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Abstract

Alzheimer’s disease (AD) is the most well known form of dementia. Already
in 1907 Alois Alzheimer published a first paper about the symptoms of this
disease, of which we know that it afflicts one in three people above 85. By
now it is broadly accepted that indeed the loss of short-term memory is
among the first symptoms of AD, followed by behavioural changes and dif-
ficulties with motor activities. In the end, Alzheimer is a terminal disease,
and with its huge direct impact on caregivers and financial impact on so-
ciety it is an essential topic in several research fields. Additionally, by the
increasing average age of current society it only becomes more urgent.

Among these fields of research, computational neuroscience can be help-
ful as a first step in deciphering phenomena that occur with the appearance
of Alzheimer’s disease. For many years after the first descriptions about
AD there was no clue about a possible cause. Nowadays it is known that
the appearance of the disease is mediated by a protein called Amyloid beta
(Aβ). The exact role of Aβ remains unknown, though a prominent hy-
pothesis is that it affects several presynaptic processes, thereby suppressing
neuron efficiency.

We model networks containing up to 600 neurons as computational net-
works in which the vertices represent a neuron. The internal dynamics of
the neuron are governed by the so-called Izhikevich model. The connections
represent the synapses between neurons. In this way, the behaviour of neural
networks can be simulated by using computational mathematics.

In this thesis a computational framework designed to map experimental
data to synaptic parameters is constructed. In this way, having in vitro
measurements of Aβ-treated neuronal networks and untreated control net-
works, the existence of significant differences in the synaptic properties of
the two types of networks can be systematically investigated.

Taking our cues from previous research by Philip Hahn & Cameron
McIntyre [2010], we attempt to use a Gauss-Newton least mean square
error optimisation. The computational framework then extracts the first
two statistical moments, Mean Firing Rate (MFR) and Coefficient of Vari-
ation (CV), from measurements. This Gauss-Newton method subsequently
searches for synaptic properties yielding networks with comparable MFR
and CV.

We conclude that this Gauss-Newton method should be handled with
great care. In particular, we find that, for our particular model the algo-
rithm either diverges or converges at a poor rate. Besides this statement and
giving an overview on how varying the synaptic parameters affects the be-
haviour of neural networks, this thesis gives elaborate suggestions for future
computational research on Alzheimer’s disease.
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Chapter 1

Introduction

Alzheimer’s disease

An unfortunate nevertheless endlessly returning diagnosis is Alzheimer’s dis-
ease (AD). It is the most common form of dementia and mostly afflicting
elderly people. In fact, estimations are that every one in three people above
the age of 85 suffers from Alzheimer, which by the increasing average age
of our society could become significantly more [24]. Moreover, the financial
impact of AD on the world is immense, since the payments for health-care,
long-term care and hospice in the United States of America only, were esti-
mated to be 200 billion dollars in 2012 [22]. This amounts to approximately
a million times the minimum wage of an American citizen1 or equivalently
640 dollars per person when divided over all the inhabitants of the USA2.

The disease, of which the observable effects on the physiological state
of a patient were already extensively described by Alois Alzheimer back
in 1907 [1], has many forms though is always characterised by short-term
memory loss at an early stage [22]. The most common early symptoms are
difficulties with remembering names and recent events, as well as apathy
and depression. Later stages of the disease include behavioural changes
and trouble with both speaking and motor activities such as swallowing or
walking. In the severe and advanced cases of AD, patients will also need
help with activities of daily life, placing high responsibilities and pressure on
caregivers. In the end, Alzheimer’s disease is fatal, leading to the patient’s
death.

Like all dementias, AD is a brain disease. It is caused by irreversible
damage to brain cells. The brain is the center of all activity in the body, and
information is transported from and to the brain continuously. A significant
part of the brain cells are neurons and conducting information through the
complete body takes place through these neurons. We will take a brief look

1Minimum wages as published by the European Commission Eurostat on the 2nd of
April 2012, http://epp.eurostat.ec.europa.eu/portal/page/portal/labour market/earnings.

2US population number as published in the 2010 census http://www.census.gov.
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Chapter 1. Introduction

(a) Synapse. (b) Neuron.

Figure 1.1: a) Schematic picture of all important components
of the chemical synapse including pre- and postsynaptic terminals.
b) Schematic picture of a neuron connecting to another neuron
via its axon and synapse. Both figures are freely available at
http://en.wikipedia.org/wiki/Chemical synapse

at these neurons in the next section.

Neurons

Neurons are electrically excitable cells that transport signals by using chem-
icals and electrical pulses. That way information is conducted from for
instance the brain to muscles. The neurons consist of a cell body, dendrites
and an axon. Signals are passed on from the axon of a neuron to the den-
drites of another neuron (figure 1.1b), by which the neuron’s dendrites can
be interpreted as feelers and the axon as the transporter to the other neuron.

The signals that are being passed on by neurons travel as electrical pulses
through the dendrites and axons. Such a pulse is actually a difference in
voltage between intracellular and extracellular medium. That voltage dif-
ference is propagated along the membranes of the neuron; this is then called
an action potential.

Propagating such a voltage difference is achieved by closing and opening
several ion channels [11]. Axons have a certain rest potential, at which
the neuron operates more or less at dynamic equilibrium, which for most
neurons is approximately −70mV. If for instance by the arrival of an action
potential a certain threshold value of the voltage difference between intra-
and extracellular medium is reached, the ion channels open allowing ions
to flow through the membrane. These channels are called voltage gated ion
channels, because depending on the value of the potential, they open or
close. For instance, if in the axon a voltage difference of −55mV is reached,

2



sodium channels open, which causes an inward ion current of sodium. As
a consequence the voltage inside the neuron increases even more, causing
other ion channels to open at certain other threshold values. In this way the
action potential is sustained and propagated.

When an action potential reaches an end of an axon, it might be passed
on to another neuron. If so, the site where this happens is situated around
a small gap between axon and dendrite, called the synaptic cleft. The brain
contains both chemical and electrical synapses, yet in this thesis we only deal
with the chemical ones. The synaptic cleft connects two neurons, and by
connecting more and more neurons, chains of subsequent neurons might form
connections between different parts of the brain. The brain itself contains
billions of neurons where each neuron can be part of numerous chains. All
these chains together form one big network of neurons. As a consequence
the brain can be interpreted as one big neural network, which in turn is
connected to, and can thereby communicate with neurons in for instance
the spine or arm muscles. If two neurons share a synaptic cleft, we define
them to be each other’s neighbours and a certain chain can be considered
as a path through this network.

Together with the axon (the presynaptic terminal) and the dendrite (the
postsynaptic terminal) the synaptic cleft conducts the action potential to
another neuron. This is a process built up out of many steps which we
outline directly below.

Synaptic cleft

With the conduction of electrical pulses, synapses are essential; they form
the connections between neurons and determine to which neurons a pulse
can be passed on (figure 1.1a). This conductance of an action potential is
mediated by several synaptic compartments and chemical substances, like
the transmitter chemical called neurotransmitter, which stimulates NMDA
receptors and is contained in the synaptic vesicles, whereas these last protein
compartments are activated by calcium flowing in through voltage dependent
calcium channels. All are explained further in this paragraph. Apart from
the ion channels being common to the axon, the presynaptic terminal also
contains voltage dependent calcium channels (VDCCs). By opening these
the presynaptic part is able to absorb a large amount of calcium ions, which
are used to activate the so-called synaptic vesicles situated in that same
area. These vesicles are small compartments made out of proteins and they
contain neurotransmitter, the chemical that transfers the signal through the
synaptic cleft and stimulates the postsynaptic terminal. This stimulation
is achieved via receptors on the postsynaptic membrane, among which are
NMDA receptors. These bind the neurotransmitter and a necessary co-
agonist (mostly glycine), and based upon both bindings it allows calcium
(Ca2+), potassium (K+) and sodium (Na+) ions to flow through the chan-
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Chapter 1. Introduction

nel3.

The process of transferring the action potential from the axon of a neuron
to the dendrites of another neuron takes place following these steps:

• Upon arrival of an action potential, the VDCCs open if a certain
threshold voltage is reached, causing calcium ions to flow inside [25].

• Vesicles that are docked near the presynaptic surface facing the synap-
tic cleft are activated by receptors on these vesicles in reaction to the
influx of calcium, which makes them fuse with the cell membrane [15].

• By this fusion the neurotransmitter is released into the cleft [3].

• At the postsynaptic membrane, these neurotransmitter molecules, to-
gether with the co-agonist bind to the NMDA receptors.

• This binding causes ion channels to open, letting Ca2+, K+ and Na+

ions to flow into the postsynaptic neuron.

• This inflow of ions is the trigger for a new action potential at the
postsynaptic terminal and moreover for the whole process to start
over at that postsynaptic neuron.

When as a result of this whole process an action potential is passed on to
the postsynaptic neuron, we say that the neuron fires onto another neuron,
or that a spike occurs.

We regard the described construction of presynaptic terminal, synap-
tic cleft and postsynaptic terminal as one individual synapse or connection.
From the biophysical situation it is known that apart from having one con-
nection, two neurons can actually share more individual synapses. The
amount of connections between the presynaptic and postsynaptic neuron is
actually a measure of synaptic strength, which is defined as how strong a
postsynaptic neuron reacts to a presynaptic action potential. By changing
this synaptic strength as response to external stimuli, the brain can carry
out tasks of learning and memorizing.

Neuronal networks and memory

Although the process of forming memory is a very complex one and not
every detail is known yet, several studies have led to the understanding of
the overall structure and the unraveling of more and more details [13]. As
mentioned before one of the earliest symptoms of AD is memory loss and
thus having an understanding of this phenomenon is essential to become
familiar with the processes of Alzheimer’s disease.

3The interested reader is referred to [16], [23].
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In principle, learning and memory involves synaptic modification. More
specifically, when certain events happen frequently, the neurons are able
to change their synaptic strengths and thereby their efficiency to repeat
the same event. This is for instance achieved by creating more individual
synapses. The events that trigger these changes basically come down to
regular firing of neurons. The ability of neurons to increase their synaptic
strengths as a reaction to repetitive firing patterns is linked with information
storage in the brains and is called synaptic plasticity. When during high
frequency firing the efficiency of a synapse is increased this is seen as the
brain storing information: memorising or learning. This last effect is called
long-term potentiation (LTP) [2]. Long-term potentiation can last from
minutes up to years and is among others indeed realised by creating more
individual synapses.

Besides long-term plasticity, there is also a short-term version [13], which
mostly lasts up to a few seconds. This process modifies existing synapses
and processes, by for example temporarily increasing the amount of synap-
tic vesicles and neurotransmitter. Next to enhancement of the synaptic
strength, also a decay in efficiency is possible, called either short-term or
long-term depression (STD or LTD).

Since memory is reflected in the strengths of synapses that the neurons
share, it is actually a property of the connections between neurons. There-
fore it is useful to look at networks of multiple neurons. These networks
can mathematically be seen as graphs containing vertices and edges. The
vertices represent the cell bodies of the neurons, whereas the edges repre-
sent synaptic connections between neurons. These graphs can satisfy several
properties [17]. They can be completely known, in the sense that the posi-
tions of nodes and the connections between them are fixed. Biophysically,
the complete structure of a neuronal network is unknown. That is the rea-
son that we use computational networks of which a priori the positions of
neurons and existence of connections is not known. Still, they can be cre-
ated in such a way that the network satisfies some general conditions like
density. Positions of the neurons will be determined randomly and also
connections between neurons will be made with a certain probability. The
synaptic strength can then be realised by placing weights on the edges, de-
termining how well nodes can communicate. From a biophysical point of
view, the chemical synapses are directional: they only fire from presynaptic
to postsynaptic neuron. That is why the edges in our graphs are directional
as well.

In this way, complete neuronal networks such as entire regions of the
brain, can be represented using graphs. Consequently the memory will then
be a property of those graphs, especially of the connections. Since the loss of
short-term memory is the first symptom, the properties of those connections
will be our main concern in investigating the phenomenology of Alzheimer’s
disease.
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Chapter 1. Introduction

The cause of Alzheimer

An exact mechanism of the arising of Alzheimer’s disease is yet to be found,
though a strong presumption about its cause lies with the protein Amyloid
β (Aβ) [5]. One of the arguments supporting this candidacy is the location
of the gene for the Amyloid β precursor protein (APP), a protein that can
form Aβ. Genes hold the information for building cells and also proteins.
The location of the gene that produces APP and is thus indirectly respon-
sible for creating Aβ, is located on chromosome 21. Patients with Down
syndrome carry three instead of two of those chromosomes 21, which means
that the production of Aβ is increased [8]. One of the main features of Down
syndrome is that patients almost universally exhibit Alzheimer’s disease at
an age of 40. This thus suggests a strong link between AD and Aβ.

