
WWU
MÜN S T E R

DeductiveVerificationof
IntegratedHardware/SoftwareSystems
withtheVerCorsVerificationTool

Master Thesis

Stefanie Eva Drerup
– 2021 –

WWU
MÜN S T E R

Deductive Verification of Integrated
Hardware/Software Systems

with the VerCors Verification Tool

Master Thesis
submitted in partial ful�llment of the requirements for the degree of

Master of Science in Computer Science

Computer Science Department
Faculty of Mathematics and Computer Science

University of Münster

Submitted by:
Stefanie Eva Drerup

September 30, 2021

Münster, September 30, 2021

First Reviewer and Supervisor: Prof. Dr. Paula Herber
Embedded Systems Group

University of Münster
Münster, DE

Second Supervisor: Dr. Raúl E. Monti
Formal Methods and Tools Group

University of Twente
Enschede, NL

Second Reviewer: Prof. Dr. Marieke Huisman
Formal Methods and Tools Group

University of Twente
Enschede, NL

Abstract

Embedded systems are involved in nearly every part of our everyday life, for instance, in the
automotive industry or the health care sector. Usually, they consist of deeply intertwinted
hardware/software components, and their correctness is crucially required. Otherwise not
only �nancial or time losses are possible, but also human lifes can be endangered.
A widely used modeling language for design and simulation of complex hardware/soft-
ware systems is SystemC. It provides the full functionality of C++, extended by hardware
support. SystemC supports actor-oriented design and o�ers the possibility of early hard-
ware/software co-design. This enables the early veri�cation of SystemC models during
their design phase. Though, a di�culty concerning the veri�cation of SystemC designs
are their informal semantics. There have been multiple approaches in the past to give
formal semantics to SystemC designs. Most of them translate the SystemC design into a
formal model, which is veri�ed by a model checking tool. Although model checking is
a mathematically sound veri�cation technique, it su�ers from the state space explosion
problem. Therefore, all of the di�erent model checking approaches for the veri�cation of
SystemC designs share the problem of limited scalability.
To overcome this challenge, we investigate deductive veri�cation techniques in this thesis.
The VerCors Veri�er is a tool for static veri�cation of parallel programs. Its deductive
veri�cation is contract-based and is performed locally. Therefore, the modular veri�cation
approach of VerCors scales nicely with increasing size of the veri�ed program. VerCors
has its own Prototypal Veri�cation Language (PVL), which has to be annotated with
permissions and further speci�cations in order to verify the program.
In this work, we investigate a semantics-preserving transformation from SystemC models
to PVL programs, which precisely captures SystemC constructs. We present transformation
rules for an initial subset of SystemC language constructs. A major challenge is to preserve
the non-preemptive scheduling schemantics of SystemC designs. We achieve this by
providing a global locking mechanism. Although the veri�cation with VerCors requires a
signi�cant e�ort to specify permissions explicitly, we identify a set of speci�cations that
could potentially be added automatically to the transformation process.
We demonstrate our transformation rules with a small SystemC design example. Further-
more, we show how safety properties can be formalized, and veri�ed by VerCors. We
exemplify this by an one-producer-one-consumer case study modeled in SystemC and
prove that no elements written to a shared FIFO are lost.

For me.

Acknowledgements

This master thesis has been a long journey for me with lots of ups and downs. I would like
to thank the people in my life, without which this thesis has not been possible.
Ganz besonderer Dank gilt meiner Betreuerin Prof. Dr. Paula Herber. Sie hat mich immer
wieder neu motiviert. Bei jedem Problem, bei jeder Unklarheit oder auch einfach Momenten
der Verzwei�ung, hat sie mich immer in außerordentlichem Maße unterstützt. Liebe Paula,
vielen Dank für deine Menschlichkeit und deine sehr gute Betreuung.
Furthermore, I would like to thank Prof. Dr. Marieke Huisman. Although I felt that the
progresses of my research work have always been too slow, she has been very nice and
patient, and always o�ered great support. Thank you!
Dr. Raúl E. Monti has been an absolutely great collegue within the SAVES project. He
always supported me with my questions and VerCors problems, not judging how trivial
they have been. In particular, he supported me a lot during the last days before the thesis
submit and comforted my last-minute-desperations. Muchas gracias por todo!
Generally, I would like to thank the Formel Methods and Tools Group of the UT, which
helped me a lot with my VerCors problems.
In den letzten Jahren bis hin zum heutigen Tag stand mir meine gesamte Familie in sehr
schwierigen Zeiten bei. Trotzdem haben meine Eltern, Geschwister und Anhänge immer
an mich geglaubt und daran, dass ich diese Masterarbeit schreiben werde. Danke für euren
Rückhalt und euer Vertrauen in mich. Ohne euch hätte ich das nicht gescha�t.
Dr. Raphael Richter ist nicht nur mein Chef, sondern auch mein Mentor und Freund
geworden. Raphael hat schon lange vor mir an mein Potential geglaubt und mir immer
den Rücken gestärkt. So etwas hätte Meredith Grey auch getan. Vielen Dank für alles.
Ein weiteres Dankeschön geht an Lea Föcke, Jannes Delicaris und Jannes Bantje, auf
deren LaTex-Templates diese Arbeit teilweise basiert. Außerdem haben sie so einige lästige
LaTex-Fragen von mir beantwortet. Danke für die Geduld!
Ein riesiges Dankeschön geht an Pauline Blohm, Lisa Willemsen, Phil Steinhorst, Jana

Seep und Helen Möllering für das Korrekturlesen dieser Arbeit und unfassbar wertvolles
Feedback. Ganz besonders ohne die Gievenbecker Spazierrunde hätte ich wahrscheinlich
die Masterarbeit doch zu den Schafen über den Zaun geworfen.
Der Wichtigste zum Schluss: Mein Freund Marius, der mir einfach Halt gegeben hat.
Immer. Mein Fels in der Brandung. Du hast jegliche Verzwei�ung und Wut meinerseits
in der letzten Masterarbeitsphase einfach ertragen und trotzdem darauf beharrt, dass ich
diese Masterarbeit easy scha�e. Vielen, lieben Dank an dich!

