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Abstract

For studying vascular structures in 4D biomedical imaging, it is of great
importance to automatically determine the velocity of flow in video sequences,
for example blood flow in vessel networks. In this thesis new optimal transport
models focusing on direction and segmentation are investigated to find an
accurate displacement between two density distributions. By incorporating
fluid dynamics constraints, one can obtain a realistic description of the
displacement. With an a-priori given segmentation of the network structure,
transport models can be improved. However, a segmentation is not always
known beforehand. Therefore, in this work a joint segmentation-optimal
transport model has been described. Other contributions are the ability of the
model to allow for inflow or outflow and the incorporation of anisotropy in the
displacement cost. For the problem, a convex variational method has been
used and primal-dual proximal splitting algorithms have been implemented.
Existence of a solution of the model has been proved. The framework has
been applied to synthetic vascular structures and real data, obtained from a
collaboration with the applied mathematics and the hospital in Cambridge.

Keywords: optimal transport, segmentation, anisotropy, fluid dynam-
ics, variational methods, convex optimisation, vascularity.

i



Acknowledgements

This thesis is the result of over a half year of research in the group of Applied Analysis at the
University of Twente. I have really enjoyed my time working on this project, which is due to many
people, whom I cannot mention all. I want to thank some of them specifically.

First of all a big thanks for dr. Christoph Brune. Christoph inspired me to do both my internship
and my final project in the very interesting field of mathematical imaging. For my final project, we
have had many interesting, inspiring and sometimes long discussions. The resulting work would
not have been possible without his great knowledge and the enormous amount of time he decided
to spend on supervising me. I am happy to say that he will continue to be my supervisor during
my PhD-research.

Next I would like to thank dr. Carola-Bibiane Schönlieb, who has been my supervisor during my
stay at the University of Cambridge. Not only was it great to be a visiting member of her group,
she also continued to help me during my final project and showed interest in my progress.

I would also like to acknowledge prof. dr. Stephan van Gils for his valuable comments during my
research and for reading my thesis carefully in the past weeks.

I thank Ruben Heersink and Nick Luiken for being able to listen to my sometimes incomprehensible
questions, giving me good feedback and drinking litres of coffee together.

Finally, I am very grateful to my parents, my family and my friends for supporting me, showing
interest and giving me a great time by distracting me from my studies when that had to be done.
Especially I want to thank Evelien for always listening to me and being there for me.

ii



Contents

Contents

1 Introduction 1

2 Motivation 3
2.1 Vascular structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Application to real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Optimal transport 6
3.1 Model 1: isotropic and anisotropic transport . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Model 2: flow regularised transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Segmentation 18
4.1 Overview of well known methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Segmentation in optimal transport models . . . . . . . . . . . . . . . . . . . . . . . 19

5 Joint segmentation and optimal transport 22

6 Numerical Framework 24
6.1 Proximal operators for models 1 & 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Adjoint operators in regulariser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Implementation of models 1 & 2 via PDHGM . . . . . . . . . . . . . . . . . . . . . 30
6.4 Implementation of joint model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Results and discussion 36
7.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Real biomedical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Joint model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Summary and Outlook 47

Appendices 52
A Alternative transport costs for model 1 . . . . . . . . . . . . . . . . . . . . . . . . . 52
B Derivation of adjoint operators in regulariser . . . . . . . . . . . . . . . . . . . . . 56
C Why a ground density causes a lower velocity estimation . . . . . . . . . . . . . . . 58

iii



1 Introduction

1 Introduction

With the use of video imaging techniques, the movement or flow of certain objects can be captured.
In the field of biomedical imaging, it is of great importance to automatically determine the velocity
of flow in video sequences, for example blood flow in vessel networks. Optimal transport models are
capable of doing this job: a velocity estimation is obtained while finding the interpolation between
two given images, that can be seen as two density functions. One can think of an example where
one wants to transport a heap of sand of a certain shape to another heap of sand with a different
shape, that might also be on a different location (Figure 1).

Figure 1: With optimal transport, one can find the map T that maps ρ0 to ρ1.

Originally, finding the optimal transport is a problem in measure theory, where one tries to find
a transport map T mapping ρ0 to ρ1. This transport map minimises a certain cost functional for
the transport. When an L2-Wasserstein distance is chosen as cost functional, the problem to solve
reads

dp(ρ0, ρ1)p = inf
T∈T

∫
Ω

‖T (x)− x‖p ρ0(x) dx, (1.1)

where T is the set of all possible transport maps. In their famous paper, Benamou and Brenier [6]
showed that for the L2-Wasserstein distance, the problem can be set in a fluid dynamics frame-
work. In this new formulation, solving the optimal transport problem is equivalent to solving
a constrained convex minimisation problem in a continuous framework. Benamou and Brenier
implemented the transport for both periodic and zero Dirichlet boundary conditions, where mass
conservation is ensured. Papadakis et al. [36] took this fluid dynamics formulation and imple-
mented it in several proximal splitting algorithms. They also implemented an optimal transport
model for an H−1-Wasserstein distance. In a follow-up paper, Hug et al. [21] extended the L2-
Wasserstein model with an anisotropic cost functional, therefore being able to model transport
with a directional preference. Moreover, they incorporated several fluid dynamics constraints, to
ensure incompressible, translational or rigid transports. Maas et al. [27, 28] changed the mass-
conservation set to a set in which mass could be created or destroyed by taking singular sources
and sinks into account.

In this thesis new optimal transport models for mathematical imaging are investigated. The goal
is to acquire an interpolation and velocity estimation of flow in vascular structures in the field of
biomedical imaging. We follow the approach of the fluid dynamics formulation to model optimal
transport. Contributions are the use of edge-detecting tensors and structure tensors [33, 44] to
obtain an anisotropy that is implemented in our models. We apply anisotropic regularisers for
the transport, as well as various regularisers based on fluid dynamics constraints. Furthermore,
we show several ways to incorporate segmentations in the models. In contrast to other models,
our models allow for inflow or outflow, meaning that zero Dirichlet boundary conditions are not
necessarily needed. Our last contribution is in analysis, where we prove the existence of a minimiser
for a non-convex optimal transport model with flow regularisation.

In the field of mathematical imaging, it is becoming more and more popular to design so-called
joint models. In these models, two imaging tasks are modelled in a joint fashion, to fulfil both tasks
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1 Introduction

with the same model, instead of applying two models consecutively. Le Guyader and Vese [26] and
Ozeré et al. [34, 35] developed several joint segmentation-registration models. In these models, a
Chan-Vese type segmentation model [14] is combined with a non-linear (hyper)elasticity smoother.
If the segmentation of the template image is available, both registration between template and
reference image and segmentation of the reference image is performed together, using the same
minimisation functional. In [19], Heldmann et al. developed a joint segmentation-registration
model that allows for sliding motion at the interface of the two segments, based on a piecewise
smooth deformation model. Droske and Rumpf [16] proposed a joint segmentation-registration
model in which the two images to be registered have different modalities. Their model is based on
morphological matching with elasticity regularisation. A joint multigrid segmentation-optical flow
model has been derived by Mémin and Pérez [29], where the function to be minimised contains the
the optical flow constraint and a discontinuity-preserving smoothness constraint. Preusser et al.
[38] proposed to minimise a Mumford-Shah type energy functional in which not only a piecewise
smooth image is searched for, but also the optical flow constraint is incorporated. This way, one
searches for a smooth velocity field while denoising and segmenting the original images.

To our knowledge, a joint segmentation-optimal transport model has not been developed yet.
Segmentation-optical flow models can only handle image sequences showing slow or linear flow.
If a joint segmentation-optimal transport model would be available, fast and non-linear flows
can be captured well. In this work, we give a first description of such a joint model. In a
first implementation, the non-convex minimisation problem is solved by minimising three convex
minimisation problems alternatingly.

This thesis is organised as follows. We start with a description of vascular structures and some
motivational examples hereof in chapter 2. In chapter 3 the concept of optimal transport is ex-
plained and our two main optimal transport models are presented. We explain how to incorporate
anisotropy and fluid dynamics constraints into the models. Moreover, we prove the existence of
a minimiser for the non-convex minimisation problem. Chapter 4 starts with an overview of well
known segmentation methods, after which we explain how to incorporate a segmentation in our
earlier derived models. In chapter 5, a joint segmentation-optimal transport model is described.
Then we explain how proximal splitting methods work in chapter 6, followed by the implementa-
tion of our two models in the modified Primal Dual Hybrid Gradient method. This includes the
derivation of all operators and the choice of our numerical discretisation. In chapter 7, we show
the results of applying our models to both synthetic and real data sets, followed by a discussion
on these results. We conclude by a summary and outlook on further research in chapter 8.
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2 Motivation

In this thesis, we will derive and implement a model for the interpolation and velocity estimation
of flow in vascular structures. In order to do this properly, we need to know what kind of images
we use as input data. In this chapter, we will first examine the class of images on which we will
apply the model later on. Next we will give three concrete examples of realistic test cases that we
will use in chapter 7.

In the sequel, we assume that we have two images in which an object or structure has undergone
a movement between the first and the second image. Think of a road, where the cars have moved
in the time between the two images were taken (Figure 2). We will always look at images in which

Figure 2: Two frames in the taxi-cab sequence (KOGS/IAKS Universität Karlsruhe).

there is an obvious movement or transport between the first and the second image; this movement
may be either small or large.

2.1 Vascular structures

In biology, vascular structures are very common. Very often, these structures are meant to trans-
port something in an organism from one place to the other. Think of blood flowing through blood
vessels and arteries, lymph moving through the lymphatic system or nutrients moving through
branches of a tree. If sequential images (a video) of this movement are available, we can see
the movement between two images. We separate different classes of image sequences that can be
found:

1) Videos in which the moving part can be seen as coherent objects. Examples are blood cells in
a blood vessel or cars on a highway.

a) Only one object is moving.

b) Multiple objects are moving at the same time:

i) with the same speed and direction;

ii) with different speed and directions.

2) Videos in which the moving part is a dense collection of small particles.

a) The structure of the collection of particles stays intact. An example is when we look at
a traffic jam from far up above. Since the cars cannot overtake, the structure of cars and
trucks stays the same over time.

b) The structure changes continuously while moving. An example is a river which has a
different surface every time, because of the waves that influence each other.
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2 Motivation

As we can see, many types of image sequences containing vascular structures are available. We
will not treat all of them, but it is good to know there is a wide variety of image sequences that
have to be dealt with differently.

In general, we have a non-moving background, which often has a different average intensity than
the moving object or structure. However, it is not always clear that we have a single foreground
structure. For instance, think of the example of the car on a highway: the background consist of
the landscape in which the highway is laid. The highway can be seen as the ‘vascular structure’
on which the car is moving. It is not clear if the highway also belongs to the foreground or if
only the car belongs to the foreground. We have to keep this in mind, when we want to apply
a segmentation to our problem in chapter 4: we have to decide what has to be segmented from
what.

2.2 Application to real data

In chapter 7, we will apply our model to a number of real data sets, to see how it behaves for
different kind of images. In the following, we will define these data sets, which solely consist of
two-dimensional images, although the model that we will develop can also be applied to three-
dimensional images.

2.2.1 Moving white blood cell

The first real data set contains an image sequence in which a white blood cell (leukocyte) is moving
along a c-shaped path. The data was obtained in a project of the University of Münster. In this
project, the movement of leukocytes from blood vessels to inflamed tissue is investigated. Because
of a barrier of endothelial cell layers, the leukocytes can not move freely and therefore sometimes
follow a curved path.

In Figure 3 we see the movement of one leukocyte, where the aforementioned barriers are not
shown. If we assume that the preferred path is given by the c-shape, it is interesting to see
if we can recreate this image sequence, when only taking the first and last frame into account.
Moreover, we could interpolate such that we know the position of the cell at every time t during
the movement. When classifying the data set to one of the classes proposed in section 2.1, we see
that it belongs to class 1a: we are dealing with a single object that moves, without the vascular
structure being visible. The background shows almost zero intensity, which will prove to be very
handy in applying the model.

Figure 3: A sequence of six frames in which a cell is moving.

2.2.2 Haemoglobin microcirculation

The second real data set contains an image sequence in which the microcirculation of blood in the
human eye is shown. This data set was obtained by collaboration with the applied mathematics
and the hospital in Cambridge. In the image sequence, various flow types are visible: we see
arteries pumping blood towards the eye and several types of blood vessels transporting the blood
through the eye. For a more extensive description of this data set, we refer to [8].

An example of a close-up of a single image in the sequence is given in Figure 4. We are dealing
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Figure 4: An example of a single frame from a haemoglobin video image.

with images in which the moving part is a dense collection of small particles, although in some
parts of the image the heamoglobin has disintegrated into several distinct objects. Moreover, we
see that in the main part of the image, the structure stays the same within consecutive frames.
Therefore, we would best classify this data set as class 2a, if we take the classification from section
2.1.

In [8], an attempt has been made to obtain a segmentation between the blood vessels and the
background of the image. It seemed that obtaining a segmentation was rather hard, when infor-
mation about the motion was not taken into account. On the other hand, we can imagine that
trying to find an estimate of the motion, without knowing a segmentation, can also be difficult,
since the motion is then not restricted to the blood vessels. Therefore, in this thesis, we make a
first attempt to obtain both in a joint matter.

2.2.3 Flow in human brain

In the last image sequence, we see the flow of blood in the human brain. The data was obtained
by the Radboud University Medical Center by imaging a contrast agent in blood.

Figure 5: Consecutive inflow, spreading and outflow of blood in a human brain.

In Figure 5 we see the inflow of blood on a small part of the bottom boundary, after which it
accumulates within the brain, followed by an outflow at the bottom boundary. The properties
of this flow are similar to the haemoglobin flow: we have a collection of small particles moving
through a fine vascular structure. A big difference is that we now have a much smoother flow than
in the haemoglobin case; we do not see a specific structure within the blood. Consequently, we
can classify it as class 2b in the classification from section 2.1.
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3 Optimal transport

In this chapter, we will define two models, which we will use to find both an interpolation between
two images, as well as a velocity field that belongs to this interpolation. First, we will explain the
mass transport problem from the original statement by Monge. Next, we will set the transport
problem in a fluid dynamics setup, which allows us to define our first model. Then we will add
some regularity on our velocity field, which gives us our second model. For both models, we will
give the option to incorporate anisotropy, in order to make our model suitable for the vascular
applications we have in mind. Finally, there will be an analysis on the existence and uniqueness
of a solution to our model.

3.0.1 Monge-Kantorovich problem

Optimal transport as a mass transfer problem has its origins in the end of the eighteenth century,
as it was first formalised by Monge [30] in the year 1781. He considered the problem in which
“the transport of excavated material is such that the sum of the products of the molecules by the
space traversed is a minimum between the roads of any two points”. In the years 1942 [22] and
1948 [23], Kantorovich treated the same problem in a modern way, leading to the nowadays called
‘Monge-Kantorovich problem’, which is defined as follows:

Consider two density functions ρ0(x) ≥ 0 and ρ1(x) ≥ 0, with x ∈ Ω ⊂ Rd, such that both
densities have equal mass C: ∫

Ω

ρ0(x) dx =

∫
Ω

ρ1(x) dx = C. (3.1)

A map T transports ρ0 to ρ1 if, for all subsets U ⊂ Ω, the following holds:∫
U

ρ1(x) dx =

∫
T (U)

ρ0(x) dx, (3.2)

which reduces to

|det(∇T (x))|ρ1(T (x)) = ρ0(x), (3.3)

when T is a smooth one-to-one map. One can easily verify that for all densities ρ0 and ρ1 that
are not dirac-measures, one can think of different transport maps that satisfy (3.3). For instance,
if we take Ω = R, and take the transport of the rectangular function

ρ0(x) =

{
1 for 0 ≤ x ≤ 1,

0 else

to the function

ρ1(x) =

{
1 for 2 ≤ x ≤ 3,

0 else

we can already state the following two transport maps:

� linear shift: T1(x) = x+ 2;

� linear shift with mirroring: T2(x) = −x+ 3.

Clearly, both transport maps satisfy (3.2) and (3.3), as can be seen in Figure 6. This means that a
solution to the Monge-Kantorovich is in general not unique, and thus it makes sense to introduce
a cost functional, which we will try to minimise. One such a cost functional is the Lp-Wasserstein
distance (p ≥ 1), defined by:

dp(ρ0, ρ1)p = inf
T∈T

∫
Ω

‖T (x)− x‖p ρ0(x) dx, (3.4)
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3 Optimal transport

where T is the set of all possible maps that map ρ0 to ρ1. The map T ∗ that minimises (3.4)
is called the optimal transport. For our made-up one-dimensional example with gaussians, and
choosing p > 1, we see that we would prefer the linear shift without mirroring.

T2(x)

x0 1 2 3

ρ(x)

1
ρ0 ρ1

T1(x)

x0 1 2 3

ρ(x)

1
ρ0 ρ1

x0 1 2 3

ρ(x)

1
ρ0 ρ1

Figure 6: Two different transport maps that have the same ρ0 and ρ1. Colour-coding is used to
emphasise the difference.