The hypothesis that Aβ causes AD will be brought up for discussion in
this thesis. It is known that Aβ attacks the synapse, yet so far it is unclear
in what ways exactly. Biophysically, there are some hypotheses about this.
It is thought that Aβ dysregulates some presynaptic processes; it harms
calcium channels [19], synaptic vesicles and presumably also mitochondria
[26]. Mitochondria are the energy manufacturers of a living organism and in
the presynaptic area they also regulate the calcium metabolism. Since cal-
cium activates the vesicles to release their neurotransmitter into the synaptic
cleft, all three are important to synaptic transmission. Thus, by harming
these, Aβ in the end decreases the ability of a neuron to pass on informa-
tion. This causes decrease in synaptic strength, which can ultimately lead
to the effective death of a synaptic connection. Eventually, the death of
several synapses might even cause the death of neurons. And exactly that is
where memory loss caused by Aβ as a first symptom of Alzheimer’s disease
becomes noticeable.

An in silico description of an Alzheimer network

Our focus is on a mathematical approach to gaining insight in effects of
Aβ on neuronal networks, in which especially the synapses are of interest.
Several mathematical models describing the propagation of action poten-
tials traveling down an axon exist. A broadly accepted mathematical model
for the behaviour of the axon regarding potentials and ion currents, is the
Hodgkin-Huxley (HH) model [7], which is a four-dimensional nonlinear sys-
tem of first order ordinary differential equations. Hodgkin and Huxley de-
termined that an axon can phenomenologically be modeled as a passive yet
nonlinear electrical circuit, thereby using Kirchhoff’s law for electrical cir-
cuits to obtain the corresponding differential equations. Here, passivity is
a property of the circuit, meaning that it only contains components that
consume though not produce energy, or components that are unable to gain
power. In the axon, the membrane acts as a capacitor and the other compo-
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nents that can be modeled by electrical components are ion channels. None
of them consumes energy, so by using Kirchhoff’s law Hodgkin and Huxley
were able to set up equations that link the change in voltage difference over
time, to currents caused by ion streams. This empirical model was origi-
nally obtained for the axon of a giant squid by a series of experiments, in
Hodgkin and Huxley’s summarising paper [7] by the electrical circuit. Even
so, they suggested by means of the experimental results that the behaviour
of the voltage gated ion channels can be represented by nonlinear electrical
conductances.

A similar model, also based on Kirchhoff’s law, exists for a complete
neuron, including synapses. This model is accurate, though quite complex
too. A computationally more efficient model is the Izhikevich neuron, in
which several types of neuronal behaviour can be reproduced by tweaking
four parameters and a possible external current [9].

Mathematics can be of great value in obtaining a first insight into the
phenomena occurring when Aβ comes into play, by estimating which pa-
rameters in existing mathematical models are changed when adding Aβ. To
do this, data is at our disposal originating from cultured networks, in which
cell bodies of neurons are isolated and used to grow a new network on which
measurements can be performed. This data is created with Microelectrode
Arrays (MEA) and previous results obtained with this data are published in
a biological work by Kuperstein et al [12]. The MEA data contains measure-
ments of networks with and without Aβ injected. Kuperstein et al published
results about the effects of different forms of Aβ.

The aim of our project is to develop a computational framework which
maps experimental data to synaptic parameters. This can be used in inves-
tigating the existence of significant differences in the values of these param-
eters in the Aβ-treated and untreated control networks. A computational
network is built, and similar to an article by Hahn and McIntyre [4], we
try to use a least mean square error algorithm, namely Gauss-Newton, to
tune synaptic paramaters in such a way that they simulate the Aβ data on
one hand and the control data on the other. This fitting is done by means
of statistical moments extracted from the dataset, referred to as the Mean
Firing Rate and Coefficient of Variation.

Using mathematical models has the advantage that, for different con-
figurations or types of networks one does not have to create new networks
and perform new measurements. One can use a computational network in
which a change in some parameters can give new results. Cultured net-
works take several weeks to grow before they show activity and then have
a fixed cell density and other network properties. A computational network
however, after the correct software has been created, can be built in the
order of a second. Thus a slight change in the structure or properties of
a network is made relatively quick and results in behaviour of the network
might be computed in the same order of time as well. That is the reason
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Chapter 1. Introduction

for computational neuroscience to be a big field of research; it has been
used in for instance research related to Parkinson’s disease. The essence of
applied mathematics lies in here, since one mathematical model might be
usable in several applications. In our case we are extending these fields with
Alzheimer’s disease.

These computational networks make for instance changing synaptic pa-
rameters and computing the corresponding network behaviour possible, from
which we developped the idea that without performing new measurements,
we might be able to estimate these parameters. The main contribution of
this thesis is an investigation of the suitability of the Gauss-Newton optimi-
sation procedure in the desired computational framework. Unfortunately,
after analysing several components of the method, like error functions and
the time horizon of simulations, this leads to conclusions that the suggested
Gauss-Newton method is not the finest choice. Yet several observations
throughout the thesis lead to numerous suggestions for further research re-
garding the in silico discription of Alzheimer’s disease. Since, by the unsuc-
cessfulness of the attempt with Gauss-Newton, the need for the described
computational framework was not fulfilled we did not reach the stage of
handling the data. Moreover, analysing the dataset it seemed that it was
noisy, containing several bust-out electrodes. Besides that, the overall ac-
tivity was weak whereas the activity of mutual electrodes was of strongly
varying levels. The above, combined with the absence of an understanding
how the experimental device exactly works, are several concerns that lead
to not discussing the data in this thesis.

However, arguments above indicate that future development of the de-
scribed computational framework, keeping in mind suggestions given in the
last chapter of this thesis, can definitely be useful in the research regarding
the phenomena that occur when Aβ is injected into a neural network. Es-
pecially since it costs respectively little time to change the parameters and
resimulate the network, compared with doing this with cultured networks,
the effectiveness of the framework should stimulate its development.

Finally, as a contribution to understanding the behaviour of computa-
tional networks, we investigate the changes in both Mean Firing Rates and
Coefficient of Variation, as well as single neuron behaviour in a configura-
tion where MEAs are left out of consideration. Moreover, we attempt to
use the Gauss-Newton procedure in this case as well. Since the need for the
computational framework mentioned above will not be fulfilled, we also give
an elaborate view on possible future improvements of this computational
research into Alzheimer.
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Chapter 2

Modeling

In this chapter every mathematical model that is used in this project is in-
troduced. Moreover, notations used throughout the thesis are introduced.
Below already a table of symbols with their corresponding quantity and
units is presented.

Symbol Quantity Units

MFR Mean firing rate Hz
Cv Coefficient of variation -
V Membrane potential mV
I Current mA
Eion Reversal potential of a certain ion mV
gi Conductance of synapse i (mm2 Ω)−1

wi Weight of a synapse i mm−1

τi Time constant of synaptic decay of synapse i ms
N Number of neurons -
pcon(i, j) Probability of existence of a connection from

neuron i to neuron j

-

di,j Distance between neuron i and neuron j mm
u Membrane recovery variable mV
dt Numerical timestepper ms
T Time horizon of simulations s
C Membrane capacity mF/mm2

Ri,j Distance from neuron i to electrode mm

The mathematical modeling steps should lead to the development of a
computational network that simulates the behaviour of the cultured net-
works best. These cultured networks contain for instance neurons and
synapses, thus models that represent these components need to be intro-
duced. Accurateness of these models always comes in a tradeoff with com-
putational efficiency. To be able to simulate these cultured networks, these
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Chapter 2. Modeling

mathematical models for the networks should be introduced, as well as the
behaviour of neurons and synapses. Moreover it is important that we try to
mimic the way that the measurements took place in the cultured network
setup. Before introducing these models in the next sections, some details
about cultured networks are brought up, since this is where our data that
has to be estimated originates from.

2.1 Cultured neuronal networks

As with every field of science, the basis of biological research dealing with
neuronal networks is measurements. To obtain a first clue about certain
phenomena taking place in the human body, one may perform experiments
and analyse their outcome. Based on these outcomes hypotheses and ex-
periments to test these can be formulated. A big issue with measurements
is that some of them cannot be done on humans directly. Especially the
brain is a complicated and vulnerable tissue, on which risky experiments
are controversial or outright prohibited. On the other hand, the brain takes
an important role in the bulk of neuronal activities, even so with neuronal
diseases.

A way to by-pass this problem is to create cultured networks. Biolo-
gists are able to dissociate neurons; axons and dendrites are detached and
only the cell body of the neuron is left. After dissociation, the cell bodies
are plated in an environment where the neurons are maintained and can
actually grow new dendrites and axons. In that way after some weeks new
connections between the neurons have been made and activity via synapses
takes place. By using various measurement equipments, this activity can
be recorded, allowing researchers to analyze the behaviour of the neurons
under given conditions. These sort of measurements are called in vitro, as
opposed to in vivo; the latter takes place in an actual living organism. To
create such cultured networks, mostly neurons of a rat are used, in our case
brain neurons belonging to embryonal mice. The exact region of the brain
that the neurons originated from was the hippocampus.

In vitro research has been a popular biological tool for decades already,
and it has proven to be of great value in research of different neural proper-
ties, for instance memory [18]. In our research too, ultimately a computa-
tional framework is developed that uses in vitro measurements to investigate
influences of Aβ to neuronal networks.

2.1.1 Computational neuronal networks

Since we attempt to simulate the behaviour of a cultured network, we need
to create a computational network that resembles the cultured one as much
as possible. The cultured neurons form one big network, grown without
any prefixed structure, so it cannot for instance be known between which
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2.1. Cultured neuronal networks

neurons a synapse is formed. This means that we are dealing with networks
in which at least positions and connetivity have to be modeled with some
probability distribution. Moreover it exists in two dimensions, since the
neurons are plated onto a surface. As shown in the Introduction, networks
can satisfy multiple properties, thus it has to be specified which of these our
group of neurons and synapses satisfy.

Graphically, the neuronal network can be represented as a graph G con-
taining a population of vertices V and edges E; G(V,E). In here the points
represent neurons, and just as in the biophysical situation, neurons can con-
nect to each other via synapses, in this case corresponding to the edges. We
create networks with a finite amount of vertices, N , in which the positions
are drawn from a two-dimensional uniform distribution. This is done in such
a way that the overall density of the neurons is 1000 cells/mm2, as in the
article of Kuperstein et al [12]. Biophysically, chemical synapses fire from
one neuron onto another and not the other way around, thus we model this
by having directed edges, thereby creating a directed graph.

Unfortunately, because of the probabilistics in the network, not much
of its exact properties are known. However, from biophysical knowledge, it
has been concluded that the probability of a connection appearing should
depend on the distance between two neurons. The exact dependence, or even
the average number of connections that one neuron makes, are unknown
though. An often used distribution for the connection probability is the
Gaussian distribution and in our case we chose parameters conformed to the
findings of the specialised study by Holmgren et al [6]. In our computational
network, an edge from a certain point i to another point j is created with a
probability pcon(i, j), which depends on their distance in the following way:

pcon(i, j) = 0.02 e−40d(i,j)2 , (2.1.1)

in which d(i, j) is the Euclidean distance between neuron i and j, given in
mm. As a consequence the number of connections is distributed in a way
quite similar to the common binomial distribution, since now its success
probability pcon(i, j) is distance-dependent instead of constant. Binomial
distributions are always characterised by this success probability and the
number of experiments, in this case N(N − 1), the total possible number of
connections. As common in studies regarding graphs, we define the meaning
of neighbours in our specific graph. We say that neuron j is a neighbour of
neuron i if a connection exists running from neuron i to neuron j.

Summarising we make a graph representative of our cultured network
with a certain given density of neurons, represented by vertices, randomly
placed in a two-dimensional domain, such that the density is 1000 neurons/mm2.
Synapses are distributed by creating edges with a distance dependent prob-
ability which has a Gaussian distribution and is fitted to previous results
by Holmgren et al. Thereby the geometry of our network is fixed. All other
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properties are cell-based; for instance the vertices satisfy a certain mathe-
matical model and also the edges are subject to some properties, treated in
the next two subsections.

2.1.2 Neurons

2.1.2.1 Izhikevich model

Each neuron is a dynamical system, having the membrane potential of the
neuron V (in mV) and the membrane recovery variable u (in mV) as their
state. Their behaviour follows a set of differential equations. As mentioned
in the Introduction, in 1952 Hodgkin and Huxley already found that the axon
can be modeled as a nonlinear passive electrical system, thereby describing
the behaviour of the potential in time by using Kirchhoff’s law. This can be
expanded to the whole neuron, including synapse, which gives an accurate
mathematical model. As with most models though, accuracy comes at the
cost of numerical efficiency. Having in our mind the fact that we would like
to run a simulation of our network numerous times within our optimisation
method, a less time-consuming model is preferable.