Contents

Contents i

1 Introduction 1

1.1 Problem of Verifying Embedded Systems 1
1.2 Research Objective and Criteria . 2
1.3 Proposed Solution . 2
1.4 Organization of this Work . 3

2 Related Work 5

2.1 Model Checking Monolithic SystemC Designs 5
2.2 Automatic HW/SW Partitioning and Veri�cation 6
2.3 Separation of Formalization and Veri�cation Tool 7
2.4 SMT Solving and Deductive Veri�cation 7
2.5 Current State of SystemC Veri�cations . 8

3 Preliminaries 9

3.1 Hardware/Software Co-Design . 9
3.2 SystemC . 11

3.2.1 Structural Components . 12
3.2.2 Communication Modeling . 14
3.2.3 Concurrency Simulation . 18
3.2.4 Main Advantages of SystemC . 25

3.3 VerCors Veri�er . 26
3.3.1 Logical Foundation and Architecture 27
3.3.2 Prototypal Veri�cation Language 29
3.3.3 Speci�cation Language . 32
3.3.4 Concurrency in VerCors . 40
3.3.5 Main Advantages of VerCors Tool Suite 42

4 Transformation from SystemC Designs to PVL Programs 45

4.1 Supported SystemC Subset . 47
4.2 SystemC Design Example . 48
4.3 Modules and Channels . 49

ii

4.4 Functions . 51
4.5 Processes . 54
4.6 Non-Preemptive Scheduler . 57
4.7 Outlook: Events . 65

5 Specification and Verification of Safety Properties with VerCors 67

5.1 Data Race Freedom and Memory Safety . 68
5.2 Variable and Bu�er Over�ows . 70
5.3 Written Bu�er Data is Eventually Read . 71

6 Conclusion and Outlook 79

6.1 Results and Contributions . 79
6.2 Future Work . 81

A Appendix 83

A.1 SystemC Design Example for Transformation 84
A.2 Transformation Rewritings Rules . 87
A.3 Resulting PVL Program after Transformation 88

List of Abbreviations 103

List of Figures 105

List of Tables 107

List of Listings 109

Bibliography 111

1
Introduction

Today, embedded systems have become an essential part of everyday life, for instance, in
the context of Industry 4.0, in the automotive industry, or the health care sector. A crucial
requirement is the correctness of these integrated hardware/software systems, which is
hard to show due to their extensiveness and high complexity. While tests and simulations
can detect errors in programs, both cannot guarantee their complete absence. The famous
computer scientist Edsger W. Dijkstra mentioned this problem decades ago:

“Program testing can be a very e�ective way to show the presence of bugs, but is hopelessly
inadequate for showing their absence.”

— Edsger W. Dijkstra1

A promising approach to show properties like correctness, safety, reliability, or liveness of
embedded systems is formal veri�cation. It comprises a vast �eld of di�erent techniques
which are commonly based on formal methods of mathematics and logic. They range from
model checking, static analysis, type systems up to deductive veri�cation, such as theorem
proving, and much more. A brief introduction to di�erent veri�cation techniques can be
found in the guide to formal methods by O’Regan [ORe17].

1.1 Problem of Verifying Embedded Systems
The veri�cation of integrated hardware/software systems is even more challenging than the
veri�cation of pure software or pure hardware systems, due to their increased complexity.
They interact with their environment and deal with concurrency as well as real-time
execution. At the same time, integrated hardware/software systems have to ful�ll strict
limitations of time, power and memory usage.

1Edsger W. Dijkstra. “The Humble Programmer”. In: Communications of the ACM 15.10 (1972), pp. 859–866

2

Since the hardware and software components are deeply intertwined, they can not be
easily separated. Therefore, already established formal veri�cation tools for software or
hardware cannot be applied to integrated hardware/software systems in a direct manner.
Several approaches tried to close the gap between integrated hardware/software design and
scienti�cally approved veri�cation tools, but all of them show weaknesses. In particular,
all of the existing approaches share the problem of limited scalability. We give more details
of related work in Chapter 2.

1.2 Research Objective and Criteria
Since deductive veri�cation techniques have already turned out to be very powerful
in reasoning about software with unbounded parameters, our research objective is to
investigate if they can also be used for integrated hardware/software systems.
We require our approach to ful�ll the following criteria: It should be semantics-preserving
with respect to the interleaving of processes and the resulting program state. Furthermore,
it must be scalable in number and size of system components. Interesting and representative
problems should be identi�ed and evaluated in appropriate case studies. Speci�cations like
preconditions, postconditions, and invariants are mainly de�ned manually. We nevertheless
aim at an extensible approach that allows for more automation.

1.3 Proposed Solution
Modeling embedded systems focuses more on the communication between components and
less on the computation itself. It is established to design embedded systems actor-oriented
and not object-oriented like common modern software [Lee02].
SystemC is a hardware support extension of the well known software language C++.
It implements the already mentioned actor-oriented design and o�ers the possibility of
software/hardware co-design [DG97]. SystemC is widely used in the area of embedded
systems in both academic research and industrial contexts. Hence, we aim to study
representative examples implemented with SystemC.
To verify the examples, we will explore deductive veri�cation techniques. The VerCors
Veri�er is a tool for static veri�cation of parallel programs developed by the Formal
Methods and Tools Group, University of Twente [Ver21]. It uses Concurrent Sep-
aration Logic (CSL) [BO16] as its logical foundation. The advantages of VerCors are its
language-independence, modularity, and the special handling of permissions. For example,
we are able to abstract components by invariants like “the bu�er size is always greater
zero” and get the absence of race conditions without extra e�ort.
We will investigate a semantically correct and modular transformation from SystemC code
into a valid input format for the VerCors Veri�cation Tool. Furthermore, we will analyze
the key concepts of SystemC like the simulation kernel with update-request scheme and
event communication, and map them to semantically equivalent Prototypal Veri�cation
Language (PVL) code. PVL is VerCors’s own research language designed for reasoning
about language-independent concurrent structures.

1.4 Organization of this Work 3

We mainly write the necessary speci�cations for VerCors manually, but we identify an-
notations which can be genereted automatically as well. If a PVL program passes the
veri�cation by VerCors, VerCors already guarantees the absence of data races, and memory
safety. On top of that, we will formalize further safety and even partly liveness properties
in VerCors’s speci�cation language, and verify them.

1.4 Organization of this Work
First, we give an overview about related work in Chapter 2 and explain why our ap-
proach di�ers from the existing concepts. We proceed with background information about
Hardware/Software-Co-Design, SystemC and the VerCors Veri�er in Chapter 3. In these
preliminaries, the focus lays on the communication and concurrency modeling in SystemC,
and the semantics and syntax of PVL and the Speci�cation Language in VerCors. By
understanding their key ideas, we are able to design a correct mapping between SystemC
and annotated PVL code.
Our research and main part starts with Chapter 4, where we investigate a semantics-
preserving transformation from SystemC to annotated PVL code. We contribute to the
design of the transformation by providing (informal) transformation rules for an initial
subset of SystemC constructs. Furthermore, we overcome the challenge of keeping Sys-
temC’s cooperative scheduling semantics by introducing a global lock mechanism. While
the veri�cation with VerCors produces extra e�ort by adding permissions to the input
program, we identify a set of permissions and further speci�cations that could potentially
be added automatically to ease the veri�cation.
To emphasize the relevance of our work, we show how selected safety properties can be
formalized with VerCors’s speci�cation language, and verify them. This is decribed in
Chapter 5. We also compare our results with outcomes by another research approach to
place them into scienti�c context. Both the transformation rules and the veri�ed safety
properties will be illustrated by simple, but representative examples.
Finally, we sum up the gained knowledge and achievements by our investigion of scalable
veri�cation of integrated hardware/software systems so far, and how future work can
further enhance this. For this, we point out still existing challenges and outline promising
ideas.