3.1 Model 1: isotropic and anisotropic transport

For the first model, we consider two types of transports: isotropic transport, where we do not
take direction into account, and anisotropic transport, where we can deal with the information we
might have about the expected direction of the transport.

3.1.1 Isotropic optimal transport

In 2000, Benamou and Brenier [6] showed that in the case of a L2-Wasserstein distance and for
Ω = Rd, solving problem (3.4) is equivalent to solving the following fluid dynamics problem:

min
(ρ,v)∈MCρv

1

2

∫ 1

0

∫
Rd
ρ(x, t)|v(x, t)|2 dxdt, (3.5)

where MCρv = {(ρ, v) | ∂tρ+ div(ρv) = 0, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1, ρ ≥ 0},

where ρ(x, t) ∈ R and v(x, t) ∈ Rd are respectively the density and the velocity at time t ∈ [0, 1]
and in space x ∈ Rd. We see that solving (3.5) means finding a density and velocity in a time-
space domain, that satisfies the continuity equation for mass (density), that satisfies our initial
conditions ρ0 and ρ1 and that has minimal kinetic energy in the whole domain.
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3 Optimal transport

In order to extend this result to an arbitrary domain Ω ⊂ Rd, we need to take a look at the
boundary conditions of our mass conservation set MCρv. It can be shown [25] that the condition
∂tρ+ div(ρv) for all ρ and v, in combination with the boundary condition ρv ·n|∂Ω = 0, is enough
to ensure mass conservation. However, we can think of examples in which we do have an inflow
and/or outflow of density. In this case, this boundary condition is thus not a good choice. Let
us consider two cases, that are likely to occur when handling transport problems with vascular
applications:

1. The total density does not change between ρ0 and ρ1:
∫

Ω
ρ0 dx =

∫
Ω
ρ1 dx. We still might

expect an inflow or outflow, so choosing ρv · n|∂Ω = 0 is not an option. In this case we
could enforce

∫
Ω
ρ(x, t) dx =

∫
Ω
ρ0 dx =

∫
Ω
ρ1 dx for all t. An example where we see such

behaviour is the one in Figure 4.

2. The total density increases or decreases between ρ0 and ρ1, because of an inflow or outflow.
In many images, it is reasonable to assume the inflow or outflow constant, like the example
in Figure 5. In this case, we could enforce

∫
Ω
ρ(x, t) dx = t ·

∫
Ω
ρ0 dx+(1− t) ·

∫
Ω
ρ1 dx. Note

that this case does not fulfil the original Monge-Kantorovich equation (3.1), but in our new
fluid dynamics setup, we can solve this problem.

There are many more cases that could be considered, but it is very hard to ensure the mass
conservation if we do not have prior knowledge, such as specific boundary conditions. We will
show in section 6.1 how we will deal with the ones discussed here. For the ease of readability, we
will from now on only consider a mass conservation set, in which

∫
Ω
ρ0 dx =

∫
Ω
ρ1 dx and inflow

or outflow is prohibited.

Following [6] and [36], we can apply the change of variables (ρ,m) := (ρ, ρv), such that we use the
momentum as a variable instead of the velocity, in order to obtain a convex optimization problem
in (ρ,m):

min
(ρ,m)∈MC

∫ 1

0

∫
Ω

J(ρ,m) dxdt,

where J(ρ,m) =


|m|2
2ρ if ρ > 0,

0 if (ρ,m) = (0, 0),

∞ otherwise.

and MC = {(ρ,m) | ∂tρ+ div(m) = 0, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1, m · n|∂Ω = 0, ρ ≥ 0}.

We write our mass-conservation constraint set as an indicator function ιMC(ρ,m), which holds
the value 0 if the variables are in the set MC and ∞ if they are not. This notation is useful,
because we will make use of the proximal splitting method and for both J(ρ,m) and ιMC(ρ,m)
proximal operators can now be defined (section 6.1). We have the following (unconstrained) convex
minimisation problem:

min
(ρ,m)
J (ρ,m) = min

(ρ,m)

∫ 1

0

∫
Ω

J(ρ,m) + ιMC(ρ,m) dxdt, (3.6)

where J(ρ,m) =


|m|2
2ρ if ρ > 0,

0 if (ρ,m) = (0, 0),

∞ otherwise.

and MC = {(ρ,m) | ∂tρ+ div(m) = 0, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1, m · n|∂Ω = 0, ρ ≥ 0}.

It is easy to see that our functional is indeed a convex one, although not continuous, and thus not
differentiable everywhere. Therefore we can not rely on algorithms that make use of the gradient,
such as the gradient descent method. Papadakis et al. [36] used the technique of proximal splitting
to solve (3.6) for different initial conditions ρ0 and ρ1. We will follow this approach, on which we
will elaborate in chapter 6.
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3 Optimal transport

Instead of an L2-Wasserstein distance, one could also choose to use a general Lp-Wasserstein
distance or an H−1-Sobolev distance [36]. Different cost functionals lead to different minimisation
problems, as can be seen in table 1. Moreover, the type of transport that is preferred differs for
every cost functional. For instance, with an L1-Wasserstein distance, sparse transports in space
are preferred and sparse transports in time are possible, whereas sparsity is not preferred in the
L2-case. For a more extensive description on the use of different transport costs, we refer to
appendix A.

L2-Wasserstein ρ|v|2 |m|2

ρ

L1-Wasserstein ρ|v| |m|

Lp-Wasserstein for p ≥ 1 ρ|v|p |m|p

ρp−1

H−1-Sobolev ρ2|v|2 |m|2

Interpolated L2/H−1 ρ2−p|v|2 |m|2

ρp

Table 1: Overview of the effect of different cost functionals on the functional J(ρ,m).

3.1.2 Anisotropic optimal transport

When we think of vascular structures, we see that flows are often oriented in a specific direction
within a (small) region. If we know the ‘preferred’ direction of the flow, we might want to use this
in the modelling of our transport. This brings us to a functional in which the cost of the transport
depends on the direction of the flow. Hug et al. [21] proposed to extend (3.6) to the following
anisotropic minimisation problem:

min
(ρ,m)
J (ρ,m) = min

(ρ,m)

∫ 1

0

∫
Ω

JA(ρ,m) + ιMC(ρ,m) dx dt, (3.7)

where JA(ρ,m) =


mTAm

2ρ if ρ > 0,

0 if (ρ,m) = (0, 0),

∞ otherwise.

and MC = {(ρ,m) | ∂tρ+ div(m) = 0, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1, m · n|∂Ω = 0, ρ ≥ 0}.

Notice that for A = Idd (identity matrix), where d is the space dimension of our image, (3.7)
reduces to the isotropic equation (3.6). In chapter 4, we will explain different ways of obtaining a
useful anisotropy matrix A. Existence and uniqueness of a solution to (3.7) have been shown in
[21], when A only depends on x, not on t.

3.2 Model 2: flow regularised transport

Our second model will be an extension on our first model, in which we allow to incorporate
a regulariser on the velocity of the flow. A motivation for regularising the velocity is given in
section 3.2.1. In section 3.1.1, we made the change of variables from v to m. However, the
regularisers that we will consider are a function of v. It is not possible to make the same change
of variables, since the regularisers would not be convex anymore. This means that we need to
make a coupling between ρ, m and v in order to use regularisers based on the velocity. We will
follow the approach of [21], where the coupling term is a L2-coupling which penalises the squared
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3 Optimal transport

distance between m and ρv:

K(ρ,m, v) =
1

2

∫ 1

0

∫
Ω

|m− ρv|2 dx dv. (3.8)

Considering the energy functional, the regulariser and the coupling term, we obtain the following
minimisation problem:

min
(ρ,m,v)

{
J (ρ,m) + λK(ρ,m, v) + µR(v)

}
= min

(ρ,m,v)

∫ 1

0

∫
Ω

JA(ρ,m) + ιMC(ρ,m) + λK(ρ,m, v) + µR(v) dxdt, (3.9)

where JA(ρ,m) =


mTAm

2ρ if ρ > 0,

0 if (ρ,m) = (0, 0),

∞ otherwise.

MC = {(ρ,m) | ∂tρ+ div(m) = 0, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1, m · n|∂Ω = 0, ρ ≥ 0},

K(ρ,m, v) =
1

2
|m− ρv|2,

and R(v) some convex regularisation functional,

where λ, µ ∈ R are weighting parameters. Here we only considered the more general anisotropic
model, since the isotropic model is simply a special case in which A = Idd. In section 3.3, we will
prove existence of a solution to (3.9). Moreover, we will discuss the uniqueness of a solution.

3.2.1 Physical priors as regularisers

For the rest of this section, we will assume Ω ⊂ R2, but it should be kept in mind, that in general,
we can generalise this to a domain in any dimension.

As a motivation for using specific regularisers, we will consider the following example: Let Ω =
[0, 1]2 ⊂ R2, let ρ0 be a gaussian with mean ( 1

5 ,
1
5 ) and some variance σ2

0 such that its value is very
low at ∂Ω. Let ρ1 be a gaussian with mean ( 4

5 ,
4
5 ) and variance σ2

0 . Remember from (3.5) that
our cost in v is quadratic. In a simple case as this one, the optimal transport is such that we get a
constant velocity directed from ρ0 to ρ1: if the density would first move quickly and then slowly,
because of the quadratic penalisation, we would end up with a higher cost; if the density would
not follow a straight line, the travelled distance would be larger, which needs a higher velocity
and thus a higher cost. The movement is shown in Figure 7.
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Figure 7: A Gaussian density moving from one corner to the other in a squared domain.

Now if we change our space domain to an L-shaped Ω = [0, 1] × [0, 2
5 ] ∪ [ 3

5 , 1] × [0, 1] ∈ R2, it is
clear that a direct route is not available anymore, since part of this route is outside our domain.
It is intuitive that every point in the gaussian density ‘will try to find’ a path that is as short as
possible. This means that every point in the density will make a sharp turn at the corner of our
domain. As a consequence, at t = 1

2 , there will be a very high density around the corner of our

10



3 Optimal transport

t = 0

20 40 60 80 100

20

40

60

80

100

t = 0.25

20 40 60 80 100

20

40

60

80

100

t = 0.5

20 40 60 80 100

20

40

60

80

100

t = 0.75

20 40 60 80 100

20

40

60

80

100

t = 1

20 40 60 80 100

20

40

60

80

100

Figure 8: A Gaussian density moving from one corner to the other in a L-shaped domain.

domain; in fact, we will obtain a Dirac measure at the corner. This movement is shown in Figure
8.

In many applications, like the transport of a cell, such an accumulation of density in a small
neighbourhood is not expected, so we might need a regulariser R to deal with this behaviour. An
accumulation of density means that the transported structure is compressed during the transport,
so we are looking for a flow where compression is prohibited or penalised. From the field of fluid
dynamics, it is well known that an incompressible flow is one where div(v) = 0 everywhere. Note
that incompressibility does not mean that the structure of the density may not change at all.
However, it does mean that if we made a histogram of the density distribution in space, it would
stay exactly the same over time, since the structure can not compress or expand. An easy to
implement regulariser would be an L2-penalisation of the divergence of our flow v:

RD(v) =
1

2

∫ 1

0

∫
Ω

|div(v)|2 dx dt (3.10)

A second option for regularisation would be one where rigidity of the flow is preferred. When we,
for example, model a car that moves from one place to the other, we know for certain that the
car should not deform. However, it is allowed to translate or rotate. From [25] and [21], we know
that for Ω ⊂ R2, the condition ∇v + (∇v)T = 0 for every x ∈ Ω is enough to guarantee rigidity.
Here ∇v is the Jacobian matrix of v:

∇v =


∂v1

∂x1

∂v1

∂x2

∂v2

∂x1

∂v2

∂x2


Again using an L2-penalisation, we obtain the following regulariser:

RR(v) =
1

2

∫ 1

0

∫
Ω

∥∥∥∥∇v + (∇v)T

2

∥∥∥∥2

dxdt, (3.11)

where the norm is induced by the pointwise product of the matrix entries.

Comparison between the regularisers

If we expand the integrands of the regularisers considered here, we obtain:

‖div(v)‖2 =

(
∂v1

∂x1

)2

+

(
∂v2

∂x2

)2

+ 2

(
∂v1

∂x1

)(
∂v2

∂x2

)
;

∥∥∥∥∇v + (∇v)T

2

∥∥∥∥2

=

(
∂v1

∂x1

)2

+

(
∂v2

∂x2

)2

+
1

2

(
∂v1

∂x2

)2

+
1

2

(
∂v2

∂x1

)2

+

(
∂v1

∂x2

)(
∂v2

∂x1

)
.

11



3 Optimal transport

Apart from the first two terms on the right hand sides, we see that both regularisers are actually
very different. This is rather unexpected, since a rigid flow also fulfils the incompressibility
condition (something that is rigid cannot compress or expand). In chapter 7, we will see various
examples where both regularisers give a similar result, but also ones where they give very different
results.

3.2.2 Anisotropic regulariser

A third regularisation functional can be thought of when taking our application of vascular struc-
tures in mind. For example, when we think of blood flow in blood vessels, we expect no flow
outside the blood vessels, while there is a rather smooth flow within the blood vessels. This means
that the gradients of v1 and v2 are expected to be close to zero if we move along the direction of
the vessel, while the gradient can take a very high value if we move perpendicular to the direction
of the vessel. Moreover, the smoothing should be the same for both v1 and v2, since both v1 and
v2 should not change much within the blood vessel, unregarded the direction of the flow.

In order to get a general framework in which we can incorporate anisotropy, it might be wise to
state a homogeneous isotropic regulariser, which we can adapt to make it as we would like it to
be. Motivated by our wish to treat v1 and v2 in the same manner, we can consider the regulariser

RI(v) =
1

2

2∑
i=1

|∇vi|2 =
1

2

2∑
i=1

(∇vi)T (∇vi) =
1

2

2∑
i=1

(∇vi)T Id2(∇vi), (3.12)

which is the same regulariser Horn and Schunck [20] used in their famous method for determining
optical flow. From writing it as in (3.12), it is immediately clear that we can make the expression
anisotropic if we replace the identity matrix Id2 by an anisotropy matrix D:

RA(v) =
1

2

2∑
i=1

(∇vi)TD(∇vi). (3.13)

The matrix D is often referred to as the diffusion tensor [44]. There are many ways to construct
the diffusion tensor. We can separate two types of diffusion, by choosing on which variables it
should depend:

1. flow-driven diffusion. The most intuitive is to let D depend on the flow itself: if we
see a very different flow in one area compared to a flow in an adjacent one, we do not
want to smooth across the boundary between the areas, but do want to smooth along this
boundary. We call this type a flow-driven diffusion tensor. One potential problem with this
type of diffusion-tensor is that v is not known beforehand. Therefore, we cannot see what
the diffusion-tensor looks like, without first applying our model and calculating the optimal
transport.

2. intensity-driven diffusion. Often, flow-edges are located at the same locations as the
intensity-edges. When this is the case, we can make use of a intensity-driven diffusion
tensor. This diffusion does not have the problem of the flow-driven case that the tensor is
not known before we solve the optimal transport problem. We can first choose the desired
diffusion, before applying the optimal transport model.

In our applications, we see that there is a rather big difference in intensities between areas where we
expect flow and areas where we do not expect flow. For that reason, we will now focus ourselves on
intensity driven diffusion tensors, but we should always keep in mind that it is possible to change
this when applying our model to different images.

12



3 Optimal transport

Edge detecting diffusion tensor

Nagel and Enkelmann [33] defined the following edge detecting tensor, which makes use of the
first derivatives of the image intensity in every direction:

DED(ρ) =
1

|∇ρ|2 + 2ε2


(
∂ρ

∂x2

)2

+ ε2 − ∂ρ

∂x1

∂ρ

∂x2

− ∂ρ

∂x1

∂ρ

∂x2

(
∂ρ

∂x1

)2

+ ε2

 , (3.14)

where ε is a small parameter to ensure regularity of the matrix. To see the effect of the tensor,
think of an image where ∂ρ

∂x2
is very large and ∂ρ

∂x1
is zero. We then obtain a tensor close to(

1 0
0 0

)
, which means that we only smooth in the x1-direction and not in the x2-direction. This

is exactly what was desired, since the edge is parallel to the x1-direction, because ∂ρ
∂x2

is large.
This does not only work for edges parallel to the axes of the image, but for edges in any direction.
In order to reduce the influence of noise, we could first convolve ρ with a Gaussian filter with
variance σ2

1 before applying the diffusion tensor.

Coherence enhancing diffusion tensor

Another option is the coherence enhancing diffusion tensor, proposed by Weickert [44]. This
diffusion tensor is based on the structure tensor, which is constructed as follows: first the density
ρ is smoothed by a Gaussian filter with variance σ2

1 to get a smoothed image ρσ1
. Then we take

the gradient of this density and compute the structure tensor

T0(∇ρσ1
) = ∇ρσ1

∇ρTσ1
=


(
∂ρσ1

∂x1

)2
∂ρσ1

∂x1

∂ρσ1

∂x2

∂ρσ1

∂x1

∂ρσ1

∂x2

(
∂ρσ1

∂x2

)2

 , (3.15)

When convolving the structure tensor component-wise with a different Gaussian filter with vari-
ance σ2

2 , we obtain the structure tensor

Tσ2
(ρσ1

) = (∇ρσ1
∇ρTσ1

)σ2
. (3.16)

From the structure tensor, we can extract the (orthonormal) eigenvectors and corresponding eigen-
values. The eigenvector w1 has a direction perpendicular to the edge direction and w2 is the
eigenvector parallel to the edge direction. The corresponding eigenvalues are denoted by µ1 and
µ2. Our desired diffusion tensor should have the property that it diffuses strongly in the direction
of w2 and very weakly in the direction of w1. Weickert [44] proposed to construct a diffusion
tensor DCE with the same eigenvectors as Tσ2(ρσ1) and with eigenvalues

λ1 = α,

λ2 =

{
α if µ1 = µ2,

α+ (1− α) exp
(

−1
(µ1−µ2)2

)
else.