An accurate and moreover efficient mathematical model of a neuron is
the Izhikevich model. It describes the dynamics of the neuron as a two-
dimensional nonlinear dynamical system. The evolution of the state vari-
ables V and u is determined via:

{

V̇ = αV 2 + βV − u+ I

u̇ = a(bV − u),
(2.1.2)

subject to the following reset equations:

V (t−) ≥ 30mV ⇒

{

V (t+) = c

u(t+) = u(t−) + d.
(2.1.3)

In these differential equations, α and β are fixed constants taken to be as in
Izhikevich’s article [9]. Parameters a and b are dimensionless, c and d have
dimension mV and I is current given in mA. All parameters are explained
below.

The recovery variable u describes the activation of outward currents.
As explained in the Introduction, when an action potential arrives, at first
ion channels open which allows positive ions to flow in. After some time
though, an outward ion current initiates causing the potential to recover to
its resting value again. The variable u mimics this process.

When the membrane potential V reaches a certain threshold value given
by equation (2.1.3), this causes a reset in the state of the corresponding
neuron. Biophysically, this means that the neuron fires onto another neu-
ron and thus releases its neurotransmitters according to the cycle already
explained in the Introduction. Thus these reset equations model the spiking
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2.1. Cultured neuronal networks

of a neuron and based upon different Izhikevich parameters a neuron can
exhibit different spiking patterns.

Symbol Description Typical value

a Timescale of the recovery variable 0.02
b Sensitivity of the recovery variable to sub-

threshold fluctuations of the membrane po-
tential V

0.2

c Post-spiking reset value of the membrane
potential

-65 mV

d Post-spiking reset value of the recovery
variable

2 mV

I Synaptic, injected or background (noise)
current

-

Table 2.1: Izhikevich parameters

2.1.2.2 Biophysical interpretation of the Izhikevich parameters

Apart from the dependent variables u and V , there are five more unknowns
in (2.1.2) and (2.1.3), which are the Izhikevich parameters. Different values
of these parameters, regarded as properties of the neurons themselves, highly
influence their spiking patterns.

The explanation of the five parameters of Izhikevich’s model is given in
short in table 2.1. Typical values are given to have an idea of the order
of magnitude of all parameters (I varies from values like −65mA to 80mA,
thus no typical value is given).

Figure 2.1: Interpretation of the Izhikevich parameters.

Parameters a and b describe the behaviour of the recovery variable, and
can thereby for instance make a distinction between resonator or integrator
neurons. Resonators react to a periodic input by creating a fluctuating
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output with increasing amplitude. The reaction of an integrator is to add
up all the inputs to reach higher membrane potentials, which resembles to
integrating the signal. The parameter a is the timescale of the recovery
mentioned above, whereas b describes the sensitivity of the recovery value
with respect to the membrane potential V . When b is bigger, the membrane
potential and its recovery value are coupled more strongly. The description
in table 2.1 names sub-threshold fluctuations. These are fluctuations in V ,
in which V does not actually reach the spiking value. When b is bigger,
the recovery value will follow these fluctuations more. Parameters c and d

describe the reset behaviour of both variables, both given in mV. Figure
2.11 gives a good overview of these parameters.

(a) Parameter planes.

(b) Examples of spiking patterns.

Figure 2.2: b) Four examples of spiking patterns. a) Corresponding param-
eter values can be found in the parameter planes. NB: much more spiking
patterns can be simulated by the Izhikevich neurons (see his website or ar-
ticles [9] and [10]), for instance with changing b, which for these four cases
is not necessary.

The last parameter is I, which can be decomposed according to:

I = I0 + Isyn,

in which Isyn is the synaptic current, caused by the firing of another neuron,
and I0 is an injected current and/or a constant background current (noise),
which is biophysically also seen in neurons.

1Electronic version of the figure and reproduction permissions are freely available at
www.izhikevich.com.
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2.1. Cultured neuronal networks

Changing all these five parameters can lead to different neuronal be-
haviours. Four examples are shown in figure 2.2, in which the fifth parame-
ter, the current I, is not shown though varies from 0 to 15.

In these spiking patterns an important difference occurs, and a distinc-
tion between two of those different patterns should be made. The first is a
spiking pattern seen in for instance the first graph in figure 2.2. There we
see spiking at an approximately constant frequency, called regular spiking.
The third figure is far more irregular, since the spikes occur in clusters called
bursts. This behaviour in which there are silent periods and periods of rapid
spiking, is referred to as bursting or chattering. This distinction will play a
role in describing the behaviour of the network in the next chapter.

2.1.2.3 Phase plane sketch

To have an idea about how Izhikevich’s dynamical system behaves and where
this behaviour comes from, we show some phase plane sketches for different
parameter values. Firstly, in figure 2.3 a sketch is displayed in which the
current I is equal to zero. Moreover, the other parameters are chosen as
a = 0.02, b = 0.2, c = −65 and d = 6.

The phase plane sketches contain two nullclines, drawn in red and yellow
and corresponding to V and u respectively. The first and second nullcline
respectively satisfy:

u = αV 2 + βV + I

u = bV.
(2.1.4)

The green solid line is the reset value c for the potential V , to which the
V -value is set everytime it crosses V = 30mV (off range in the figure). All
green arrows indicate the directions of the vector field and the blue lines
represent some solution curves.

In the first, simplest sketch, we have two intersections of the nullclines.
This implies that we have two equilibrium points, in this case one nodal
sink and one saddle point. The shown orbits having initial point above
the parabolic nullcline converges to the stable equilibrium point. The two
other plotted trajectories move out of the window, though at V = 30mV
the variables are reset to the values of V = −65mV and u = u + 6mV,
leading the orbit after one spike to a position above the parabolic curve.
Starting further below the undermost trajectory, after one reset we might
still be below the parabola leading to another spike. Still, in the end the
convergence holds everywhere; either we converge to the stable equilibrium
point immediately, or by the choice of initial point the system spikes one or
several times and approaches the nodal sink thereafter.

From equation (2.1.4) we derive that by changing parameters b and I,
the shapes and position of the nullclines change. Changing c and d only
affects the reset points after a spike, in which c determines the position
of the vertical green line. By increasing b, the steepness of the u-nullcline
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Chapter 2. Modeling

Figure 2.3: Phase plane sketch of Izhikevich dynamics with no current.
Red, yellow and green solid lines correspond to respectively V -nullcline, u-
nullcline and reset value for V . The blue curves display some trajectories
and the red dots are equilibrium points.

increases. By setting I to positive values, the parabolic nullcline is shifted
upwards. In this way, changing the parameters results in different vector
fields and different trajectories.

This is why in figures 2.4a and 2.4b we obtain two different kinds of
neuron behaviour, which we referred to as regular spiking and bursting.
In figure 2.4a the current is set to I = 14mA and all other parameters
are equivalent to figure 2.3. Looking at the trajectory starting above the
parabolic nullcline, it crosses this parabola and then diverges in the V -
direction. At V = 30mV we reach the reset condition and the solution
curve is reset to the pink point on the green line. This again is situated
above the parabolic line, repeating these events in a periodic way, creating
a constant train of spikes.
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(a) Regular spiking. (b) Chattering.

Figure 2.4: Phase plane sketch of Izhikevich dynamics with positive current.
Red, yellow and green solid lines correspond to respectively V -nullcline, u-
nullcline and reset value for V . The blue curves display some trajectories
and the pink dots on the reset line correspond to spikes. Parameters are
such that we have a) regular spiking and b) chattering behaviour.

Changing I to 15mA and the reset conditions to c = 50mV and d = 2mV
leads to different behaviour, of which a phase plane sketch is shown in figure
2.4b. Again, the orbits starting above the V -nullcline move to and along
this parabola and then explode in the V -direction. This leads to a reset,
although as can be seen by the pink dots in figure 2.4b one reset still situates
the state below the red line. This is caused by both the increased current and
the smaller reset increase in the u-direction. It means that again we diverge
to V = 30mV, after which these events are repeated until the solution curve
is finally positioned above the parabola. Here the whole above procedure
starts over again, leading to a repetitive pattern of (here) four closely spaced
spikes followed by a period characterised by the absence of spikes: bursting.

The remaining parameter a only influences the timescale in which the
recovery variable u evolves. In figure 2.3 one already sees that V can be
called the fast variable compared to u, since the arrows are almost all hor-
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izontal, except near the V -nullcline. When increasing a, the influence of
u to the vector field becomes bigger and the membrane potential becomes
respectively less fast.

2.1.2.4 Excitatory versus inhibitory

Neurons can be subdivided into two classes; excitatory and inhibitory. When
a neuron is excitatory, this means that when it fires, the potential of its
neighbour increases. Thus this spike gives an input to another neuron which
brings that membrane potential closer to its firing threshold.

Inhibitory neurons do exactly the opposite; when an action potential
arrives at the synapse and a spike occurs, this will give a negative input to
their neighbours, decreasing their membrane potential. This makes it more
difficult for these neighbour neurons to reach their firing threshold.

Since we have dissociated neurons from a particular embryo and a partic-
ular region of the brain, the hippocampus, we know what kind of neurons the
cultured network contains. In our specific network these are neurons that
are excitatory. Based on this we can now try to find suitable parameter
values for our Izhikevich model.

2.1.2.5 Our cultured neurons

To model the neurons correctly, we need values for all five Izhikevich param-
eters which make sure that the neurons exhibit behaviour that is comparable
to our cultured hippocampal neurons.

In order to find these parameters one would like to have single neuron
measurements, to see what kind of behaviour the cultured neurons show.
This data is often created by patch clamp techniques. Here a micropipette is
used, which has an extremely small tip. When it is placed on the membrane
of a neuron, only one or a few ion channels are covered. This micropipette
acts as an electrode and records currents in the single neuron.

The article by Kuperstein et al [12] shows figures of these patch clamp
recordings. These figures show single spikes, regular spiking, single bursts
and a more regular bursting pattern. For every neuron in our network we
need to pick a set of five values for a, b, c, d and I, such that the neurons can
exhibit these spiking patterns. Since apparently there is some variability in
behaviour, we choose the parameters to be picked from a normal distribution
N (µ, σ), to resemble that variation in our neurons. This is justified by the
Central Limit Theorem if we make sure that our network contains enough
neurons.

It remains to choose values for the mean and variance of all five Izhike-
vich parameters. With all four spiking patterns mentioned above, the cor-
responding Izhikevich parameters to obtain this behaviour are known. For
instance, for all sorts of behaviour it suffices to choose a = 0.02. That is
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why we choose the mean of this first parameter to be 0.02, whereas σ is
chosen to be relatively small and equal to 0.001. The parameter b shows a
little more variability over the four spiking patterns, changing from 0.2 to
0.25, resulting in a choice for the distribution N (0.22, 0.015). The mean and
variance of the other three variables are again chosen similar to the mean
of the parameter values corresponding to the four spiking patterns. Besides
that, to realise the described variability in the neuron population, the vari-
ation of both reset values c and d and the current I was chosen relatively
big (up to 40% for the current). That indeed these parameters influence
the separation between spiking and bursting the most, was already shown
in section 2.1.2.3.

Comparance of the results with the computational network to the patch-
clamp recordings, conformed that the recorded behaviour was also included
in the simulated spiking patterns, in which we finally chose the following
parameter values:























a ∼ N (0.02, 0.001)
b ∼ N (0.22, 0.015)
c ∼ N (−58, 5)
d ∼ N (4.5, 1.5)
I ∼ N (12.5, 5).

Now that the neurons are all specified, we need a way to actually sim-
ulate them. This is done with software that combines both programming
tools of MATLAB and C++. In C++ a custom simulation program that
is specialised in simple neuronal networks, called the Verdandi simulation
environment, is used. For timestepping we use dt = 0.1ms.

Just like in every system of differential equations, for having a unique
solution one needs initial conditions. With our two-dimensional dynamical
system this means that we should have two initial conditions for every neu-
ron, one for the membrane potential and one for the recovery variable. To
have an asynchronous firing network, we choose these initial conditions with
some variability:

{

V0 ∼ N (−65, 5)
u0 ∼ N (−12, 3).

With the above, the internal dynamics of the neurons are all determined.
Yet as already seen in equation (2.1.2), there is an influence of the synaptic
currents originating from other neurons, given by Isyn. Thus, to complete
the modeling of the cultured network, we need to specify how the connections
between vertices are established and which properties they satisfy.
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2.1.3 Connections

Edges between the vertices in our graph represent synapses between two
neurons. As in the biophysical situation, there does not exist a synapse
between every pair of neurons. As explained before, connections exist with
a certain probability pcon(i, j) as given in equation (2.1.1). The synapses
represented by the connections, satisfy a model which is an extension of the
model of Hodgkin and Huxley.

The model of Hodgkin and Huxley relates the change in membrane po-
tential V over time to the currents flowing in and out of the cell membrane.
Among these currents, there are ion currents through the ion channels, in-
jected currents and synaptic currents. The original form of the Hodgkin-
Huxley equations then is:

{

CV̇ = I − IK − INa − IL
ẏ = f(V,y),

(2.1.5)

in which ˙(·) = d
dt

(·), C represents membrane capacity in (mF/mm2), IL is

an Ohmic leak current in mA (by leaking Cl− ions) and IK and INa are
ion currents of respectively potassium and sodium, modeled in the following
way:

IK = gKn4(V − EK)
INa = gNam

3h(V − ENa).

