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Abstract

Ontologies are formal representations of knowledge in specific domains that provide a structured
framework for organizing and understanding complex information. Creating ontologies, however, is a
complex and time-consuming endeavor. ChEBI is a well-known ontology in the field of chemistry, which
provides a comprehensive resource for defining chemical entities and their properties. However, it covers
only a small fraction of the rapidly growing knowledge in chemistry and does not provide references to
the scientific literature. To address this, we propose a methodology that involves augmenting existing
annotated text corpora with knowledge from Chebi and fine-tuning a large language model to recognize
chemical entities and their roles in scientific text. Our experiments demonstrate the effectiveness of
our approach. By combining ontological knowledge and the language understanding capabilities of
large language models (LLMs), we achieve high precision and recall rates in identifying the chemical
entities and the chemical roles in scientific literature. Furthermore, we extract them from a set of 8,000
ChemRxiv articles, and apply a second LLM to create a knowledge graph (KG) of chemical entities and
roles (CEAR), which provides complementary information to ChEBI, and can help to extend it.
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1. Introduction

Chemistry is a large and diverse field of research with a rapidly growing number of publications
available. While this is exciting and demonstrates rapid progress, the sheer volume of research
texts makes it increasingly difficult to keep track of all the new discoveries and developments.
Ontologies have been used to provide a structured framework for organizing this knowledge.
However, manually incorporating knowledge into ontologies is a labor-intensive and time-
consuming task, and therefore not feasible for all available research.

In recent years, Large Language Models (LLMs) have demonstrated exceptional performance
in understanding natural language, excelling in tasks such as summarization and question
answering. In this paper, we propose a novel approach that leverages the capabilities of these
models to automatically create a knowledge graph (KG) of Chemical Entities And Roles (CEAR)
from research publications and to extend existing ontological knowledge.

Our approach involves automatically augmenting manually annotated text corpora with
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information from ChEBI, using two distinct LLMs to identify and associate chemical roles and
entities, and creating a knowledge graph based on ChEBI which contains information from
research texts, that is not annotated in ChEBI. We make the methodology and the resulting
knowledge graph (KG) available to the research community as a basis for developing utilities to
efficiently explore and structure any given set of chemistry research texts and to help with the
task of extending ChEBL

This paper is organized as follows: In Section 2 we provide an overview of ChEBI, and
methods used to create biochemical knowledge graphs and scholarly knowledge graphs, which
are both relevant to our research. Section 3 outlines the steps involved in creating the KG.
Here we explain our approach, providing a clear and reproducible process for others in the
community to follow. In Section 4, we discuss our results for different steps in the KG creation
process and the final KG. Finally, section 5 proposes some applications of our methods and
outlines future work on this project.

2. Related work

The SmartProSys research initiative aims to replace fossil raw materials in chemical production
with renewable carbon sources, thus contributing to a carbon-neutral society. The transition to
sustainable and circular production processes requires research into novel chemical reaction
pathways that lead from renewable raw materials via energy-efficient and low-CO2 synthesis
processes to green products. The task of identifying such pathways requires the collective
chemical knowledge of the world to be searched and structured in a methodical, systematic and
targeted manner. This knowledge is growing rapidly: the ChemRxiv platform, launched in 2017,
already contains more than 20,000 research papers on chemistry. In addition, there are journals
such as the International Journal of Molecular Sciences, which has published more than 20,000
scientific articles in 2022, of which about 30-35% are in the field of biochemistry [1].

[2] emphasizes that the first step in designing an effective knowledge representation system,
and vocabulary, is to perform an effective ontological analysis of the field, or domain and that
ontologies enable knowledge sharing.

ChEBI is a database and ontology for chemical entities of biological interest. In its November
2012 release, it contained nearly 30,000 fully annotated entities, all of which were added by
expert annotators [3]. In 2024, ChEBI contains almost 218,000 entities, of which more than
60,000 were fully annotated by ChEBI curators. However, the content of ChEBI is still very
limited, when compared to data sources like PubChem with information on nearly 317 million
substances and 118 million compounds’.

Knowledge graphs, on the other hand, are a powerful tool for representing and querying
complex, interrelated data. They are essentially a network of entities (nodes) and their interre-
lations (edges). The relationship between ontologies and knowledge graphs is complementary.
Ontologies provide a well-defined, interconnected vocabulary, while knowledge graphs populate
this vocabulary with specific real-world data instances.