2
Related Work

In the past, various approaches to verify integrated hardware/software systems have been
studied. Most of them comprise model checking techniques, i. e., properties are checked
on an abstract model of the real system. They often su�er from the state space explosion
probem, which reduces their applicability to real SystemC designs. To reduce the state
space, some researcher have focused their work on the automatic partition of systems into
separate hardware and software components, and to verify them separately. This reduces
the model complexities, while the veri�cation is still based on model checking. There
also exist publications about the idea to split the formalization and veri�cation processes.
All of these approaches can not completely avoid the state space problem, thereby the
veri�cation of integrated hardware/software systems is still an open research question.
A more recent approach pursues deductive veri�cation. It adds speci�cations to the system’s
code to generate proof obligations, which are discharged by interactive or automatic
theorem provers, often involving Satis�ability Modulo Theories (SMT)1 solvers. Still, this
deductive approach is based on state-transition models, and therefore not completely
scalable. However, there exist deductive veri�cation techniques which are contract-based,
but not yet investigated for the veri�cation of integrated hardware/software systems.
In this chapter, we give an overview of the most recent approaches related to the veri�ca-
tion of integrated hardware/software systems. We describe their key ideas, and outline
advantages and weaknesses.

2.1 Model Checking Monolithic SystemC Designs
Herber, Fellmuth, and Glesner [HFG08] have developed a mapping from SystemC

designs to Uppaal timed automata (called STATE). The informally de�ned semantics of
SystemC were completely preserved in the generated Uppaal models. This enables the

1SMT extends the Boolean Satis�ability (SAT) problem by adding reasoning about �rst-order theories like
equalities, arithmetic or quanti�ers.

6

veri�cation of liveness, safety and timing properties by model checking timed automata.
On the one hand, the translation was performed automatically and transformation time
was negligible. On the other hand, it could not master the state space explosion problem.
This has been demonstrated by their producer-consumer example whose veri�cation time
increased exponentially with the bu�er size. However, the (restricted) use of STATE
has been proven on several case studies, including an industrial design of an AMBA bus
[HPG15].
Another approach by Karlsson, Eles, and Peng [KEP06] used a design representation

called Petri-net based Representation for Embedded Systems (PRES+). Maintaining the
SystemC design’s semantics, it has been translated into a PRES+ model. Afterwards, it
is veri�ed by Uppaal. Although the SystemC simulation kernel was explicitly modeled
in PRES+, only limited support for SystemC features has been given. Furthermore, the
experimental results show state space explosion again.
Besides timed automata and Petri-nets, a transformation of SystemC designs into nonde-

terministic sequential C programs has been explored. Herber and Hünnemeyer [HH14]
developed this idea and used the BLAST model checker for veri�cation of the C programs.
BLAST o�ers counter-example guided abstraction re�nement resulting in reduction of the
veri�cation time for interesting cases, like an Anti-Slip Regulation (ASR) and Anti-Lock
Braking System (ABS). However, this approach still su�ers from the state space explosion
problem.
E�ciency improving techniques for model checking like symbolic execution, bounded
model checking (BMC), or partial order reduction (POR) have also been applied, but they
merely narrowed the state explosion and did not prevent it. Chou et al. [Cho+10] investi-
gated a hybrid approach and combined symbolic simulation, bounded model checking

and invariant checking, but they customized the SystemC simulation kernel. Hence, it
covered only a part of the SystemC functionality. In addition, it only proved deadlock
properties up to a certain bound but no other safety properties.

2.2 Automatic HW/SW Partitioning and Verification
Besides improving model checking e�ciency, a lot of research has been done in the �eld of
SystemC design partitioning. Due to the partition of integrated hardware/software systems
into separated hardware and software components, the model size could be reduced before
checking it and software- or hardware-speci�c veri�cation techniques can be applied.
Kroening and Sharygina [KS05] automatically divided up a uniform SystemC design

into synchronous (hardware) and asynchronous (software) parts. They syntactically
distinguished combinational threads, clocked threads, and unrestricted threads from each
other and modeled them as labeled Kripke structures. Still, the veri�cation process is done
by model checking and therefore su�ers from state space explosion.
A di�erent splitting has been proposed by Herber [Her14]. They de�ned an intermediate

representation for SystemC (SysCIR) and processed it by combining formal hardware

veri�cation, software veri�cation and system veri�cation (RESCUE). In addition, they

2.4 SMT Solving and Deductive Veri�cation 7

developed innovative slicing and abstraction engines for reducing the semantic state space.
Herber and Liebrenz [HL20] enhanced the approach recently by automatically partition-

ing SystemC designs into submodels and analyzing dependencies between them. They
could prove global properties of the original SystemC system by verifying them separately
for each subsystem. Still the approach is not fully scalable in its application on general
SystemC designs, especially if hardware and software are deeply intertwined.

2.3 Separation of Formalization and Verification Tool
Rather than dividing SystemC designs, Le et al. [Le+13] proposed to separate the research

for the formalization and veri�cation processes. The �rst part is always a transformation
from SystemC to a formal model (“frontend”). It follows the development of a veri�cation
tool for this model (“backend”). They presented an Intermediate Veri�cation Language (IVL)
and checked it with their separately developed symbolic simulation tool SISSI. However, a
disadvantage of the latter was its inability to detect loops.
To deal with this, Herdt et al. [Her+18] applied symbolic subsumption checking for e�-

cient detection of revisited symbolic states in the model checking process and elaborated
the state matching algorithm ESS. Still, the approach was not scalable. The support for
SystemC features was limited by their IVL and no advanced techniques for alleviating path
explosion were considered.
In 2021, Herdt, Grosse, and Drechsler [HGD21] improved their approach by several ex-
tensions and optimizations, such as SSR (State Subsumption Reduction) and CSS (Compiled
Cymbolic Simulation). They could reduce the state space explosion, but not completely
avoid it.

