A recent study by Churchland shows that during constant stimulation longer off-durations
will lead to a decrease in neuronal response variability [6]. Using this framework, Klink’s
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hypothesis is that longer off-durations will lead to a decrease in neuronal response variability
during sequential stimulation. The Fano Factor is a measure for response variability over a
full sequence of trials. It is defined as the spike count variance divided by its mean:

FF =
σ2

µ
(2.1)

Churchland shows that stimulus onset reduces the Fano Factor in a variety of cortical areas
[6]. To compute the evolving Fano Factor, Klink used a cell-based approach with a 70 ms
sliding window in increments of 10 ms across the sequences of stimulus presentations. With
this sliding-window-approach, he finds that longer off-durations lead to a decrease in Fano
Factors for all three stimuli (figure 2.4).

Figure 2.4: Averaged Fano Factors for the three different stimuli (indicated in the panels) and off-
durations (the colors) in [17]. Fano Factors were calculated in 10 ms bins aligned to stimulus onset and
averaged over the cells. The gray area indicates the moment of stimulus presentation, the transient
and sustained phases of the response are marked with [T] and [S] respectively (from [17]).

Klink shows the observed decrease in response variability for longer off-durations is indepen-
dent of general adaptation effects (local activity contrast-analysis, see [17]). As a third result
Klink shows spike-timing patterns become more regular (spike train similarity-analysis, see
[17]. An analysis of the local field potential activity suggests this could be due to an in-
creased involvement of the local cortical network. Because the influence of the off-times on
the neuronal responses of sensory neurons in area MT is shown for all three stimuli both in
the spike-train data as well as the local field potentials, these results suggest a rather general
mechanism. Since these neurophysiological experiments are directly connected to earlier hu-
man psychophysics and computational work by Noest and Klink in [24, 16], it is an interesting
question to see how the neurophysiological results relate to these neurocomputational models.
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2.3 Mathematical models

2.3.1 Noest

Noest has developed a phenomenological model for percept-choice sequences during intermit-
tently presented stimuli [24]. Phenomenological rather than biophysical is that neural activity
and adaptation are both modeled at a population level. Noest compared the percept-choice
dynamics with the dynamics underlying spontaneous switches during constant viewing. As
discussed in the introduction, general adaptation effects can account for spontaneous switches
since slow adaptation can cause a stable attractor to lose stability and the other attractor to
gain dominance. This mechanism is not sufficient to describe the dynamics during sequential
stimulation, since the on-off-structure often leads to repetitive structures or more complex
mixtures of repetition and alternation.

In order to model percept-switches Noest develops a different approach, by recognizing
the on-off-structure forces switches between two different dynamical structures. During blank
periods the origin is a stable equilibrium. During stimulation the origin loses stability and
two new equilibria emerge, corresponding to the two percepts. Noest formulates a mean-field
model that consists of two local fields, corresponding to the membrane voltage components of
two separate competing populations. The model is given by the following system of nonlinear
differential equations:

τ
∂Hi

∂t
= Xi − (1 +Ai)Hi + βAi − γS [Hj] (2.2)

∂Ai

∂t
= −Ai + αS [Hi] , i, j ∈ {1, 2} , i 6= j, (2.3)

S(z) =

{

z2

1+z2
if z > 0,

0 if z < 0.
(2.4)

with Hi the percept (i)-related component population-activity, Xi the (preprocessed) visual
input, Ai the corresponding adaptation levels and S a sigmoidal transformation. As τ is small,
membrane voltage dynamics are fast and adaptation dynamics relatively slow. The dynamics
underlying percept choices at stimulus onset can be explained by a crucial dependence on
differences between adaptation levels at stimuli-onset (see figure 5(a) and 5(b)).
The phenomenological model by Noest can be extended to a more biologically realistic model
if pre-rivalry stages are included [16], but the dynamics remain operating on local fields, and as
such are difficult to connect and compare with neuronal spike-data from the neurophysiological
experiments. Since Noest’s model is deterministic and needs an initial ’noisy’ push from the
symmetrical ideal starting point in order to reproduce percept-sequences, we will now consider
neurocomputational models that included noise within their approaches.

2.3.2 Stochastic drift-diffusion model

A stochastic population model for choice-sequences has been developed in [10]. They model
two-alternative forced choice task phenomenologically using drift-diffusion models. The model
integrates the difference of noisy stimulus information until sufficient evidence for a response is
obtained, i.e. a threshold is reached. A decision-making layer receives excitatory input from a
sensory layer: this input is either a repetition (R) or an alternation (A) of the stimulus shown
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Figure 2.5: a: If the system was in one of the attractors before the most recent interruption, slow
adaptation dynamics will lead to asymmetric adaption-levels at the next stimulus onset. If we assume
the previous stimulus-presentation attractor 2 was dominant and assuming adaptation is sufficiently
slow, we will have A1 < A2 at the next stimulus onset. This asymmetry changes the dynamics of the
system, since the saddle point will shift to the left and the seperatrix will move up accordingly (relative
to the perfect symmetric case). If the initial point Hi can not be shifted towards the seperatrix, the
model will always predict alternation. A positive β will create an offset βAi/(1 + Ai) in Hi-levels at
stimulus offset and this can compensate the seperatrix shift and thus possibly allows repetition. In
the figure two different β-trajectories show this crucial dependence on the offset: the red trajectory
(percept 1) and the blue trajectory (percept 2) show alternation (from percept 2 to percept 1) and
repetition (from percept 2 to percept 2) respectively so repetitions only occur if β is strong enough. The
asymmetry in adaptation-levels was A1 = 0, A2 = 0.1 and the black line shows the shifted seperatrix.
(figure from [24]. b: The β-parameter functions as a neural baseline parameter: at stimulus onset
(0 in figure) the adaptation value of the corresponding percept will increase: depending on the on-
duration and the off-duration alternation and repetition can occur. For relative short on-durations,
short off-durations can lead to repetitions (point a to point 1 in figure). For longer on-durations the
percept choice depends on the length of the off-duration: short off-durations give alternations (point
b to point 3 in figure), whereas sufficiently long off-durations lead to repetitions (point b to point 2 in
figure). (figure from [16]).

in the representation before. Since several studies have investigated the crucial influence of
the response to stimulus interval (RSI) on choice dynamics, reflected in the choice sequences,
biasing mechanisms are introduced to match these observations [26, 5, 15].