Scholarly Knowledge Graphs (SKG) are structured, semantic representations of scientific data.
In [4], a comprehensive review is given on the field of applying machine learning, rule-based

'https://pubchem.ncbi.nlm.nih.gov/docs/statistics, accessed on April 16, 2024
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Figure 1: Working steps (yellow) and resources (green) used to create the KG (blue and red)

learning, and natural language processing tools and approaches to both construct SKGs and
utilize them. For example, [5] uses a semi-supervised extraction approach to construct a KG
from scientific text. It contains nodes of research papers with edges for citations between
them. Relevant (candidate) sentences from the represented research papers are classified as
aim, method or result and added as nodes to the SKG. Relations connect the corresponding
paper nodes to the extracted sentences, using the classified type of the sentences as type for the
relations. [6] constructs knowledge graphs on COVID-19 related scientific literature and creates
nodes for drugs, diseases, genes and organisms. For entity extraction they use CORD-NER, a
dataset with entities of the Unified Medical Language System (UMLS) annotated using distant
supervision [7].

Other existing KGs are closely related to biomedical sciences. [8] describe a method to
construct a knowledge graph in four steps: triple extraction, triple filtering, concept linking,
merging of vertices and KG population. The main principle for the triple extraction is to split
the text into sentences and use a supervised open information extraction system. Triple filtering
uses term frequencies to determine important concepts and remove redundant or uninformative
information. The remaining concepts are annotated to clinical concepts in UMLS. The resulting
KG merges vertices and links the concepts to scientific papers. [9] present KGen, a semi-
automatic method that generates KGs from scientific biomedical text using a preprocessing step
that splits text into sentences, co-references and abbreviations. After a simplification process,
RDF-triples are generated using part-of-speech (POS) tagging and dependency parsing. An
existing model for Named Entity Recognition (NER) is used together with SPARQL to link
entities to medical ontologies. The resulting KG is manually evaluated by two physicians.
FORUM is a KG that links chemical entities to biomedical concepts [10]. It is built from life-
science databases and ontologies like ChEBI, ChemOnt and PubChem and uses ontological
knowledge for automated reasoning and inference of relations between entities. Co-occurrence
analysis in scientific literature repositories like PubMed is used to estimate the strength of the
association.
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3. Methods

In our work, we create a KG for chemical entities and roles as defined in ChEBI. Chemical entities
are atoms, substances, groups and molecules and are classified as such based on shared structural
features, while roles are classified based on their activities in biological or chemical systems
or their use in applications [11]. Figure 1 outlines the method we use to create the KG: First,
we extract the full text from research papers and then fine-tune an LLM to identify chemical
entities and roles. Candidate sentences containing both are collected and a different LLM is
used to validate the relationship between the two. Finally, we de-duplicate and normalize both
chemical entities and roles, link them to the ChEBI ontology and create the KG. The following
subsections explain each step in detail.

Figure 2 shows the different types of information provided by our approach. The information
that is extracted from the papers has the form <chemical entity> has_Role <chemical
Role>, together with additional information about the text location that supports this triple.
Each text location consists of a specific paper, the page number in the paper, and the character
position of the sentence relative to that page number. RDF is not ideal to model these relations
because it does not allow to annotate a triple with its source without clumsy workarounds (e.g.,
reification of triples). Thus, we plan to release a KG built using RDF-star. The current RDF
version does not include any text locations.

3.1. Text extraction from research papers

Research papers are a rich source of information. They contain author names, images, tables,
citations, bibliographies, and more. To address the challenge of extracting only the most valuable
data from these papers in an efficient way, we chose a very simple approach which involves
using a Linux utility called pdftotext. While it cannot identify floating objects in plain text,
such as image and table captions or footers and page numbers, it can reliably extract different
formats, ranging from one-column to two-column styles.