2.4 SMT Solving and Deductive Verification
Recently, promising results were achieved with veri�cation of SystemC designs by using
deductive veri�cation techniques. Speci�cations have been added to a SystemC design and
handed over to a theorem prover. All of the following approaches included SMT solvers as
their backend reasoning tool.
Uclid is a SMT solver which o�ers �nite precision bitvector arithmetics, so Jass and
Herber [JH15] investigated a bit-precise veri�cation for SystemC by Uclid. To face
the state space explosion problem from model checking approaches, Uclid applied k-
inductive invariant checking and used symbolic variables. Still, the approach su�ered
from many sequential parts of the concurrent simulation of SystemC designs. Since Uclid
was designed for real parallelism (simultaneous execution), every sequential execution
part increased the number of symbolic simulation steps necessary for the k-inductive
veri�cation and decreased the scalability.
Therefore, Schwan and Herber [SH20] optimized the veri�cation with Uclid in 2020

and tried to reduce inductive steps. They focused on the symbolic simulation of coopera-
tively scheduled concurrent processes in Uclid and extended dominator trees to these. By
analysing data, control, and inter-process dependencies of SystemC designs with dominator

8

trees, they could reduce the number of redundant states. Furthermore, they proposed
a process parallelization based on a SystemC dependence graph. Thereby, Schwan and
Herber achieved a signi�cant reduction of veri�cation time. Still, the approach with
SystemC and Uclid su�ered by the discrepancy of concurrency modeling in SystemC and
Uclid.

2.5 Current State of SystemC Verifications
A year ago, Lin and Xie [LX20] investigated state-of-the-art SystemC veri�cations by
discussing their methodologies, advantages, and limitations. To sum up their outcomes
and the results of our literature check: All of the existing approaches either lack support
for relevant SystemC features, or they do not show applicability to real industrial SystemC
designs in consequence of bad scalability. Consequently, formal veri�cation of SystemC is
still an open and complex research topic.
The research studies with Uclid revealed that deductive veri�cation of SystemC designs
does not scale well if it is based on state-transition models. A completely new deductive
approach for SystemC designs is contract-based veri�cation. With the VerCors veri�cation
tool, preconditions, postconditions, and invariants of SystemC functions can be speci�ed
and checked. Parameters or complete functions can be abstracted and the veri�cation
is performed modularly; thereby our proposed solution scales well and meets our main
research criteria.

3
Preliminaries

In this chapter, we give an introduction to SystemC and the VerCors Veri�er. For both, we
present background details to motivate our choice of modeling language and veri�cation
tool. Afterwards, we explain properties and advantages.

3.1 Hardware/So�ware Co-Design
A big advantage of SystemC is its enablement of early Hardware/Software Co-Design. If a
developer wants to add a function to a system, it can be implemented in every level of the
program. For example, an adder can be modeled either as a digital circuit or as a function
in C++. The former is more e�cient, but not �exible, the last is slower, but can be easily
adapted to new requirements. This forces the developer to evaluate which layer is the best
choice for the implementation of a new function—and this decision should be made as
early as possible. The simultaneous development of hardware and software, which enables
early design decisions, is called Hardware-Software Co-Design.

Application Level

Instruction Set Architecture

Hardware Level

abstract

concrete

Figure 3.1: Technological Levels of Programming

We generalize the division into di�erent levels of programming by following the de�nition
of De Micheli and Gupta [DG97]. They are illustrated in Fig. 3.1. The application level is

10

the highest abstraction level and most �exible. Developers can use speci�ed programming
languages to add further functionality and usability to the system.

On the intermediate level, programming is done by using Instruction Set Architectures
(ISAs). An ISA provides a behavior model of the system’s hardware like microprocessors,
microcontrollers, and Programmable Digital Signal Processors (DSPs). It forms the bound-
ary between hardware and software. Normally, the ISA of embedded systems is not visible
for the system’s user, since it runs the embedded system. The lowest level of programming
is the hardware level. Mostly, hardware is rather con�gurable than programmable. For
example, there exist hard-wired Application-Speci�c Integrated Circuits (ASICs), which
are extremely e�cient, but not programmable at all.

During the last years, complexity of embedded systems has grown enormously. They
have increased both in the number and size of their components. At the same time,
their development still should meet as many economical criteria as possible: Less space
requirement, less cost, less development time, less production time, higher performance,
more �exibility/reusability. The choice of implementing functions in hardware or software
is always a trade-o� between these criteria. Hardware implementations are faster, use
less power and space, but adjustments after their manufacturing are very costly. Software
is more �exible and extensions can be developed also after the system’s launch without
further production costs, but it is less e�cient than hardware.

The priority of above criteria depends on the system’s purpose. There is no general optimal
solution to design embedded systems, especially deeply intertwined hardware/software
systems. Originally in this decision process, systems have already been partitioned into
software and hardware before their design. They have been developed separately and
merged together later. This is not possible for integrated hardware/software systems,
since their components are closely linked together. A separation of them would cause
many problems from increasing costs to unacceptable loss of performance. The solution
is the concurrent design of hardware and software for meeting system-level objectives:
Hardware/Software Co-Design [DG97]. The process of considering implementations
either in hardware or software is called Design Space Exploration, because it happens
during the design phase and not before. Design Space Exploration must take all complex
criteria of embedded systems into account, but also the designated purpose of the new
system.

SystemC o�ers not only Register-Transfer Level (RTL) modeling, but also more abstraction
up to Transaction-Level Modeling (TLM). By this, it allows to model di�erent parts of new
implementations with di�ering granularities. Hence, Design Space Exploration can be
performed very well with SystemC. Especially modeling on high level gives a very early
understanding of the interaction between components. This results in better system trade

o�s, allows earlier veri�cation, and achieves overall productivity gains.

3.2 SystemC 11

3.2 SystemC
This section is based on two SystemC introductory books. Both give a comprehensive
insight into SystemC, but with di�erent priorities. Black and Donovan [BD04] focus
more on the language statements itself and outline the principles full�led by them, whereas
Grötker et al. [Grö+02] discuss the SystemC modeling functionality more generally.
First, SystemC is not an autonomous language. Instead, it is a class library of the well-
established software language C++1. Signi�cant extensions of C++ by SystemC are the
support for simulation of hardware-oriented features like timing, communication and
concurrency management, and hardware data types. Thus, SystemC enables Design Space
Exploration as described in Section 3.1.
We give an overview of the SystemC language architecture in Table 3.1. The heart of
SystemC builds an event-driven simulation kernel. It simulates concurrency by switching
between processes until all of their executions are �nished, or the simulation time ends.
Processes can either wait for events to continue or notify that an event occured, so that
other processes waiting for it can proceed. Actually, this type of concurrency simulation
is not only used by SystemC, but also for Verilog [TM08], Very High Speed Integrated
Circuit Hardware Description Language (VHDL) [RS20] and other Hardware Description
Languages (HDLs). We describe more details of the concurrency simulation in Section 3.2.3.