A decision is made when a unit reaches a fixed threshold and the evolution of activity-
levels of two decision units (x1(t), x2(t)) are described by stochastic differential equations.
The model presents a description of the dynamics during a stimulus representation, given the
previous stimulus and including memory bias and rapid decay after responses in the initial
conditions. The memory dynamics over trials is as follows, with S(n− j) the stimulus in the
(n− j)-th trial:
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MR(n) = αRMR(n− 1) + IR(n− 1) (2.5)

MA(n) = αAMA(n− 1) + IA(n− 1) (2.6)

IR(n − 1) =

{

1 if S(n− 1) = S(n− 2),
0 otherwise.

(2.7)

IA(n − 1) =

{

0 if S(n− 1) = S(n− 2),
1 otherwise.

(2.8)

They assume biasing strengths BR,n and BA,n in the n-th trial depend linearly on the memory:

BR,n = 0.1MR(n) (2.9)

BA,n = 0.1MA(n) (2.10)

Finally, they assume biasing strength increases before each trial:

bR,n(RSI) =

{

BR,n

[

1− e−
RSI−T0

τ

]

if RSI > T0,

0 otherwise.
(2.11)

Since αA and αR are constants between 0 and 1, strength of expectation depends stronger
on recent representations. The decision units are coupled by mutual inhibition of strength β
through a sigmoidal f(xi). Each unit has the same time constant τc and k is the strength of
passive leakage. ρi equals ρ0+0.5 when stimulus i is shown and 0.5−ρi when it is not shown,
with ρ0 = 0.35, so this input stimulus functions as an initial bias. The stochastic terms (ηi)
are independent and identically distributed Gaussian noise processes. See figure 2.6 for a full
schematic description of the modeling approach. The excitatory bias +Bi,n is associated with
the decision unit that confirms the expectation depending on the memory and an inhibitory
bias −Bi,n is associated with the decision unit that violates the expectation. So for a previous
stimulus 1 expectation of repetition sends positive bias to unit 1 and negative bias to unit 2
and expectation of alternation sends positive bias to unit 2 and negative bias to unit 1. The
overall dynamics of the nth trial with expectation-related bias is then:

τc
dx1
dt

= −kx1 − βf(x2) + ρ1 + bR,n(RSI)− bA,n(RSI) + ση1(t) (2.12)

τc
dx2
dt

= −kx2 − βf(x1) + ρ2 − bR,n(RSI) + bA,n(RSI) + ση2(t) (2.13)

(2.14)

Similar equations are derived for introducing biases from conflict monitoring, where the con-
flict monitoring system evaluates conflict and passes this information on to centers responsible
for control, triggering them to adjust the strength of their influence on processing, see fig-
ure 2.6.

Modeling memory bias, conflict-monitoring bias and post-response bias in the form of
initial conditions restrictions, enabled Gao to simulate combinations and test the mechanisms
against physiological data. The models output matches psychophysical results and allows
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mathematical analysis, but a biophysical interpretation within the context of single neuronal
responses is problematic because of the phenomenological nature of the approach. Since there
are no straightforward methods to develop a neuronal network model (micro-level) from a
population model (macro-level), we consider an approach by Wang and Wong that derived
a macro-level model (reduced population models) from the micro-level (detailed neuronal
network).

Figure 2.6: Schematic diagram of structure in Gao [10]: filled triangles: excitatory connections, filled
circles: inhibitory connections. Two decision units (1) and (2) in the decision layer receive stimulus
input from the sensory layer: stimulus (1) excites unit (1) and stimulus (2) excites unit (2), whereas
units (1) and (2) are coupled through cross-inhibition. Evidence is accumulated for choices (1) and
(2) in the decision layer, receiving an expectation bias that depends on the short-term memory of past
trials. These biasing storages of past sequences can excite or inhibit the decision units. Synchronous
activity-levels are associated with conflict-monitoring during decision-making and can operate on two
levels during subsequent alternations.

2.3.3 Wang and Wong

In [28] Wang and Wong investigate synaptic mechanisms of perceptual decision making by
investigating a biophysically realistic cortical network model [27, 4] for a visual discrimination
task. They consider LIP-data of monkeys during two-alternative forced-choice visual motion
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discrimination tasks [25]. In this task a monkey is trained to indicate the direction of motion
in a random dot display with a saccade. Neurons generally show increased persistent activity
during a delay period of a few seconds, when the monkey is actively holding the information
of the stimulus in its working memory [11]. According to earlier neurophysiological research
area LIP is a likely candidate to be a decision-making circuit [25].

The biophysical network (see upper left sub-figure in figure2.7) consists of leaky integrate-
and-fire neurons with AMPA, GABAA and NMDA receptor-mediated currents. Slow synaptic
reverberation is mediated by NMDA receptors and winner-take-all competition is mediated
by feedback inhibition from interneurons. Each stimulus activates a small subpopulation of
fNE excitatory cells (f = 0.15) and the remaining (1−2f)NE excitatory cells do not respond
to stimuli. Neurons receive stochastic Poisson inputs that represent the output from MT cells
during stimulation. Strong recurrent excitatory connections within a neural group enable
self-sustained persistent activity and slow integration of stimuli leads to dominance of one
of the populations and suppression of activity within the other population. The biophysical
model is reduced to a two-variable population model in three separate steps, see figure2.7.

Figure 2.7: Schematic diagram of the structure (size and connectivity) of the initial large network
model and the subsequent reductions in [28]. NS: non-selective neurons, I: inhibitory neurons and
units 1 and 2 correspond with selective neural populations. Arrows within the figures correspond to
excitatory connections; circles correspond to inhibitory connections. The large network receives back-
ground inputs (brown arrows) and inputs from external stimulus I1 and I2 to the neural populations.
A mean-field approach reduces the neuronal network to a system of 11 equations and 4 units (from
upper left to upper right). After simplifying the input, linearizing the output of the inhibitory neurons
and assuming that non-selective cells are approximately constant the mean-field-system is reduced to
a system of 8 equations and 3 units (from upper right to lower left). After assuming that the evolu-
tion of the fast variables is much faster than the evolution of the NMDA gating variable, a reduced
two-variable model with self-excitation and cross-inhibition is derived (from lower left to lower right).
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2.3.4 Laing and Chow

Another spiking neuron model describing the neuronal dynamics during binocular rivalry in-
put was developed by Laing and Chow [18]. The model consists of excitatory and inhibitory
conductance-based Hodgkin-Huxley-type neurons. Binocular gratings are modeled as applied
current injected at two locations in the network centered around neurons whose preferred
orientations differ by 90 degrees, see figure 2.9. Each neuron is tuned to a given orienta-
tion (see figure 2.8) and connections between neurons with similar orientation are stronger
(Gaussian decay). All cells include a standard transient sodium, potassium and leak cur-
rent. These are standard Hodgkin-Huxley-type currents, with dynamic gating variables for
the potassium and sodium currents. Excitatory neurons receive an afterhyperpolarization
current that corresponds with spike frequency adaption and synaptic depression is modeled
within the excitatory-to-excitatory connections in synaptic currents, see (2.19), (2.26), (2.20)
and (2.27) .