We downloaded a set of 8,000 chemistry research papers from various categories of ChemRxiv
and extracted their full text as JSON documents, including information about the page it was
extracted from. Content-based checksums ensure that no duplicates are processed, even when
crawling other sources for research papers. The checksums are also used as identifiers between
the original PDF file and the associated JSON document.


https://chemrxiv.org/

3.2. Chemical entity and role recognition

Transformer-based Large Language Models (LLMs) have proven effective in understanding
language patterns and thus in Natural Language Processing (NLP) tasks such as Named-Entity-
Recognition (NER), which we use in order to identify chemical entities and roles. Approaches
such as RoBERTa or BERT use masked language modeling (MLM), where some tokens in an
input sequence are randomly masked and the model is trained to predict the original token [12].
Electra models use a pre-training task called replaced token detection or token discrimination,
where instead of predicting a masked token, a discriminative model is trained to predict whether
a token in the corrupted input sequence was replaced by a generator sample. We chose this
approach because it is more sample-efficient [13], and fine-tuned a pre-trained Electra model
on three different datasets:

« The BC5CDR dataset consists of human annotations of chemicals, diseases and their
interactions from 1,500 PubMed articles [14].

« The NLM-Chem corpus contains 150 full-text articles on biomedical literature, carefully
selected for containing chemical entities which are difficult to find for NER tools. Ten
domain experts annotated the chemical entities in three annotation rounds [15].

« The CRAFT corpus contains 97 full-text open access articles from the PubMed Central
Open Access subset. It identifies all mentions of nearly all concepts from nine prominent
biomedical ontologies, including ChEBI [16].

A fourth manually annotated dataset, EnzChemRED [17], provides chemical entities and proteins,
as well as conversions during chemical reactions. It is highly relevant to our NER task, but
given its recent availability, it was not used during fine-tuning. However, we plan to use it in
our future work.

The CRAFT corpus annotates all entities according to nine different ontologies from different
areas of interest. Chemical annotations, including chemical entities and roles are provided
along an extension of an older version of the ChEBI ontology. Although the NLM-Chem corpus
and the BC5CDR dataset also annotate all chemicals in the provided full texts, and although
BC5CDR annotates diseases, they do not include any chemical roles, such as ligand, acid, buffer,
or catalyst. To overcome this limitation, we used a semi-supervised approach and automatically
annotated all roles defined in ChEBI including their synonyms using lexical search. We ignore
all role strings that are shorter than four characters to avoid mislabeling identical strings with
different meanings (homonyms).

3.3. Link Validation

We applied the fine-tuned Electra model to the extracted text of the 8,000 downloaded chemistry
research papers, collecting all sentences, that contained at least one chemical entity and at least
one chemical role (Figure 3). For each sentence, we store the exact text location and the inferred
chemical entities and roles.

The co-occurrence of chemical entities and roles within the same text block suggests that the
chemical entity may have this specific role. However, this correlation alone is not sufficient
to draw a definitive conclusion. To address this, we use another large LLM to verify the role
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Biotransformations were performed with 0.625 M P450 enzyme variant, 5 mM trans-b-methylstyrene (1), 5 mM NADH cofactorand1vol% isopropanolin reaction buffer.
The heme cofactoris shown as black sticks. 5/ 16

Heme cofactorand substrate 1 are shown in sticks format, gray and cyan, respectively.

Elongation of the reaction time and application of a CDfaCtOrre(yding system enabled conversion of 1to phenylacetone with up to 4750 TTN (Fig. $12).

To demonstrate that these reactions can be performed on a preparative scale (1.0 mmol), ketone 2 was synthesized using a Cafa[ysfloading of 0.025 mol% ketone synthase (Fig. 6b).
The product was isolated with 61% yield, consuming atmospheric oxygen and D-glucose as only stoichiometric Feagents. Fig. 6: Application in synthesis.

Reactions were carried out using 0.625 uM KS, 5 mM of the corresponding substrate and 5 mM NADH cofactor.

With this setup, the unactivated internal alkene1was converted to chiral phenylethanols and phenylethylamine that are important structural motifs in top-selling

pharmaceuticals Fig. 13).

Figure 3: Sample sentences with inferred chemical entities (red) and roles (blue).

of a chemical entity based on the given contextual information. LLAMA 2 is a collection of
pre-trained and fine-tuned large language models ranging in size from 7 billion to 70 billion
parameters. LLAMA 2-CHAT is specifically trained for conversational tasks using reinforcement
learning with human feedback (RLHF) [18]. In this paper we used LLAMA-2-7b-CHAT.