TLM AMS SCV User Libraries

I
E
E
E
S
y
s
t
e
m
C
S
t
a
n
d
a
r
d

Prede�ned Channels

Clock, Mutex, Semaphore, FIFO, Signal
Core Language Data Types

Modules
Threads
Methods

Channels
Interfaces
Ports

Events
Noti�cations
Sensitivity

Logic Types
Bits and bit-vectors
Arbitrary-precision integers
Fixed-point numbers

Event-driven Simulation Kernel

Programming Language C++

Table 3.1: SystemC Architecture.

Processes in SystemC are encapsulated into classes which are called Modules. Depending
on the process type, either a Method or a Thread holds the process execution statements.
We furtherly explain this in Section 3.2.1.
To abstract the communication between modules and their environment, Ports are intro-
duced by SystemC. The interaction between processes is abstracted by Channels. They
can be modeled very detailed or on a highly abstracted level. The processes do not notice
the level of abstraction. They only connect to the channels’ Interfaces, which de�ne the
functionalities o�ered by the channel.

1To be precise, SystemC is based on C++ and the C++ Standard Template Library (STL).

12

To model the concurrent execution of processes, they can wait for Events and suspend
their execution. Also processes can notify that an event has occured. Not all processes
are observing all events. Their relations are built by their static or dynamic sensitivity to
events. We discuss the full communication concept in Section 3.2.2.
The mentioned simulation kernel, structural components and communication manage-
ment form the SystemC Core Language. Together with newly introducted data types for
hardware modeling and several prede�ned channel implementations, they form the IEEE

SystemC Standard [IEEE11], indicated by the teal highlighting in Table 3.1. The �rst
IEEE SystemC Standard has been published in 2005 and revisioned in 2011.
In addition to the SystemC core language components, severalmethodology- and technology-

speci�c libraries have been developed [Acc21c], such as:

• The library for Transaction-Level Modeling (TLM) and virtual prototyping,
• the Analog/Mixed-Signal (AMS) library for system-level design and modeling of AMS

systems, and
• the SystemC Veri�cation Library (SCV) providing APIs usable as a basis to veri�cation

activities with SystemC, e. g., generation of values under constraints.

These libraries are only partly or not yet IEEE-standardized, but get continously upgraded
by the Accellera Systems Initiative [Acc21a] and used in practice. There also exist
further user libraries developed by the SystemC community groups.
In this work, our focus is on the possiblities to combine the SystemC core language with
the VerCors Veri�er functionalities. To get a deeper understanding of the SystemC core,
we investigate the details in the following subsections.

3.2.1 Structural Components
For integrated hardware/software systems, it is rather interesting how the system com-
ponents interact—according to a model of computation—instead of how they precisely
compute. The computation or algorithms themself are often abstracted. Lee [Lee02] calls
this actor-oriented design instead of object-oriented design.
The actors in SystemC are described by modules, which are C++ classes declared by the
macro SC_MODULE. Technically, the macro derives the class from the SystemC library class
sc_module. We give a detailed code example of a module in Listing 3.1.
A module holds the elements explained in the following paragraphs. All of them are optional
except for the constructor. Like in standard C++, it is possible to divide declaration and
implementation of the elements into a .h �le and a .cpp �le. For simplicity, we will not
seperate them in our code syntax examples.

Ports

Modules communicate via ports with their environment. For example, values measured by
external sensors can be modeled with a port. They also facilitate to connect one module to
another (cf. Section 3.2.2). The SystemC library class sc_port<?> o�ers the port functionality.

3.2 SystemC 13

1 #include <systemc.h>
2
3 SC_MODULE(moduleName) {
4
5 // Ports
6 sc_port<if> portOfInterface;
7 sc_port<sc_clock> portOfClock;
8
9 // Member data instances

10 int numberOfPorts;
11
12 // Process functions
13 void methodProcess(void) {
14 // Immediate computations
15 }
16
17 void threadProcess(void) {
18 while(true) {
19 // Interruptable process implementation
20 }
21 }
22
23 // Constructor
24 SC_CTOR(moduleName) {
25 // Process declaration , sensitivity , subdesign tasks
26 SC_METHOD(methodProcess);
27 SC_THREAD(threadProcess);
28 sensitive << portOfClock;
29 }
30
31 // Member submodule instances
32 };

Listing 3.1: SystemC Module Example.

The question mark is a wildcard for any C++ or SystemC class. In our example, the �rst
type in line 6 is an interface. The second one in line 7 is a clock, which is very useful for
hardware simulation of clock cycles.

Data and Channels Instances

Like any other C++ class, a module can have class or member variables to keep data
of the module state. An example of an integer member variable is presented in line 10.
Furthermore, if the module contains more than one process, internal channels for the
communication between these processes could be declared and instantiated.

Processes

The core element of a module is a SystemC process, implemented by a member or class
function. They are restricted to have no return value and do not take any parameters,
since the SystemC scheduler is the only caller of these functions. To register a function as

14

a process with the simulation kernel, the macros SC_THREAD or SC_METHOD are used. Threads
and methods have di�erent meanings in SystemC.
A Method Process is a function in which no simulation time passes. So it is useful for
short, simple computations and can be repeatedly called by the SystemC scheduler (cf.
Section 3.2.3).
A Thread Process is both a thread of execution and a modeling of independently-timed
circuits, depending on a software or hardware design view. It is invoked only once by the
scheduler, but can suspend its execution and continue at another time. This is why nearly
every SystemC thread implements a while(true) loop. The process ends when the thread
exits or returns.
All functions not declared as processes in the constructor are normal C++ member/class
functions. They can be called by method/thread processes like by any other function.

Constructor and Destructor

The constructor is declared by the macro SC_CTOR and the module name. Technically,
the constructor registers processes with the SystemC kernel and establishes the static
sensitivity to events or channels (cf. Section 3.2.3). The static sensitivity is declared by
sensitive << event/channel and always holds for the most recently declared process. In our
example, this is the thread process, but not the method process.
The constructor also initializes subdesigns and their connection or can hold further user-
de�ned tasks. SystemC does not de�ne a special destructor, but the standard C++ destructor
can be used to free memory occupied by objects.

Further Submodules

The partition of a design into modules can also go deeper by adding submodules as members
to a parent module. Since we will not use them in our case studies in this work, we will
not explain them in detail and refer to the SystemC introduction by Black and Donovan
[BD04].