(3.17)

Here 0 < α � 1 is a very small parameter that keeps DCE uniformly positive definite. We see
that smoothing in the direction of w1 is very small, as is desired. The strength of the smoothing in
the direction of w2 depends on the difference between µ1 and µ2: if the structure tensor Tσ2

(ρσ1
)

does not have a strong preference for one direction (µ1 ≈ µ2), we get roughly the same smoothing
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3 Optimal transport

in both directions. However, if a structure is clearly visible, Tσ2
(ρσ1

) will have a strong preference
for one direction and we get a very strong smoothing in the direction of w2. Note that α ≤ λ2 < 1.

One of the big advantages of using CCE is that we are free to choose our σ1 and σ2, depending on
our intensity ρ. The choice of σ1 should depend on the amount of noise in the image. The choice
of σ2 should scale with the size of the structures one would like to detect.

Quadratic form

In chapter 6 we will see that it is advantageous to write (3.13) in a quadratic form, such that we
can write it as an L2-norm of an operator working on v.

By calculating the leading principal minors of DED(ρ), we know that it is positive definite. More-
over, DCE(ρ) was constructed with strictly positive eigenvalues, so this tensor is also positive
definite. Therefore, we can find a unique Cholesky-factorisation D = UTU , where U is upper
triangular, and write the integral of (3.13) as

RA(v) =
1

2

2∑
i=1

‖U∇vi‖22 =
1

2

∥∥(U∇v1, U∇v2

)∥∥2

2
. (3.18)

where in the last term, there is no summation outside the norm anymore.

3.3 Analysis

3.3.1 Convexity of model 2

It can be shown that our minimisation problem is separately convex in (ρ,m) and v, that is: if
we fix v, it is convex in (ρ,m) and if we fix (ρ,m), it is convex in v. However, it is not convex in
all the variables, without fixing at least one of them. This means that if we find a minimiser, we
will not know if it is unique or if it is a global minimum. Because of this, we should be careful
with using (3.9) if we do not have a decent initial guess for the velocity.

3.3.2 Existence of a minimiser of model 2

In this section we will prove the existence of a minimiser of the isotropic variant of our second
model. In [21], a proof has been given with R(v) = ‖∇v‖2 as a regulariser. Here we will give a
proof for the second model with a rigidity regulariser.

Before we begin the proof, let us define the function spaces to which our variables (ρ,m, v) belong
to. Firstly, we will denote our space-time domain by Q = Ω × [0, 1]. Furthermore, we assume
that ρ is bounded in our complete domain by some bound M , therefore, we set ρ ∈ L∞(Q) and
assume ‖ρ‖L∞(Q) ≤M . Note that by this, we restrict ourself to the case that the density does not
compress infinitely much. However, when we are in a discretised setup, we will always have this
upper bound available, since the density in one pixel will not be higher than the complete density
in Ω. Now, for m, we see that it appears in a quadratic form in J(ρ,m); therefore it is natural to
set it in the space L2(Q)d, where d is the dimension of our problem. Finally, because of our choice
for R(v), we need ∇v to be bounded in the L2-norm. In principle, we do not need v to be bounded
in the L2-norm itself, since the regulariser only depends on the gradient of v. However, as will
become clear in the proof, the boundedness of v in L2 allows us to get convergence of the sequence
ρnvn to ρv, which will be needed. Therefore, we set v in the Bochner space L2(0, 1;H1(Ω)). By
writing our mass-conservation set in a weak form, we end up with the following set of constraints
for the variables in our minimisation problem:

U =
{

(ρ,m, v) ∈ L∞(Q)× L2(Q)d × L2(0, 1;H1(Ω))d : ‖ρ‖L∞(Q) ≤M,

∀φ ∈ C∞Ω (Q),

∫ 1

0

∫
Ω

ρ∂tφ+m · ∇φdxdt+

∫
Ω

ρ0(x)φ(x, 0)− ρ1(x)φ(x, 1) dx = 0
}
,
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3 Optimal transport

where C∞Ω (Q) := {φ ∈ C∞(Q) : φ|∂Ω×[0,1] = 0}. It can be seen that this set is non-empty, since
((1− t)ρ0 + tρ1,m, 0) with div(m) = ρ0 − ρ1 is an element of U . One can always construct such
an m by simply taking ∂ximi = (ρ0 − ρ1)/d and ∂xjmi = 0 for i 6= j. Therefore we have at least
one minimising sequence in U , which is needed for our proof.

Proposition 1. The problem

min
(ρ,m,v)∈U

∫ 1

0

∫
Ω

J(ρ,m) +
λ

2
|m− ρv|2 +

µ

2

∥∥(∇v + (∇v)T )/2
∥∥2

dxdt, (3.19)

with J(ρ,m) =


|m|2
2ρ if ρ > 0,

0 if (ρ,m) = (0, 0),

∞ otherwise,

and U defined as above, has at least a (local) minimiser.

The outline of the proof will be as follows:

1) We show that (3.19) is bounded from below and thus has a minimum.

2) Let (ρn,mn, vn) be a minimising sequence. We then find an upper bound for our (combination
of) variables. Having an upper bound, we use a corollary [4, Thm. 2.1.1] of the Banach-Alaoglu
Theorem [40, Thm. 3.15] to give us the existence of a limit (ρ,m, v) ∈ U in the weak or weak-∗

convergence of (ρn,mn, vn).

3) To proof that the functional working on our weak limit does give us the minimum, we need to
show that (3.19) is weakly lower semi-continuous. Moreover, we need to show that the limit of
a product of sequences is equal to the product of the limits of sequences for combinations of
variables in (3.19).

Proof.

1) We see that all the integrands in (3.19) are bounded from below by zero: the second and
third term are both norms and therefore by definition non-negative. For J(ρ,m), we only
have to check if it is positive for ρ > 0, which is readily obtained by using ‖ρ‖L∞(Q) ≤ M :
|m|2
2ρ ≥

|m|2
2M ≥ 0. So (3.19) has a minimum.

2) Now let (ρn,mn, vn) ∈ U be a minimising sequence. For J(ρ,m), we can make the transfor-
mation

w :=


m√
ρ if ρ > 0

0 if (ρ,m) = 0

∞ else.

The first term of (3.19) can now be rewritten∫ 1

0

∫
Ω

J(ρ,m) dxdt =
1

2
‖w‖2L2(Q) .

Looking at (3.19) and our constraint set U , it is natural to impose the following a priori bounds:
there exists a M,C ≥ 0 such that for all n ∈ N,

‖ρn‖L∞(Q) ≤M, ‖wn‖L2(Q) ≤ C, ‖vn‖L2(0,1;H1(Ω))d ≤ C, ‖mn − ρnvn‖L2(Q) ≤ C.

We will show that these a priori bounds are enough to obtain bounds for all variables in (3.19).
Firstly, we have∥∥(∇vn + (∇vn)T )/2

∥∥
L2(Q)d×d

≤ ‖∇vn‖L2(Q)d×d ≤ ‖vn‖L2(0,1;H1(Ω))d .
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3 Optimal transport

Furthermore, since wn is bounded in the L2-norm, we know that wn < ∞ a.e. Therefore, we
also know mn = wn

√
ρn a.e. Consequently, we have the bounds

‖mn‖L2(Q) ≤ ‖wn‖L2(Q) ‖
√
ρn‖L∞(Q) ≤ C

√
M,

and
‖ρnvn‖L2(Q) ≤ ‖mn‖L2(Q) + ‖mn − ρnvn‖L2(Q) ≤ C

√
M + C.

Left to show is the boundedness of the variables in the mass-conservation set. Obviously,
L2(0, 1;H1

0 (Ω))∩C∞Ω (Q) ⊂ C∞Ω (Q). By choosing a test function φ ∈ L2(0, 1;H1
0 (Ω))∩C∞Ω (Q)

for which φ(x, 0) = φ(x, 1) = 0, and using the definition of U , we see that the following holds:∫ 1

0

∫
Ω

ρn∂tφ+mn · ∇φ dx dt = 0.

Since the dual of L2(0, 1;H1
0 (Ω)) is L2(0, 1;H−1(Ω)) [11], we can derive a bound for both

div(m) and ∂tρ. Using integration by parts and applying Hölder’s inequality, we obtain∣∣∣∣∫ 1

0

∫
Ω

∂tρnφdx dt

∣∣∣∣ =

∣∣∣∣∫ 1

0

∫
Ω

−ρn∂tφ dxdt−
∫

Ω

ρ0(x)φ(x, 0) dx+

∫
Ω

ρ1(x)φ(x, 1) dx

∣∣∣∣
=

∣∣∣∣∫ 1

0

∫
Ω

mn · ∇φdxdt

∣∣∣∣ ≤ ‖mn‖L2(Q) ‖∇φ‖L2(Q) ,

∣∣∣∣∫ 1

0

∫
Ω

div(mn)φdx dt

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

∫
Ω

mn · ∇φdxdt

∣∣∣∣+

∣∣∣∣∫ 1

0

∫
∂Ω

(mn · n)φdsdt

∣∣∣∣
=

∣∣∣∣∫ 1

0

∫
Ω

mn · ∇φdxdt

∣∣∣∣ ≤ ‖mn‖L2(Q) ‖∇φ‖L2(Q) ,

where we have used that φ|∂Ω×[0,1] = 0. Using these inequalities and using the definition of
the norm, we obtain our bounds

‖∂tρn‖L2(0,1;H−1(Ω)) = sup
φ∈L2(0,1;H1(Ω))

‖φ‖=1

∣∣∣∣∫ 1

0

∫
Ω

∂tρnφ dx dt

∣∣∣∣
≤ ‖mn‖L2(Q) ‖∇φ‖L2(Q) ≤ ‖mn‖L2(Q) ≤ C,

‖div(m)‖L2(0,1;H−1(Ω)) = sup
φ∈L2(0,1;H1(Ω))

‖φ‖=1

∣∣∣∣∫ 1

0

∫
Ω

div(mn)φdxdt

∣∣∣∣
≤ ‖mn‖L2(Q) ‖∇φ‖L2(Q) ≤ ‖mn‖L2(Q) ≤ C.

Hence all the variables in (3.19) are bounded. Therefore, we can conclude that, up to the
extraction of a subsequence, there exists a (ρ,m, v) ∈ U such that

ρn ⇀ ρ in L∞(Q), mn ⇀m in L2(Q)d, vn ⇀ v in L2(0, 1;H1(Ω))d.

3) We will now show that the functional working on our weak limit gives us the minimum. There-
fore, we need to show that (3.19) is weakly lower semi-continuous. Moreover, we need to show
that wn

√
ρn ⇀ w

√
ρ in L2(Q)d and ρnvn ⇀ ρv in L2(Q)d.

The energy functional J(ρn,mn) is weakly lower semi-continuous for the convergence in L2(Q)×
L2(Q)d [5]. The regularisation term is the L2-norm of (∇vn + (∇vn)T )/2, which is bounded.
Since the L2-norm is always lower semi-continuous, we have weak lower semi-continuity for the
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3 Optimal transport

convergence of (∇vn + (∇vn)T )/2 in L2(Q)d×d. For the coupling term, we can use the same
reasoning, therefore we also have weak lower semi-continuity for the coupling term in L2(Q)d.

It now remains to prove weak convergence of wn
√
ρn to w

√
ρ and ρnvn to ρv in L2(Q)d. For

this, we make use of the Aubin-Lions lemma [31], which gives us the following result:

Because L∞(Ω) ⊂⊂ L2(Ω) and L2(Ω) ↪→ H−1(Ω) [18] and we have ∂tρn ∈ L2(0, 1;H−1(Ω)),
ρn ∈ L∞(0, 1;L∞(Ω)), by the Aubin-Lions lemma, we know ρn → ρ in L∞(0, 1;L2(Ω)).

Next we calculate

lim
n→∞

‖ρnvn − ρv‖L1(Q)d = lim
n→∞

∫ 1

0

∫
Ω

|vnρn − vρ|dxdt

≤ lim
n→∞

∫ 1

0

∫
Ω

|vn(ρn − ρ)|dx dt+ lim
n→∞

∫ 1

0

∫
Ω

|(vn − v)ρ|dxdt

≤ lim
n→∞

(
‖vn‖L2(Q) ‖ρn − ρ‖L2(Q)

)
+ 0

≤ C · 0 + 0 = 0,

where we made use of the weak convergence of vn, the boundedness of vn and the strong
convergence of ρn. Now since ρnvn → ρv in L1(Q)d and ρnvn has some weak limit in L2(Q)d,
it follows that the limits are the same and therefore ρnvn ⇀ ρv in L2(Q)d.

Noting that
√
ρn ∈ L2(Q), we can use the same reasoning for wn

√
ρn and find that

wn
√
ρn ⇀ w

√
ρ in L2(Q)d.

Remark 1. For minimisation problems with other regularisers, we can make a similar proof. In
fact, for some cases, we can even define a more general space in which v should belong:

� For R(v) = ‖∇v‖L2(Q)d , it has been shown that the space BL2
1(Ω) = {u ∈ D′(Ω) | Dαu ∈

L2(Ω) ∀|α| = 1} as part of the Bochner space L2(0, 1;BL2
1(Ω)), is restrictive enough. Here

D′(Ω) denotes the space of distributions, which is the dual of the test-function space D(Ω).

� For RD(v) = ‖div(v)‖L2(Q), the space W div,2(Ω) := {v ∈ L2(Ω)2 | div(v) ∈ L2(Ω)} as part

of the Bochner space L2(0, 1;W div,2(Ω)), is restrictive enough.

� For RA(v) = 1
2

∑2
i=1 ‖U∇vi‖

2
2, we need the same space as in our proof, L2(0, 1;H1(Ω))d.
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4 Segmentation

For our application of optimal transport to vascular structures, we do not expect flow everywhere.
We have parts of the image where density can flow through, such as a channel or blood vessel
and parts of the image which can be considered as background: areas where no or not much flow
is expected. If we would know the segmentation between channels and background, or between
different parts of the image, we could better give an estimate of the optimal transport.

A segmentation can be made based on image intensity (density), based on the flow or a combination
of the two. In many data sets, the edges of the flow coincide with the edges in image intensity.
See for instance the examples of haemoglobin microcirculation and the flow in a human brain in
section 2.2.

First we will give a short overview on well known methods for segmentation. Next we will give
some ideas on how we can incorporate a segmentation in our optimal transport models.

4.1 Overview of well known methods

Around the change of the century, some of the now best known segmentation methods have
been developed. These methods were developed for static images. Therefore, they aim to give a
segmentation based on image intensity and do not take any flow into account. It is important to
see that different methods have different goals. Roughly, we can divide them into two groups [4]:

� Methods that try to find a new image that resembles the original image. The new image
consists of several regions with (almost) constant intensity. Examples of these methods are
the Mumford-Shah method [32] and the Chan-Vese method [14], which can be seen as a
special case of the Mumford-Shah method.

� Methods that try to find a boundary that separates two or more regions or objects. Geodesic
active contours and level set methods are of this kind.

The model introduced by Mumford and Shah [32] is the following: Let Ω be a bounded open set,
let 0 ≤ f(x) ≤ 1 be the image intensity for x ∈ Ω a.e. Now we want to minimize

min
u,Γ

∫
Ω\Γ

(u(x)− f(x))2 dx+ α

∫
Ω\Γ
|∇u|2 dx+ β

∮
Γ

ds, (4.1)

where we search for a new image in the Sobolev space u ∈ W 1,2(Ω\Γ). The (smooth) contour is
represented by Γ and parametrised by s. α and β are nonnegative parameters which represent the
importance of the function u to be piecewise constant and the boundary Γ to be small, respectively.