In these equations for the ion currents, gion is the maximal conductance of
the ion channel given in (mm2 Ω)−1, in which Ω is a unit for resistance.
These ion channels consist of a number of activation and inactivation gates,
of which the behaviour is modeled by m and n, respectively h. The number
of gates, effecting the power of these variables (in this case 3 and 1), varies
per ion channel. In short, the gates can either cause ions to flow through
the channel, or block the channel. The activation and inactivation variables
satisfy certain ODEs themselves, in equation (2.1.5) displayed in its second
line. The exact form can be found in for instance [11]. Finally, Eion is
the reversal potential of an ion given in mV, also called Nernst potential,
which is the very potential at which these ions neither flow out of, nor into
the neuron: the ion concentrations inside the neuron are at electrostatic
equilibrium with those outside it.

In equation (2.1.5) I again resembles the synaptic current and injected
current. If we rewrite this, we obtain:

{

CV̇ = h(V,y) −
∑M

i=1 gt,i(t)wi(V − Ei)
ẏ = f(V,y),

(2.1.6)

in which h(V,y) now contains all currents except for the synaptic currents,
which are displayed by the second part of this first equation. The summation
is over all M synapses terminating at the neuron corresponding to this

20



2.1. Cultured neuronal networks

differential equation. This thus models how the postsynaptic membrane
potential changes in time, given the various currents including the synaptic
currents. In the summation over all these synapses, immediately two other
properties of the connections are reflected: the conductance gs,i(t) and the
weights wi.

2.1.3.1 Conductance of a synapse

The conductance of a synapse describes the reaction of the synapse to an
arriving action potential. This reaction may vary in amplitude, as well as
in how quick the activation and deactivation of the synaptic current is.

Different models for the synapse are present. The simplest one is a
delta synapse, in which at the instance of a spike, the synapse opens and
immediately closes. Thus only at that timestep the potential of the firing
neuron i is added up to the potential of the destination neuron j:

Vj(t
+) = Vj(t

−) + Vi(t
−).

In the biophysical case though, the neuron needs some time to become
active and after reacting to the action potential also needs some time to
fully recover and close. Thus this delta synapse is not very realistic. In a
more realistic model the conductance has a time constant for the opening of
the synapse, and another for deactivating after the action potential. When
these time constants are the same, this could be modeled with a conductance
following the alpha funtion (see figure 2.5a). The synaptic model for this

(a) Alpha synapse. (b) Exponential synapse.

Figure 2.5: Sketches of conductances with a) Alpha synapse and b) Expo-
nential synapse.

thesis is more realistic than the delta synapse, yet a little more simplified
than the alpha synapse; the exponential synapse. At the moment of arrival
of the presynaptic action potential, the synapse immediately opens, after
which the deactivation is exponential, see figure 2.5b.

To conclude, the amplitude of the conductance can also vary. To separate
between the amplitude and the time dependent decay, the conductance is
given as:

gt,i = gi · si(t),
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in which, when a spike occurs at t = t1:

si(t) =

{

0 for t < t1
e−t/τi for t ≥ t1.

Here gi is the amplitude of the reaction of the synapse to an action potential,
and si(t) is the time-course of the conductance, as in figure 2.5b, normalized
to one. The parameter τi is the time constant with which the conductance of
the synapse decays. As concluded in the previous section, we will only have
one sort of neurons originating from one specific region of the brain, which
makes the assumption that all synapses have about the same conductance
also plausible. That is why from now on we will change τi to τ and gi to g

for every synapse. Both τ and g will become important parameters of our
model later on, and when talking about conductance in the remaining of this
thesis we mean the amplitude g, since the time course of the conductance
is now fixed. With this last formula the model for synapse conductance is
fully defined.

2.1.3.2 Weight of a synapse

The probability of a synapse existing between a pair of neurons depends
on their distance and so does the amount of appearing synapses. When
two neurons are close together, it is quite likely that not one though more
connections are established between them. When two neurons are far apart,
the existence of one synapse is already unlikely, which makes the appearance
of more joint synapses rare.

The above effect of one or more synapses appearing between neurons, is
represented by the wi in equation (2.1.6). There are few publications about
how to model these weights with respect to the distance between neurons.
One specialised article which does state some results is [6]. Guided by these
results we choose for every created synapse i between neuron k and neuron
l a weight wi in the following distance dependent way:

wi =
2

0.05 + d(k, l)
· a · 10−4,

in which d(k, l) again is the Euclidean distance between vertices k and l and
a is a number picked from a uniform distribution between zero and one.

In the article by Holmgren et al, it is shown that synapses with high
weights are only found between neurons close to each other, whereas synapses
between neurons far away are relatively weak in most cases, corresponding
to low conductance. This implies that in general the weight decreases with
increasing distance and we choose to let it be inversely proportional to the
distance. At the same time, the article shows that a few of the neurons close
to each other, share some relatively weak synapses. Thus, it is not per def-
inition true that closeby neurons share strong connections, though chances
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are that they do. That is why we introduce a random number a, which
is uniformly distributed on the interval [0, 1]. In this way, the weight of a
synapse between two neurons with distance d(k, l) is picked to be between
zero and 2

0.05+d(k,l) . We multiply this value by 10−4 to temper the influence
of mutual neurons, thereby reassuring the asynchrony of the network. With
these values, the results of Holmgren et al can be reproduced.

At this point, the complete computational network has been defined. In
the cultured networks, we are not able to measure the electric activity of
each separate neuron though, thus we need to clarify how measurements
take place.

2.2 Microelectrode Arrays

For the recording of the activity in the cultured network, Microelectrode
Arrays (MEAs) were used2. In our case this MEA is a device that contains
60 electrodes (see figure 2.6b), equally distributed over the region where the
neurons are plated (see figure 2.6a). The electrodes have a diameter of 10
µm, whereas the inter-electrode space is 100 µm.

(a) Magnified piece of
cultured network with
situated electrodes.

(b) Multielectrode Array.

Figure 2.6: a) Electrodes in the region where the neurons are plated.
b) Schematic representation of MEA and the distribution of its electrodes.

By using the corresponding software (MC Rack) the membrane poten-
tials of all the separated electrodes can be analysed. In this way for instance
spiketimes can be determined in two different ways. The most reliable and
simple method seems to be the one that determines a spike based on the
standard deviation of the noise. For every electrode it calculates this stan-

2The exact type can be found at
http://www.multichannelsystems.com/products/60mea10010-ti-wo.
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dard deviation, and thereafter defines a spike as a peak in the potential
exceeding a threshold of 5 times this standard deviation. These spiketimes
can be exported and loaded into MATLAB.

For fitting our computational network to the data of the cultured net-
work, we need to compare the characteristics of both datasets. Therefore it
is necessary, that both data are of the same kind. Data created with our
computational network concerns single cells, whereas the data originating
from the cultured network is based on aggregate information coming from
the individual electrodes, that measure in general more than one neuron
(see figure 2.6a). Either we need to convert our experimental data to spik-
ing patterns of single neurons, or we should convert the simulated data to
signals that are comparable to the data originating from MEA recordings.
The first seems to be a not well-defined process, since we have datasets cor-
responding to all electrodes from which we need to extract spiking patterns
corresponding to, by the density of 1000 neurons/mm2, about 10 times as
much neurons. Though methods that take for instance the shape of the
spikes in the potentials into account have been developed, it remains a com-
plex task. That is why we choose to convert the results of our computational
network, to signals that resemble MEA recordings.

There are two important notes before describing how the conversion
takes place. Firstly, with the electrodes of a MEA one measures extracellular
behaviour, instead of the intracellular models we have talked about so far.
A negative action potential in the intracellular medium of the neuron is
measured in the extracellular environment as a positive action potential.
Thus if we have a couple of neurons nearby an electrode, instead of simply
adding the potentials up, we need to invert all voltages. Secondly, as stated
before, the electrodes are not placed in such a way that there is exactly
one neuron at the position of one electrode. On the contrary, there can be
electrodes recording activity of only a few neurons and only at relatively far
distances and there can be electrodes with a cluster of neurons close to the
electrode. Intuitively the activity of a neuron situated close to an electrode
is measured way better than one far away. Thus instead of just adding up
potentials, we need to take some weighted sum, possibly depending on the
distance from neuron to electrode.

The above is possible, since after creating the network, all properties are
known. For instance the positions are chosen randomly, yet after one has
done so, the values can be used. Also the positioning of the electrodes is
known from the manufacturer.

A reasonable choice for a weighting factor for this weighted sum is one
of the order R−1

i,j in which Ri,j is the distance from neuron i to electrode j,
given in mm. Indeed we choose this as weighting factor, yet transformed
in such a way that the contribution of a neuron having exactly the same
position as the electrode is one. Moreover, we assume that the electrodes
have a certain radius of effectiveness, r, meaning that within a circle of
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Figure 2.7: Sketch of how we model the MEA chip. In this case 10 neurons,
4 electrodes and their corresponding radius of effectiveness.

this radius activity of neurons is still recorded and outside this circle the
particular electrode does not sense the presence of the neuron anymore (see
figure 2.7). Therefore we also transformed the weighting factor in such a
way that at Ri,j = r it is zero. Then, the weighted sum for transforming
our cell-based data to data which is comparable to the MEA data, is:

Mj(t) =
∑

i∈Dj

−
r −Ri,j

r(Ri,j + 1)2
· Vi(t),

in which Dj is:
Dj = {i ∈ {1, 2, . . . , N} |Ri,j ≤ r} ,

in which N is the total number of neurons. Thus, with every electrode, we
create a weighted sum of the neuron-based membrane potentials Vi(t) over
the neurons that are within the effective range of an electrode. In this way
we obtain a signal of weighted potentials for every electrode, just as we have
with the recordings of the cultured networks, although this model remains
completely phenomenological. Discussing results, this will therefore be a
point which we will return to since it is not assured that this is the correct
way of modeling.

Later on in this thesis, we will also discuss spiking patterns corresponding
to these electrodes. Spikes in the potentials of an electrode are referred to as
a spiking neuron that is detected in the potential trace of these electrodes.
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Chapter 3

Gauss-Newton optimisation

In the previous chapter we defined models to create computational data.
Moreover we described how we can convert this data in such a way that it
can be compared to Microelectrode Array recordings. The goal of this part
of the thesis is to try to fit the last few undetermined parameters in such
a way that we can recreate, by simulations, the recorded data originating
from the cultured network as well as possible, both with and without Aβ.
If an effective method for fitting can be developed, this might contribute
to systematically looking for significant differences in properties of neural
networks, in our case between Aβ-treated and untreated networks.

Of course, one first has to establish how such a fit of computational data
to recorded data can be achieved. This is described in the first section. After
that we describe in mathematical terms how the behaviour of a network can
be approximated, statistically speaking, after which we describe the Gauss-
Newton optimisation procedure used as an attempt to solve our problem.
We end the chapter by testing the method on a benchmark problem.

3.1 Parameter estimation

In this project we would like to find a computational representative for our
cultured network, with and without Aβ. To do this, we will try to fit the
data that we create with our simulated network, to the available data that is
recorded using MEA chips. The question remains though, what this fitting
entails.

Data fitting in this case, means varying certain unknowns in one’s model
in such a way that one ends up with a model that can reproduce the exper-
imentally recorded behaviour. In the most common ODE or PDE settings,
this means that we can change parameters to change the dynamical be-
haviour. There is no topology at all, since for instance a diffusion equation
is an isotropic differential equation.

In our network setting though, we have two categories that might change,
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as can be seen in chapter 2. At first there is the dynamical behaviour of
every neuron and corresponding synapses. These are all caught in as many
parameters as we would like; for instance the Izhikevich parameters, con-
ductances and time constants of synaptic decay. By changing a parameter
we automatically change the dynamical behaviour, and if the spanned pa-
rameter space has a dimension equal to the number of parameters, we can
describe every possible dynamical behaviour in our networks.

The second category is network structure, which we can change by adding
or taking away connections and neurons, as well as changing the density
of neurons. This network structure might also be changed, although the
problem with this is how to parametrise the network structure. There is no
clear choice of parameters which defines all possible networks instead of just
a subset.

Moreover, keeping such a parameter for a property of the network struc-
ture fixed to one value, might lead to different realisations of the network.
With another realisation one generically also has other dynamical behaviour.
Thus, when one would want to change the network structure as well, to fit
the available data, one has to calculate results over different realisations
and average these results with every step in the parameter space. This is
computationally time consuming.

Following the previous arguments, in this thesis the geometry of our
computational network is completely fixed; that is, we pick the positions
of all neurons from a 2D uniform distribution, and we know the pairs that
share synapses. The fitting is done with respect to the properties of the
dynamical behaviour only.