We split the prompt into:

« a system prompt, that defines the role of the LLM and makes sure that it simply confirms
or rejects the relation between chemical entity and role without any further explanations
or other context that could complicate the parsing of the answer. In this paper we used:

sysprompt = 'Do you agree with the provided question? Please answer with one

[

— word, either "yes" or "no".

« a user prompt, that presents the context to the LLM along with the question whether,
according to the given context, a specific chemical entity has a specific role. In this paper
we used:

user_prompt = f'In the sentence "{sentence}": Is {chemical} explicitly described
— as {role}?'

A temperature hyperparameter of 0.1 and a top-p of 0.95 ensure a somewhat deterministic
behavior and reproducible results. All confirmed relations, as well as the associated sentence
location, the chemical entity, and the role, are collected for the construction of the KG, while the
remaining discarded relations are stored for analysis. Figure 4 shows how LLAMA-2 answers
the questions whether trans-b-methylstyrene or NAOH is described as cofactor in the given
sentence (see the first sentence in Figure 3 for a visualization of the sentence with its chemical
entities and roles).

3.4. Knowledge graph creation

From the confirmed relationships, we normalize all chemical entities and roles by searching for
labels and synonyms in ChEBI. The ChEBI labels are used as a key to group the different chemical
entities and roles together. If there are no search results, we use the original appearance in the
text for grouping. For this we only use chemical entities and roles with a character length of at
least 2. We then count for each pair of chemical entity and role, how many references to specific
text locations exist. A higher frequency of occurrence of a relation increases our confidence in
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status = answer("Biotransformations were performed with 0.625 pM P450 enzyme variant, 5 mM trans-b-methylstyrene (1), 5 mM NADH ¢
print("\nSTATUS:", status

print("\ n")

status = answer("Biotransformations were performed with 0.625 pM P450 enzyme variant, 5 mM trans-b-methylstyrene (1), 5 mM NADH ¢
print("\nSTATUS:", status

3

<5>[INST] =<SYS=>
Do you agree with the provided question? Please answer with one word, either "yes" or "no"

<< /SYS>>
context: " 'In the sentence "Biotransformations were performed with ©.625 pM P450 enzyme variant, 5 mM trans-b-methylstyrene (1)
5 mM NADH cofactor and 1 vol% isopropanol in reaction buffer.": Is trans-b-methylstyrene explicitly described as cofactor?™’

output: [/INST] No

STATUS: False

<5>[INST] <<SYS>>
Do you agree with the provided question? Please answer with one word, either "yes" or "no".

<</SYS>>
context: " 'In the sentence "Biotransformations were performed with ©.625 pM P450 enzyme variant, 5 mM trans-b-methylstyrene (1)
5 mM MNADH cofactor and 1 vol% isopropanol in reaction buffer.": Is MADH explicitly described as cofactor?” ™’

output: [/INST] Yes

STATUS: True

Figure 4: Question answering using LLAMA-2-CHAT

both, its correct identification in the research text and the correctness of its meaning. At the
same time, it also reduces the novelty of the identified information. A hyperparameter minRef,
which simply ignores relations with a low frequency, can be used to increase precision at the
expense of recall or vice versa.

The knowledge graph consists of the described relations. It is stored using the Terse
RDF Triple Language (Turtle). Each contained chemical entity (obo:CHEBI_24431)
and role (obo:CHEBI_50906) is defined by its ChEBI identifier. =~ Chemical enti-
ties or roles that are unknown to ChEBI are defined using the @eprefix cear:
<https://wwwiti.cs.uni-magdeburg.de/iti_dke/cear/> . hamespace. The
obo:RO_0000087 is used in ChEBI to define roles of chemical entities.

The following listing shows an example for two chemical entities, ethylene glycol
bis(2-aminoethyl)tetraacetate and PBS, both of which have the role buffer:

@eprefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

@eprefix obo: <http://purl.obolibrary.org/obo/>

@prefix cear: <https://wwwiti.cs.uni-magdeburg.de/iti_dke/cear/>

obo:CHEBI_35225 rdf:type obo:CHEBI_50906
obo:CHEBI_35225 rdfs:label "buffer"

obo:CHEBI_30741 rdf:type obo:CHEBI_24431
obo:CHEBI_30741 rdfs:label "ethylene glycol bis(2-aminoethyl)tetraacetate"
obo:CHEBI_30741 obo:RO_0000087 obo:CHEBI_35225

cear:chem_4023 rdf:type obo:CHEBI_24431
cear:chem_4023 rdfs:label "PBS"
cear:chem_4023 obo:RO_0000087 obo:CHEBI_35225