Ambrosio and Tortorelli [1] proposed to not treat the boundary Γ in (4.1) in an explicit way, but
to define a function z which (lack of) strength represents the presence of a boundary. With their
method, one minimises the following sequence of functionals for ε→ 0 where 0 < ε� 1:

min
u,z

∫
Ω

(u(x)− f(x))2 dx+

∫
Ω

z(x)2|∇u|2 dx+

∫
Ω

(
ε|∇z|2 +

1

4ε
(z(x)− 1)2

)
dx. (4.2)

First of all, we see that we want to stay close to the original image f(x). Since ε � 1, the most
right part of (4.2) makes sure that z(x) ≈ 1 in most part of the image. Therefore, the second
term of (4.2) makes sure that u(x) is almost constant in each part of the image, except around the
boundary that we try to find. Finally, the third term makes sure that z(x) is ‘smooth enough’.
In [1] it is shown that for ε→ 0, we obtain the Mumford-Shah functional.
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The Chan-Vese method [14] is in fact a special case of the Mumford-Shah method, where we try
to find two regions of constant intensity µ1 and µ2 as a new segmented image. We minimize

min
χ,µ1,µ2

∫
Ω

χ(x)(µ1 − f(x))2 dx+

∫
Ω

(1− χ(x))(µ2 − f(x))2 dx+ βPer(χ) + γ

∫
Ω

χ(x) dx, (4.3)

where χ(x) ∈ {0, 1} for all x and Per(χ) is the notion of the perimeter of χ (or the length of
the boundary). Again β ≥ 0 is used to define the importance for the length of the boundary
to be small. Now we also have an option to set a penalty on the area within the contour, by
choosing γ ≥ 0. How to choose β and γ obviously depends on the image. When we think of our
vascularity examples, and we would like to segment vessels from the background, it makes sense
to not penalize the length of the boundary too much, since it is expected to be very large.

In the second class of segmentation methods, one is looking for a boundary, without specifying
what we see inside the different regions. By modelling the boundary by geodesic active contours,
one begins with an initial guess for the boundary, which will propagate over time as there are forces
that push and pull the boundary. Because of this flexible movement, geodesic active contours are
often called snakes. Kass et al. [24] proposed to minimise an energy, which takes the derivative,
as well as the curvature of the contour Γ into account. The main idea is to fit the contour to
points in the image where the gradient of the intensity is largest.

min
Γ
α

∫ 1

0

|Γ′(s)|2 ds+

∫ 1

0

|Γ′′(s)|2 ds−
∫ 1

0

|∇f(Γ(s))|ds, (4.4)

where s is the parametrisation of Γ.

Caselles et al. [10] showed that the curvature term in (4.4) is not necessary, since curvature is
already implicitly minimised by incorporating the derivative of the contour. The minimisation of
energy functionals like (4.4) is often done by iteratively minimising the separate parts that have
an influence on the total energy.

The idea behind the level-set method is the following: we regard the contour that we would like
to get, as the zero level-set of a function φ : Ω 7→ R. If we let the function φ(x, t) propagate in
time with a speed function that depends on the gradient of the image intensity |∇f(x)|, we see
that the zero level-set of this function also propagates. By choosing the speed function wisely,
we converge to a function where φ(x, t) = 0 gives us the desired segmentation. A more detailed
explanation can be found in [4].

4.2 Segmentation in optimal transport models

We have now shortly described a number of segmentation methods that can be used to make
segmentations in images. In the following we will assume that we have a segmentation a priori
available, and want to use this segmentation in order to get an improved good solution to our
optimal transport problem.

4.2.1 Binary segmentation

First we will describe how we can make use of a binary segmentation. We assume that our domain
Ω has a subset S, which is not necessarily connected. We only allow for transport in the subset
S, so transport in Ω\S is prohibited. If we think about it carefully, we see that this is actually
exactly the same minimisation problem as (3.9), where we replace our domain Ω by our new
subset S. Since we do not allow transport in Ω\S, we can impose the extra boundary condition
m · n|∂S\∂Ω = 0 on the part that is not on the boundary of our original domain Ω.

This segmentation can also be used when we expect very different transports in different segments
S1, S2, . . . , Sn of the image, but when it is not expected that density is transported from one
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segment to the other. As an example, think of several channels parallel to each other, in which
density is transported. We simply calculate the optimal transport for each segment separately
and combine our solutions.

4.2.2 Weak segmentation

When we do not have a precise description of the boundary of a segment, but do have a rough
idea where the transport is located, we might want to use a weak segmentation. That is, we can
replace our anisotropy matrix A in (3.9) by a scalar times the identity matrix, and we obtain for
J :

Jβ(ρ,m) =


β|m|2

2ρ if ρ > 0,

0 if (ρ,m) = (0, 0),

∞ otherwise,

(4.5)

where β is a function that depends on x. This means that the transport is more likely to take
place on locations where β(x) is small. Taking β(x)→∞, we obtain a binary segmentation for J .
Note that if we would like to get the same result as with a binary segmentation for the complete
functional, we also need to incorporate β(x) in K(ρ,m, v), R(v) and ιMC .

4.2.3 Anisotropy as segmentation

In section 4.2.2, we obtained a weak segmentation by replacing the matrix A in (3.9) by a scalar.
In the same spirit, we could try to construct an anisotropy matrix A such that we obtain a
segmentation that is implicitly contained in A.

Let us recall the coherence enhancing diffusion tensor DCE from section 3.2.2. We can use the
properties of this diffusion tensor to create a desired anisotropy matrix. We write

DCE =

(
d11 d12

d12 d22

)
,

where DCE is known to be symmetric [44]. Now we construct the anisotropy matrix

ACE =

(
1 + γ(1− d11) −γd12

−γd12 1 + γ(1− d22)

)
, (4.6)

where γ is a parameter which scales the ‘strength’ of the anisotropy. The matrix ACE is defined
like this because it has some nice properties: assume that we have a momentum m, which is
aligned with one of the eigenvalues (w1 or w2) of DCE . Without loss of generality, we assume m
has length 1, so it is exactly the same as one of the eigenvectors. If we calculate the values for
JACE (ρ, wi) of (3.7) and compare it to J(ρ, wi) of (3.6), we get

JACE (ρ, w1) = (1 + γ(1− α))
|w1|2

2ρ
=
(
1 + γ(1− α)

)
J(ρ, w1),

JACE (ρ, w2) =
(
1 + γ(1− λ2)

) |w2|2

2ρ
=
(
1 + γ(1− λ2)

)
J(ρ, w2),

where α was a very small parameter, as chosen in (3.17), and λ2 was the eigenvalue corresponding
to direction w2 along the structure edge. This shows that for a momentum in the direction of
the edge (w1), we get a cost that is approximately (1 + γ) as high as the isotropic cost. For a
momentum in the direction along the edge (w2), we get a cost that is

(
1 + γ(1− λ2)

)
as high as

the isotropic cost. When a structure is clearly visible, we have λ2 ≈ 1 and we thus get a cost that
is approximately the same as an isotropic cost. However, when a structure is not clearly visible,
the cost in this direction will also be higher.
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4 Segmentation

Using this anisotropy matrix, we do not only get that the transport in one direction is preferred
above the other direction, but also that moving through parts of the domain where there is a clear
vascular structure gives us a much lower cost than moving through parts of the domain where
no vascular structure is visible. This is very preferable in the first two examples given in chapter
2: when we do not see vascularity, we are probably in the background, and we do not expect
transport, and thus no momentum. When we do see vascularity, we expect a transport, and it is
therefore wise to reduce the cost in JAce .
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5 Joint segmentation and optimal transport

Since a segmentation is not always known beforehand, we would benefit from a model in which
the segmentation is carried out at the same time as the optimal transport. In this chapter we
propose a joint segmentation and optimal transport model.

As we have seen in section 2.2, many data sets contain images with only two segments: in the first
segment the flow is very different from the flow in the second segment, which might not contain
flow at all. Often, the movement within each segment is rather smooth, while it changes sharply
on the boundary of the segments. We describe a joint model for these kind of images. As explained
in chapter 4, a segmentation can be made on basis of a combination of properties, here we choose
to make a flow-driven segmentation, without taking the density into account.

We combine model 2 (3.9) with a Mumford-Shah like functional (section 4.1) to obtain a joint
model. The minimisation problem reads

min
(ρ,m,vin,vout,χ)

∫ 1

0

∫
Ω

JA(ρ,m) + ιMC(ρ,m) + µR(vin) + µR(vout)

+ λχK(ρ,m, vin) + λ(1− χ)K(ρ,m, vout) dx+ βPer(χ) dt (5.1)

where JA(ρ,m) =


mTAm

2ρ if ρ > 0,

0 if (ρ,m) = (0, 0),

∞ otherwise.

MC = {(ρ,m) | ∂tρ+ div(m) = 0, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1, m · n|∂Ω = 0, ρ ≥ 0},

K(ρ,m, v) =
1

2
|m− ρv|2,

and R(v) some convex regularisation functional.

where χ(x) ∈ {0, 1} and Per(χ) is the perimeter of χ. Just as in model 2, we now model
the optimal transport by minimising the energy functional JA(ρ,m) and projecting on the mass
conservation set MC. The difference from model 2 is that we now do not try to find a single
velocity v, but instead try to find two different velocities, vin and vout. Each velocity exists on the
complete domain Ω and will be regularised on the full domain. However, the coupling between
ρ, m and vin/out is only made whenever χ is zero or one respectively. This means that we will
obtain two smooth velocity fields that are both only close to m and ρ within each segment. The
desired velocity field is a combination of vin and vout:

v = χvin + (1− χ)vout.

The minimisation problem (5.1) is highly non-convex: not only do we have the non-convexity
that was already present in model 2, we also have to deal with the non-convexity of the binary
segmentation function χ. A solution to the latter problem is the convexification of the functions
χ and (1 − χ) to the convex functions z2 and (1 − z)2 respectively [13, 7, 19], where z ∈ [0, 1].
With this convexification, minimisation problem (5.1) changes to

min
(ρ,m,vin,vout,z)

∫ 1

0

∫
Ω

JA(ρ,m) + ιMC(ρ,m) + µR(vin) + µR(vout)

+ λz2K(ρ,m, vin) + λ(1− z)2K(ρ,m, vout) + βTV (z) dxdt, (5.2)

where we used the total variation (TV) of z to measure the length of the segmentation bound-
ary, since we are now working with a continuous function instead of a binary one. The final
segmentation is obtained by thresholding at z = 1

2 :

v(x) =

{
vin(x) if z(x) ≥ 1

2 ,

vout(x) if z(x) < 1
2 ,
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5 Joint segmentation and optimal transport

or equivalently
v = [z]vin + (1− [z])vout.

Because of the non-convexity of this joint model, it is not clear if we can find a minimum and
solve (5.2) properly.
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6 Numerical Framework

In chapters 3 and 5, we have derived the following models:

� Model 1: (an)isotropic optimal transport without regulariser.

� Model 2: (an)isotropic optimal transport with regulariser;

a. regularising the L2-deviation from divergence-free constraint;

b. regularising the L2-deviation from rigidity constraint;

c. L2 anisotropic regulariser in v1 and v2.

� Joint segmentation-optimal transport model.

These models will be implemented in a Modified Primal-Dual Hybrid Gradient algorithm (PDHGM)
[12], which is one algorithm among a class of primal-dual algorithms. In order to comprehend
what happens in these algorithms, we need to understand that up to now, we have been looking
at the primal minimisation problem. With the use of Fenchel duality [39], we can rewrite the
problem to its dual maximisation problem or its primal-dual minmax problem [17]. Primal-dual
algorithms are designed to solve the latter, which are very common in variational methods. For
more information about the connection between different primal-dual algorithms which make use
of the duality of minimisation problems, we refer to [17].

A key tool for the use of primal-dual algorithms is the so called proximal splitting method [37].
The idea of the proximal splitting method is very similar to the gradient descent method, which
is often used for solving smooth convex minimisation problems. In the gradient descent method,
small steps are taken iteratively. These steps are in the direction where the directional derivative
of the functional to be minimised is largest; doing so leads to the global minimum, since we have
convexity. When the minimisation problem is non-smooth, one could make use of the proximal
splitting method. Similar to gradient descent, small steps are taken iteratively to find a minimum.
However, instead of using the gradient to search for the direction in which the descent is largest,
the algorithm is looking for a new point that gives a small value for the functional, but is also
very close to the current point. The proximal operator for a scaled functional τF (x) is defined as

ProxτF (x) = argmin
y

{
1

2
‖x− y‖22 + τF (y)

}
. (6.1)

We see that (6.1) is searching for a small value of τF (y), while keeping y close to x. The right hand
side consists of a strongly convex quadratic part and a convex functional τF (y). Therefore, the
right hand side of (6.1) is always strongly convex and it thus has a unique solution. Unfortunately,
there is no general way of expressing the proximal operator explicitly. Sometimes an explicit
expression for the proximal operator does not even exist. This is because there is no general way
of solving this minimisation problem, without knowing more details about the structure of F (x).
But, if we assume F (x) is strictly convex, C2 in the whole domain and all the second derivatives of
F (x) are bounded, we can make an approximation, which is the same as one step in the gradient
descent method:

ProxτF (x) ≈ x− τ∇F (x).

In chapter 6.3, we will see that not only the proximal operators for our functionals defined in
chapter 3 are needed, but also the proximal operators of their complex conjugates. Making use
of Moreau’s decomposition [37], it can be seen that these are calculated easily if the ‘normal’
proximal operators are known:

ProxτF∗(x) = x− τProxF/τ

(x
τ

)
. (6.2)

We will find explicit solutions for all our functionals in section 6.1, which enables us to implement
an efficient algorithm for our problem.
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In the remainder of this chapter, we will first derive the proximal operators for models 1 and
2. Next, the operators needed in the regularisation functional of model 2 and their adjoints will
be defined. Then, we will give the implementation of our two models in PDHGM, along with
its discretisation scheme. After that, we will show the numerical convergence of our algorithms.
Finally, the numerical framework for our joint model will be given.

6.1 Proximal operators for models 1 & 2

In order to implement our models in PDHGM, proximal operators for our functionals have to
be derived. We will begin with the derivation of the proximal operators needed for model 1.
After this, we will derive the proximal operators of model 2 that differ from the already defined
operators.

6.1.1 Proximal operators for model 1

We begin by looking at the proximal operator of the indicator function ιMC . We obtain the
projection operator on the set MC in closed form [36]:

ProxτιMC (ρ̃, m̃) = ProjMC(ρ̃, m̃)

= (Id−B∗(BB∗)−1B)(ρ̃, m̃) +B∗(BB∗)−1(0, b0), (6.3)

where B(ρ̃, m̃) =
(
∂tρ̃+ div(m̃), b(ρ̃, m̃)

)
.

Here b is the operator which takes the boundary conditions from our space-time domain Ω× [0, 1].
b0 = (ρ0, ρ1,m(∂Ω)) = (ρ0, ρ1, 0) in case inflow or outflow is prohibited. In case inflow or outflow
is allowed, we cannot simply omit the term m(∂Ω) = 0 without extending or altering the rest
of the projection step: only ∂tρ + div(m) = 0 is not enough to guarantee that the total density∫

Ω
ρ(x, t) dx stays the same at every time. In practice, it is easiest to simply scale the result after

our projection step (6.3). This scaling can also be done when ρ0 6= ρ1; we then assume the inflow
or outflow is linear in time between the initial and final density. Using this extra operation after
the projection step, we obtain:{

(ρ̂, m̂) = ProjMC(ρ̃, m̃),

(ρ(·, t),m(·, t)) =
( ∫

Ω
(1−t)ρ0+tρ1 dx∫
Ω

(ρ̂(x,t)) dx

)
(ρ̂(·, t), m̂(·, t)).

(6.4)

Note that after this scaling operation, it is not guaranteed to have ∂tρ + div(m) = 0, since the
scaling is different for every t. In practice, when the time-discretisation is chosen fine enough and
when the step size τ of the algorithm is chosen small enough, this does not give any problems.

The projection operator (6.3) consists of applying forward operators B and B∗, along with the
inverse operator (BB∗)−1. We will now elaborate on how to apply this inverse operator. We first
write u = (m, ρ) as one couple for the two variables. We obtain the shorter notation div(u) =
∂tρ+div(m), where the first divergence is taken in the space Q = Ω× [0, 1]. For the sake of clarity,
we will not bother about the second part of the operator B now, and simply write Bu = div(u).

Projection when inflow/outflow is prohibited

In case inflow or outflow is prohibited, we have the following adjoint:

for g ∈ G1 := {ĝ ∈ (W 1,2(Q))2| ĝ · n = 0 on ∂Q} and h ∈W 1,2(Q),

〈Bg, h〉 =

∫
Q

div(g)hdQ = −
∫
Q

g · (∇h) dQ+

∫
∂Q

h(g · n) ds

= −
∫
Q

g · (∇h) dQ = 〈g,B∗h〉.
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From which it follows that B = div and B∗ = ∇. We rewrite (6.3) to

ProjMC(u) = u−B∗y +B∗(BB∗)−1(0, b0),

where y = (BB∗)−1Bu. (6.5)

The last line of (6.5) rewrites to

BB∗y = Bu. (6.6)

In order to apply the operator B on B∗y = ∇y, we need ∇y ∈ G1, which means ∂y
∂n = 0 on ∂Q.

This means that for applying (BB∗)−1, we need to solve the following Poisson equation for y:{
∆y = div(u) in Q
∂y
∂n = 0 on ∂Q.

(6.7)

On a rectangular domain, this Poisson equation can be solved by using the discrete cosine trans-
form [41]. It should be noted that since B works on functions in the space G1, there is a restriction
on what u can look like: on the right side of (6.6), B is applied on u, which means that u·n|∂Q = 0,
which means that inflow or outflow is prohibited. Because of this, different boundary conditions
are needed for the case in which inflow or outflow is allowed.