Varying for instance the Izhikevich parameters would change the be-
haviour of the single neurons and therefore the activity in the whole net-
work. The fact is though, that as explained in section 2.1.2.5, certain facts
about these neurons are known. Firstly, the figures corresponding patch-
clamp data displayed in the article by Kuperstein et al were available and
moreover we know that the neurons used for the cultured networks are hip-
pocampal neurons. From this, we derived a reasonable set of parameters
for our Izhikevich neurons in the previous chapter, thus we choose not to
optimise these.

What is left are the synaptic parameters. Indeed, in the Introduction we
mentioned that thoughts are that Aβ dysregulates presynaptic processes,
which raises the idea that in these synaptic parameters the first phenomena
occur when injecting Aβ. As shown, ion channels are important in the con-
ductance of an action potential through a synapse. These ion channels are
proteins that can bind physiologically relevant chemicals such as neurotrans-
mitters. Thereby it will not come as a surprise that certain other molecules
can bind to ion channels as well. For example, there is Tetrodotoxin, which
can block channels from the outside, suppressing the ability of a neuron to
conduct signals. Moreover, there are toxins (for instance α-Scorpion) that
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slow the rate of inactivation [14]. This suggests that Aβ can affect those
synaptic properties as well, which makes the choice to optimise these param-
eters biophysically plausible. Therefore we indeed choose to only manipulate
the synaptic conductance g and the exponential time constant τ correspon-
ding to the decay of the synaptic activity after a spike. Later on, we will see
that we conclude that other possibilities would have been possible as well.
Having clarified the above, we have to establish how we actually want to
compare the behaviour of two different networks.

3.2 Network characteristics

Until now we have discussed fitting the computational data to the data
extracted from a cultured network. Yet how can one actually distinguish
between two different networks? In other words, how can we describe the
behaviour of a network, with for instance certain network characteristics, in
a well-defined way. Here well-defined means that we prefer to have differ-
ent characteristics for different network behaviour. In this section we will
introduce certain target values that are properties of our networks, which
we will use as a description for network behaviour. Moreover, with these
target values an objective function is defined, representing the error that we
make in estimating the MEA data by those generated by our computational
network with a specific choice of g and τ .

3.2.1 Target Values

To find a definition for certain characteristics which represent our network
behaviour, we should dive deeper into what we want to achieve. Since all
mathematical models are an approximate representation of reality, the best
we can obtain is an as accurate as possible estimation of the correct values
for g and τ . Since we do not have the cell-based data for our cultured
neurons as explained in section 2.2, we choose to convert our computational
data to data concerning electrode data, in the sense that we wish to map
our data on the behaviour of individual neurons onto aggregate data over
nearby (in the Euclidean sense) neurons. After this has been done, we
have a timeseries of aggregate potential recordings for every electrode at our
disposal. Characteristic for networks are spiking patterns corresponding to
its neurons. Determining, in turn and in some appropriate way, these spiking
moments in our data, we can extract a timeseries of spiking times for each
electrode.

As in other researches into neuronal networks [21], we describe the char-
acteristics of the timeseries by the moments of the underlying probabil-
ity distribution. Regarding our timeseries, we take the interspike intervals
(ISIs) per electrode and try to estimate how they are distributed. This can
be achieved by estimating the moments of the interspike intervals, starting
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by the mean. Suppose we have the spiketimes ti, i = 1, 2, ...S, then the
mean ISI is defined to be:

∆t =
1

S − 1

S−1
∑

i=1

∆ti,

in which ∆ti = ti+1 − ti.
In literature it is more common to talk about frequencies of spiking, thus

what we will use as characteristic for the behaviour of our networks, is the
Mean Firing Rate (MFR) of a network:

MFR =
(

∆t
)−1

.

Here, these values are scaled in such a way, that the frequencies are given
in Hertz.

With solely the MFR being fixed, numerous firing patterns might sat-
isfy this characteristic. The same goes for most timeseries; with only an
estimation of the mean, one knows almost nothing about the underlying
probability distribution. Thus by only using MFRs as our description for
the behaviour of a network, we will find a couple of g and τ satisfying the
right MFR quite easily, though it will be far from unique. For instance, we
can have a regular spiking neuron satisfying the same frequency of firing as
another neuron that is bursting.

This may introduce us to a second statistical measure, namely the sec-
ond moment or variation. The variation reveals the amount of regularity
in the interspike intervals, which plainly is a big difference between regular
spiking and bursting neurons. Bursting neurons have small interspike inter-
vals inside a burst, alternated with big interspike intervals outside a burst.
This gives the variation a relatively larger value than with a regular spiking
neuron.

For this reason we define the Coefficient of Variation, being a scaled
version of the standard deviation σ∆t:

σ∆t =

√

√

√

√

1

S − 1

S−1
∑

i=1

(

∆ti −∆t
)2
.

Now the coefficient of variation is this standard deviation scaled by the mean
of the interspike intervals:

Cv = σ∆t ·
(

∆t
)−1

.

In statistics, based on the first two moments, the mean and variation,
one knows the general shape of the probability distribution. In our case,
by using the Mean Firing Rate and Coefficient of Variation as target values
to describe neuronal network behaviour, the MFR acts as a measure for
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amount of activity in our network and the Cv distincts between the various
firing patterns, like bursting or regular firing. In the remaining, these target
values are used as characteristics for neural network behaviour and moreover
for our objective function for the optimisation later on.

One final note about the way these statistical moments are used should
be made. By the uncertainty appearing in the initial conditions of all mem-
brane potentials, a transient stage in which the MFR and CV still need
to stabilise might occur. For this reason one might run simulations with
several initial conditions after which the results can be averaged, though
we choose to use statistics averaged over time and moreover we do not use
the first second of our simulations to exclude the transient stage. In the
section about the optimisation method we will also analyse the time needed
for these target values to stabilise.

Spike detection Based upon spike times the first two moments are used
to characterise network behaviour. Thus it remains to introduce a method
to estimate the moments at which a spike occurs. This can be done by
using the timeseries of potentials of every electrode. In a potential trace
of a spiking neuron, a clear definition of a spike is present, namely that
point where the potential crosses V = 30mV and is reset to its reset value c.
This that plainly in figure 3.1a we define three spikes. When converted to
data which is comparable to the MEA data though, potentials do not have
such fixed ranges anymore, since depending on the amount of surrounding
neurons and their distance to the electrode the potentials are added with
different weights. Besides that, neurons do not fire all at once which is
reflected on a potential trace of MEA data in the sense that it contains a
sequence of spikes with highly varying amplitude. The above causes the fact
that determining what is a spike is a genuinely hard problem, especially since
we do not intend with a MATLAB script as opposed to manual detection.

(a) Neuron membrane potential. (b) Computational MEA data.

Figure 3.1: a) Example of neuronal membrane potential in time with three
spikes. b) Example of data of a computational network converted to MEA
data.

The most important thing to notice about spikes in MEA data, is that in
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the timestep before a spike, the potential decreases, and in the timestep after
the spike it increases. This zero-crossing of the derivative of the membrane
potential, is the first criterion which we use to detect a spike.

To prevent noisy jumps of small amplitude to be identified with the event
spike, a second criterion is that the upward jump after this zero-crossing
should be of a certain minimum threshold magnitude. This criterion is
derived from the fact that the Izhikevich neurons are defined to make the
reset jump after a spike (see equation (2.1.3)). This immediately raises a
point of discussion, since there is no way to select this threshold value in a
natural way. Regarding figure 3.1b one can actually see that it is not fully
clear which jumps should be selected as spikes and which should not be.

3.2.2 Objective function

The objective function should plainly be a measure for how close one is to
the desired value. In our case it thus has to give a measure for how well
our computational network behaves with respect to the recorded data of the
cultured network.

In other words, the most rational choice for an objective function would
be the error we make in Mean Firing Rate and Coefficient of Variation. For
these purposes, we define the following function:

F(g, τ) =

(

MFR(g, τ)
Cv(g, τ)

)

.

Here both components of F(g, τ) are vectors, containing Mean Firing
Rates and Coefficients of Variation of all electrodes, since the best solution
to our optimisation problem would be if every electrode in the computational
setting resembles the recorded data. Apart from that, using MFRs and Cvs
of every electrode instead of just an average over the whole network, allows
us to also regard asynchrony in the network.

Regarding the data, let MFR∗ and Cv
∗ be the Mean Firing Rate and

Coefficient of Variation corresponding to the recorded MEA data and define:

F∗ =

(

MFR∗

Cv
∗

)

.

Then we can define the following objective function:

E(g, τ) =
1

2
‖F(g, τ) − F∗‖22. (3.2.1)

in which ‖ · ‖2 represents the 2-norm, thus ‖x‖2 =
√

x21 + . . .+ x2n.
With this objective function, we have a measure of how close a simulation

with a fixed g and τ is to the available data. There is still one remark to
be made: the values of MFR are usually not of the same order as Cv.
Mean Firing Rates are mostly of order 10 to 100, whereas the Coefficient of
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Variation is order of 1. Thus to be sure that the influence of the MFR to
the error is of the same order as the influence of Cv, we need to scale both
by dividing MFR by the maximum of MFR∗ and similarly for Cv. From
now on, if we talk about the objective function, this is with respect to the
scaled target values.

Finally, to try to obtain the synaptic parameters for which our estimation
is best-fitted to the data, we will now plunge into an optimisation method
aimed at minimising this error function.

3.3 Gauss-Newton optimisation method

Inspired by the research by Hahn and McIntyre [4], we will use a Gauss-
Newton optimisation method to try to find a couple of g and τ that minimises
the error in Mean Firing Rate and Coefficient of Variation between our
simulations and the available MEA data. The Gauss-Newton instead of
the Newton method is used, since we have two target values per electrode,
which comes down to more equations than unknowns. Since a non-square
matrix has no inverse, the Gauss-Newton method uses a generalised inverse
to determine a next iteration step. The optimisation method starts with an
initial value and then iteratively tries to find a zero of the objective function,
in our case the error function. This implies that besides our computational
network, we will need to introduce the iteration steps of the optimisation
method and a way to extract the target values from the data. Both will be
discussed in the sections directly below.

3.3.1 Iteration steps

As a result of our iteration steps, we would like to find a minimiser for the
error function set up in equation (3.2.1). Generically, we will not find the
minimum exactly, especially since we made all kinds of model assumptions.
That is why we choose a certain tolerance in error with which we are satis-
fied. That is, when the optimisation method finds a couple of g and τ that
lead to simulations with MFR and Cv, such that the error is smaller than
this tolerance, we regard these g and τ as our solution. The value of this
minimum score will be discussed later on, since our solution might depend
on it.

To start the Gauss-Newton method, we need an initial value. Therefore
we pick certain ranges for both g and τ wherein the optimisation method can
search for optimal values. Since within these bounds there is no indication
what the optimal values should be, we choose the initial values randomly
by drawing from a uniform distribution with the boundaries equal to these
ranges and then run the method several times.

Starting from these initial values, the iteration is started. To obtain a
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next set of parameters, an update rule is needed, which is the following:

(

gi+1

τi+1

)

=

(

gi
τi

)

− λ(JTJ)−1JTR(gi, τi), (3.3.1)

in which λ = 1 at the first step and

R(gi, τi) = F(gi, τi)− F∗,

is called the remainder. The Jacobian J equals:

J = J(gi, τi) =

(

DgR1(gi, τi) DτR1(gi, τi)
DgR2(gi, τi) DτR2(gi, τi)

)

.

In equation (3.3.1) the term (JTJ)−1JT is a matrix known as the generalized
inverse of J .

The Jacobian is computed numerically. In short, for a small perturbation
ε in every parameter the change in function value F (gi + ε, τi) is calculated
and divided by ε. That provides us with the first column of the Jacobian,
the other column is calculated in a similar way.

When, by following this iteration a new point in our parameter space
is found, the algorithm checks whether the step leads to a decreases of the
error with respect to the previous step. If so, λ remains unchanged and
with these new parameters we go into the next iteration, unless the error
is smaller than the tolerance. If not, we refine the stepsize by halving the
value for λ and again we check if this step decreases the error. This is done
five times at most, after which the method reapproximated the Jacobian
for a bigger values of ε. With the new estimate for the Jacobian, again we
perform equation (3.3.1) and we repeat the above. The Jacobian is also
reapproximated five times at most, after which, if no point in parameter
space that improves the error has been found, the program takes a random
perturbation in both g and τ . With these new randomly perturbed values
for the parameters we enter the next iteration. One last criterion is that
we only allow the procedure to perform 50 iterations, to avoid entering an
infinite loop of iterations. The whole procedure can be seen in a overview
diagram in the paper by Hahn and McIntyre [4].