3.2.2 Communication Modeling
In Section 3.2.1, we already mentioned that modules can communicate via ports with each
other. Now we describe the details of this intercommunication. To give a better overview,
Fig. 3.2 shows a general SystemC design holding all basic communication components.
In the context of hardware modeling, SystemC modules can be compared to blocks and
ports to pins. Hardware designs use wires or signals to connect the blocks via their pins.
The SystemC communication components are developed by keeping this architecture in
mind.
Modules are connected by Channels, which o�er a broad range of complexity, from a
simple First-In–First-Out Queue (FIFO) up to an in-depth complex design like the Advanced
Microcontroller Bus Architecture (AMBA). To keep channels maximally interchangeable,

3.2 SystemC 15

Component Names, SystemC classes/MACROs *IF = Interface

Module

IF*

SC_MODULE

Module

SC_MODULE

Ports

sc_port<if>
sc_port<if>

Channel

sc_channel

sc_interface

IF*

sc_interface

SC_THREAD

SC_THREAD

SC_METHOD
...

SC_METHOD

SC_THREAD
...

Figure 3.2: Overview of SystemC Communication Components.

they are abstracted by Interfaces. Like already approved by standard C++, the declaration
and implementation of functions can be separated into a header �le and a cpp �le. SystemC
transfers this approach and let the interfaces declare which functions are available, but
the channels implement the real functionality. By this, di�erent implementation levels of
channels can be easily interchanged, as long as they implement the same interface.

Interfaces

To de�ne a new SystemC interface, the SystemC class sc_interface is used as a base class.
In Listing 3.2 we give an example of a simple read and write interface.

1 #include <systemc.h>
2
3 class readWriteInt_if : virtual public sc_interface {
4 public:
5 virtual int read(void) = 0;
6 virtual void write(int data) = 0;
7 };

Listing 3.2: SystemC Interface Example.

Our interface named readWriteInt_if de�nes two functions. The �rst one is a read function,
which takes no arguments, but always returns an integer value. The second one is a
write function, which takes an integer data, but returns nothing. They keyword virtual

is standard C++ and denotes, that the class or function might be overriden by a derived
class and its functions. The derived class will be the channel. The syntax = 0 declares
the functions read and write as pure virtual functions, that means our interface class is an
abstract class from which no objects can be instantiated.
Instead, an interface is connected to a module via a port, as we showed in Listing 3.1, line
6. The only (correct) access to a channel is by using the functions o�ered by the interface

16

of the port. Hence, every module with a port instance of sc_port<readWriteInt_if> can call
read and write from Listing 3.2. If the access to a channel should be more restrictive—for
example, when a module shall only have read access—another interface must be used. In
Listing 3.3 and Listing 3.4 we split the read and write functionalities into two di�erent
interfaces.

1 #include <systemc.h>
2 class readInt_if : virtual public sc_interface {
3 public:
4 virtual int read(void) = 0;
5 };

Listing 3.3: SystemC Read Interface Example.

1 #include <systemc.h>
2 class writeInt_if : virtual public sc_interface {
3 public:
4 virtual void write(int v) = 0;
5 };

Listing 3.4: SystemC Write Interface Example.

Now read and write access to the channel are separated, but still decoupled from the
channel. With this architecture, we can apply our example interface source code to our
design from Fig. 3.2. It is presented in Fig. 3.3. The interface on the left only o�ers write
access, while the interface on the right provides read access. Still the channel has to
implement the communication details in the functions read and write. We investigate
channels in the next section.

Component Names, SystemC classes/MACROs, Functions

Interface

sc_channel

writeInt_if

Interface

readInt_if

.

write() read()

Channel

write(...){...}
read(...){...}

Figure 3.3: Read/Write Interfaces connected to Channel in SystemC.

3.2 SystemC 17

Channels

To implement a channel in SystemC, a class must be derived from the library class
sc_channel. Note that in contrast to many other object-oriented languages (e g., Java),
C++ realizes the concept of multiple inheritance. Therefore, the channel must be derived
from at least one interface to o�er access from the outside. It has to implement all pure vir-
tual functions of these interfaces. In our syntax example in Listing 3.5, both the interfaces
readInt_if and readWriteInt_if are realized. A channel has few limitations on its complex-
ity by the SystemC base class. Like any normal C++ class, it could have member/class data,
constructor, and member/class functions.

1 #include <systemc.h>
2
3 class channelName : public sc_channel ,
4 public readInt_if , public writeInt_if {
5
6 // Internal data
7 int value;
8
9 public:

10 // Constructor initializes value with 0.
11 channelName () : value (0);
12
13 int read(void) {
14 return value; // Implementation of readInt_if
15 }
16
17 void write(int v) {
18 value = v; // Implementation of writeInt_if
19 }
20 };

Listing 3.5: SystemC Channel Example.

The IEEE standard of SystemC has several prede�ned channels [IEEE11, chapter 6]. We men-
tioned some of them in Table 3.1: sc_clock, sc_mutex, sc_semaphore, sc_fifo and sc_signal.
All of these built-in channels implement corresponding prede�ned interfaces, for example,
sc_fifo implements sc_fifo_in_if.
The prede�ned channels are called primitive, because they can not contain any SystemC
structures like modules, processes, ports or other channels. Primitive channels are derived
from the class sc_prim_channel and have two main advantages: They are very fast and they
realize the Request-Update Scheme. This is related to the SystemC simulation kernel, so
we handle it later in Section 3.2.3.
All channels which are not primitive, but simply derived from sc_channel, are classi�ed as
hierarchical channels. A possible point of view is that hierarchical channels are modules
implementing interfaces. They are useful in the modeling of complex communication
architectures like the AMBA. By this SystemC is more convenient for hardware modeling
than standard HDLs.

18

3.2.3 Concurrency Simulation
So far we explained the basic structural components of SystemC and the boundaries of
their communication. Now we focus on how these communication principles are used in
the simulation of concurrency.

Simulation Starting Point

Every system needs a starting point. In general, software programs have an entry point,
e. g., a main function in C++. In SystemC, the corresponding function is named sc_main;
we give an example in Listing 3.6.

1 #include <systemc.h>
2
3 int sc_main(int argc , char⁎ argv []) {
4
5 // Elaboration Phase
6 channelName channel_inst("Example Channel");
7 moduleName module_inst("Example Module");
8 module_inst.portOfInterface(channel_inst);
9

10 // Simulation
11 sc_start ();
12
13 // Post Processing
14
15 // Simulation Status
16 return EXIT_CODE;
17 }

Listing 3.6: SystemC Starting Point of Simulation Example (sc_main).