Projection when inflow/outflow is allowed

In case inflow or outflow is allowed, we follow a similar reasoning to obtain the boundary conditions
for the Poisson equation:

for g ∈ G2 := {ĝ ∈ (W 1,2(Q))2| ĝ · n = 0 on Ω× 0 ∪ Ω× 1}

and h ∈ H2 := {ĥ ∈W 1,2(Q)| ĥ = 0 on ∂Ω× [0, 1]},

〈Bg, h〉 =

∫
Q

div(g)hdQ = −
∫
Q

g · (∇h) dQ+

∫
∂Q

h(g · n) ds

=−
∫
Q

g · (∇h) dQ = 〈g,B∗h〉,

so now also B = div and B∗ = ∇. Again we will solve

BB∗y = Bu. (6.8)

First the operator B∗ is applied on y, which means y = 0 on ∂Ω×[0, 1], since y ∈ H2. Furthermore,
in order to apply the operator B on B∗y = ∇y, we need ∇y ∈ G2, which means ∂y

∂n = 0 on
Ω× 0 ∪ Ω× 1. The Poisson equation to be solved for y now becomes

∆y = div(u) in Q
∂y
∂n = 0 on Ω× 0 ∪ Ω× 1,

y = 0 on ∂Ω× [0, 1].

(6.9)

In a rectangular domain, this Poisson equation can be solved by using a combination of discrete
sine transforms in the space dimensions and a discrete cosine transform in the time dimension
[41].

In [36], the following closed form for the proximal operator of J(ρ,m) has been derived:

ProxτJ(ρ̃, m̃) =

{(
ρ, ρm̃ρ+τ

)
if ρ > 0,

(0, 0) else,
(6.10)
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where ρ is the largest real root of the third order polynomial

P (ρ̂) = ρ̂3 + (2τ − ρ̃)ρ̂2 + (τ2 − 2ρ̃τ)ρ̂− τ
( |m̃|2

2
+ τ ρ̃

)
. (6.11)

It is easily seen that (ρ,m) = (0, 0) is always a solution to (6.10), so the constraint ρ ≥ 0 is always
satisfied.

For the anisotropic variant of model 1, we only have to derive the proximal operator for JA, since
the projection on the mass conservation set stays the same. Similarly to [36], a closed form for
ProxτJA has been derived in [21]:

ProxτJA(ρ̃, m̃) =

{(
ρ, f(ρ)

)
if ρ > 0,

(0, 0) else,
(6.12)

where f(ρ) =
(
ρ Id2 +

τ

2
(A+AT )

)−1
ρm̃,

and where ρ is the largest real solution to the fifth order polynomial

P (ρ̂) = (ρ̂− ρ̃)− τ

2
m̃T (ρ̂ Id2 +

τ

2
(A+AT ))−1A(ρ̂ Id2 +

τ

2
(A+AT ))−1m̃. (6.13)

6.1.2 Operators for model 2: Optimal transport with regulariser

In section 3.2, we introduced a coupling term K(ρ,m, v) when using regularisers. Because the
complete minimisation problem is not convex in all variables, the minimisation problem is split
up in order to obtain a solution. We can perform a block coordinate descent and minimize each
convex problem alternatively [43]. Using this method, we will find a local minimum of the joint
problem [21]. This gives us the alternating minimisation method, also known as the Gauss-Seidel
method [2]: 

(ρk+1,mk+1) = argmin
(ρ,m)

{
J (ρ,m) + λK(ρ,m, vk)

}
,

vk+1 = argmin
v

{
λK(ρk+1,mk+1, v) + µR(v)

}
.

(6.14)

For readability, we will from now on write K(ρ,m) and K(v) for the coupling term, since vk,
respectively (ρk+1,mk+1) are fixed, within each minimisation problem. For the first minimisation,
we will define a joint proximal operator for J or JA, and K. Following the same reasoning as in
[36] and [21], we can write the proximal operator for (J +λK) as an explicit pointwise expression,
where we have to solve a third order polynomial.

Proof. Let us define

(ρ,m) = Proxτ(J+K)(ρ̃, m̃) = argmin
(ρ̂,m̂)

{
1

2
‖(ρ̃, m̃)− (ρ̂, m̂)‖22 + τ

(
J(ρ̂, m̂) + λK(ρ̂, m̂)

)}
.

If ρ = 0, we immediately see that m = 0, since m 6= 0 would lead to a value of infinity. If ρ > 0,
we have that (J + λK) is C1 and strictly convex. Therefore we know

0 = ∇
{

1

2
‖(ρ̃, m̃)− (ρ,m)‖22 + τ

(
J(ρ,m) + λK(ρ,m)

)}
= (ρ,m)− (ρ̃, m̃) + τ∇J(ρ,m) + τλ∇K(ρ,m).
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Working out these equations, leads to the following pointwise expression:

Proxτ(J+K)(ρ̃, m̃) =

{(
ρ, ρm̃+2λτρ2v

ρ+τ+2λτρ

)
if ρ > 0,

(0, 0) else,
(6.15)

where ρ is the largest real solution to the third order polynomial

P (ρ̂) = aρ̂3 + bρ̂2 + cρ̂+ d, (6.16)

where a = 1 + 4τλ
(
1 +

1

2
|v|2
)

+ 4τ2λ2
(
1 + |v|2

)
,

b = 2τ − ρ̃+ 4τ2λ− 4τλρ̃− 4τ2λ2ρ̃− 2τλm̃T v − 4τ2λ2m̃T v + 4τ2λ|v|2 + 2τ3λ2|v|2,
c = τ

(
τ − 2ρ̃− 4τλ(ρ̃+ m̃T v) + 2τ2λ|v|2

)
,

d = −τ
2

(
|m̃|2 + 2τ ρ̃

)
.

We see that for λ = 0, (6.15) and (6.16) reduce to (6.10) and (6.11) respectively.

The proximal operator for JA + λK is derived analogously and writes

Proxτ(JA+K)(ρ̃, m̃) =

{(
ρ, f(ρ)

)
if ρ > 0,

(0, 0) else,
(6.17)

where f(ρ) =
(
(ρ+ 2λτρ) Id2 +

τ

2
(A+AT )

)−1
(ρm̃+ 2λτρ2v)

and where ρ is the largest real solution to the fifth order polynomial

P (ρ̂) = 2ρ̂(ρ̃− ρ̂) + τzTB−1(ρ̂A)B−1z + 2λτvTB−1z − 2λτ |v|2, (6.18)

where B =
(
(ρ̂+ 2λτρ̂)Id2 +

τ

2
(A+AT )

)
,

and z = (m̃+ 2λτρ̂v).

For the second minimisation of (6.14), we still need to define the proximal operators. We can
write the proximal operator for λK(v) = λ

2 |m− ρv|
2 explicitly: we define

v = ProxτK(ṽ) = argmin
v̂

{
1

2
‖ṽ − v̂‖22 + τλK(v̂)

}
.

Since K(v) is strictly convex (for ρ > 0) and C1, we have

0 = ∇
{

1

2
‖ṽ − v‖22 + τλK(v)

}
= v − ṽ + τλ

∂K

∂v
= v − ṽ − τλρ(m− ρv),

⇒ v = ProxτK(ṽ) =
ṽ + τλρm

1 + τλρ2
. (6.19)

In section 3.2.1 and 3.2.2, we have defined several regularisers that were all an L2-penalisation of
some kind. We will calculate the proximal operator for general µR(w) = µ

2 ‖w‖
2
2, where w = Hv,

H being the operator working on v. In section 6.2, we will recall the different operators H and
calculate their inverses, in order to use it in the PDHGM algorithm. In a similar way to (6.19),
we obtain

w = ProxτR(w̃) =
w̃

1 + τµ
. (6.20)
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6.2 Adjoint operators in regulariser

In section 3.2.1 and 3.2.2 we have derived several regularisers, of which we can write the part inside
the pointwise L2-norm as an operator working on v. Here we will state the operators and their
adjoints. For our derivation, we refer to Appendix B. Again, we will assume that Ω ⊂ R2. In this
section, we will make use of W 1,2(Ω), the Sobolev space which contains all functions such that all
partial derivatives of order 0 and 1, belong to L2(Ω). When the functions have compact support
in Ω, we write W 1,2

0 (Ω). Furthermore, we use W div,2(Ω) := {v ∈ L2(Ω)2 | div(v) ∈ L2(Ω)}, the
space that contains all functions of which its divergence belongs to L2(Ω).

divergence

For v ∈ L2(0, 1;W div,2(Ω)) with v · n|∂Ω = 0,

and w ∈ L2(0, 1;W 1,2(Ω)),

we have the adjoint operators

H
D
v = div(v), H∗

D
w = −∇w. (6.21)

rigidity

For v = (v1, v2) ∈ L2(0, 1; (W 1,2
0 (Ω))2),

and w =

(
w1 w2

w3 w4

)
,

we have the adjoint operators

H
R
v =
∇v + (∇v)T

2
,

H∗
R
w = −1

2

(
div

(
2w1

w2 + w3

)
,div

(
w2 + w3

2w4

))
. (6.22)

anisotropic

For v = (v1, v2) ∈ L2(0, 1; (W 1,2
0 (Ω))2),

and w = (w1, w2, w3, w4),

we have the adjoint operators

H
A
v = (U∇v1, U∇v2),

H∗
A
w = −

(
div

(
U1w1 + U3w2

U2w1 + U4w2

)
,div

(
U1w3 + U3w4

U2w3 + U4w4

))
, (6.23)

where U =

(
U1 U2

U3 U4

)
. If we make a Cholesky factorisation as proposed in section 3.2.2, U3 will

become zero.

Note that we defined v to belong to spaces in which it is also square integrable in Ω: v ∈ L2(Ω),
although this is not necessarily needed, since v only appears in the coupling term K(ρ,m, v) or in
combination with a gradient or divergence. However, this does give us some extra control on v,
and therefore it was easier to prove the existence of a minimiser of our second model, as we have
seen in section 3.3.
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6.3 Implementation of models 1 & 2 via PDHGM

In this section, we will consider the implementation of our models in the Modified Primal-Dual
Hybrid Gradient algorithm (PDHGM) as proposed by Chambolle and Pock [?, 12]. We choose
to use this algorithm, because in many minimisation problems, it shows fast convergence. More
specifically, Papadakis et al. showed in [36] that for problem (3.6), out of the four algorithms they
tested, PDHGM showed the fastest convergence, both in the energy functional J (ρ,m) and in the
variables ρ and m.

With the use of our proximal operators and the operators working on v, we can implement our
model in PDHGM. For model 1 (3.6), no regularisation is required, so only one minimisation
problem has to be solved. This gives us algorithm 1 as shown below. However, for model 2
(3.9), a regularisation is desired and we alternately need to solve two ‘inner’ minimisation problems
(6.14). In the same spirit of the proximal Gauss-Seidel method [3, 2], we propose to alternately do
one iteration of each inner PDHGM algorithm, instead of iteratively finding the solution to each of
the inner problems. This way, we hope to find a solution to the joint problem quicker, since we do
not have to solve the inner problem to small precision every time. This implementation gives us
algorithm 2, as shown below. For better readability, we have written the couple u = (ρ,m) as a
single variable in our algorithms. Moreover, we only state the algorithms for our isotropic optimal
transport models with J as an energy functional; the implementation for anisotropic models can be
obtained by simply replacing ProxτJ and Proxτ(J+K) by ProxτJA and Proxτ(JA+K) respectively.

algorithm 1: we search for u := (ρ,m) that minimises (3.6).

� Initialise by choosing τ , σ > 0 such that τσ < 1.
� Choose θ ∈ [0, 1].
� Choose initial values u0,q0 and set ū0 = u0.
� Update as follows: 

qk+1 = Proxσι∗MC (qk + σūk),

uk+1 = ProxτJ(uk − τqk+1),

ūk+1 = uk+1 + θ(uk+1 − uk),

(6.24)

algorithm 2: we search for u := (ρ,m) and v that minimises (3.9).

� Initialise by choosing τ1, τ2, σ1, σ2 > 0 such that τ1σ1 < 1 and τ2σ2 < ‖H‖2.
� Choose θ1, θ2 ∈ [0, 1].
� Choose initial values u0,q0,v0,w0 and set ū0 = u0, v̄0 = v0.
� Update as follows:


qk+1 = Proxσ1ι∗MC

(qk + σ1ū
k),

uk+1 = Proxτ1(J+K)(u
k − τ1qk+1),

ūk+1 = uk+1 + θ1(uk+1 − uk),


wk+1 = Proxσ2R∗(w

k + σ2Hv̄
k),

vk+1 = Proxτ2K(vk − τ2H∗wk+1),

v̄k+1 = vk+1 + θ2(vk+1 − vk).

(6.25)

Note that there is no operator working on u and q, since we did not need one in our first model.
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6.3.1 Numerical discretisation

Before these algorithms can be used, we first need to define a discretisation. We will first define
the discretisation for algorithm 1 and the first part of algorithm 2. To keep notation simple, we
assume our space domain Ω to have a rectangular shape. For other shapes, consisting of multiple
rectangular subdomains, the derivation is similar.

From section 6.1, we know that pointwise explicit expressions for ProxτJ and Proxτ1(J+K) exist.
In order to do (discrete) pointwise calculations, we need ρ and m to be defined on the same
grid. Therefore, we define the following variables on a centred grid discretising our space-time box
Ω× [0, 1]:

m1,c,ijk := m1(x1 = i
N , x2 = j

P , t = l
Q ), 0 ≤ i ≤ N, 0 ≤ j ≤ P, 0 ≤ l ≤ Q,

m2,c,ijk := m2(x1 = i
N , x2 = j

P , t = l
Q ), 0 ≤ i ≤ N, 0 ≤ j ≤ P, 0 ≤ l ≤ Q,

ρc,ijk := ρ(x1 = i
N , x2 = j

P , t = l
Q ), 0 ≤ i ≤ N, 0 ≤ j ≤ P, 0 ≤ l ≤ Q,

where we use c to denote the centred grid and where N,P and Q are the amount of discrete points
in each direction of the domain.

For the projection step ProxτιMC , we recall from (6.3), that one first has to solve a Poisson
equation. In order to solve this equation, we need the variables ∂tρ and div(m) to be defined on
the same centred grid. Therefore, we also define variables on a staggered grid:

m1,s,ijk := m1(x1 = i−1/2
N , x2 = j

P , t = l
Q ), 0 ≤ i ≤ N + 1, 0 ≤ j ≤ P, 0 ≤ l ≤ Q,

m2,s,ijk := m2(x1 = i
N , x2 = j−1/2

P , t = l
Q ), 0 ≤ i ≤ N, 0 ≤ j ≤ P + 1, 0 ≤ l ≤ Q,

ρs,ijk := ρ(x1 = i
N , x2 = j

P , t = l−1/2
Q ), 0 ≤ i ≤ N, 0 ≤ j ≤ P, 0 ≤ l ≤ Q+ 1,

where we use s to denote the staggered grid. The divergence and gradient operators in the
projection operator (6.3) are applied with a centred difference scheme, in order to go from the
staggered grid to a centred grid, after which the Poisson equation is solved and to go to a staggered
grid again.

Since we use a staggered grid in the first step of algorithm 1 and a centred grid in the second step,
we make use of interpolation operators Ic and Is:

Ic :(m1,c,m2,c, ρc) 7→ (m1,s,m2,s, ρs),

where m1,s,1jk = m1,c,1jk,

m1,s,ijk =
m1,c,(i−1)jk +m1,c,ijk

2
for 2 ≤ i ≤ N

m1,s,(N+1)jk = m1,c,Njk.

The interpolation for m2 and ρ from a centred to a staggered grid is analogous.

Is :(m1,s,m2,s, ρs) 7→ (m1,c,m2,c, ρc),

where m1,c,ijk =
m1,s,ijk +m1,s,(i+1)jk

2
for 1 ≤ i ≤ N.

The interpolation for m2 and ρ from a staggered to a centred grid is analogous.

For the proximal operator ProxτK , a pointwise explicit expression (section 6.1) is available. Since
the expression is a combination of the variables ρ, m and v, we make use of a centred grid, so they
are defined on the same points:

v1,c,ijk := v1(x1 = i
N , x2 = j

P , t = l
Q ), 0 ≤ i ≤ N, 0 ≤ j ≤ P, 0 ≤ l ≤ Q,

v2,c,ijk := v2(x1 = i
N , x2 = j

P , t = l
Q ), 0 ≤ i ≤ N, 0 ≤ j ≤ P, 0 ≤ l ≤ Q.
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Checkerboard instabilities are well known in computational fluid dynamics [42, page 314]. These
instabilities occur when one takes a central discretisation when applying a difference operator.
One of the solutions for checkerboard instabilities is to use staggered discretisation schemes, as
we did for the projection operator. Another solution is to use a forward difference scheme for the
difference operators and a backward difference scheme for the adjoint operators. Here we will do
the latter. For the divergence operator, the discrete operator DIV reads

DIV(v)ijk =
v1,c,(i+1)jk − v1,c,ijk

h1
+
v2,c,i(j+1)k − v2,c,ijk

h2
for i 6= N, j 6= P,

DIV(v)Njk =
v2,c,N(j+1)k − v2,c,Njk

h2
for j 6= P,

DIV(v)iPk =
v1,c,(i+1)Pk − v1,c,iPk

h1
for i 6= N,

DIV(v)NPk = 0.

where h1 and h2 are the sizes between two consecutive points in x1- and x2-direction respectively.
Here we used zero padding at the boundaries at i = N and j = P . For the adjoint operator to
be defined properly, we need backward differences with zero padding at i = 1 and j = 1. The
other operators are implemented with similar forward differences and backward differences for
their adjoints.