As a benchmark for our procedure, we create a computational network
with fixed g∗ and τ∗. By running simulations for these parameter values we
obtain certain target values MFR∗ and Cv

∗, which then are set as target
values for our optimisation procedure. If the procedure works perfectly, it
should be able to return those chosen values for gr and τ . Moreover, to gain
some insight into the optimisation and the amount of global and/or local
minima and maxima, we plot the error function. When for instance several
local minima and maxima are present, this might influence the convergence
of our Gauss-Newton method. Besides that, by observing the error function
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we also found out that the time horizon of our simulation has of influence on
the error function. Before we discuss these subject, we derive a theoretical
statement about fixed points of our optimisation problem.

Fixed point in theory In theory, we can show that generically one unique
fixed point exists. From equation (3.3.1) we derive that our fixed point
should satisfy the following condition:

(JTJ)−1JTR(g, τ) = 0,

and thus
R(g, τ) ∈ Ker

{

(

JTJ
)−1

JT
}

, (3.3.2)

in which Ker{A} is the kernel of a matrix A, which is also referred to as
nullspace.

The statement in equation (3.3.2) is equivalent to:

R(g, τ) ∈ Ker
{

JT
}

, (3.3.3)

since:
x ∈ Ker{B−1A} ⇔ B−1Ax = 0

⇔ Ax = 0
⇔ x ∈ Ker{A}.

Suppose we have an n by n system which has to be solved. Then,
generically, we have one solution to the equation Ax = 0 and thus one
element in our kernel, namely the zero vector. Removing one equation,
gives us an underdetermined n − 1 by n system, which has infinitely many
solutions. There is one free variable, which can be chosen to be any value,
after which other variables are fixed with probability one. In other words,
there is a whole curve of solutions; the kernel of A is one-dimensional. More
specifically, when fixing this free variable to be the zero element, generically,
the others will be zero as well.

In this case, when having m electrodes, JT is an element of M2×(2m),
which are the real matrices having 2 rows and 2m columns. Thus an un-
derdetermined system with a solution space of dimension 2m− 2 has to be
solved. The parameters g and τ that we are optimising for, span a 2D-
space, which ensures that R(g, τ) in equation (3.3.3) is a surface in the full
space of 2m dimensions. From this, we can conlude that generically the
surface corresponding to R(g, τ) and the solution space Ker

{

JT
}

intersect
transversally. Outside a set with measure zero in which those R(g, τ) and
Ker

{

JT
}

are contained where at least one of the spanning vectors of the
tangent space of R(g, τ) or Ker

{

JT
}

is a linear combination of the other’s
spanning vectors, the tangent spaces span the whole R2m. Thus, generically
the tangent spaces of R(g, τ) and Ker

{

JT
}

do not coincide and have di-
mensions 2 and 2m− 2 respectively. Thereby, together they span the entire
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Figure 3.2: Sketch of a transversally intersecting surface and line in R3.

space and automatically they intersect transversally. In three dimensions,
this is equivalent to stating that a surface and a line intersect transversally
and thereby that their tangent spaces span the whole R3. Outside the set
with measure zero in which the tangent of the line is tangent to the plane,
this is indeed true. An example is shown in figure 3.2, in which the black
arrows in the surface span the tangent space of the surface and the third
arrow spans the tangent space of the line. All three together indeed span
the whole R3.

Concluding, the fact that R(g, τ) and Ker
{

JT
}

intersect transversally
implies that generically there is one isolated fixed point.

3.3.2 Time horizon

(a) Time horizon T = 2 seconds. (b) Time horizon T = 40 seconds.

Figure 3.3: A plot of the error function for a certain grid in g and τ , with
a time horizon of a) T = 2 seconds and b) T = 40 seconds. The red dot
represents (g∗, τ∗).
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With our benchmark procedure, we choose to have a network of 40 neu-
rons, with a computational MEA of 4 electrodes. With this network we
can plot an error function, since after MFR∗ and Cv

∗ are known, this is a
funtion of g and τ only. Thereby, interesting notions about the time horizon
of our simulations and corresponding stabilisation of our target values MFR
and Cv become apparent.

For this analysis, we choose the values (g∗, τ∗) = (0.075, 3). The error is
calculated on a grid in parameter space surrounding this chosen point and
then plotted in 3D. An example plot of the error function is given in figure
3.3a. The figure shows such an amount of peaks and thus local maxima
and minima, that a clear global minimum cannot be pointed out. Non-
smoothness of this kind causes difficulties for our optimisation method with
finding the right couple of g and τ .

Figure 3.4: The evolution of MFR (blue) and Cv (red) values of every
electrode (1 to 4 from left to right) in time. For comparison, the dashed
plateaus represent the equilibrated target values. We observe that it takes
some time for the values to equilibrate.

Though, given that our error function is non-smooth like this, this might
imply that something unforeseen is going on. If not, then this can be
problematic for the Gauss-Newton method, since recapitulating, the Gauss-
Newton iterations need an estimation of the Jacobian matrix of the vec-
tor R(gi, τi) (equation (3.3.1)). Computing derivatives of a surface that is
non-smooth plainly leads to difficulties. Plainly, there are several ways to
smoothen a function, like for instance using a Gaussian kernel to mollify the
data. Nevertheless, this smoothening also affects the position of the global
minimum such that after mollification it might well be that the outcome of
our optimisation is not trustworthy at all [20]. That is why we do not use
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any of those methods.
The fact that the time horizon of our simulations is part of the cause

for this non-smoothness becomes clear though, when we plot the Mean Fir-
ing Rates and Coefficients of Variation in time (see figure 3.4). In these
graphs, the values for MFR and Cv are plotted, in which the horizontal axis
represents the timestepping. That is, at T = 30, the simulations ran for
30 seconds and both Mean Firing Rate and Coefficient of Variation were
calculated over the whole time period, excluded the first second to omit the
transient time as explained in section 3.2.1. The dashed plateaus represent
the target values calculated with regard to the whole 50 seconds and are
plotted for comparison purposes.

For the first plot of the error function (see figure 3.3a), the simulation
time to calculate new statistical moments in every iteration, equaled to
two seconds. As seen from figure 3.4 after two seconds these target values
fluctuate as much as the error function does. This might be caused by the
fact that they are not yet equilibrated. For instance, we see that some of
the Mean Firing Rates are not even equilibrated after 30 seconds.

Figure 3.5: The values for MFR (blue) and Cv (red) plotted in the g-τ
plane, with T = 2 seconds. The green dot represents (g∗, τ∗). From left to
right the subplots show target values corresponding to respectively the first
to fourth electrode.

This definitely gives a hunch to a cause for the non-smoothness of the
error function. The error function is calculated from these target values
and since they are not equilibrated after 2 seconds, the error function will
not be either. When we indeed plot these target values, see figure 3.5,
in the parameter space for T = 2 seconds, one sees that these fluctuate
as well. Inspired by figure 3.4, we plotted the same statistical moments
with a simulation time T = 60 seconds in figure 3.6. These are still non-
smooth, though less than before. There is a drawback though, and that is
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the computational expense that joins the increase of the time horizon. Thus
our limited computational power forces a tradeoff between the decrease of
non-smoothness and simulation times.

Figure 3.6: The values for MFR (blue) and Cv (red) plotted in the g-τ
plane, with T = 60 seconds. The green dots represent (g∗, τ∗). From left to
right the subplots show target values corresponding to respectively the first
to fourth electrode.

Fortunately, looking at an error function corresponding to a simulation
time of 40 seconds, see figure 3.3b, we already see improvement in smooth-
ness. This might lead to better convergence of our Gauss-Newton imple-
mentation, and although extending from 2 to 40 seconds simulation per
calculation of the MFR and Cv is computationally expensive, this is a ne-
cessity. If one does not increase the time horizon drastically, one measures
transients producing meaningless optimisation results.

Still, if we compute the error function on a denser mesh around (g∗, τ∗),
as shown in figure 3.7, fluctuations remain. Nevertheless, from now on we
will be using a time horizon of 40 seconds for the reasons explained above.

3.3.3 Conductance versus exponential time constant

In the previous section we showed error functions, also on a relatively large
domain around (g∗, τ∗), for instance figure 3.3b. Apart from statements
about the time horizon, another interesting fact can be seen in this graph,
namely the occurrence of a valley in this error function. In this section, this
is explained via the total current that flows through a synapse.

Figure 3.3b shows a clear valley in the g-τ -plane in which error values are
all relatively low. There are biophysical arguments supporting this observa-
tion and to show this we regard the total current going through a synapse
when it fires. By integrating the amount of current that flows through the
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Figure 3.7: An error function with a simulation time of 40 seconds, yet
now on a smaller domain than in figure 3.3b. Again, the red dot represents
(g∗, τ∗).

synapse at time t, that is the area below figure 2.5b, we obtain the total
current that flowed through one such synapse until time t. Since we model
the synapses as exponential synapses, this is given by:

I(t) =

∫ s=t

s=0
g · e−s/τds = gτ

(

1− e−t/τ
)

.

Taking the limit t → ∞, one sees that the current through a synapse
corresponding to one spike is proportional to the product of g and τ . This
means that along a curve of g ·τ = constant we have about the same current
injected into the postsynaptic terminal. The reason we review this total
current, is that to a large extent it determines the spiking behaviour of a
neuron and thus both Mean Firing Rate and Coefficient of Variation. That
is why we would expect a valley to appear in the error function beforehand.
Suppose there is a minimum value for our error function, then changing g

and τ along the indicated curve, will not change the behaviour of the network
too much. Thus this will have a small impact on the error, therefore creating
a valley in the error function. On the contrary, when moving away from this
curve, the total injected current changes and for instance the Mean Firing
Rate changes. Moreover, we could reach different firing pattern regimes,
causing the Coefficient of Variation to change, giving higher errors.

The existence of the valley might again lead to complications in the
Gauss-Newton method, which is also something we will see in the next
section, in which we show results corresponding to our benchmark.

40



3.4. Results on a benchmark procedure

3.4 Results on a benchmark procedure

(a) Iteration 1. (b) Iteration 2.

Figure 3.8: Error function with path of our iterationsteps (red) for two
optimisation. The green dots represent (g∗, τ∗).

As indicated by the difficulties that appear with our Gauss-Newton
method, convergence to a fixed point is not self-evident. In this section,
as a benchmark, we fix our computational network and even so the values
for (g∗, τ∗) = (0.075, 3) and try to recover those values with our optimisa-
tion method. Our fixed network in this case, consists of 90 neurons and
9 electrodes, with which target values are computed. By construction, we
have a global minimum where the error is exactly zero.

Results are shown that are created with the Gauss-Newton optimisation
procedure explained in this chapter so far. One of the first results with the
two-dimensional optimisation, is a clear lack of convergence to the (g∗, τ∗)
that we chose. This can be reviewed in figures 3.8a and 3.8b. In these
figures the path of the iteration procedure is shown in red with the error
function in blue, including the green dot which represents (g∗, τ∗). Both
figures display the same error function, with different initial points for the
optimisation procedure. It can be seen that neither of them converges to the
desired point. Moreover, by the fluctuation in the red path of figure 3.8b in
particular, it can be seen that indeed the error function contains even more
fluctuations than shown with the current grid.

The optimisation method seems to iterate into the valley, yet being there,
with the non-smooth surface and small errors it has difficulties with converg-
ing to the global minimum. As already said before, the results of the proce-
dure are dependent on the threshold score we give it. With a relatively large
minimum score (0.05), it converges quickly, though to a value which does
not have to be near the global minimum and that moreover changes with ev-
ery computed optimisation. When we decrease the threshold (for instance
0.005), the trouble inside the valley arises and the method keeps refining
stepsizes, reapproximating the Jacobian and generating random steps. In
both figures of the 2D optimisation shown above, when we iterated longer,
the optimisation procedure had difficulties finding points with a lower error.
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Moreover we did not per se approach the optimal point either. Thus, by
the non-smoothness of our error function the Gauss-Newton method cannot
reach values of the error that are needed to find our global minimum.

Figure 3.9: 1D optimisation: the minimum error found for every τ and every
threshold. The dots coincide with the overall minimum on the curve for the
corresponding threshold score, in which the green and cyan minima coincide.

Since apparently the two-dimensional optimisation lacks convergence, we
try to reduce the optimisation to one dimension, by only using the conduc-
tance as optimisation parameter. As a sort of semi-two-dimensional opti-
misation, we can perform this one-dimensional method for several, lets say
n, values for τ . Then, if the 1D optimisation converges, we should have
n couples of g and τ that are positioned on the valley curve. The global
minimum can then be tried to find in various ways, though the simplest is
calculating the error on a discrete set of points on that curve and determine
the minimum of it. Since plainly the results depend on the threshold value,
we run the optimisation for decreasing minimum scores, to see if results
will improve with every refinement. Every decrease like that intensively in-
creases the computation time, yet if indeed results improve with every step,
it might be able to extrapolate to a nearly zero threshold score. Corre-
sponding results are shown in figures 3.9 and 3.10. For every fixed τ and
threshold score we used the same initial condition g = 0.1228 to enter the
optimisation, determined as described in subsection 3.3.1.