The SystemC main function takes two arguments like the standard C++ main function. The
�rst one argc is the number of arguments given by the command line calling the sc_main.
The second argv[] is (the pointer to) an array which holds the full command line call, so
the array element at index 0 is the program name.
Inside of sc_main, three phases can be distinguished:

1. Elaboration Phase: In this phase, all modules, channels, and other structures are
initialized and connected. An important part is the binding of ports to channels.
First, the module and channels are instantiated by calling their constructors (lines
6f). Then, the channel is passed as an argument to the port (line 8). The interface
declared at the port in the module de�nes how the access to the channel is designed.

2. Simulation: By calling the function sc_start(), the simulation execution is started in
the simulation kernel. We explain the simulation in detail in Section 3.2.3.

3. Post Processing: Optionally, results or other data of the simulation could be reported
in the post processing. Also an exit code states the success of the simulation. If no
problems occur, it is zero.

3.2 SystemC 19

The most interesting phase is the simulation. If no specialized concurrency mechanisms
are used in modules and channels, the SystemC simulator will call processes one by one,
fully sequential. This is not the aim of SystemC, since hardware does not behave sequential
at all. So to simulate concurrency, SystemC processes can suspend itself and continue their
execution later. They need to synchronize with each other during the simulation. This is
modeled by Events.

Events, Notifications, and Sensitivity

Events mark a speci�c state or the change of it in the SystemC mode, for example that
no space is left in a FIFO. An event occurs at a speci�c point in time, but has no further
arguments or a duration. To add a new event to a module, an object of the class sc_event

must be declared, see Listing 3.7 (line 6).

1 #include <systemc.h>
2
3 SC_MODULE(moduleWithEvent) {
4
5 // Events
6 sc_event eventName;
7
8 void triggerThread(void) {
9 while(true) {

10 eventName.notify (); // eventName has happened.
11 wait (); // Waiting for a never occuring event.
12 }
13 }
14
15 void observerThread(void) {
16 while(true) {
17 wait ();// Waiting for eventName by static sensitivity.
18 }
19 }
20
21 // Constructor
22 SC_CTOR(moduleName) {
23 // Process and sensitivity declaration
24 SC_THREAD(triggerThread);
25
26 SC_THREAD(observerThread);
27 sensitive << eventName;
28 }
29 };

Listing 3.7: SystemC Event and Static Sensitivity Example.

An event itself does not do anything during the simulation, but its occurence can trigger
reactions of processes or channels. To state that an event happened, a function notify()

can be called on the event. Not all processes are aware of all happening events. Instead,
the SystemC simulation kernel notices all event occurences. If a process should be aware

20

of an event occurence, it has to be sensitive to and waiting for it.
SystemC distinguishes between Static Sensitivity and Dynamic Sensitivity. An example
of the former is given in Listing 3.7, line 27. Static sensitivity means that the sensitivity is
established during the elaboration phase in which the module constructor is called. The
observerThread is declared as sensitivite to eventName. If the thread is waiting, as in line 17,
it will continue its execution after eventName is triggered. The occurence of eventName is
stated in line 10 by the triggerThread.
Note that the triggerThread will suspend itself in line 11 and never continue, since no
further event noti�cations occur. The already stated noti�cation of eventName does not
apply, since the thread has not been waiting for it before the noti�cation happened. A
further remarkable detail is that a thread can be sensitivite to more than one event. So the
wait() statement could also be ful�lled by an event other than the eventName, if the static
sensitivity of the observerThread is declared to the other event in the constructor as well.
Dynamic Sensitivity is established during the simulation of the SystemC model. Instead
of declaring observerThread as sensitivite to eventName in the module constructor, we could
drop this statement and declare the sensitivity by passing eventName as an argument to the
wait() statement. We give an example in Listing 3.8.

1 #include <systemc.h>
2
3 SC_MODULE(moduleWithEvent) {
4
5 // Events
6 sc_event eventName;
7
8 void triggerThread(void) {
9 while(true) {

10 eventName.notify (); // eventName has happened.
11 wait (); // Waiting for a never occuring event.
12 }
13 }
14
15 void observerThread(void) {
16 while(true) {
17 wait(eventName); // Waiting by dynamic sensitivity.
18 }
19 }
20
21 // Constructor
22 SC_CTOR(moduleName) {
23 // Process declaration without sensitivity lists
24 SC_THREAD(triggerThread);
25 SC_THREAD(observerThread);
26 }
27 };

Listing 3.8: SystemC Event and Dynamic Sensitivity Example.

3.2 SystemC 21

Dynamic sensitivity provides more �exibility. For example, we could add a conditional
statement around the wait(eventName) statement to restrict the waiting to special cases.
This is not possible with the static sensitivity list of the process.
In Listing 3.7 and Listing 3.8, events are members of modules which hold more than one
process. However, we described in Section 3.2.2 that modules do not communicate directly
with each other, but instead via port-bounded channels. Hence, it is only natural that
channels use events as well, like presented in our example in Listing 3.9.

1 #include <systemc.h>
2
3 class channelName : public sc_channel ,
4 public readInt_if , public writeInt_if {
5
6 // Internal data
7 int value;
8 sc_event writeEvent;
9

10 public:
11 // Constructor initializes value with 0.
12 channelName () : value (0);
13
14 int read(void) {
15 wait(writeEvent); // waits for write action.
16 return value;
17 }
18
19 void write(int v) {
20 writeEvent.notfiy (); // new value is written.
21 value = v;
22 }
23 };

Listing 3.9: SystemC Channel with Events Example.

We added an event writeEvent, which marks that a new value has been written into the
channel. If a process calls the channel’s read function, the process will suspend its execution
by wait(writeEvent) until the writeEvent has happened. Note that another process must
now call the write function, otherwise the �rst process gets stuck in its read call. This is a
�rst hint which kind of bugs can be easily produced in SystemC code, e. g. Deadlocks.
Instead of listening to events, a process can also be sensitive to a channel. That means
that any event occuring in this channel will trigger the process’s wait() statements. In line
28 of Listing 3.1 (p. 13) of a module, we declare sensitivity to the built-in SystemC clock
channel. Every time an event occurs in the clock channel, a wait() statement within the
threadProcess() will be triggered.
Above, we wrote that processes can suspend their execution and continue later, but we
did not yet clarify what later means. The timing of processes is related to the simulation
kernel and therefore to the SystemC scheduler. This is the topic of our next subsection.