6.3.2 Numerical convergence

In this section, we will show the numerical convergence of both algorithms. In Figure 9 the
convergence plots have been shown for algorithm 1 and 2. The data set that was used to create
these convergence results is the synthetic data set that shows flow in a channel, as explained in
section 7.1.

The top convergence plots correspond to the result in Figure 12b. The bottom convergence plots
correspond to Figure 12e, in which a rigidity regulariser was applied.

In the top left we see that all the primal and dual variables are self-convergent. Moreover, in
the top right we see that the energy functional J(ρ,m) converges to a value around 240. In the
bottom left, we see that all the variables in algorithm 2 are self-convergent, similar to the top left.
In the bottom right however, we see a convergence plot that is very different from the top right:
first the energy functional J(ρ,m) and the regulariser R(v) are getting lower in value, while the
coupling K(ρ,m, v) is increasing. After some iterations, the value of the coupling is decreasing,
followed by an increase of the energy functional and later the regulariser. Finally, at about 1000
iterations, an equilibrium is found, and the result is stable. In the total energy we also first see
a decrease, followed by an increase and finally a stable value. This result is probably due to the
rather weak coupling between the first and the second part of algorithm 2. Both parts are only
coupled by an the term 1

2 |m − ρv|
2, which as an L2-norm is much weaker than for instance the

projection on the set {m = ρv}. The L2-norm first leaves some room for the energy functional
and regulariser to deviate from a joint solution, after which a joint stable point is found.

32



6 Numerical Framework

(a)

(b)

102 103 104

iterations

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

|ρk+1-ρk|
2
/|ρk+1|

2

|mk+1-mk|
2
/|mk+1|

2

|qk+1-qk|
2
/|qk+1|

2

101 102 103 104

iterations

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

|ρk+1-ρk|
2
/|ρk+1|

2

|mk+1-mk|
2
/|mk+1|

2

|qk+1-qk|
2
/|qk+1|

2

|vk+1-vk|
2
/|vk+1|

2

|wk+1-wk|
2
/|wk+1|

2

102 103 104

iterations

245

250

255

260

265 J(ρ,m)

101 102 103 104

iterations

400

600

800

1000

1200

1400

1600

J(ρk,mk)

λK(ρk,mk,vk)

µR(vk)

(J+λK+µR)(ρk,mk,vk)

Figure 9: Convergence plot of the variables left and plot of the different parts of the minimisation
functional right: (a) model 1 with σ = 45, τ = 0.02; (b) model 2 with rigidity regulariser, λ = 10,
µ = 10−4, σ1 = 45, τ1 = 0.02, σ2 = 4.5 · 10−4, τ2 = 0.01.
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6.4 Implementation of joint model

In order to implement (5.2), the alternating minimisation scheme (6.14) is changed to calculate
two velocities, and extended with an extra step in which the value for z is calculated:

(ρk+1,mk+1) = argmin
(ρ,m)

{∫ 1

0

∫
Ω

JA(ρ,m) + ιMC(ρ,m) + λK(ρ,m, vk)
}
,

vk+1
in = argmin

vin

{∫ 1

0

∫
Ω

λ(zk)2K(ρk+1,mk+1, vin) + µR(vin) dxdt
}
,

vk+1
out = argmin

vout

{∫ 1

0

∫
Ω

λ(1− zk)2K(ρk+1,mk+1, vout) + µR(vout) dxdt
}
,

zk+1 = argmin
z

{∫ 1

0

∫
Ω

λz2K(ρk+1,mk+1, vk+1
in )

+λ(1− z)2K(ρk+1,mk+1, vk+1
out ) + βTV (z) dxdt

}
,

vk+1 = [zk+1]vk+1
in + (1− [zk+1])vk+1

out .

(6.26)

It should be noted that it is not clear if we can expect to get a decent solution by using four
alternating minimisation steps that use each others output variables as input variables. Before
we can state the algorithm that we will use to try to solve the joint model, we need to define the
proximal operators for the fourth step of (6.26). Therefore, we look at the definition of the total
variation:

TV (z) = sup
g∈C1

0 (Ω)
‖g‖∞≤1

〈z,div(g)〉. (6.27)

We write H
D
g = div(g) as an operator working on g ∈ C1

0 (Ω) and define

G(z) = z2(λK(vin)) + (1− z)2(λK(vout)), (6.28)

where K(vin/out) is a shorter notation for K(ρ,m, vin/out). Rewriting the fourth equation of (6.26)
yields the following saddle-point problem:

min
z

{∫ 1

0

∫
Ω

λz2K(vk+1
in ) + λ(1− z)2K(vk+1

out ) + βTV (z) dxdt
}

2

= min
z

{∫ 1

0

∫
Ω

G(z) + β sup
‖g‖∞≤1

〈z,H
D
g〉dx dt

}
= min

z
max
g

{
β〈z,H

D
g〉+G(z)− F ∗(g)

}
, (6.29)

where F ∗(g) =

{
0 if g ∈ P,
∞ else,

and P = {g : ‖g‖∞ ≤ 1}.
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Once the proximal operators for G(z) and F ∗(g) are known, saddle-point problem (6.29) can be
directly implemented in PDHGM [12]. We calculate

z = ProxτG(z̃) = argmin
ẑ

{
1

2
‖z̃ − ẑ‖2 + τG(ẑ)

}
= argmin

ẑ

{
1

2
‖z̃ − ẑ‖2 + τ

(
ẑ2λK(vin) + (1− ẑ)2λK(vout)

)}
⇒ 0 = (z − z̃) + τ (2zλK(vin) + 2(z − 1)λK(vout))

⇒ z =
z̃ + 2τλK(vout)

1 + 2τλ(K(vin) +K(vout))
,

g = ProxτF∗(g̃) = ProjP (g̃) =
g

max{1, ‖g‖∞}
. (6.30)

In algorithm 3 the algorithm for the joint model is shown.

algorithm 3: we search for u := (ρ,m), v and z that minimises (5.2).

� Initialise by choosing τ1, τ2, τ2, σ1, σ2, σ3 > 0 such that τ1σ1 < 1, τ2σ2 <
‖H‖2 and τ3σ3 < ‖HD‖

2
.

� Choose θ1, θ2, θ3 ∈ [0, 1].
� Choose initial values for all variables.
� Update as follows:


qk+1 = Proxσ1ι∗MC

(qk + σ1ū
k),

uk+1 = Proxτ1(J+K)(u
k − τ1qk+1),

ūk+1 = uk+1 + θ1(uk+1 − uk),


wk+1 = Proxσ2R∗(w

k + σ2Hv̄
k
in/out),

vk+1
in/out = Proxτ2K(vkin/out − τ2H

∗wk+1),

v̄k+1
in/out = vk+1

in/out + θ2(vk+1
in/out − v

k
in/out).

gk+1 = Proxσ3F∗(g
k + σ3HD z̄

k),

zk+1 = Proxτ3G(zk − τ3H∗Dg
k+1),

z̄k+1 = zk+1 + θ3(zk+1 − zk).

vk+1 = [zk+1]vk+1
in + (1− [zk+1])vk+1

out .

(6.31)

In this algorithm, Proxτ2K(vin/out) has been altered to include the terms z2 and (1− z)2 respec-
tively.
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7 Results and discussion

In this chapter, we will show and discuss the results of both optimal transport models applied
on several data sets. We will first consider two synthetic data sets, with the advantage that
we do not have any noise on the images and that a ground truth transport is available. Next
we will consider the three realistic data sets as shown and explained in section 2.2. All data
sets contain two-dimensional rectangular images. Finally, we show and discuss the results of
applying our joint model on one of the synthetic data sets. Throughout this chapter, parameters
are chosen such that we visually obtained the best result. All the variables, except ρ, have an
initial value of 0. For the initial density ρ an interpolation in time between ρ0 and ρ1 was taken:
ρ(x, t) = (1− t)ρ0(x) + tρ1(x).

7.1 Synthetic data

We have created two synthetic data sets, which are a simplification of the realistic data that we
expect to handle with our two models. In the first data set, we wish to model the transport
of two distinct objects within the image, where transport through the boundary of the image is
prohibited. In the second data set, we wish to model the transport of density in a channel-like
structure, where transport through the boundary of the image is allowed.

7.1.1 Moving Gaussians

The initial image of the first data set consists of two Gaussians; one in the top and one in the
bottom of the image domain. The final image contains these exact same Gaussians, but now
rotated by almost 90 degrees. In Figure 10, we see the resulting interpolation of the densities at
several points in time. In the first row, model 1 is used, since no regulariser was applied. In the
second and third row, model 2 with an incompressibility respectively rigidity regulariser is used.
The goal for this data set is to see the effect of the regulariser on the transport. To obtain good
results, 31 time steps were used, but only six are shown.

t = 0 t = 1/5 t = 2/5 t = 3/5 t = 4/5 t = 1

(a)

(b)

(c)

Figure 10: Interpolation of two Gaussians using different regularisers: (a) without regulariser; (b)
incompressibility regulariser; (c) rigidity regulariser.

It can be seen that if no regulariser is applied, we obtain an interpolation in which the Gaussians
first split and then re-emerge. The intuitive explanation for this is very straightforward: every
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initial density ‘particle’ wants to travel as little as possible, therefore travelling in the direction
in which the final density is closest. We see that we get a slight loss of brightness during the
transport, although not very extreme. When an incompressibility regulariser is applied, we obtain
an interpolation in which the Gaussians mostly stay in one piece during the transport. A very
small piece is still moving in a different direction, therefore giving a small penalisation of the
divergence. We see that the Gaussians get deformed, but we do not have a loss or increase of
brightness along the transport, so incompressibility is ensured. When a rigidity regulariser is
applied, we obtain an interpolation that consists of two piecewise translations. There is no loss of
brightness and the Gaussians stay in two pieces.

These results show that an incompressibility regulariser is somewhat ‘less restrictive’ than the
rigidity regulariser: if a flow is incompressible, it might still deform the density, whereas this is
not possible in the rigid case.

7.1.2 Flow in channel

The second data set consists of two images (Figure 11) with a background that stays at the same
place and a channel-like structure in the foreground that is shifted three pixels to the right from
the first to the second image. The amount of density that disappears from the first to the second
image on the right side, re-appears on the left side of the second image, such that the total density
in both images stays the same. Our goal for this data set is to see what the transport looks like
when different models are applied. Since we know exactly which part of the image was shifted to
the right, a ground truth to compare our results with is available. Moreover, we have an a-priori
segmentation, which can be used in our models, to see if it benefits the results.

Figure 11: Synthetic data of flow in a channel: the middle part of the image has been translated
three pixels to the right from the first image to the second.

For this data set, a wide variety of models have been applied, in order to see their capability of
capturing a flow that is only apparent in part of the image. In Figure 12 results are shown. On
the left hand side, the velocity is colour-coded. The direction of the velocity coincides with the
location of the colours on the boundary of the image. Furthermore, if the absolute value of the
velocity is lower, the colour will be more white. Since the ‘whiteness’ of the velocity is not always
very visible, the absolute value of the velocity is shown on the right hand side, where the scale
is the same for all results. It should be noted that we obtained a unique velocity field for every
discrete time-step, but we only show the velocity field that belongs to the first time step. This is
justified by the fact that the velocity looks very similar for all time steps. That is, the velocity
field is almost constant in time.

In the first row, the ground truth velocity field is shown, which is a constant velocity directed to
the right, with an absolute value of |v| = 0.6. It is important to keep in mind that many other
ground truths would have given the exact same result. For instance, it does not matter what the
velocity field is on locations where there is no density, since there is nothing to be transported.

In the second row, we see the result for an isotropic flow where no regularisers have been applied.
As can be seen, the direction of the flow at the boundary of the image coincides with the ground
truth, but inbetween it changes direction rather often. Moreover, we see that the absolute value of
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

velocity field strength of velocity

Figure 12: Velocity field and absolute value of the velocity for the flow in a pipe with different
models: (a) ground truth; (b)-(c) no regulariser; (b) isotropic transport cost; (c) anisotropic
transport cost; (d)-(g) isotropic transport cost with regulariser; (d) incompressibility regulariser;
(e) rigidity regulariser; (f) rigidity regulariser with a-priori binary segmentation; (g) anisotropic
regulariser.
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the velocity is much lower than the ground truth, which explains why this flow is preferred above
the ground truth.

In the third row, we have used an anisotropic model, where the anisotropy was obtained by the
coherence enhancing diffusion tensor (section 3.2.2). We see that more of the flow is directed to
the right, but the flow direction is still far from uniform. Here the absolute value of the velocity
is also much lower than the ground truth.

In the fourth row, an incompressibility regulariser in combination with an isotropic model has
been applied. We see many small regions where the direction of the flow is the same as the ground
truth, but inbetween, the flow takes all kind of directions. As was already mentioned in the
previous section, a incompressibility regulariser is not as restrictive as a rigid one and thus still
gives quite some freedom in the resulting flow. This result does not give us an overall coherent
flow. Moreover, the absolute value of the flow is not close to the ground truth, but at some places
higher, and at some places much lower.

In the fifth row, a rigidity regulariser has been applied, and it is immediately clear that it is very
similar to the ground truth. A difference with the ground truth is that flow is visible over the
whole left side of the image. However, since there is no density here, the flow in this part of the
image is not expected to completely coincide with the ground truth. Furthermore, we see that
there is a gradual decrease of velocity strength from the middle to the top and bottom. This is
due to the L2-penalisation in the regulariser, which prefers a smooth transition between a high
and low velocity. Finally, notice that if we would threshold the absolute value at |v| = 0.3, we
would roughly get the segmentation back that is known from the ground truth. This will be used
later on in our joint model (section 7.3).

In the sixth row, an a-priori binary segmentation has been applied, as well as a rigidity regulariser.
As expected, we almost get the exact ground truth flow back, both in direction as in strength.
The drawback of this model is that an a-priori segmentation is usually not known and can be hard
to obtain by segmentation methods. In section 7.2 we will make use of segmentation methods to
obtain an a-priori segmentation. In section 7.3, we will use the joint model to obtain a segmentation
whilst calculating the optimal transport.

In the last row, we have used an isotropic model in combination with an anisotropic regulariser.
We see that the velocity is very smooth along the direction of the channel, but at some places not
very smooth perpendicular to it. The direction of the flow is overall quite similar to the ground
truth, but it is clear that the absolute value of the velocity differs a lot within the channel.

In many results of this section, we see that the strength of the velocity is lower than the ground
truth velocity. This can be explained as follows: when we compare this data set to the previous
one, we see that there is a ‘ground density’ in the whole channel, whereas in the previous set,
there was no density in the paths that were followed by the Gaussians. Instead of moving with the
ground truth velocity, we obtain a lower transport cost if the ‘top density’ takes the place of the
ground density further on, and the ground density takes the place of the top density even farther
away. A more extensive explanation, including a very simple example, can be read in appendix
C. A solution for this lower velocity could be obtained if one would first do some kind of clever
background subtraction, for example by using Principal Component Analysis [9].

7.2 Real biomedical data

In section 2.2, three realistic data sets have been introduced, which will be used as inputs for our
optimal transport models. For the first data set, we wish to model the non-straight transport of
two cells, where transport through the boundary of the image is prohibited. In the second data
set, we wish to model the transport of haemoglobin through blood vessels, where flow through
the boundary of the image is expected. In the third data set, we are dealing with an image in
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which there is only an inflow of density in the bottom part of the image, which spreads through
the image in a specific structure.

7.2.1 Moving white blood cell

For this set of results, only the first and last image of Figure 3 are used as input. As is almost
always the case with real data, the raw images contain some noise and are therefore not suitable
to use directly.

Figure 13: Colourful plot of the initial and final density of a moving white blood cell. Noise can
be seen in the background.

In Figure 13, colourful plots of the initial and final density are shown. It is clear that there is
some density in the background which is not desired, since we are only interested in the movement
of the cell. Since our model was not designed to cope with noise, some preprocessing needs to
be done. A Gaussian filter is applied to smoothen the initial and final density, after which the
image is thresholded in order to remove the background density. Finally, the image is normalised
to make sure that the total initial density is the same as the total final density. The result of this
procedure gives us the far left and far right image of Figure 15.

(a) Binary segmentation of the
channel

(b) Values of β for the
functional (4.5)

(c) Colourful anisotropy plot.

Figure 14: Masks and anisotropy for the cell movement.