Figure 3.9 shows a line connecting all minimum errors that have been
achieved for every optimisation with fixed τ -value, one such curve for ev-
ery different threshold value. Moreover, the dots in the graph represent
the chosen τ -values for every threshold corresponding to the smallest error.
The figure shows no clear sequence of improvement with every decrease in
threshold. In contrary, errors subsequently increase and decrease for fixed

42



3.4. Results on a benchmark procedure

Figure 3.10: 1D optimisation: the values for g found for every τ and every
threshold. The dots coincide with the overall minimum on the curve for the
corresponding threshold score, in which the green and cyan minima coincide.

τ -values and decreasing thresholds, even for τ fixed to the optimal value.
Moreover, none of the found minima is situated within 25% error of this
optimal value.

Regarding figure 3.10, the values found for g in every optimisation for
fixed τ are displayed, again for all four threshold values. The dots represent
the g-values chosen by the semi-2-dimensional optimisation for every thresh-
old. Just as our error function these results again form a non-smooth curve
and, for every threshold value, do not seem to resemble any kind of valley
curve. Unfortunately, even for τ fixed to the optimal value, it is not per se
true that with decreasing the minimum score the procedure recovers values
closer to our global minimum. With these observations we can state that the
option of extrapolating to zero threshold value seems to be inappropriate.
Besides that, the above implies that, since the valley is not found, taking
the minimum error over all one-dimensional optimisations does not lead to
reliable outcomes either.

The above are arguments for the fact that in this case, with an error func-
tion that is still non-smooth, the Gauss-Newton method does not converge to
the global minimum. One of the reasons for the above graphs corresponding
to the one-dimensional optimisation to be non-smooth, might be because we
have a fixed threshold value and the procedure has troubles with reaching
relatively low errors. That is, with a low minimum score, one τ -value might
lead to no convergence at all, where another one, coincidentally or not, finds
an iteration step to a parameter value that does lead to an error low enough.
Yet another optimisation might be such, that after few iterations it finds a
value for g which satisfies the threshold value, though could have done even
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better when performing more iterations. All of them stop when the desired
minimum value is reached though, which will not necessarily lead to smooth
outcomes.

As mentioned before MEAs cause spike detection to be a genuinely hard
problem. Moreover, the way MEAs are modeled can not be supported with
biophysical arguments, since it is a way of aggregating potential data based
on geographical properties. Therefore, in the following we will discuss com-
putational networks in which MEAs have been removed and we describe
network behaviour and error functions based on data of single neurons.

Finally, in this chapter data that we have at our disposal was discussed.
Apart from the fact that our computational framework to simulate networks
that resemble this data does not work yet, analysing the data also revealed
that the activity in these measurements was low. The Mean Firing Rates in
the recordings in general did not exceed 2 or 3 Hertz, which did not compare
to values seen so far in any of our computational networks. That is why in
this thesis do not regard the data. Hopefully in future research, the desired
computational framework can again take recorded data into account.
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Network behaviour

In this chapter we will have a look at network behaviour based on single-
neuron data. Therefore, instead of using Mean Firing Rate and Coefficient
of Variation for every electrode as our target values, we use these for every
neuron. At first, we analyse the behaviour by ‘eyeballing’, that is plotting
error functions and other graphs and try to read neuron and network proper-
ties from this graph. Thereafter, we try to perform Gauss-Newton on these
networks in which MEAs are no longer implemented.

There is one extra change in our networks with regard to the previous
chapter. In this chapter, since we expect our statistical results to be better
with larger networks, we enlarge our network to 600 neurons, unless other-
wise stated. With regard to the time horizon investigation, simulations are
all done with T = 40 seconds. Moreover, to regard more than one optimal
point in this thesis, in this chapter we take (g∗, τ∗) = (0.045, 5). With other
values for (g∗, τ∗) similar results are obtained, though they might not be as
descriptive as the ones in this chapter.

4.1 Dependence on synaptic conductance g and

time constant τ

4.1.1 Error functions and target values

As a first glance at graphs with single-neuron properties, in figure 4.1a we
plotted an error function for a network of 600 neurons, with a simulation
horizon of 40 seconds. An advantage of performing all calculations based on
single-neuron data instead of MEA data, is that spike analysis does not fail in
this case. This implies that overall the calculation of MFR and Cv improves,
which, as we will see, leads to error functions that have less radical changes
when changing g or τ . This is also reflected in the error functions, since
overall these are smoother than for instance figure 3.3b. Moreover, what
figure 4.1a also shows, is that the upper bound of the error on a fixed domain

45



Chapter 4. Network behaviour

(a) Error function, T = 40. (b) Error function on a smaller domain,
T = 40.

Figure 4.1: Error functions in the single-neuron case on a) a relatively large
domain and b) a relatively small domain. As before, the red dot represents
(g∗, τ∗).

in parameter space is smaller. This is an interesting statement, because it
would imply that we can simulate certain desired behaviour better. In figure
4.1b another error function for the single-neuron case is plotted, yet on a
finer mesh. This illustrates that, although the spike detection should not be
a problem anymore, the error function on this scale remains non-smooth.

To see how a change in conductance or time constant of the synaptic
decay affects the network behaviour, in this section we will consider graphs
of the target values of our neurons. Since we work with 600 neurons, we do
not plot all target values. We choose to display the Mean Firing Rate and
Coefficient of Variation belonging to the spiking data of the neuron with
the highest amount of synapses, since this neuron determines most of all
neurons the overall network behaviour.

In figure 4.2a the Mean Firing Rate and Coefficient of Variation of this
neuron are plotted in the g-τ -plane. Comparing to the plotted values of
MFR and Cv in the previous chapter, for instance figure 3.6, these single-
neuron target values depend on g and τ in a much smoother way. Besides
the statistical moments of this most connected neuron, in figure 4.2b we also
plotted the mean MFR and mean Cv for the entire network. Together with
this graph and figure 4.2a a good idea about the influence of g and τ on the
statistical moments corresponding to the spiking behaviour of our network
can be obtained.

What can be deduced from the graphs, is that in most regions of the
parameter space, when increasing the conductance of a synapse also the
Mean Firing Rate increases. Also the Coefficient of Variation increases when
an increment in conductance is realised. An increase of the exponential
time constant of the same order of magnitude is not as influential as the
conductance, yet when plotted on a bigger τ -domain we see about the same
resulting behaviour in statistical moments. Later on, we will see that these
observations can partially be explained from a biophysical point of view.

Mathematically, the observation that when increasing both parameters
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4.1. Dependence on synaptic conductance g and time constant τ

will lead to comparable results in the target values can be interpreted theo-
retically. No exact formulas for Mean Firing Rates and Coefficient of Varia-
tion are present with respect to g and τ . Yet, in section 3.3.3 we showed that
a relation between g and τ exists. Expanding on that, indeed observations
by picture are that along similar curves the target values remain approxi-
mately on a same level, whereas walking along a line where both g and τ

increase gives a steep increase in our target values. This coincides with the
observations about the g-τ -curve that causes the valley in the error function.
These expectations are probably underpinned by the fact that level curves
will in theory be orthogonal to the gradients of the error function, although
we have not checked that for this specific case. By the absence of exact
formulas expressing MFR and Cv in g and τ , we cannot provide the exact
directions of the gradient, yet one might argue that in the direction where
MFR and Cv of most neurons have the steepest increase, the gradient of the
error function coincides with that direction. Indeed, especially figure 4.2a,
indicates level curves in the target values that are similar to the discussed
valley.

Now that target values of the most connected neuron and mean target
values of the whole network are discussed, in the next section results cor-
responding to the neurons with highest amount of synapses will be isolated
and discussed.

4.1.2 Membrane potentials and spiking patterns

Apart from analysing target values and error functions, since we now use
single-neuron properties and membrane potentials, in this subsection we
consider the influence of changes in g and τ to the single-neuron potentials
and spiking patterns. Again, we only plot the most connected neurons.

Figures 4.3 and 4.4 show several plots of both membrane potentials and
raster plots. The first series of plots, figures 4.3a to 4.3e, show membrane
potentials of the neuron with the highest amount of synapses. The network
structure for creating all five figures remained the same, apart from the fact
that we changed our parameters g and τ , as can be seen from the captions
of the figures. In figures 4.4a to 4.4e raster plots of the ten neurons with
highest connectivities are shown. For every spiketime we plotted a little
star, resulting in a series of stars for all spikes of those neurons.

From the plots of membrane potentials it is hard to recover any clear
change in target values, yet what can be seen is a subtle change in be-
haviour. Comparing for instance the three figures in which the conductance
g increases (figures 4.3a, 4.3c and 4.3d), we see that the potential trace in
time becomes less regular. It seems as though a transition to nearly bursty
behaviour takes place. Moreover, counting spikes, we do see what we already
noticed in the precious section, namely that the number of spikes on a fixed
time interval increases.
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(a) Single neuron, T = 40.

(b) Mean target values, T = 40.

Figure 4.2: a) Mean Firing Rate (left subplot) and Coefficient of Variation
(right subplot) in g-τ -plane with T = 40 seconds for the neuron with highest
amount of synapses. b) Mean MFR (left subplot) and mean Cv (right
subplot) of all 600 neurons. In both cases the red dots represent the optimal
point.
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A second result from the graphs of membrane potentials, is that it is
influenced less by τ . The spiking patterns do not change as much as with g,
while the increase in τ with the figures 4.3b, 4.3c and 4.3e is actually bigger
than the increase in g. This was also seen in the previous section with the
investigation of the target values.

Regarding the raster plots these indeed show that with an increase in
g the spikes start to cluster to patterns that start to resemble bursts with
most of the neurons. Moreover it is again seen that with a bigger increase in
τ these spikes also seem to cluster, though not as much as with an increase
in g.

After observing these influences of g and τ to different properties of net-
work behaviour, next we will discuss the upper bounds of the error functions
with single neurons.

4.2 Error estimation

In this section we analyse the fact that with single-neuron data, closeby
the optimal point (g∗, τ∗), the error function does not exceed numbers in
the order of 10−4. We discuss what this implies for our estimations and
simulations of for instance the Mean Firing Rate and Coefficient of Variation
with our chosen (g∗, τ∗).

The fact that our error is at most of order 10−4, by equation (3.2.1),
implies the following:

‖F(g, τ) − F∗‖22 ≤ 10−4,

in which ‖ · ‖2 again represents the 2-norm.

When we write out this expression, using u for the Mean Firing Rate and
v for the Coefficient of Variation while not writing the g and τ dependence
for simplicity, we obtain:

‖u− u∗‖22
‖u∗‖2

∞

+
‖v − v∗‖22
‖v∗‖2

∞

≤ 10−4, (4.2.1)

in which, when having n neurons, u,v ∈ Rn. In this equation we wrote out
the scaling of Mean Firing Rates and Coefficient of Variation discussed at
the end of section 3.2.2, in which

‖x‖∞ = max
i

xi.

Equation (4.2.1) defines a region, which for one neuron is an elliptical
surface in the MFR-Cv-space in which our estimations are bounded. With
this estimation, the worst case scenario is that one of the two vectors is
estimated perfectly, and the other one with the biggest possible error. This
implies (a similar expression can plainly be derived for v):
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(a) (g, τ) = (0.01, 3) (b) (g, τ) = (0.075, 0.5)

(c) (g, τ) = (g∗, τ∗) = (0.075, 3)

(d) (g, τ) = (0.14, 3) (e) (g, τ) = (0.075, 5.5)

Figure 4.3: Membrane potentials of the neuron with highest connectivity
for different values of (g, τ).
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(a) (g, τ) = (0.01, 3)

2 2.2 2.4 2.6 2.8 3

x 10
4

1

2

3

4

5

6

7

8

9

10

Time (10 −4 s)

(b) (g, τ) = (0.075, 0.5)
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(c) (g, τ) = (g∗, τ∗) = (0.075, 3)
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(d) (g, τ) = (0.14, 3)
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(e) (g, τ) = (0.075, 5.5)

Figure 4.4: Raster plots of the ten neurons with highest connectivity for
different values of (g, τ).
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n
∑

i=1

|ui − u∗i |
2 = 10−4‖u∗‖2

∞
,

in which again the worst case scenario is estimating all components spot on,
except for one which is estimated with the highest possible error, leading to:

|ui0 − u∗i0 | = 10−2‖u∗‖∞.

Using the triangular inequality, we can obtain the following bounds on the
Mean Firing Rate of one neuron in this worst case scenario:

u∗i0 − 10−2‖u∗‖∞ ≤ ui0 ≤ u∗i0 + 10−2‖u∗‖∞.

Summarising, from the fact that our error function reaches at most values
of order 10−4 we derived that with our simulations we estimate the Mean
Firing Rates with a mistake of at most one percent of the maximum Mean
Firing Rate. The same result holds for the Coefficient of Variation and is
derived in exactly the same way.