Table 1
Results for different combinations of fine-tune and evalutaion corpora (strict spans), [15] results in italic

Train Corpus Type Evalon BC5CDR Eval on NLM-Chem Eval on CRAFT

P R F1 P R F1 P R F1
BC5CDR chem 942 90.6 924 75.9 54.3 63.3 63.3 304 411
BC5CDR role 895 90.7 90.1 84.7 83.1 83.9 754 59.1 66.3
NLM-Chem chem 903 80.8 853 85.8 76.8 81.1 68.0 40.2 50.5
NLM-Chem role 702 822 757 83.1 89.7 86.3 795 762 7718
CRAFT chem 853 67.2 752 654 448 53.2 934 851 89.0
CRAFT role 654 63.6 645 81.4 77.9 79.6 93.6 92,6 93.1
NLM+BC5CDR [15]  chem - - - 8.0 711 757 - - -
NLM+BC5CDR chem 934 902 91.8 852 775 81.2 68.1 399 50.3
NLM+BC5CDR role 915 920 91.7 9232 939 93.1 79.5 762 77.8
NLM+CRAFT chem 904 783 839 84.0 70.9 76.9 88.0 741 804
NLM+CRAFT role  79.0 834 81.1 88.5 921 90.2 87.1 90.3 887
all corpora chem 920 892 90.6 844 712 773 892 740 809
all corpora role 89.8 91.6 90.7 90.5 93.7 92.1 87.3 922 89.7

4. Results

4.1. Chemical entity and role recognition

In section 3.2, we discussed how we used both the NLM-Chem corpus and the CRAFT corpus
to fine-tune our Electra model for NER. As in [15], we counted a prediction as a true positive
only if both the start and locations of the characters exactly matched. This is a very strict
definition, since the complexity of chemical entities makes it difficult to identify exact boundaries
of entities or word tokens, for example: dipotassium 2-alkylbenzotriazolyl bis(trifuoroborate)s,
4,7-dibromo-2-octyl-2,1,3-benzotriazole[ 15].

Table 1 shows the precision, recall and f-measure when fine-tuned on only one or multiple
of the corpora. We have included cross-corpus evaluation data, and we can see that a model
fine-tuned on the NLM-Chem or BC5CDR corpus performs very poorly when evaluated on the
CRAFT corpus. Similarly, when a model fine-tuned using CRAFT is evaluated on NLM-Chem,
the results are very poor. This indicates a lack of generalizability across datasets. Table 2 shows
the ten most frequent misclassifications. All of the text corpora were manually curated to
annotate all chemical entities contained in the texts. However, despite their common goal, they
show discrepancies in annotation. For example, the chemical entities "DNA", "RNA" and "mRNA"
are annotated in the CRAFT corpus, but not in the NLM-Chem corpus, hence the false negatives.
The character "b", that appears as a false positive when a model fine-tuned on NLM-Chem is
evaluated on CRAFT, is used in genetics to describe base pairs of DNA or RNA. Similarly, "PBS"
is marked as a chemical entity in the NLM-chem corpus, but in CRAFT it is neglected. This
illustrates how, depending on the context or background of the annotators, or depending on
their research goals, there may be disagreement about which entities are considered chemical



No side chains point into the pocket from there, though, so its importance is limited to providing a steric barrier and excluding solvent.
The 52 pocket in CLN2 is also quite open and accessible to solvent.

TIBSinduced colitis Under anaesthesia colitis was induced in 12 week old mice by a single intracolonic administration of 120 mg/kg TNBS
(Sigma, France) dissolved in 50% ethanol.

Dried sterolsamples were derivatized as trimethylsilylethers, redissolved in 10 uL hexane and 2 pL samples were injected into a capillary

column (26 m length, 0.32 mm 1D, 0.45 mm OD) coated with liquid CpWAX 57 CB (Chrompak, Bridgewater, NJ, USA) in a Hewlett-Packard Gas
Chrematograph equipped with a flame ionization detector [28].

Figure 5: While solvent is annotated in CRAFT (blue), dissolved and redissolved are not.

and which are not.