We want to obtain the curved c-shaped motion as is seen in Figure 3. Therefore, both a model
with a weak segmentation (section 4.2.2) and an anisotropic model (section 4.2.3) are applied. If
a segmentation was available, we would be able to use this directly in our model. In our case, a
segmentation is not available, so we make use of the ground truth information. All six images are
added and thresholded at some value, to obtain a binary segmentation (mask) that coincides with
the path the cell has travelled (Figure 14a). Next, the mask is smoothed with a Gaussian filter and
the value of β in (4.5) wass set to 1 when inside the channel and set to a high value when outside
the channel, with a smooth transition inbetween (Figure 14b). To obtain the anisotropy matrix,
the coherence enhancing diffusion filter is applied to the binary segmentation and equation (4.6)
is used to obtain the matrix ACE (Figure 14c). To obtain good results, 31 time steps were used,
but only the six that coincide with the ones from the ground truth are shown.

In Figure 15 it can be seen that if no anisotropy or segmentation is used, we get a translational
transport with some deformation of the cell. The result of the anisotropic model looks very much

40



7 Results and discussion

t = 0 t = 1/5 t = 2/5 t = 3/5 t = 4/5 t = 1

(a)

(b)

(c)

(d)

(e)

Figure 15: Interpolation of a moving cell with different models: (a) ground truth; (b) isotropic,
no segmentation, no rigidity; (c) anisotropic, no segmentation, no rigidity; (d) isotropic, with
segmentation, no rigidity; (e) isotropic, with segmentation, with rigidity.
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like the ground truth, including the desired c-shape. However, in the third and fourth image, we
see a sharp corner in the density, due to the anisotropy created from the binary mask. When a
weak segmentation is used, we obtain the desired c-shape. It is clear that we also need a rigidity
regulariser if we do not want the cell to become very elongated during the transport.
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Figure 16: Comparison between the results obtained by the different models and the ground truth.

As can be seen in Figure 15, the anisotropic model and the isotropic model with weak segmentation
and rigidity both give a promising result. However, it is hard to say which of the models gives
a better result. Therefore, a set of properties has been chosen to compare the results of Figure
15. First, the results is thresholded to get a connected object for all of the six frames. Next, the
matlab-function regionprops is used to extract some properties that will be compared. The
first property is the ‘centroid’, or centre of mass. A solution which is visually close to the ground
truth should at least be located around the same centroid. The centroid gives us a coordinate in
an xy-coordinate system. The second property is the orientation of the cell. The orientation is
defined as the angle between the horizontal axis and the major axis of the ellipse that has the same
second-moments as the cell. The value is given between −90◦ and 90◦. The last property that is

used to compare the results is the ratio of the perimeter squared to the area: ratioPA = Per(S)2

Area(S) ,

where S is the region of the thresholded cell. A perfectly round object would give us a ratio of
4π, where the ratio of a very elongated object becomes very large.

In Figure 16, we present plots of the Euclidean distance between the centroids, the absolute
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difference between the orientation and the ratio of the results divided by the ratio of the ground
truth. For result (b), it is clear that it does not score well with respect to the location of the
centroid and the orientation of the cell, therefore not being close to the ground truth. Result (c)
scores well for all properties, although it is slightly worse than (d) and (e) in orientation. Result
(d) does not score well with respect to the ratio, because it is much more elongated than the
ground truth, but it does score well in other properties. Result (e) scores very well with respect
to all properties, therefore making it the result that is closest to the ground truth, when taking
our chosen properties to compare (b) to (e).

Although the result with a weak segmentation and rigidity is slightly better than the anisotropic
one, it is worth noticing that we obtain two very similar outcomes, while the underlying models
are very different; the anisotropic model only requires a single algorithm and not a coupled one.

7.2.2 Haemoglobin microcirculation

For this set of results, a small part of two consecutive frames of the haemoglobin video image
(section 2.2.2) was taken as input. The contrast in the image was inverted in order to have a high
density (light) inside the blood vessels and a low density (dark) outside. In Figure 17, the initial
and final density are shown.

Figure 17: Part of two consecutive frames representing haemoglobin microcirculation: initial and
final density.

The density and flow of the haemoglobin microcirculation is in some aspects similar to the synthetic
data set of flow in a channel (Figure 11): both show a density with some structure moving through
the boundary of the image. Moreover, the background is (almost) nonmoving. However, in the
current data set, the vascular structures are slightly thinner, the density has a little bit less
structure and there are bifurcations in the vessel network. Also, the flow does not have one
specific direction, but is only roughly pointed in one direction throughout the image.

(a) (b) (c)

Figure 18: Velocity fields for haemoglobin microcirculation: (a) isotropic, no regulariser; (b)
isotropic, rigidity regulariser; (c) isotropic, rigidity regulariser with a-priori binary segmentation.

Inspired by the promising results from Figure 12, three models have been applied to the current
data set. The results are shown in Figure 18. On the left we see the result of applying the isotropic
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variant of model 1, without using any regulariser. The velocity field shows many directions, just as
in Figure 12a. We see that the flow is stronger inside the blood vessels than outside the vessels, as
expected. In the middle we see the result of applying the isotropic model with rigidity regulariser.
In contrast to the result seen in 12e, the velocity field does not show one principal direction, but
seems to change direction a couple of times along the vessel. However, it is mostly directed along
the vessel and not perpendicular to it. On the right, we see the result of applying the isotropic
model with rigidity regulariser and an a-priori binary segmentation. The velocity field has a more
piecewise constant behaviour, but it is still does not have one main direction.

An explanation for these results can be the following: the transport cost J(ρ,m) for the results in
Figures 18b and 18c is lower than the transport cost that would belong to a more smooth flow in
one main direction. This causes the preference for a piecewise smooth flow instead of a completely
smooth one. In general, the rigidity regulariser helps to make the flow smoother, but in this case it
does not help if we increase its parameter µ. The reason for this could be that in any of the cases
(either the obtained results or the expected flow), the transport is not completely rigid, therefore
causing a value for the regulariser R(v) anyway.

An extra difficulty in this data set compared to the synthetic one is that we now do not have a
completely static background. Moreover, the background density is now much higher than in the
synthetic case. It seems that the model has difficulties with these extra obstacles.

7.2.3 Flow in human brain

In Figure 19, two preprocessed frames from the video sequence described in section 2.2.3 are shown.
There is a clearly visible increase of density between the first and the second image, due to an
inflow in the bottom of the image. Because flow is only expected within the channel-like structure,
the isotropic model will be compared with the anisotropic model. For the anisotropic model, again
the coherence enhancing diffusion tensor was used to make the anisotropy matrix (section 4.2.3).
Since the total density increases over time, we enforce a linear increase, as explained in section
3.1.1. That is, we enforce

∫
Ω
ρ(x, t) dx = t

∫
Ω
ρ0 dx+(1−t)

∫
Ω
ρ1 dx. We note that no segmentation

is used for this data set and that flow is able to flow through any of the boundaries.

Figure 19: Preprocessed data of flow in a human brain: there is an increase of density from the
first image to the second, which is caused by inflow from the bottom.

In Figure 20, both the colour-coded velocity field (of the first time step) and the absolute value of
the velocity are shown for the isotropic and anisotropic model. For both models, the result shows
an overall movement from bottom to top, which means that the inflow appears at the bottom of
the image, as expected. Furthermore, we see that the anisotropic result gives a great improvement
compared to the isotropic result: in the isotropic case density is flowing inbetween vessels, whereas
in the anisotropic case the flow follows the vessel network. This can be seen by the absence of
a purple colour between the vessels in the anisotropic result. Moreover, in the branches that are
laid out more horizontally, we see more colours than only purple. This means that the flow is
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more oriented to the side, instead of only to the top. In the plots on the right side of Figure 20, a
rather homogeneous strength of the velocity can be seen in the isotropic case. In the anisotropic
case, the velocity is more concentrated in the middle of the vessels. Finally, in the anisotropic
case, two distinct vessels are visible in the root of the vessel network. In the isotropic case, these
vessels appeared to be combined. It is clear that for this data set, it helps to take anisotropy into
account.

(a)

(b)

velocity field strength of velocity

Figure 20: Velocity field and absolute value of the velocity for the flow in a human brain:
(a) isotropic flow; (b) anisotropic flow.

7.3 Joint model

Algorithm 3 will be applied to the synthetic data set of flow in a pipe (Figure 11). The best
result of model 2, without using an a-priori known segmentation, was obtained by applying a
rigidity regulariser, which gave the result as in Figure 11e. As noted in section 7.1.2, the a-
priori segmentation could be approximated if we would threshold the result at |v| = 0.3. For the
initialisation of z in our joint model, we use the results of thresholding at |v| = 0.2, 0.3, 0.4. This
way, we can see the effect of different threshold values on the results. We initialise z to 0 or 1
if the value of |v| at that point is lower or higher respectively than the threshold value. For the
other variables, the same initialisation as in chapter 7 has been taken. This means that we only
use the former result for the initialisation of z, not for the other variables.

In Figure 21, the results of applying algorithm 3 have been shown for different initialisations of
z. In the first column, the initial values of z are shown, where white means a value of z = 1 and
black a value of z = 0. In the second column, the resulting values of z are shown after applying
the algorithm. In the third column, we see the velocity field v and in the last column, the absolute
value |v| is shown.

It can be seen that all initialisations roughly give the same resulting segmentation and velocity
field. However, in the top row, we see that the resulting segmentation is slightly bigger than in
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(a)

(b)

(c)

initial segmentation resulting segmentation velocity field strength of velocity

Figure 21: From left to right: the initial segmentation, the resulting segmentation z, the veloc-
ity field v and the absolute value of the velocity |v| for three initialisations. Initialisations by
thresholding the result of Figure 11e at (a) |v| = 0.2, (b) |v| = 0.3, (c) |v| = 0.4.

the middle row, which is on its turn bigger than the segmentation in the bottom row. From this
we know that different initial values lead to different solutions, which is not unexpected, since the
joint model is non-convex. One explanation for these different results is the following: algorithm 3
finds two velocity fields, one (vin) will be strongly directed to the right, while the other (vout) has
a value around zero. As the algorithm is iteratively finding its solution, vin/out is getting closer
to m

ρ (for ρ > 0) and ρ and m are also getting closer to vin/out. This means that ρ and m are

adapting such that after some iterations we have K(ρ,m, vin) � K(ρ,m, vout) for points inside
the initial segmentation and vice versa. Hence the value of z will not change any more in these
points and the resulting segmentation is then obtained. Therefore, it is important that the initial
segmentation is already quite good, since it will not easily change completely during the execution
of the algorithm.

This is a big difference from regular Mumford-Shah models: there the underlying image intensity
is fixed, while one searches for a smooth image close to the original image. In our case, the
underlying variables (ρ and m) are varying themselves, causing the non-convexity of the problem.

46



8 Summary and Outlook

8 Summary and Outlook

In this thesis, we combined isotropic and anisotropic optimal transport models with segmentation
models for the interpolation and velocity estimation of flow in vascular structures. For the prob-
lem, a convex variational method was used and primal-dual proximal splitting algorithms were
implemented.

We started by giving the motivation for this research. A description of what vascular structures
look like was given and some explicit examples were shown. Next, we derived an isotropic optimal
transport model with the L2-Wasserstein distance as a cost functional. Both a variant in which
inflow and outflow are prohibited and a variant in which inflow and outflow are allowed were
developed. The isotropic model was extended to an anisotropic model by changing the transport
cost. A second model was introduced in which the first model was coupled with a regularisation
of the velocity. Two of the proposed regularisers are fluid dynamics constraints, namely an in-
compressibility and a rigidity regulariser. A third regulariser is an anisotropic one, that smooths
the velocity field in a specific direction. In order to get this direction, we explored both an edge
detecting and a coherence enhancing diffusion tensor. For the second (coupled) model, we showed
theoretical existence of a minimiser, where any of the regularisers may be used. Then we gave an
overview of existing segmentation methods, followed by an explanation on how to use segmenta-
tion within our framework. This includes the use of a binary segmentation, a weak segmentation
and the practical use of anisotropy, which can be seen as some sort of segmentation. After that,
a first possibility for a joint model was explored. The derivation of a joint model revealed the dif-
ficulties of modelling the optimal transport and segmentation jointly: the problem is non-convex
and therefore difficult to solve. It is not clear if a minimiser for our proposed joint model exists.

In the next part, we explained proximal splitting and defined the proximal operators needed for the
implementation. The two optimal transport models and the joint segmentation-optimal transport
model were implemented in the PDHGM-algorithm in matlab. Because many algorithms make
use of proximal splitting methods, the implementation in a different algorithm can be done without
much extra work. We chose to use PDHGM, because it showed promising results in [36]. For our
second (coupled) model and our joint model, we used an alternating minimisation procedure. For
the first model, we used a staggered scheme to prevent the appearance of checkerboard instabilities.
Convergence plots of both optimal transport models showed that stable results can be obtained.
Moreover, the convergence plot of the second model revealed clearly how the alternating algorithm
works and what its disadvantages are. The minimum is obtained after some iterations in which
the energy functional and the regulariser first find their own minimum. After this, the coupling
makes sure that a new minimum is found, while simultaneously the variables are close to each
other.

Finally, all the algorithms were applied on realistic and synthetic data sets. In the data set of two
moving Gaussians, as well as in the data set of a moving white blood cell, inflow or outflow was
prohibited. We wanted to see if using anisotropy, segmentation or regularisers would help us to
obtain a result that is expected or corresponds to the ground truth. We come to the conclusion that
using an incompressibility or rigidity regulariser helps, where the latter gives the most promising
results. This is especially the case in combination with an a-priori known segmentation. In the
case of the moving white blood cell, using anisotropy showed a similar result as using rigidity in
combination with a segmentation. A clear advantage to the sole use of anisotropy is that the first
model can be applied. This means that a convex minimisation problem has to be solved and thus
the minimum is a global one.

In the other data sets inflow and outflow was allowed. It was shown that our models could cope
with the inflow that was expected in the real data set of flow in the human brain. Furthermore, we
saw that anisotropy helped when dealing with very elongated directed structures: we could model
the right flow in the example of the human brain by applying the anisotropic model. In the other
examples with in-/outflow, anisotropy did not have the effect we hoped for: although the flow is
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directed, it can still go in two exactly opposite directions. It was shown that the use of a rigidity
regulariser helps in cases where the direction of the flow is uniform within a large region and when
there is not much background density in the image. If a segmentation is not available, the rigidity
penalisation of the flow at the boundary of the vascular structure is rather high. Because of this,
the extra penalisation of a change of flow direction inside the vessel does not have a strong effect
on the energy to be minimised. However, if a segmentation is available, using a rigidity regulariser
gives a better result, with a velocity estimation that is somewhat smoother.

From the joint segmentation-optimal transport model, we can not draw a strong conclusion. It
seems that our proposed joint model depends much on the initialisation of all variables. Moreover,
it is not clear how the alternating algorithms are reacting on each other and on a different choice
of parameters. In the joint model, the segmentation is done based on the velocity estimation,
which is a variable that was obtained in an indirect way via the coupling of the second model. It
would be better if the segmentation could be done by using the density and momentum as input
variables, which are the only variables needed for the first optimal transport model. Despite the
shortcomings of the joint model, we have obtained some good results by first applying the second
model and using these results as input for the joint model.

The final conclusion of this work is that it is beneficial to include segmentation, anisotropy and
fluid dynamics constraints in the optimal transport model. Without any of them, one can not
expect to get a reasonable interpolation and velocity estimation for image sequences of vascular
structures. When these components are included however, we can find solutions to the problems
that were the motivation for this research.

One of the tasks for further research is to have a closer look at the question which model has
to be chosen for which problem. Combinations of anisotropy, segmentation and fluid dynamics
constraints should certainly be taken into account to make use of the strengths of multiple models.
Moreover, an analysis of the choice of model parameters could be considered, since it is not
clear how the parameters depend on e.g. the type of image or image size. Also, one could
experiment with the use of adaptive paramters for PDHGM [12]. Throughout this work, we have
not considered the handling of noise in the model. Many images contain noise, which can cause a
violation of mass conservation. Moreover, it can cause a velocity estimation with very strong but
sparse velocities, because the model tries to deal with noisy parts that occur at different places
in the initial and final density. In [28], Maas et al. have proposed a model in which the mass
conservation does not strictly have to be attained. One could try to combine their model with
the ones described in this thesis. Another interesting direction is to investigate the use of other
cost functionals than the L2-Wasserstein distance. Some thoughts and explanations on the use of
Lp-Wasserstein distances have been given in appendix A. A disadvantage of using model 2 instead
of model 1 was that the minimisation problem was not convex anymore, resulting in a problem
that is more difficult to solve. One could overcome this by not using the velocity variable, but
design a regulariser based on only the density and momentum variable instead. This way, the
coupling functional is not needed and hopefully, the minimisation problem stays convex. Finally,
we think that the development of a joint segmentation-optimal transport model is very promising.
The current joint model is a first step in this direction, but further research definitely has to
be conducted. Using a convex version of model 2 without the coupling functional would be an
important step in this direction, since then this model could be used as a component in the joint
model. From an application-point of view, we think that preprocessing the images by using some
kind of background subtraction would help to get a proper velocity estimation, as is explained in
more detail in appendix C.
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Appendices

A Alternative transport costs for model 1

Instead of using the L2-Wasserstein distance as a cost functional for the optimal transport, one
could consider other functions. Papadakis et al. [36] considered the H−1-Sobolev norm between
ρ0 and ρ1 as a cost functional, which is explained in detail in [15]. Using only the H−1-distance
gives an L2-interpolation in time between the initial and final density:

ρ(x, t) = (1− t)ρ0(x) + tρ1(x).