Spike frequency adaptation down-regulates the spiking-activity in the dominant popula-
tion with a time constant of approximately 80 ms. The afterhyperpolarization is modeled
by slow calcium-activated potassium channels. Potassium channels will open up more due
to calcium inflow during spikes and consequently, the membrane voltage will become more
negative, since potassium’s resting potential lies around −80 mV. The equations are based
on an approach by McCormick in [23].

Synaptic depression is a form of short-term plasticity within many synapses, which causes
a decrease in the amplitude of postsynaptic potentials caused by successive presynaptic spikes.
Regarding the modeling and biophysics underlying synaptic depression, Laing and Chow ([18])
refer to Abbott ([1]). Abbott argues that synaptic depression enables postsynaptic neurons
to produce equal responses to both slow presynaptic input and to faster presynaptic inputs
[1]. The equations were found by fitting the model to experimental findings in slices of rat
primary visual cortex [1]. Synaptic depression takes place in the excitatory to excitatory
connections with a time constant of approximately 1 second.

Figure 2.8: Example of a typical tuning curve: average firing rate of a V1 neuron from a cat, plotted
as a function of the orientation angle of the light bar stimulus (from [7].

The equations for the excitatory neurons are:
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90

135

45

0
Excitatory population

Inhibitory population

Figure 2.9: Schematic diagram of the applied current in Laing and Chow in [18]. Excitatory neurons
(black dots) and inhibitory neurons (grey dots) are coupled and situated on two separate rings. The
neurons are labeled with their preferred orientation in degrees. Current is injected to two groups of
neurons whose preferred orientations differ by 90 degrees (from [18]).

dVe
dt

= Isyn-exc + Iext − Imem(Ve, ne, he)− IAHP(Ve, [Ca]) (2.15)

dne
dt

= ψ [αn(Ve)(1− ne)− βn(Ve)ne] (2.16)

dhe
dt

= ψ [αh(Ve)(1− he)− βn(Ve)he] (2.17)

τe
dse
dt

= Aσ(Ve)(1 − se)− se (2.18)

d[Ca]

dt
=

−0.002gCa(Ve − Vca)

1 + e−(Ve+25)/2.5
− [Ca]

80
(2.19)

τe
dφ

dt
= 1− φ− fσ(Ve)φ (2.20)

The equations for the inhibitory neurons are:

dVi
dt

= Isyn-inh + Iext − Imem(Vi, ni, hi) (2.21)

dni
dt

= ψ [αn(Vi)(1− ni)− βn(Vi)ni] (2.22)

dhi
dt

= ψ [αh(Vi)(1− hi)− βh(Vi)hi] (2.23)

τi
dsi
dt

= Aσ(Vi)(1 − si)− si (2.24)

The equations for the membrane current Imem, afterhyperpolarization current IAHP, applied
current Iext(i) and synaptic currents Isyn-exc and Isyn-inh:
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Imem(Ve, ne, he) = gL(Ve − VL) + gKn
4
e(Ve − VK) + gNa(m∞(Ve))

3he(Ve − VNa) (2.25)

IAHP(Ve, [Ca]) =
gAHP [Ca](Ve − VK)

([Ca] + 1)
(2.26)

Iext(i) =
0.4√
2

[

e−
20(i−N/4)

N

2

+ e−
20(i−3N/4)

N

2
]

− 0.01 (2.27)

Ijsyn-exc =
1

N
(Vee − V j

e )
N
∑

k=1

gjkee s
k
eφ

k +
1

N
(Vie − V j

e )
N
∑

k=1

gjkie s
k
i (2.28)

Ijsyn-inh =
1

N
(Vei − V j

i )

N
∑

k=1

gjkei s
k
e +

1

N
(Vii − V j

i )

N
∑

k=1

gjkii s
k
i (2.29)

For the remaining functions, constants and parameter-values, we refer to the appendix.
Laing and Chow convert their neuronal network into a network of rate neurons. They

first derive the equations for the slow processes, since they are slower and both driven by the
post-synaptic activity. A leaky integrator describes the overall mechanism of spike frequency
adaptation: if a neuron becomes more active, its adaptation-variable will increase which in
return will decrease the activity of the neuron. With ai as the generalized adaptation variable
of neuron i and Ai(t) as the instantaneous firing rate of neuron i, they find:

dai
dt

= −ai
τa

+Ai(t) (2.30)

By assuming that neuronal activity is driven by synaptic inputs through a gain function f ,
with wij as the synaptic weights, Uj(t) as the postsynaptic response of neuron j and Ii as the
external input to neuron i, they find:

Ai(t) = f
(

∑

wijUj(t)− ai + Ii

)

(2.31)

Equation (2.31) is substituted in equation (2.30) in order to obtain:

dai
dt

= −ai
τa

+ f
(

∑

wijUj(t)− ai + Ii

)

(2.32)

An expression for synaptic depression is derived analogously, with gi the generalized depres-
sion variable of neuron i:

dgi
dt

= − gi
τg

+ f
(

∑

wijUj(t)− ai + Ii

)

(2.33)

In line with an approach by Ermentrout [8], postsynaptic responses are modeled as the integral
over all postsynaptic activity multiplied by a linear filter function ǫ(t) :

Uj(t) =

∫ t

−∞

ǫ(t− s)Aj(s)ds (2.34)
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By assuming ǫ(t) = e−t a differential equation for Uj(t) is derived:

dUj(t)

dt
=

d

dt

(

[

−e−(t−s)Aj(s)
]t

−∞

)

(2.35)

= f
(

∑

wijUj(t)− ai + Ii

)

(2.36)

Equations (2.32), (2.33) and (2.36) describe the evolutions of rate neurons.
Since excitation dominates inhibition within the dominant population during the dom-

inance duration and inhibition in the other population dominates excitation, it is sufficient
to model binocular rivalry switches on a population level by considering the dynamics of two
mean-field populations with self-excitation and cross-inhibition. The overall network dynam-
ics can be approximated by considering spatially averaged variables for activity, adaptation
and depression for two populations. By including noise and using the rate equations versions
of equations (2.32) and (2.33), they derive a system of 6 mean-field differential equations for
the two populations:

du1
dt

= −u1 + f (αu1g1 − βu2g2 − a1 + I1) (2.37)

du2
dt

= −u2 + f (αu2g2 − βu1g1 − a2 + I2) (2.38)

τa
da1
dt

= −a1 + φaf (αu1g1 − βu2g2 − a1 + I1) (2.39)

τa
da2
dt

= −a2 + φaf (αu2g2 − βu1g1 − a2 + I2) (2.40)

τd
dg1
dt

= 1− g1 − g1φdf (αu1g1 − βu2g2 − a1 + I1) (2.41)

τd
dg2
dt

= 1− g2 − g2φdf (αu2g2 − βu1g1 − a2 + I2) (2.42)

This reduced model allows a slow-fast analysis because of the different and separate timescales,
and is eventually used to derive an exact expression for the distribution of dominance du-
rations observed during human psychophysical experiments. Although the overall modeling-
structure is different from our approach by focusing on the dependence of the interstimulus
interval toff on sequential effects in perceptual choices, this model does provide a useful start-
ing point on both the micro-level as the macro-level.