[15] reports a precision of 81.0 %, a recall of 71.1 % and an F1-measure of 75.7 % when fine-
tuned on both the NLM-Chem and the BC5CDR corpus and evaluated on NLM-Chem using
Bluebert (italic results in the table). Our results demonstrate a better precision of 85.2 %, a
better recall of 77.5 %, and consequently, a better F1-measure of 81.2 % (bold results in the
table). However, when all corpora are employed for fine-tuning the LLM, the recall rate drops to
71.2 %. We attribute this deterioration to the described disagreement between different groups
of annotators. Since we want to provide a comprehensive understanding of chemical entities
and their roles in our KG, we still use this model for the subsequent steps.

Since we only lexically annotated roles from ChEBI in the NLM-Chem corpus with a minimum
length of 4 characters (see section 3.2), "dye" is one of the most common false positive roles when
evaluating a model fine-tuned with CRAFT on the NLM-Chem corpus.? From the results we
can see high precision and recall rates for roles, when a model that is fine-tuned on NLM-Chem
and BC5CDR is evaluated on CRAFT. The same applies to models fine-tuned using all corpora.
This demonstrates, that the described semi-supervised lexical approach is effective.

However, in CRAFT, chemical roles are annotated only if they appear as nouns, but not, if
they are paraphrased with other words. Similarly, our lexical approach for both the BC5CDR
and the NLM-Chem corpus considers only nouns. Figure 5 shows some manually annotated
text from the CRAFT corpus, with chemical roles rendered in blue and chemical entities in red.
It shows that solvent is annotated as a role, while dissolved and redissolved are not. While this
may be correct from an annotator’s point of view, it limits the expressiveness of the current
version of our KG.

4.2. Link Validation and Knowledge Graph Construction

After applying the LLAMA-2 model for the validation of links between chemical entities and
roles, and after grouping and applying the minRef hyperparameter as discussed in section 3.4,
two representations of the resulting KG are available. An RDF representation and a graph
representation for HTML that represents chemical entities and roles as nodes, and the has_role
relation as an edge connecting these nodes. Figure 6 shows a sample graph generated on a small
subset of the actual 8,000 papers, with a minRef hyperparameter of 10. The dark red nodes

*Experiments with a minimum length of 3 characters led to a large drop in both precision and recall when evaluated
on the CRAFT corpus.



Table 2
Most frequently misclassified entities for cross-dataset-evaluation

Fine-Tuned on Eval on False Positives False Negatives

String count String count

Misclassified chemical entities

PBS 68 protein 285
huntingtin 26 DNA 113
tet 16 proteins 108
polyglutamine 12 AB 106

araffin 9 b 79

NLM-Chem CRAFT Aliian blue 8 RNA 64
pachytene 7 mRNA 47

Alexa 3 solution 41
protein 116 EGCG 139
glucose 77 BAK 128
solution 76 DEX-IND 125
GDP 57 CKC 118
proteins 56 PTX 114
CRAFT NLM-Chem DAT 39 CDA 102
mixture 37 VAM3 95

ADP 36 AEATP 94

Misclassified role entities

acid 15 dye 10

rogen 5 chow 10

agonist 4 androgen 4

inhibitors 3 acidic 4

NLM-Chem CRAET activator 2 pigment 4
acids 2 pigmented 4

BMP inhibitor 1 PPARp agonist 4

acceptor 1 epitopes 3

epitopes 22 donor 33

biomarkers 14 catalyst 13

biocides 10 agonist 12

inhibitors 8 base 10

CRAFT NLM-Chem buffer o acceptor 10

inhibitor 5 agonists 7

pharmacological 5 antidiabetic 7

hormone 4 carrier 7

represent chemical entities available in ChEBI, while the light red nodes represent additional
chemical entities unknown to ChEBI. Similartly, the dark blue nodes represent chemical roles
available in ChEBI, and the light blue nodes represent other chemical roles. The edges are
labeled with the frequency with which a given relation is mentioned in the literature set. To
improve the visual clarity of the graph, we have adjusted the colors of the edges based on these
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Figure 6: Chemical entities (red) and roles (blue) on a small set of papers using minRef=10

numbers. The darker an edge appears, the stronger the relation between the chemical entity
and the role in our literature. Please be aware that due to the settings for minRef, all relations
with a frequency lower than 10 are ignored. Consequently, this graph shows only a very limited
number of very common chemical entities with their roles in a small set of research papers.