In [36] numerical simulations have been performed for different interpolations between the L2-
Wasserstein and the H−1-distance.

Here, we will consider the Lp-Wasserstein distance for general p ≥ 1. Benamou and Brenier [6]
showed that in the case of a L2-Wasserstein distance, problem (3.4) can be rewritten into a fluid
dynamics framework. In fact, this can be done for any Lp-Wasserstein distance with p ≥ 1. The
derivation is analogous from the one in [6] and gives the following result:

dp(ρ0, ρ1)p = inf
T∈T

∫
Ω

‖T (x)− x‖p ρ0(x) dx,

= min
(ρ,v)∈MCρv

1

2

∫ 1

0

∫
Ω

ρ(x, t)|v(x, t)|p dxdt, (8.1)

where MCρv = {(ρ, v) | ∂tρ+ div(ρv) = 0, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1, ρ ≥ 0, v · n|∂Ω = 0}.

As in (3.5), T is the set of all possible mappings that map ρ0 to ρ1. Similar to the L2-case, we
can apply the change of variables (ρ,m) := (ρ, ρv) and obtain the following convex minimisation
problem:

min
(ρ,m)
Jp(ρ,m) = min

(ρ,m)

∫ 1

0

∫
Ω

Jp(ρ,m) + ιMC(ρ,m) dxdt, (8.2)

where Jp(ρ,m) =


|m|p

2ρp−1 if ρ > 0,

0 if (ρ,m) = (0, 0),

∞ otherwise.

and MC = {(ρ,m) | ∂tρ+ div(m) = 0, ρ(·, 0) = ρ0, ρ(·, 1) = ρ1, m · n|∂Ω = 0, ρ ≥ 0}.

Note that for p > 1, we have a strict convexity, while this is not the case for p = 1.

In table 2, an overview of the effects of different cost functionals on the functional J(ρ,m) have
been shown.

We will now illustrate the effects of the different cost functionals by looking at two simple examples.
In the first example, we consider the spatial domain [0, 1] ⊂ R with the following initial and final
density:

ρ0(x) =

{
1 for 1

5 ≤ x ≤
2
5 ,

0 else.

ρ1(x) =

{
1 for 3

5 ≤ x ≤
4
5 ,

0 else.
(8.3)

In figure 22, the optimal transports for the L2-, L1- and H−1-cost functionals are shown. In the
L2-case, we obtain a solution with a constant velocity and corresponding density. Because of the
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L2-Wasserstein ρ|v|2 |m|2

ρ

L1-Wasserstein ρ|v| |m|

Lp-Wasserstein for p ≥ 1 ρ|v|p |m|p

ρp−1

H−1-Sobolev ρ2|v|2 |m|2

Interpolated L2/H−1 ρ2−p|v|2 |m|2

ρp

Table 2: Overview of the effect of different cost functionals on the functional J(ρ,m).

quadratic cost in v in (8.1) when p = 2, it is favourable to have a constant low velocity instead
of a very high velocity for a small amount of time. In the L1-case, minimisers are not necessarily
unique, because the convexity in (8.2) is not a strict one. In figure 22b, one of the minimisers
of the L1-problem is shown. This solution shows a very rapid transport, which is sparse in time.
However, one has to realise that this this solution is not unique. In fact, the L2-solution is also a
solution of the L1-problem: from (8.1), we see that the cost of v is linear. This means that both a
constant low velocity and a very high velocity for a small amount of time give the same (minimal)
cost. In the H−1-case, we see an L2-interpolation in time between the initial and final density.
This interpolation is shown in figure 22c.

t

x0 1

1

ρ0

ρ1

L2

(a)

t

x0 1

1

ρ0

ρ1

L1

(b)

t

x0 1

1

ρ0

ρ1

H−1

(c)

Figure 22: Solutions to the minimisation problem with ρ0 and ρ1 as defined in (8.3) for different
cost functionals. (a) For the L2-cost, we obtain a gradual translation in space, (b) for the L1-
cost, we obtain a fast translation in a short period of time, (c) for the H−1-cost, we obtain an
interpolation in time between ρ0 and ρ1.

In the second example, we consider the movement of two circles in the domain [0, 3]× [0, 7] ⊂ R2.
The initial density has value one in a circular region around the points ( 1

2 ,
1
2 ) and (2 1

2 , 3
1
2 ), which

is shown in figure 23a. The final density is shown in figure 23b. It has value one in a circular
region around the points (2 1

2 , 3
1
2 ) and (1

2 , 6
1
2 ).

As shown in Figures 23c and 23d, The L2-transport is very different from the L1-transport. In the
L2-case, the circle in the bottom left is replacing the circle on the right and the circle on the right
is transported to the top left. This can be explained by the fact that the velocity has a square in
the cost functional and it thus is cheaper to move two densities with a moderate velocity instead

53



References

x2

x1

0 3

7
ρ0

(a)

x2

x1

0 3

7

ρ1

(b)

x2

x1

0 3

7

L2

(c)

x2

x1

0 3

7

L1

(d)

Figure 23: (a) initial density; (b) final density; (c) interpolation for the L2-Wasserstein distance
where both circles are translated over a small distance; (d) interpolation for the L1-Wasserstein
distance where only one circle is translated over a large distance.

of moving one with a high velocity. The difference in cost functional is calculated as∫ 1

0

∫
Ω

ρ(x, t)|vc(x, t)|2 dx dt = 13

∫
Ω

ρ0 dx < 18

∫
Ω

ρ0 dx =

∫ 1

0

∫
Ω

ρ(x, t)|vd(x, t)|2 dxdt,

where |vc| =
√

13 is the velocity belonging to the transport in Figure 23c and |vd| = 6 the one
belonging to Figure 23d.

In the L1-case, the circle in the bottom left is transported to the top left, whereas the circle on
the right stays in place. The cost for one fast transport is in this case lower than two transports
with moderate velocity:∫ 1

0

∫
Ω

ρ(x, t)|vc(x, t)|dx dt =
√

13

∫
Ω

ρ0 dx > 3

∫
Ω

ρ0 dx =

∫ 1

0

∫
Ω

ρ(x, t)|vd(x, t)|2 dxdt.

These examples show that changing the L2-Wasserstein distance to an L1-Wasserstein has the
effect that sparsity in the transport is allowed. In the first example, we have seen the sparsity
in time: it is allowed to have a high velocity in a short amount of time. In the second example,
we have seen sparsity in space: one transport along a long distance may give a lower cost than
multiple transports along a short distance.

Although it is interesting to see the effects of an Lp-transport cost (for p → 1), it is not easy to
implement via proximal splitting methods. In the L2-case, we had a proximal step for J(ρ,m)
which could be calculated explicitly (see (6.10) and (6.11)). However, for p > 1, we obtain the
following equations:

(ρ,m) = ProxγJp(ρ̃, m̃)⇒

{
τp
2ρm|m|

p−2 +m− m̃ = 0

ρp+1 − ρ̃ρp − τ
2 |m|

p.
(8.4)

We are interested in the case where 1 < p < 2. It is clear that the equation for m can not be solved
explicitly for 1 < p < 2. Moreover, we see that the equation for ρ is no polynomial anymore. If
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we take p ∈ Q, we can rewrite the equation in a higher order polynomial. This polynomial can
not be solved explicitly, but solving it with Newton’s method would give a result. It is clear that
solving both equations with high precision is computationally very expensive, since both will have
to be solved in a numerical way, probably in an iterative way. Therefore, the implementation of
other transport costs remains an open question.
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B Derivation of adjoint operators in regulariser

In section 6.2, we stated the operators and their adjoints that are used in the regulariser of model
2. Here, we present the derivation of the adjoints, given the operators and the function spaces in
which the variables are defined.

divergence

v ∈ L2(0, 1;W div,2(Ω)) with v · n|∂Ω = 0,

w ∈ L2(0, 1;W 1,2(Ω)).

For H
D
v = div(v), we derive the following adjoint operator:

〈H
D
v, w〉 = 〈div(v), w〉 =

∫ 1

0

∫
Ω

(div(v))w dxdt

= −
∫ 1

0

∫
Ω

v · (∇w) dxdt+

∫ 1

0

∮
∂Ω

(v · n)w dsdt

= −
∫ 1

0

∫
Ω

v · (∇w) dxdt = 〈v,−∇w〉 = 〈v,H∗
D
w〉,

where we used integration by parts at the third equality and the fact that v · n|∂Ω = 0 at the
fourth equality. From this derivation, it is clear that

H∗
D
w = −∇w.

rigidity

v = (v1, v2) ∈ L2(0, 1; (W 1,2
0 (Ω))2),

w =

(
w1 w2

w3 w4

)
.

For H
R
v =
∇v + (∇v)T

2
=

(
2 ∂v1

∂x1

∂v1

∂x2
+ ∂v2

∂x1

∂v1

∂x2
+ ∂v2

∂x1
2 ∂v2

∂x2

)
, we derive the following adjoint operator:

〈H
R
v, w〉 =

〈
∇v + (∇v)T

2
, w

〉
=

1

2

∫ 1

0

∫
Ω

(
2 ∂v1

∂x1

∂v1

∂x2
+ ∂v2

∂x1

∂v1

∂x2
+ ∂v2

∂x1
2 ∂v2

∂x2

)
·
(
w1 w2

w3 w4

)
dx dt

=
1

2

∫ 1

0

∫
Ω

2
∂v1

∂x1
w1 +

∂v1

∂x2
w2 +

∂v2

∂x1
w2 +

∂v1

∂x2
w3 +

∂v2

∂x1
w3 + 2

∂v2

∂x2
w4 dxdt

=
1

2

∫ 1

0

∫
Ω

(∇v1)

(
2w1

w2 + w3

)
+ (∇v2)

(
w2 + w3

2w4

)
dxdt

= −1

2

∫ 1

0

∫
Ω

v1 div

(
2w1

w2 + w3

)
+ v2 div

(
w2 + w3

2w4

)
dx dt

+

∫ 1

0

∮
∂Ω

v1

(
2w1

w2 + w3

)
· n+ v2

(
w2 + w3

2w4

)
· ndsdt

= −1

2

∫ 1

0

∫
Ω

v1 div

(
2w1

w2 + w3

)
+ v2 div

(
w2 + w3

2w4

)
dx dt

= 〈v,H∗
R
w〉,
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where we used integration by parts in the fifth equality and the fact that v1|∂Ω = v2|∂Ω = 0 in the
sixth equality. From this derivation, we know that

H∗
R
w = −1

2

(
div

(
2w1

w2 + w3

)
,div

(
w2 + w3

2w4

))
. (8.5)

anisotropic

v = (v1, v2) ∈ L2(0, 1; (W 1,2
0 (Ω))2),

w = (w1, w2, w3, w4).

For H
A
v = (U∇v1, U∇v2) with U =

(
U1 U2

U3 U4

)
, we derive the following adjoint operator:

〈H
A
v, w〉 = 〈(U∇v1, U∇v2), w〉

=

〈(
U1
∂v1

∂x1
+ U2

∂v1

∂x2
, U3

∂v1

∂x1
+ U4

∂v1

∂x2
, U1

∂v2

∂x1
+ U2

∂v2

∂x2
, U3

∂v2

∂x1
+ U4

∂v2

∂x2

)
, (w1, w2, w3, w4)

〉
=

∫ 1

0

∫
Ω

∂v1

∂x1
(U1w1 + U3w2) +

∂v1

∂x2
(U2w1 + U4w2)

+
∂v2

∂x1
(U1w3 + U3w4) +

∂v2

∂x2
(U2w3 + U4w4) dxdt

=

∫ 1

0

∫
Ω

∇v1 ·
(
U1w1 + U3w2

U2w1 + U4w2

)
+∇v2 ·

(
U1w3 + U3w4

U2w3 + U4w4

)
dxdt

= −
∫ 1

0

∫
Ω

v1 div

(
U1w1 + U3w2

U2w1 + U4w2

)
+ v2 div

(
U1w3 + U3w4

U2w3 + U4w4

)
dxdt

+

∫ 1

0

∮
∂Ω

v1

(
U1w1 + U3w2

U2w1 + U4w2

)
· n+ v2

(
U1w3 + U3w4

U2w3 + U4w4

)
· ndsdt

= −
∫ 1

0

∫
Ω

v1 div

(
U1w1 + U3w2

U2w1 + U4w2

)
+ v2 div

(
U1w3 + U3w4

U2w3 + U4w4

)
dxdt

= 〈v,H∗
A
w〉,

where we used integration by parts in the fifth equality and the fact that v1|∂Ω = v2|∂Ω = 0 in the
sixth equality. From this derivation, we know that

H∗
A
w = −

(
div

(
U1w1 + U3w2

U2w1 + U4w2

)
,div

(
U1w3 + U3w4

U2w3 + U4w4

))
.
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C Why a ground density causes a lower velocity estimation

As explained in section 7.1.2, having a ‘ground density’ along the path that is followed in the
transport can cause a lower velocity estimation than expected. In this appendix, we give an easy
example where the effect is immediately visible. Consider again the one-dimensional example of
a moving block: the initial density ρ1 is a rectangular function with value 1 between x = 0 and
x = 1. The final density ρ1 has the same shape, but is moved to the right, such that it has value
1 between x = 2 and x = 3.

x0 1 2 3

ρ(x)

1
ρ0 ρ1

Figure 24: Rectangular initial and final density without a ground density.

The minimal transport cost is obtained by the constant velocity field v(x, t) = 2.

x0 1 2 3

v(x)

2

1

Figure 25: Constant velocity transporting ρ0 to ρ1.

Note that this is not the only velocity field yielding a minimal transport cost. In fact, the velocity
may take any finite value at points where there is no density. From (3.5), we calculate the transport
cost:

1

2

∫ 1

0

∫
Ω

ρ(x, t)|v(x, t)|2 dxdt = 2. (8.6)

Now we change this density to the one shown in Figure 26. Here we have a ‘ground density’ of 1
2

and a ‘top density’ of 1.
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x0 1 2 3

ρ(x)

1
ρ0

x0 1 2 3

ρ(x)

1
ρ1

Figure 26: Rectangular initial and final density with a ground density.

Obviously, our velocity v(x, t) = 2 will still be one that transports ρ0 to ρ1. We calculate the
transport cost, where we only take the domain between x = 0 and x = 3 into account:

1

2

∫ 1

0

∫ 3

0

ρ(x, t)|v(x, t)|2 dxdt = 4. (8.7)

By applying our first model to this example, we obtain the interpolation and velocity field as in
Figure 27:

x0 1 2 3

1

2
t = 0

ρ(x)

v(x)

x0 1 2 3

1

2
t = 1

3

ρ(x)

v(x)

x0 1 2 3

1

2
t = 2

3

ρ(x)

v(x)

x0 1 2 3

1

2
t = 1

ρ(x)

v(x)

Figure 27: Optimal interpolation and velocity field at several points in time.

The functions of the density and velocity are the following:

ρ(x, t) =


1− t

2 for 0 ≤ x ≤ t+ 1,
1
2 + t

2 for t+ 1 ≤ x ≤ 3,
1
2 else.

. (8.8)
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v(x, t) =


2x
t+1 for 0 ≤ x ≤ t+ 1,
6−2x
2−t for t+ 1 ≤ x ≤ 3,

0 else.

. (8.9)

By using (8.8) and (8.9), we calculate the transport cost

1

2

∫ 1

0

∫ 3

0

ρ(x, t)|v(x, t)|2 dxdt

=
1

2

∫ 1

0

∫ t+1

0

(
1− t

2

)(
2x

t+ 1

)2

dx dt+
1

2

∫ 1

0

∫ 3

t+1

(
1

2
+
t

2

)(
6− 2x

2− r

)2

dxdt =
13

9
,

which is much lower than the transport cost calculated in (8.6) and even lower than the transport
cost calculated in (8.7).

As is clear from Figure 27, there is only transport between x = 0 and x = 3, while the rest of the
density is not transported. The part of ρ0 that lies between x = 0 and x = 1 is decompressed and
takes the place of ρ1 between x = 0 and x = 2. The part of ρ0 that lies between x = 1 and x = 3
is compressed and takes the place of ρ1 between x = 2 and x = 3. This transport costs less energy
than a complete translational transport and is only possible if a ‘ground density’ is available. In
some applications, this behaviour is not expected: for example in the application of blood flowing
in a blood vessel. To overcome this problem, one could try to first do a clever kind of background
subtraction, before the model will be applied.

60


	Introduction
	Motivation
	Vascular structures
	Application to real data

	Optimal transport
	Model 1: isotropic and anisotropic transport
	Model 2: flow regularised transport
	Analysis

	Segmentation
	Overview of well known methods
	Segmentation in optimal transport models

	Joint segmentation and optimal transport
	Numerical Framework
	Proximal operators for models 1 & 2
	Adjoint operators in regulariser
	Implementation of models 1 & 2 via PDHGM
	Implementation of joint model

	Results and discussion
	Synthetic data
	Real biomedical data
	Joint model

	Summary and Outlook
	Appendices
	Alternative transport costs for model 1
	Derivation of adjoint operators in regulariser
	Why a ground density causes a lower velocity estimation