The neuronal network models by Laing and Chow [18] and Wang and Wong [27] are
the main candidates as starting points for the extension towards interrupted sequences of
stimuli, because neuronal networks provide the desired neuronal structure and reproduce
psychophysical results. We take Laing and Chow as a starting point, because their set-up is
remarkably simpler and smaller when compared with the detailed structure of thousands of
neurons in Wang and Wong [27]. The population approaches by Laing and Chow [18], Noest
[24], Wang and Wong [28] and Gao [10] can be used to compare our reduced description of
the neuronal network model.
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3 Methods

In this section we will describe our overall modeling approach: we start with the original
Laing and Chow model and validate the model by reproducing their results. We then include
interrupted sequences of stimuli and investigate the influence of several parameters on the
models behavior, such as the on-durations and off-durations of the applied current. We will
show the choice-sequences resulting from the interrupted version of the Laing and Chow model
connect well with the psychophysical data from Klink and Noest [16], [24].

3.1 Simulating the model

The spiking-neuron network by Laing and Chow consists of two coupled sets of neurons: ex-
citatory and inhibitory neurons. An excitatory neuron is described by 6 differential equations
and an inhibitory neuron by 4 differential equations and neurons are synaptically connected.
We take 60 excitatory and 60 inhibitory neurons and use a forward Euler scheme to ap-
proximate the 10*N-dimensional system. Given Matlab’s restrictions on simulating large sets
of differential equations over time, this is advantageous because a forward Euler scheme is
rather fast when compared to build-in solvers. In a forward Euler scheme approximations of
the values at time level j+1 are determined by the values of the approximate solution at the
time level j. Hence, the initial condition together with the chosen time-step and neuronal
configuration completely determine the approximation of the entire evolution of the state-
variables. So, because the Euler scheme uses a fixed time step, the entire solution matrix can
be preallocated at forehand, which is computationally efficient.
Laing and Chow use a time-step of 0.02 ms, although similar time-steps give similar results.
As initial conditions we take:

• Resting potential excitatory and inhibitory neurons: −60 mV

• Gating variables (ne, he, ni, hi): randomly initialized between 0 and 1

• Initial state of synaptic coupling vectors is such that the first 30 neurons are initially 0.2
and the last 30 neurons are initially 0: this difference in synaptic coupling will lead to
the left percept (corresponding with the first 30 neurons) becoming dominant at t = 0

• Calcium concentration for all neurons: 0 (no initial calcium active within the network)

• Initial synaptic depression variable: 1 (no initial synaptic depression applying on the
network)

3.2 Output measures

Simulating with the Euler scheme allows us to monitor all state-variables over time. We
can use these evolutions to obtain a full picture of the governing dynamics, and investigate
the underlying patterns at the neuronal and population level. Of particular interest is the
evolution of the membrane voltage of single neurons, see figure 3.1

Since we are interested in the spiking activity of the entire network, we use the computed
evolutions to construct a spike rastergram. We say that neuron i fired if the potential Vi was
above a threshold of 20 mV. This happens during short intervals and we take the time of the
action potential to be the time of the maximal potential. Note that within our preallocation
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Figure 3.1: Membrane voltage neuron 15 from the excitatory population. This neuron corresponds
to one of the sites at which current is injected and as such can be understood as the center of the right
(left) population within the excitatory population, whereas neuron 45 would be the left (right) center.
After a period of repeated spiking the membrane potential returns to resting state around −65 mV,
the interspikeinterval is approximately 10 ms during these sequences of action potentials. Parameter
settings are similar to [18] and can be found in the appendix. The value of f varies between 0.5 and
1.5 in [18] and crucially influences the length of dominance durations. In these simulations we used
f = 0.9.

set-up, the evolutions are down-sampled over time, however, this is still a reasonable approx-
imation. All the spike times make up the spike rastergram, typical examples are shown in
figure 3.2 for the excitatory and the inhibitory rastergrams. It turns out that it is enough to
consider only the excitatory-rastergram, because the activity within the inhibitory population
shows the same dynamics but activity is generally more spread-out over the entire popula-
tion, making it harder to distinguish boundaries between populations. The typical patterns
that we observe is that of activity bumps around neuron 15 and neuron 45. These neurons
are situated at 1/4th and 3/4th of the population and correspond to the sites within the
population that receive maximal input, compared to the other inputs. Activity is centralized
around one of the foci and is alternating between the two focuses. If we think of activity
around a focus as corresponding to perceiving one of the two percepts, activity-bumps within
the model suggest switches on a perceptual level as in binocular rivalry.

Since the experimental data we consider [16], [17] was analyzed using peri-stimulus time
histograms (PSTH), we construct this measure as well to evaluate our spike data.
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Figure 3.2: Spike rastergrams for the excitatory population (top) and inhibitory population (below),
with f = 0.9). The dynamical structure within both populations is similar, although the inhibitory
activity is more spread out through the population. Spike frequency adaptation and synaptic depres-
sion only acting upon the excitatory population might be a possible explanation for this, although it
should be noted the model’s dynamics is highly sensitive to the synaptic coupling parameters. Activ-
ity patterns are focused around neuron 15 and neuron 45, corresponding to the (1/4)th neuron of the
population and the (3/4)th of the population respectively if neurons are situated on a ring. Activity
patterns switch back and forth between the two subpopulations, revealing a competition between the
two. The time a subpopulation remains dominant, the dominance duration, varies roughly between
800 ms and 1500 ms.

3.3 Validation

Laing and Chow validated their model by testing it against well-established psychophysical
results within the domain of binocular rivalry. Because these results matched sufficiently,
their model can be qualified as biophysically realistic. In order to check whether our code is
adequate, we test simulated results against the established results in Laing and Chow. This
way, our results will be in line with the psychophysical outcomes too. This step is especially
important because we want to elaborate the model by Laing and Chow to describe the dataset
by Klink, which has its own very specific experimental criteria that the model should meet.