To determine associations between chemical entities and roles, we applied the LLAMA-2
model to 115,537 candidate sentences, that contained at least one chemical entity and one role.
During this step, 58,511 relations were confirmed and 272,053 were rejected. The number of
candidate sentences is not the sum of confirmed and rejected relations, because each sentence
can have multiple chemical entities and roles and we check all combinations. This also explains
why a high number relations were not confirmed.

Table 3 shows the most and the least frequent relations between chemical entities and roles
in our set of texts. For example, water was described as a solvent in 1,085 sentences out of our
8,000 research papers. We can see, that almost all of the chemical entities and roles of the top
relations are annotated in ChEBI. The least frequent relations mostly show CEAR chemical
entities (which are unknown to ChEBI). For better visibility we have marked them in bold.
Please note that we did not group CEAR entities, because we do not know about their synonyms.
This fact, and the fact that ChEBI annotates the most common chemical entities and roles, leads
to an overrepresentation of CEAR chemical entities and roles in the low-frequency relations of
our results. Please also note, that the role "buffers" was not identified as a ChEBI role: While
some roles, such as "solvent" or "ligand" are annotated with their plural forms as a synonym in
ChEB], "buffer" is not.



Table 3

Most and least frequent relations in KG

source chemical entity source chemical role count
ChEBI  water ChEBI  solvent 1,085
ChEBI  methanol ChEBI  solvent 551
ChEBI  dimethyl sulfoxide ChEBI  solvent 438
ChEBI  N,N-dimethylformamide ChEBI  solvent 402
ChEBI  oxolane ChEBI  solvent 398
ChEBI  acetonitrile ChEBI  solvent 388
ChEBI  2-[4-(2-hydroxyethyl)piperazin-1-ylle.. ~ ChEBI  buffer 375
ChEBI tris ChEBI  buffer 271
ChEBI  ethanol ChEBI  solvent 268
ChEBI  toluene ChEBI  solvent 268
CEAR PBS ChEBI  buffer 249
CEAR  1-propionyl-d-lysergic acid diethylam...  ChEBI  drug 1
CEAR tetracetate ChEBI  ligand 1
CEAR  peroxysulfate(2-) ChEBI  oxidising agent 1
CEAR  2-[4-(2-hydroxyethyl)piperazin-1-yl]et.. CEAR  buffers 1
ChEBI  5-fluorouracil ChEBI  antineoplastic agent 1
CEAR  SiCl4 + 4502 + 4MeCl (10) Thionyl chl... ChEBI  reagent 1
ChEBI  phenylacetonitrile ChEBI  nucleophilic agent 1
CEAR  «a-chloroamide ChEBI  cofactor 1
CEAR  Cu-t-Bu-BDPP ChEBI  catalyst 1
Table 4
KG statistics for different settings of minRef
minRef settings
1 2 5 10 20 50

number of relations 28,038 6,586 1,488 547 232 60

number of relevant text positions 57,846 36,394 23,999 18,088 13,932 9,049

distinct chemical entities (ChEBI) 3,680 1,813 686 300 158 50

distinct chemical entities (CEAR) 13,818 2,210 233 63 17 4

distinct chemical roles (ChEBI) 214 126 69 37 25 11

distinct chemical roles (CEAR) 455 75 7 3 1 0

Table 4 shows some information about the KG, when created using different settings for
minRef’. We can see that if we increase the minRef hyperparameter to only 2, the number of
relations, relevant text positions, distinct chemical entities and roles decreases drastically. This
effectively trades recall and novelty for a better precision and a higher rate of well-known facts.

The prompts used to confirm or reject relationships using LLAMA-2 also have a big impact on
the results. While modifying the system prompt slightly from asking for "one word, either

’All versions of the KG can be downloaded at: https://wwwiti.cs.uni-magdeburg.de/iti_dke/cear/.
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"

"yes" or "no""asan answer to asking for only "one word", we had 12 times fewer chemical
entities and roles in the resulting KG and 2.3 times fewer relationships between those nodes.
Adding additional text to the system prompt, such as "You are an expert in chemistry"
sometimes changed the answer to include long explanations about why the answer was "yes" or
"no". Changing the user prompt to consider only information described in the sentence, which
is what we want when constructing a KG from research papers, resulted in 2.3 times fewer
confirmed relations and 2.1 times fewer chemical entities and roles. For this paper we decided
to use very restrictive questions in the hope for a KG with a higher precision.

