Generating All 2-Transistor Circuits Leads to **New Wide-Band CMOS LNAs**

Federico Bruccoleri, Eric. A.M. Klumperink and Bram Nauta

MESA Research Institute University of Twente PO Box 217, 7500 AE Enschede The Netherlands

E-mail: F.Bruccoleri@el.utwente.nl URL: http://icd.el.utwente.nl/

Aim

• Find new 2-Transistor wide band CMOS Low-Noise Amplifier (LNA) circuits.

Motivations

- Wide band LNAs are widely used in communication/instrumentation.
- Few different wide band LNAs alternatives in literature.
- Known LNAs are often simple circuits, which can be seen as 2-Transistor circuits or a combination of them.

Our Approach: Systematic Generation

• Systematic generation of ALL possible 2-Transistor circuits via graph based generation of ALL Two-ports with 2 VCCSs.

• 2VCCS Two-ports are characterized in terms of the values and combinations of {A, B, C, D} parameters, which depend on g, and g, (the transconductances of the 2 VCCSs), resulting in 145 potentially usefull gaphs (the 2 VCCS database) with at least one non-zero transmission parameter.

Generation of ALL 2-Transistor Wide Band LNAs: within the 2VCCS database we find ALL the circuits that do behave as wide band LNAs using the following 3-steps methodology:

Step 1: LNA small signal functional requirements are translated into constraints for the $\{A, B, C, D\}$ parameters upon proper source Z_g and load Z_g impedance (see the flow-chart).

Step 2: The 2VCCS graph database is explored for cases meeting the above requirements: these are 2VCCS Wide Band LNAs.

Step 3: MOS transistor implementation:

- ⇒ a) VCCS: single NMOS (faster than PMOS) or Resistor (if possible).
- → b) Circuit arrangement: bias current re-use is exploited to minimize DC power OR performance degradation due to biasing circuitry.

The Output of the Generation

VCCS Description Level

- Two-stages in Feed-forward: Mb1,2,3 CS-stage and Ma-Mb1,2,3 CG-stage.
- Input signal "ac" coupled to Mb1,2,3 via the CB1-RB1 high-pass filter.
- Variable Gain: from 6 to 12dB in 4 discrete steps
- Switches out of the signal path ---> minimum performance degradation.

Measurements

A _{vF}	11 dB
-3dB Bandwidth	900MHz
VSWR _{IN}	<1.6
A_{vR}	< -30dB
IIP2	15dBm
IIP3	1dBm
NF	< 4.5dB
Supply Voltage	3.3V
Supply Current	1.5mA
Technology	0.35μm CMOS
Die Area	0.06mm ²

Conclusions

- → A methodology generating *ALL* 2-Transistors wide band LNAs has been presented, yielding to 2 new circuits.
- An LNA prototype realized using an industrial 0.35 µm CMOS process shows 900MHz bandwidth draining only 1.5mA, good linearity and NF<4.5dB (e.g.: suitable for cable modem or cable TV applications).
- This systematic generation approach can be used to select other class of linear circuits.

Acknowledgments

We wish to thanks Philips Research Laboratories for making this work possible.