3.3.1 Distribution of dominance duration

The time a population remains dominant around one of the two sites is called the dominance
duration. The dominance duration within a spike rastergram is closely associated with the
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Figure 3.3: PSTH of the activity of the excitatory population. Blue line: evolution of the average
firing rate of neuron 1,...,30. Red line: evolution of the average firing rate of neuron 31,...,60. Green
line: evolution of the average firing rate of the entire excitatory population, and as such the green line
is the sum of the blue line and the red line. At the beginning of the time-interval the blue population
is dominant, but around 3500 a switch occurs and the red population gains dominance while the blue
population becomes approximately silent. Average firing rates were computed with a time bin of 10
ms and f = 1.1.

duration the corresponding percept is dominant. As can be seen in a rastergram (figure 3.2)
these durations seem to be irregular. Given the spike times of all the neurons during a
simulation, we typically see burst-like behavior within a spiking-array. We compute the
distribution of dominance durations by comparing the calcium evolution of the two center-
neurons that directly receive current (neuron 15 and neuron 45) and define their intersections
as percept-switch times, see figure 3.4.

3.3.2 Largest Lyapunov exponent

Laing and Chow explain the established distribution of the dominance durations and irreg-
ularity of subsequent durations by determining the value of the largest Lyapunov exponent.
The system of simulated differential equations is completely deterministic, after the initial
conditions have been initialized. Yet, we have seen dominance distribution have a specific dis-
tribution and it has been shown that subsequent dominance durations are uncorrelated [18].
They relate both observations with the largest Lyapunov exponent, which indicates whether
a dynamical system being chaotic. It is a measure for the rate of separation of infinitesimally
close initial trajectories. If the exponent is positive, it suggests neighboring trajectories sep-
arate exponentially fast, hence, that the system is chaotic. We estimate a positive largest
Lyapunov exponent as well, indicating the system is also chaotic, see figure 3.5.
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Figure 3.4: Comparison of distribution of dominance durations between [18] and our simulations: (a)
distribution of dominance durations by Laing and Chow from [18] (b) our results with a time-duration
of 500 seconds and f = 0.5. Since the exact parameter settings during their experiments are not
specified in [18], reproducing their result is rather difficult. The value of f has a crucial influence on
the length of the dominance durations and the overall simulation-time might influence the distribution.
In addition, Laing and Chow do not indicate how they determine their durations: the spiking data,
the calcium-evolution or the phi-evolution might all be used and it is unknown to what extent the
choice of the variable influences the exact configuration of the distribution. Despite the differences in
duration lengths, the overall shape of the curves are very similar. Both distributions are unimodal and
skewed and have a long tail for longer durations. We conclude our dominance duration distribution
provides a satisfactory connection with the results from Laing and Chow.
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Figure 3.5: Estimation of the maximal Lyapunov exponent of the simulated calcium-data during
spontaneous switches. Laing and Chow find 40 s−1 as the largest Lyapunov exponent, we estimate
0.05 s−1. Maximal Lyapunov exponents were computed with the algorithm lyapk from software envi-
ronment Tisean, available http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.1/index.html.
This algorithm makes use of an algorithm by Kantz in [13]. The rather big difference in estimates
might be due to the fact that Laing and Chow did not specify how they computed their estimate and
estimating largest Lyapunov exponents is often a delicate procedure. However, since both estimates
are positive, they indicate deterministic chaos and this is sufficient for our approach.
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3.3.3 Second Levelt’s proposition

Another aspect of binocular rivalry is that if the strength of the stimulus to one of the eyes
is changed, this affects the mean dominance duration of the unchanged eye, not the mean
dominance duration of the eye whose stimulus strength was changed. That is, decreasing
the strength of the stimulus to eye 1 leads to a nonlinear increase in the mean dominance
duration of eye 2 and a small decrease in the mean dominance duration of eye 1. In order to
test this hypothesis the equation for the applied current needs to be adjusted by introducing
a contrast-parameter ψ for one of the Gaussians, see figure 3.6.

Iext(i) =
0.4√
2

[

e−
20(i−N/4)

N

2
]

+
ψ√
2

[

e−
20(i−3N/4)

N

2
]

− 0.01 (3.1)
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Figure 3.6: Comparison of second Levelt proposition between [18] and our simulations: (a) results
by Laing and Chow [18] (b) our results with a time-duration of 100 seconds and f = 0.7. Since the
exact parameter settings during their experiments are not specified in [18], reproducing their result
is rather difficult, as in figure 3.4. Dominance durations were determined by looking at the evolution
of the calcium-concentration, which we found is a stable indicator of dominance of a subpopulation.
Despite the differences in mean dominance durations, the overall shape of the curves are very similar,
showing the mean dominance duration of the subpopulation with unchanged strength increases, while
the mean dominance duration of the subpopulation with decreased strength remains approximately
constant.

In conclusion, we are able to reproduce results on the distribution of the dominance durations,
the largest Lyapunov exponents and the second Levelt proposition and this leads us to believe
our model functions similarly to theirs. Simulations and comparison with the original code
(C.R. Laing, personal communication) confirmed this conclusion. Given our basic Laing and
Chow framework, we can now extend the model with the on-off-structure.

3.4 On-off-structure

In order to connect our model with the approaches by Noest and Klink, we need to enable stim-
ulation with sequences of on-off-cycles instead of only constant stimulation [17], [16], [24]. To
implement a sequence of interrupted stimulus-presentations with a fixed on-duration and off-
duration, the constant stimulus Iext is multiplied with a periodic block-pulse y(t). Mathemat-

ically y(t) =
(

1
1+e−y1(t)·k

)

·
(

1− 1
1+e−y2(t)·k

)

where y1 = sin
(

2πt
ton+toff

)

andy2 = sin
(

2π(t+ton)
ton+toff

)
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and k a large positive integer. The resulting periodic stimulus consists of a repeated sequence
of on-off-cycles with on-duration ton and off-duration toff, see figure 3.7.
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Figure 3.7: PSTH during new stimulation-paradigm with on-off-structure. (a) PSTH of the activity
of the excitatory population during stimulation with on- and off-duration (b) block pulse indicating
stimulus onset and stimulus offset. Blue line: evolution of the average firing rate of neuron 1,...,30.
Red line: evolution of the average firing rate of neuron 31,...,60. Green line: evolution of the average
firing rate of the entire excitatory population, and as such the green line is the sum of the blue line
and the red line. Average firing rates were computed with a time bin of 10 ms and f = 1.1, ton = 400,
toff = 200. From the PSTH we can conclude these settings lead to alternations.