4.3 Single-neuron Gauss-Newton

Since the error function and target values appear to depend on g and τ in
a smoother way, we try the Gauss-Newton optimisation method for single
neurons as well. Since in the previous chapter we used target values cor-
responding to every electrode, we change that in this case. We now have
target values for every neuron. It should be realised that this is solely done
as a benchmark procedure, because we do not have measurements of 600
single neurons and their target values. Though when this does not work,
then there is no use to proceed with this method, since having statistical
moments of every single neuron is about the best information one can get
for converging to our optimal point.

Except excluding the MEAs and changing these target values, the method
remains exactly the same as described in section 3.3. Moreover, we also use
the (g∗, τ∗) = (0.075, 3) as used in that section again. A result is shown in
figure 4.5, in which the red path shows the optimisation iterations and again
the error function is shown as well.

This figure shows that, most likely caused by the error function ob-
taining small values and being flat on this mesh though again containing
fluctuations on a finer mesh, the method does not converge to our global
minimum. More specifically, the method cannot find any point in parame-
ter space where the error is lower then with the initial point, not even when
we replace the initial point on the slope of the valley. It keeps on refin-
ing stepsizes, recalculating Jacobians and performing random steps, causing
immense computation times. Since time was too restricted to proceed any
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4.3. Single-neuron Gauss-Newton

Figure 4.5: Single-neuron error function with a path (red) corresponding
to the Gauss-Newton iterations in this single-neuron case. The green dot
represents (g∗, τ∗).

further in this method, these are the only results we could show. Still, the
smoothness of the error function suggests that in future research one should
prefer single-neuron data instead of MEA data.
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Chapter 5

Conclusions and

recommendations

Based upon observations and results from previous chapters, here we will
state final conclusions and moreover discuss some of them from a biophysical
point of view.

Gauss-Newton method

By trying to recover a couple of chosen optimal values for g and τ in a
benchmark procedure, we observed that the optimisation method we used, a
Gauss-Newton mean least square error method, does not convergence to the
constructed global minimum. Thus, the need for a computational framework
to link experimental data to synaptic parameters is not yet met.

In this benchmark procedure we constructed a relatively small network
and chose (g∗, τ∗). By using the corresponding Mean Firing Rates and Co-
efficients of Variation we attempted to recover those values for g and τ by
using the optimisation method. Plainly, when one deals with data from mea-
surements, one would be satisfied with points in parameter space not being
the exact global minimum. Parameter values with which our computational
network simulates data with similar statistical moments when compared to
recordings, could be regarded as solutions. Though when already in a simple
benchmark model the original (g∗, τ∗) cannot be recovered, then chances are
that the output of the computational framework with data is not represen-
tative for the cultured network. Indeed, with the two-dimensional Gauss-
Newton, we observed that the method iterates to different values for g and
τ every time we run the optimisation. Moreover, it stops iterating when we
set the threshold to a relatively large value, whereas most of the times with
a small minimum score no parameter values with lower corresponding error
were recovered. From these observations, we can conclude that one cannot
assume convergence to the desired minimum value.

Since the two-dimensional optimisation did not converge, we developed
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a one-dimensional optimisation method with the conductance g as optimisa-
tion parameter and in which τ was put in manually. This we did for several
τ -values to create a semi-2D method and to investigate the possibility to
construct the curve which we characterised as a valley in the graph of an
error function. Moreover, we ran this optimisation for several values of the
threshold error to see if we can extrapolate this value to zero. Yet, already
with recovering a point in the valley with a low error not coinciding with
our optimal point, could be satisfying. This would apparently have pro-
vided us with parameter values of which simulations resembled the desired
Mean Firing Rate and Coefficient of Variation. Unfortunately, also this
one-dimensional method does not convergence in a robust manner.

A prominent reason for this, is that error functions created in this bench-
mark procedure are highly non-smooth. At each iteration step, Gauss-
Newton relies not only on the function value, yet also on the value of its
derivatives collected in the Jacobian matrix. This makes the use of this
method in this case unreliable. Up to now, we found no way to smoothen
the function in such a way that the optimisation becomes successful, whereas
we suggested not to use smoothing methods since they might affect the po-
sition of the global minimum.

One of the conclusions which we can state, is that the time horizon of
every simulation in all iterations is influential to whether we obtain reliable
statistical moments. When chosen to be T = 2 seconds for example, this
leads to non-smooth error functions and to improve the smoothness of the
error function we need time horizons of 40 seconds or more.

Besides the non-smoothness causing difficulties with determining the po-
sition of the global minimum, we also found that there is a relation between
the parameters that we optimise for. This in turn causes the appearance of
a valley in which values for the error function were relatively small. This
makes determining the position of a clear minimum when zooming in on
this valley even harder. Closely around (g∗, τ∗) the error function seems to
be relatively flat, yet with the same fluctuations seen elsewhere. It is likely
that this too is a partial cause for the non-robustness of our method.

Finally, we observed that the way we model MEAs cause extra difficul-
ties, especially since detecting spikes becomes a genuinely hard problem.
Moreover, the modeling of MEA concerns aggregating potential data based
on geographical properties, which is biophysically indefensible. Therefore
we advanced in analysing network behaviour with single-neuron data, which
we will discuss in the next section.

Network behaviour

We have analysed both network and single-neuron behaviour in computa-
tional networks in which MEAs were not included. As a first observation
the error function smoothened again, most likely caused by the absence of
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difficulties with spike detection by omitting the MEAs. Moreover, the max-
ima of the error functions on a fixed domain, turned out to be smaller when
compared to the aggregated data. This implies that we are able to simulate
the desired behaviour better without MEAs.

Besides these observations, we investigated by means of ‘eyeballing graphs’
what the influence of g and τ to both statistical moments and individual
behaviour is. Therefore we plotted mean target values for the whole network
next to target values, membrane potentials and raster plots for the neurons
with highest amount of synapses.

From a biophysical point of view, increasing the conductance of the
synapses, allows more current to flow through. Since we have excitatory
synapses, allowing more current implies that all postsynaptic membrane po-
tentials increase with a bigger amount when a presynaptic neuron fires. This
implies that the postsynaptic neuron is more likely to fire itself, thus fol-
lowing this reasoning one would expect the Mean Firing Rate to increase.
Indeed, we saw that by increasing the conductance both MFR and Cv in-
creased.

Following biophysical reasoning, increasing τ might not directly imply an
increase or decrease in target values. Increasing τ means that synapses are
active for a longer time after a spike, keeping the postsynaptic membrane
closer to the firing threshold for a longer period. This reasoning would
explain an increasing Mean Firing Rate, though at the same time it might
also be reasonable that increasing τ leads to longer refractory periods of
the synapse. Our results though state that increasing τ also increases both
Mean Firing Rate and Coefficient of Variation.

Finally, we developed the Gauss-Newton method for this single-neuron
case. Error functions seemed to be flat yet contained fluctuations on a denser
mesh, which again lead to the fact that the iterations did not converge to
the constructed global minimum.

Recommendations on future work

As shown, the current calibration of our computational framework does
not allow us to accurately find a desired point in parameter space. Yet,
several statements in this thesis and moreover such an essential research
topic as Alzheimer’s disease, should only stimulate more research into a
computational framework that can assist in a quest for the role that Aβ
plays in the appearance of AD. Therefore, in this section we propose topics
for future research.

At first, we showed a relation between the parameters that we chose to
optimise for. With these related parameters we performed a two-dimensional
optimisation. We recommend that in future research one also considers
other parameters to be subject to this procedure. Besides this, in data that
was at our disposal no measurements were performed regarding g and τ .

57



Chapter 5. Conclusions and recommendations

Moreover, considering the possible harms that Aβ causes these parameters
were biophysically most plausible to change if Aβ is injected. For these
two reasons we chose to optimise for g and τ . Yet with current technology
the conductance and time constant of decay corresponding to a synapse
are measurable on single-neuron basis. Thus we propose that in future
measurements on both Aβ-treated and control networks the values of g and
τ will become part of the experimental data. As a consequence, one could use
the computational framework to optimise for other parameters that influence
the network behaviour. For example, a change in the Izhikevich parameters
influences the simulation results, which suggests optimising for both mean
and variance of these five parameters. The use of a normal distribution is
still valid when creating large networks. Besides this, the weights, of which
little is known, influence the behaviour of our computational networks as
well. Therefore, future research benefits from an optimisation procedure
regarding these synaptic weights.

One last notion about weights versus conductance and time constant
as choice for optimisation parameters, is another difference from which an
extra suggestion might arise. Weights plainly are a network property, since
it is assumed that there is a distance-dependent distribution of the weights
throughout the network. The conductance and time constant we optimised
for though, can also be interpreted as single-synapse properties. Since they
are the same for every synapse, defining them for one single synapse coincides
with defining them for the whole network. That is why we suggest that, for
g and τ , instead of using computational networks as we did, an experiment
in which they are measured on single-neuron scale will be performed.

The most prominent problem in our computational method, was the
fact that our error function is non-smooth. It might be that in our case
this function will never be smooth, since we work with the discrete notion
of counting spikes. This implies that when the error changes, since we work
with finite time, our total amount of spikes can increase with a minimal
amount of one. Divided by the total number of spikes this is generally
small, yet it is a jump. Unless one would be able to work with infinite
time, which in principle we are not, this means that our function without
modifications will not entirely be smooth.

We would recommend though, that when one has more computational
power at hand, the whole procedure of constructing the desired computa-
tional framework is repeated with inclusion of an averaging over several
network realisations. In this way varying initial conditions as well as posi-
tions and other network and neuron properties, are averaged out. The same
holds for the effect of one extra spike discussed in the previous paragraph.
The error function could smoothen out by doing this, since with a change
in g and τ the change that we would expect to see, is one of average net-
work behaviour. This could improve the optimisation procedure, though it
worsens the computation time.
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Finally, we did not regard the real data. When one does arrive at that
stage in future research though, we suggest that as opposed to what was
suggested in this thesis, simulation results of the computational networks
are not converted to data resembling MEA data. This means that one has
to go through the efforts of converting the experimental recordings that
is MEA-based to data based on single neurons. This is worth the effort
though, since we concluded that excluding MEAs in computational neuronal
networks smoothens both the dependence of the target values on g and τ

and the error functions.
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[19] G. Sberna, J. Sáez-Valero, K. Beyreuther, C.L. Masters, D.H. Small
(1997) The Amyloid β-protein of Alzheimer’s disease increases acetyl-
cholinesterase expression by increasing intracellular calcium in embry-
onal carcinoma P19 cells. Journal of Neurochemistry 69(3), pp. 1177-
1184.

[20] S. Shafii, S.E. Dillard, M. Hlawitschka, B. Hamann (2012) The topo-
logical effects of smoothing. IEEE Transactions on Visualization and

Computer Graphics 18(1), pp. 160-172.

[21] W.R. Softky and C. Koch (1993) The highly irregular firing of corti-
cal cells is inconsistent with temporal integration of random EPSPs.
Journal of Neuroscience 13(1), pp. 334-350.

62



Bibliography

[22] W. Thies and L. Bleiler (2012) 2012 Alzheimer’s disease facts and figu-
res. Alzheimer’s and Dementia 8(2), pp. 131-168.

[23] A.M. Thomson, V.E. Walker, D.M. Flynn (1989) Glycine enhances
NMDA-receptor mediated synaptic potentials in neocortical slices. Na-
ture 338(6214), pp. 422-424.

[24] A.J. Vincent, R. Gasperini, L. Foa, D.H. Small (2010) Astrocytes
in Alzheimer’s disease: Emerging roles in calcium dysregulation and
synaptic plasticity. Journal of Alzheimer’s Disease 22(3), pp. 699-714.

[25] M. Yamakage and A. Namiki (2002) Calcium channels - Basic aspects
of their structure, function and gene encoding; anesthetic action on
the channels - A review. Canadian Journal of Anesthesia 49(2), pp.
151-164.

[26] J. Yao, R.W. Irwin, L. Zhao, J. Nilsen, R.T. Hamilton, R.D. Brinton
(2009) Mitochondrial bioenergetic deficit precedes Alzheimer’s patho-
logy in female mouse model of Alzheimer’s disease. Proceedings of the
National Academy of Sciences of the United States of America 106(34),
pp. 14670-14675.

63


	Introduction
	Modeling
	Cultured neuronal networks
	Computational neuronal networks
	Neurons
	Izhikevich model
	Interpretation of Izhikevich parameters
	Phase plane sketch
	Excitatory versus inhibitory
	Our cultured neurons

	Connections
	Conductance of a synapse
	Weight of a synapse


	Microelectrode Arrays

	Gauss-Newton optimisation
	Parameter estimation
	Network characteristics
	Target Values
	Objective function

	Gauss-Newton optimisation method
	Iteration steps
	Time horizon
	Conductance versus exponential time constant

	Results on a benchmark procedure

	Network behaviour
	Dependence on synaptic conductance g and time constant tau
	Error functions and target values
	Membrane potentials and spiking patterns

	Error estimation
	Single-neuron Gauss-Newton

	Conclusions and recommendations