In order to evaluate the overall quality of the constructed KG, three methods can be used:
Gold standard-based evaluation, manual evaluation with domain experts and annotators, and
application-based evaluation with competency questions [4]. The latter involves asking ques-
tions and answering them using the constructed KG.

We are currently assessing the two following ideas:

« Automatic evaluation using gold standards: We can use an existing KG or ontology as a
gold standard and applying automated reasoning. However, to the best of our knowledge,
there are no gold standards in literature for evaluating triples extracted from unstructured
texts about chemical entities and their roles. Even for existing chemical entities and
roles in ChEBI, the relations between them are not fully annotated. We are currently
researching, whether we can use a combination of ChEBI and PubChem or other databases
to get meaningful evaluation results.

« Manual evaluation with domain experts: Precision can be determined by letting experts
evaluate the rejected and confirmed relations between chemical entities and their roles
in the collected sentences. To determine recall of the final KG, experts would need to
manually annotate all relations between chemical entities and their roles in a fixed set
of scientific texts. This task is not trivial and involves decisions such as, whether to
consider only nouns (like in the CRAFT corpus) or also verbs describing a specific role
(e. g.: "dissolved" for "solvent"), or whether to use intrinsic knowledge about chemical
entities.

Although the resulting KG looks very promising, it is not yet possible to provide a reliable
measure this time. We are currently annotating true and false relations in a set of candidate
sentences. This enables the evaluation of different prompts or different versions of the LLAMA-
2-chat model, as well as entirely different LLMs or different settings for minRef. This will allow
the determination of the precision of the generated KG.

5. Conclusion

In this paper, we have shown how to create a KG, which is based on ChEBI using the same
vocabulary and extending it with knowledge from research papers. We see several applications
for our approach:

Our KG can assist in extending the ChEBI ontology by suggesting chemical entities and roles
that are not part of it.* Table 5 shows the top 10 most frequent relations with chemical entities

*For enhanced visibility, the namespace "CEAR" has been highlighted in bold.



Table 5
Most frequent relations with chemical entities (top) and roles (bottom) which are not part of ChEBI

source chemical entity source chemical role count

CEAR PBS ChEBI  buffer 249
CEAR CH2CI2 ChEBI  buffer 117
CEAR  metal ChEBI  catalyst 76
CEAR ACN ChEBI  solvent 62
CEAR  Tris-HCI ChEBI  buffer 45
CEAR  organolithium ChEBI  reagent 32
CEAR terpyridine ChEBI  ligand 31

CEAR  Et20 ChEBI  solvent 31

CEAR CH2CI2 ChEBI  reagent 28
CEAR  metal ChEBI  reagent 26
ChEBI  hydrogen atom CEAR fuel 33
ChEBI  ammonia CEAR fuel 24
ChEBI  carbon dioxide CEAR feedstock 19
ChEBI  methanol CEAR fuel 16
ChEBI  hydrocarbon CEAR fuels 15
ChEBI  ethanol CEAR fuel 15
ChEBI  dihydrogen CEAR fuel 15
ChEBI  methane CEAR fuel 11

CEAR  gasoline CEAR  fuel 9

ChEBI  CCCP CEAR  protonophore 9

and chemical roles not annotated in ChEBIL For example, PBS (phosphate-buffered saline) was
correctly identified as a buffer 249 times in our set of 8,000 research papers. All text locations
(the research paper, the page, and the character position of the relevant sentence) are available
and can be used for reference. Future versions of CEAR will incorporate them using RDF-star.
Extending the scope to larger collections of chemistry research papers can amplify the number
of results for chemical entities and relations that are not annotated in ChEBI, thereby enhancing
the usefulness of the KG.

Furthermore, we are developing exploration utilities for the work with chemistry research
papers. By detecting chemical entities and roles, we can highlight them in the papers and direct
users to ChEBI or PubChem for additional information. LLMs enable us to provide generated
summaries from the KG’s text positions and the surrounding contexts of each relation or use
approaches like Retrieval Augmented Generation (RAG) for question answering.
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