In order to connect the new model approach to the human psychophysics results, a close
examination of the behavior of the network within the new structure is essential. The new
on-off-structure might crucially influence the underlying dynamics of the networks behavior.
Laing and Chow discuss the overall network-behavior in relation under constant stimulus
conditions with their reduced model [18]. They show that depending on the parameter-
settings, the models behavior can be in either an all-on-state (synchronous activity through
the entire population), the off-state (no activity at all) and switch-rivalry-state. We expect
these states to be within the dynamical behavior of the interrupted model, but we need to take
into account the possibility that the interrupted structure might also lead to new patterns of
behaviors.
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4 Results

Since the dynamical structure of the on-off-paradigm is different than the constant-stimulation-
paradigm, different types of activity emerged in the new on-off-paradigm. We initially set
the on-duration Ton to 500 ms and hypothesized that we should find alternations when the
off-duration Toff lies in the range from 125 to 500 ms and repetitions within the range from 875
to 1250 ms. Since the effective amount of applied current is less than the effective amount of
applied current during constant stimulation, we considered changing the width and amplitude
of the applied current as possible control-parameters to force the behavior of the on-off-model
to generate the desired activity patterns at onset and offset of the stimuli.

By structurally varying the amplitude and width, we categorized the types of behavior that
emerge within the new stimulation-paradigm: an all-on-state, an all-off-state, a binocular-
rivalry state, patterns of irregular activity, short volleys of simultaneous activity and traveling
waves, see figure 4.1. States with continuous forms of activity during an on-off-cycle, such as
patterns of traveling waves or the all-on, do not match with the psychophysical set-up during
the experiments in [16, 24], since during the off-duration no stimuli is shown and cannot be
perceived. Small periods of initial synchronous activity at stimulus-onset (”volleys”) might
correspond to perception of a blurred mixture.

Binocular rivalry-switching behavior was found for applied current with a width of 40 and
an amplitude of 0.2. This suggests that in order to avoid unwanted behavior such as all-of
states or waves, the applied current should have a moderate amplitude and a relatively large
width. In this case, one of the two populations becomes dominant right after stimulus-onset
and remains dominant until the end of the on-duration. At the start of the off-duration,
both populations almost immediately become inactive and will remain silent until the next
stimulus-onset, where the entire pattern will start repeating itself.

4.1 Off-durations

Varying the durations of the off-periods while keeping the on-duration fixed, allows to catego-
rize the behavioral patterns that emerge for different off-durations. We set ton = 500 ms and
varied toff between 125 ms and 1500 ms with increments of 125 ms. The model was simulated
for at least 50 seconds to give a reliable estimation of the overall behavioral patterns, with
f = 1.1, gAHP = 0.055 (slightly higher than the original 0.05 in [18]) and with amplitude 0.2
and width 40 for the applied current.
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Figure 4.1: Different types of response patterns with ton = 500 and toff = 500. (a): All-on-state
activity (width = 10) (b): waves and volleys (width = 40) (c): normal rivalry with a small amount of
synchronous activity at stimuli-onset (width = 20).

Off-duration Behavior Volleys

125 Alternation No
250 Alternation No
375 Alternation Yes
500 Alternation No
625 Alternation No
750 Alternation/repetition no
875 Alternation/repetition No
1000 Repetition/alternation Yes
1125 Repetition/alternation Yes
1250 Repetition Yes
1375 Repetition/alternation Yes
1500 Repetition/alternation Yes
5000 All-on -
10000 All-on -
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We computed the percentage of percept repetition during simulations and compared this with
figure 4 in [24] by Noest. In the low off-duration range, results are similar although it should
be noted we did not take volleys and other types of irregular types of activity in account
and as such, the percentage of repetitions is only a percentage of the normal activity during
the simulations. When off-durations increase, repetitions percentage increase as well and in
the range of 1000 ms and 1250 ms mainly only repetitive patterns occur. If the off-duration
is increased even more, we find repetition percentage decrease again. This indicates the
mechanisms responsible for inducing repetitions has a timescale of approximately 1250 ms.

Off-duration On-duration: 500 ms On-duration: 750 ms

250 10% 5%
500 10% 5%
750 40% 10%
1000 90% 80%
1250 100% 100%
1500 80% 90%

We also found mixtures of alternations and repetitions, where a number of repetitions occurred
before an alternation, or a number of alternations before a repetition (see figure 4.2). These
more complicated structures are also found in the work by Klink en Noest [24], [16]. In order
to investigate the dynamical differences between the different types of behavior, we examined
the evolution of the slow variables (figure 4.3 and figure 4.4). This is in line with Noest’s
general explanation of percept-sequences at stimulus onset due to differences in adaptation-
levels [24] and Laing and Chow’s observation that adaptation and synaptic depression are
both needed to generate switches in the network [18].

4.1.1 Alternation

Figure 4.3 shows the evolution of the calcium-concentration and the synaptic variable of two
single excitatory neurons, one neuron from the left population and one neuron from the right
population with ton = 500, toff = 250 ms. In the evolutions of the slow variables we found that
the same-switching process occurs as observed in the spike rastergrams. In this case, one of
the two populations becomes dominant right after stimulus-onset and remains dominant until
the end of the on-duration. As the off-duration starts, both populations immediately drop
their activities and will remain silent until the next stimulus-onset. At this stimulus-onset,
the population that was suppressed in the previous cycle becomes dominant.

4.1.2 Repetition

In the case of repetition, one of the two populations always dominates the activity and this
is reflected in the dynamical evolutions of the slow processes within the two neurons, see
figure 4.4 with ton = 500, toff = 1250 ms. In this case, one of the two populations becomes
dominant right after stimulus-onset and remains dominant until the end of the on-duration.
As the off-duration starts, both populations immediately drop their activities and will remain
silent until the next stimulus-onset and at every stimulus-onset the same population will gain
dominance.

Figures 4.4 and 4.3 show the results from the neuronal network model with on-off-
structure are very similar to the human psychophysics results found by Klink and Noest in
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Figure 4.2: Spike rastergrams showing alternation, repetition and mixtures of alternation and rep-
etition within their choice-sequences (a): alternation with ton = 500, toff = 250, (b) repetition with
ton = 500, toff = 250 and (c) repetition with ton = 500, toff = 750. In all simulations f = 1.1,
gAHP = 0.055 and applied current with amplitude 0.2 and width 40.

[16, 24]. There is a clear connection between the micro-level of these neuronal responses
during the on-off-structure and the macro-level of human psychophysics percept-sequences
during on-off-structure. Since Noest and Klink describe the psychophysics data with a phe-
nomenological model, we considered reduced approaches of our network model. This allows
comparison between the approaches by Noest and Klink, but since our model starts from a
biophysical realistic starting point, a reduced description might provide insight in the under-
lying mechanisms governing the dynamics of percept-choice at stimulus-onset. This insight
might then be used to eliminate unwanted activity-patterns such as volleys and waves.

4.2 Slow processes

Laing and Chow note that spike rate frequency adaptation and synaptic depression are both
needed to generate spontaneous switches. Since we are only interested in the dynamics at
stimulus onset and not the spontaneous switches - in fact spontaneous switches typically never
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Figure 4.3: Slow variables evolutions for two single neurons during one cycle in the alternation-state.
ton = 500, toff = 250. Blue lines correspond to an excitatory neuron from the left population, red lines
correspond to an excitatory neuron from the right population. (a): calcium evolution, (b) evolution
of synaptic variable.

occur during the on-off-structure, because the on-duration is relatively short - the question
arises whether both slow processes needed in order to obtain the repetition and alternation
structure during on-off-cycles. In line with Noest in [24] we first considered the reduced model
with only spike-frequency adaptation:

du1
dt

= −u1 + f (αu1 − βu2 − a1 + I1) (4.1)

du2
dt

= −u2 + f (αu2 − βu1 − a2 + I2) (4.2)

τa
da1
dt

= −a1 + φaf (αu1 − βu2 − a1 + I1) (4.3)

τa
da2
dt

= −a2 + φaf (αu2 − βu1 − a2 + I2) (4.4)

Laing and Chow showed this reduced model can lead to four different types of behavior:
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Figure 4.4: Slow variables evolutions for two single neurons during one cycle in the repetition-state.
ton = 500, toff = 1250. Blue lines correspond to excitatory neuron 15 from the subpopulation consisting
of neurons 1, ..., 30, red lines correspond to excitatory neuron 45 from the subpopulation consisting of
neurons 31, ..., 60. (a): calcium evolution, (b) evolution of synaptic variable.

a both-off steady state, a both-on steady state, a one-on steady state and system oscilla-
tions. These oscillations correspond with the population analogue of binocular rivalry be-
cause activity-levels and calcium-levels fall and drop. Restrictions on the parameters for the
stable-states α, β, I1 and I2 can be found by looking at the contribution of the heavisides. For
example, in order to end up in the all-on state, both activity-levels should converge to 1 and
the adaptation-levels to φa. This happens only if the term αu1g1−βu2g2−a1+ I1 is positive,
and substituting 1 for the ui’s and φa for the ai’s leads to the restriction [α − β − φa + I1 >
0, α − β − φa + I2 > 0]. We find the following restrictions:

all-on: → (1, 1, φa, φa) : [α− β − φa + I1 > 0, α− β − φa + I2 > 0] (4.5)

all-off: → (0, 0, 0, 0) : [I1 < 0, I2 < 0] (4.6)

one-on: → (1, 0, φa, 0) : [α− β + I1 > 0,−β + I2 < 0] (4.7)

We included the on-off-cycle by multiplying the input with a block-pulse signal y(t) in the
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reduced model (4.1) to obtain a reduced description for the on-off-model:

du1
dt

= −u1 + f (αu1 − βu2 − a1 + I1 · y) (4.8)

du2
dt

= −u2 + f (αu2 − βu1 − a2 + I2 · y) (4.9)

τa
da1
dt

= −a1 + φaf (αu1 − βu2 − a1 + I1 · y) (4.10)

τa
da2
dt

= −a2 + φaf (αu2 − βu1 − a2 + I2 · y) (4.11)

If we define z(t) as a single on-off-cycle in (4.12), y(t) consists of an array of subsequent
signals z(t), so y(t) equals 1 during on-durations and 0 during off-durations over the entire
sequence of subsequent trials.

z(t) =

{

1 if t < ton,
0 if t > ton.

, t ∈ [0, ton + toff] (4.12)

In order to connect (4.8) with the human psychophysics experiments, the network should
be able to temporarily operate in the all-off-state during the off-duration, before returning
to the oscillatory behavior during on-durations. Since there is no input I1 or I2 during the
off-durations, restriction (4.8) cannot be met. Including the synaptic population levels and
using the full reduced description version changes the restrictions only quantitatively, not
qualitatively. In contrast to the Noest model in [24], this reduced description does not allow
a successful bifurcation analysis, which could possible lead to insight in the overall governing
dynamics and qualitative changes within the network. Finding a reduced model that produces
repetitions and allows bifurcation analysis might provide insight in the parameter-regions that
lead to unwanted behavior such as activity-volleys and waves of activity.

A1 E1 I1

A2 E2 I2

Figure 4.5: Schematic representation implicit-cross-inhibition reduced model. Ai: adaptation units,
Ei: excitatory units, Ii: inhibitory units. Arrows indicate excitatory connections and lines with square
blocks indicate inhibitory connections.
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Figure 4.6: Repetitions in the ad hoc reduced model (equations (4.13),... (4.18)) with α = 0.2,
β = 0.8, γ = 1, ψ = 1, ton = 1000, toff = 1250, I = 0.3, τa = 20, φa = 0.4, τi = 1000, φi = 1 and f ,g
and h heavisides. Activity in population one (on top) shows repeated percepts over the trials, whereas
the activity in population two (middle figure) is suppressed. Blue lines correspond to excitatory
variables, green lines correspond to inhibitory variables and red line correspond to adaptation variables.

Instead of using self-excitation and direct cross-inhibition, we considered a more elaborate
approach in which self-excitation, implicit cross-inhibition and direct excitation occurs with
mean-field activity of two populations, where each population consists of an excitatory and
inhibitory component. This leads to the following reduced description:

dE1

dt
= −E1 + f (αE1 − βI2 −A1 + Iy) (4.13)

dE2

dt
= −E2 + f (αE2 − βI1 −A2 + Iy) (4.14)

τa
dA1

dt
= −A1 + φah (αE1 − βI2 −A1 + Iy) (4.15)

τa
dA2

dt
= −A2 + φah (αE2 − βI1 −A2 + Iy) (4.16)

τi
dI1
dt

= −I1 + φig (γE1 − ψI2 + Iy) (4.17)

τi
dI2
dt

= −I2 + φig (γE2 − ψI1 + Iy) (4.18)

During on-durations one of the populations should dominate the other, leading to (1, 0, φa, 0, φi, 0)
or (0, 1, 0, φa, φi, 0) . This leads to the following restrictions:
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dominant percept: → (1, 0, φa, 0, φi, 0) : [α− φa + I > 0,−βφi + I < 0, γ > 0,−ψ + I < 0]
(4.19)

n combination with the slower inhibition-evolution, these restrictions provided a starting point
for finding alternation patterns within choice-sequences, see figure 4.6. In order to test the
data from the neuronal network against our neuronal network, we calculated average firing
rates over the subpopulations within the excitatory and inhibitory populations, and com-
pared them with the patterns in the reduced figures. However, without synaptic depression
the neuronal network model produces synchronous activity-patterns. This might be due to
the fact that the synaptic coupling balance between the excitatory and inhibitory population
is very sensitive, so too much excitation probably disturbs the coupling balance and situates
the network in the all-on-domain. It should be noted this does not refute a hypothesis that
perception of stimulus onset can be induced by calcium-dynamics only, but merely that the
current neuronal network configuration does not allow a straightforward way to test this ex-
plicitly. In conclusion: although the ad hoc reduced model is able to produce repetitions
(with some volley-like synchronous initial behavior, just as we found in the neuronal network
activity) with only spike frequency adaptation mediated by calcium-concentrations, it is dif-
ficult to see how the reduced model relates to the overall neurobiological mechanisms during
stimulus onset.
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5 Discussion

In order to develop a neuronal network model for intermittently presented conflicting stim-
uli, we have used an approach from binocular rivalry studies by Laing and Chow in [18] as
our starting point. We first reproduced the model and established the validity by testing it
against their main results: the distribution of the dominance duration, the largest Lyapunov
exponent and the second Levelt proposition. Since our results provided a satisfactory con-
nection with their results, we extended the basic model by including the on-off-structure. If
we assume centralized activity corresponds with the perception of the dominant percept and
localized bumps in activity suggest spontaneous switches on a perceptual level, our cortical
neuronal network of excitatory and inhibitory neurons with on-off-cycles reproduces human
psychophysics results by Klink and Noest. The off-durations crucially determine the networks
overall behavior reflected in the choice sequences. Longer off-durations correspond to repeti-
tions whereas shorter off-durations lead to alternations and also more complicated sequences
of alternations and repetitions can be generated.

In order to understand the underlying dynamical difference between patterns of alterna-
tions, repetition and mixtures, we have tried to analyze a reduced description of the model.
The Heaviside-formulation in the reduced description by Laing and Chow does not allow the
on-off-model to periodically return to a stable off-state during off-durations, which makes
it impossible to directly fine-tune the population model in the biophysical desirable regime.
This might be explained by Noest in [24], since this reduced model uses the neural outputs as
the primary dynamical variables. Given the thresholded sigmoidal shape of neural firing-rate
functions, this makes this approach blind to a subthreshold side effect of unequal adaptation
that Noest identifies as sufficient for producing the percept-choice phenomena. Using the
mean-field approach employed by Wang and Wong might lead to a reduced model with the
necessary bias-mechanism to allow repetitions and allow bifurcation analysis. It is an inter-
esting question on its own to see how the models by Wang and Wong relate to our neuronal
network model (or the model by Laing and Chow in general) since they differ significantly in
population-size and biological properties.

We formulated an ad hoc reduced description with self-excitation, implicit cross-inhibition
and direct excitation. Although the ad hoc reduced model is able to produce repetitions (with
some volley-like synchronous initial behavior, which was exactly what we found in the neuronal
network activity) with only spike frequency adaptation mediated by calcium-concentrations,
it is difficult to see how the reduced model relates to the overall neurobiological mechanisms
during stimulus onset. Hence it is difficult to refute any hypothesis concerning the necessity of
spike frequency adaptation or the redundancy of synaptic depression to describe the dynamics
during stimulus onset of sequences of conflicting stimuli within our current neuronal network
formulation, since we cannot disconnect the two slow processes and it is unclear how Laing
and Chow have chosen their coupling-strengths.

Before different reduced approaches should be taken into account, we expect a comparison
with the neuronal network data and the statistical analysis by Klink on his neurophysiological
data-set might provide insight in the validity of the connection between the micro-level of our
network model and the macro-level of percept sequences. By analyzing the neuronal data
with the same tools as Klink used in his neurophysiological approach, the model can be
tested against his neuronal stabilization hypothesis. A first exploration of the fano factor did
not reveal direct similarities, but an in-depth analysis of the spike-data will lead to insight
in the overall relation between the macro-level of perceptions and the micro-level of neuronal

34



responses. We expect the patterns found in our neuronal network model are more explicit
than the effects found by Klink, since our model does not include pre-stage adaption or noise.

After this comparison on the neuronal level, we can focus on formulating a more struc-
tural reduced approach that allows bifurcation analysis, such as the approaches by Wang
and Wong, Noest and Laing et al. in [28, 24, 19]. Furthermore, neurobiological experiments
involving techniques such as calcium-imaging can provide alternative evidence for the biophys-
ical mechanisms underlying percept sequences during experiments with an on-off-structure.
The neuronal network model can be improved by taking these results into account, leading
to a more biophysical model and elimination of unwanted patterns such as volleys or waves
of activity. We believe such an interdisciplinary approach, combining results neurobiologi-
cal experiments with mathematical analysis on both scales, might be the key to successfully
understand and describe perceptual decision making.
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6 Appendix

Functions in Laing and Chow:

minf(V ) = αm(V )
αm(V )+βm(V )

αm(V ) = 0.1(V+30)

1−e−0.1(V +30)

βm(V ) = 4e−
−(V +55)

18

αn(V ) = 0.01(V +34)

1−e−0.1(V +34)

βn(V ) = 0.125e−
−(V +44)

20

αh(V ) = 0.07e−
−(V +44)

20

βh(V ) = 1
1+e−0.1(V +14)

σV = 1

1+e
−(V +20)

4

gjkee = αee

√

50
π e

−50[ j−k
N ]

2

gjkie = αie

√

20
π e

−20[ j−k
N ]

2

gjkei = αei

√

20
π e

−20[ j−k
N ]

2

gjkii = αii

√

30
π e

−30[ j−k
N ]

2

Constants in Laing and Chow:

gL = 0.05
VL = −65
gK = 40
VK = −80
gNa = 100
VNa = 55
VCa = 120
gAHP = 0.05
ψ = 3
τe = 8
τg = 1000
f = 1.1
τi = 10
Vee = 0
Vie = −80
Vei = 0
Vii = −80
αee = 0.285
αie = 0.36
αei = 0.2
αii = 0.07
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