22

Simulation Kernel and Scheduling

The elaboration phase and post processing have already been described in Section 3.2.3.
The code in between is the simulation starting with the call of sc_start.
First, we clarify the terms simulation, simulation kernel, and scheduler. The simulation

kernel is part of the SystemC language architecture, which holds all components necessary
for the simulation. Technically, it is single threaded and SystemC has no real concurrent
executions. Instead, the simulation of concurrent actions is event-driven and orchestrated
by the scheduler. The scheduler controls the simulation time, handles events noti�cations,
and schedules the execution order of the processes. It is the most important component of
the simulation kernel.
The simulation kernel holds di�erent pools of processes depending on their state. They
are either ready, running, waiting, or �nished. We explain how they �t to the di�erent
phases of the concurrency simulation. For this, we start with the illustration in Fig. 3.4,
which shows the �rst part of the simulation.

sc_main SystemC Simulation Kernel

Elaborate

sc_start

Post
Processing

Initialize Evaluate

while
processes
ready

. . .

Figure 3.4: SystemC Simulation Kernel and Scheduling (without Concurrency).

In the Initalization Phase, all processes are placed in the ready pool by the scheduler. Now
the scheduler invokes one process, so its state changes to running. This process executes
until it encounters a wait statement, so it decides when to interrupt its execution. The
process would also stop if it �nishes and exits, but since embedded systems are normally
designed to never stop running, this is a rare exception. The scheduler can not interrupt
the process, so the scheduling algorithm is designed as non-preemptive. This sort of
concurrency simulation is also called cooperative multi-tasking.
When a process encounters a wait statement, it is moved to the waiting pool by the
scheduler. Then the next ready process gets invoked. This is repeated as long as ready
processes are left. We call the repeated invocation of ready processes the Evaluation

Phase. The interesting point is now how the processes are put back into the ready pool.
For this, we have to consider di�erent types of wait statements in SystemC. We explained

3.2 SystemC 23

the event-related wait statements in Section 3.2.3, but now we must also take timed wait
statements into account.
The following syntaxes of wait statements are an excerpt. There exist even more wait

statements in the SystemC Language Reference Manual (LRM) [IEEE11]. In this work, we
only use the following statements:

• wait(): If no argument is given to the wait call, the process waits for an event of
the static sensitivity list to occur. This is kept in mind by the scheduler. If an event
occurence is noti�ed (by another running process), the scheduler switches the waiting
process from waiting to ready pool.

• wait(event): If the passed event occurs and its noti�cation is made by the running
process, the waiting process is placed back in the ready pool.

• wait(double,sc_time_unit): After a speci�ed time, the process is switched from waiting
to ready pool. Either the time unit in addition to the amount of time must be given,
or a time constant—like zero—is passed.

• wait(double,sc_time_unit, event): This call behaves like wait(event), but has a speci�c
timeout. If the noti�cation about the event occurence is made within the timeout, the
scheduler places the waiting process back in the ready pool, otherwise not.

Up until now, we described how processes get back to the ready pool. Currently, concur-
rency is only established by the interleaving of processes. Still, in reality, hardware blocks
are not operating sequentially. Also note that the execution order of ready processes is
not de�ned in SystemC (non-determinism), but crucial in reality to get correct results. To
achieve a realistic model of concurreny, SystemC uses the concept of Delta Cycles, similar
to Verilog or VHDL.

sc_main SystemC Simulation Kernel

Elaborate

sc_start

Post
Processing

Initialize Evaluate

Update

while
processes
ready

delta
cycle

Figure 3.5: SystemC Simulation Kernel and Scheduling (without Time
Advancement).

Newly computed values are not directly set, but only evaluated in the evaluation phase.
Afterwards, when no process is left in the ready pool, the value outputs get updated in

24

the separated Update Phase, which is illustrated in Fig. 3.5. This is also known as the
Request-Update Scheme, which is implemented by all primitive SystemC channels. It is
also possible to implement channels, whose values are directly updated in the evaluation
phase. However, this should be done very cautiously due to the mentioned reasons.
One evaluation phase followed by an update phase is de�ned as a delta cycle. During a
delta cycle, no simulation time passes and behavior of real parallelism is simulated. There
can be multiple delta cycles before the simulation time advances. This is due to the type of
event noti�cations which may be timed or not:

• event.notify(): This notify statement is called an Immediate Noti�cation, since it
lets the scheduler place all processes—waiting for the given event—in the ready pool
within the current delta cycle.

• event.notify(0): If the constant SC_ZERO_TIME or shortly 0 is passed as an argument, a
Delta Noti�cation of the event is made. This means, that the switch of the process
from waiting to ready pool is made within the next delta cycle.

• event.notify(double,sc_time_unit): This event noti�cation will be not noticed in the
current time step, but after the given amount of time. It is called a Timed Noti�cation,
because it is considered by the scheduler after a time advancement. The time argument
is either passed as the amount of time and the time unit, or as a time constant that is
not zero.

As we previously mentioned, no time passes within or between delta cycles. All actions
within or between delta cycles are considered as concurrent operations. As long as ready
processes exist after the update phase, a new delta cycle is started. Only if the ready pool
is empty, then the scheduler makes a Time Advancement. The scheduler looks for the
nearest point of time causing a waiting process to be switched to the ready process. By
this, unneccesary time steps are avoided and the SystemC simulation e�ciency improved.

sc_main SystemC Simulation Kernel

Elaborate

sc_start

Post

Processing

Initialize Evaluate

Update

Advance

Time

while
processes

ready
wait()/notify()

immediate

wait(0)/notify(0)
delta-delay

delta
cycle

wait(t)/notify(t)
timed

Figure 3.6: SystemC Simulation Kernel and Scheduling.

3.2 SystemC 25

If no further ready processes, update requests, timeout wait statements, delta noti�cations,
or timed noti�cations and timeouts are left—so no more process activity is possible—the
simulation ends and a cleanup in the post processing is done. It is also possible to call
sc_start(double, sc_time_unit) with an amount of time as an argument to restrict the
simulation time in advance.
We summed up the simulation phases and corresponding wait/notify statements in Fig. 3.6,
which is also based on the work by Herber [Her10, �g. 2.11]. Note that the described
simulation semantics primarily hold for thread processes in SystemC. Since method pro-
cesses can not call any wait statements, they execute without interruptions and return to
the scheduler afterwards.
Another often misleading assumption is that all timed noti�cations of an event are kept by
the scheduler. This is not the case, since an event is allowed to have only one outstanding

timed noti�cation. A noti�cation of time t1 will overwrite the noti�cation of time t2 if t1
is smaller than t2.

3.2.4 Main Advantages of SystemC
In the previous sections, we described the SystemC language components and simula-
tion semantics. We now explain why SystemC is very suitable for our research purpose.
As mentioned, SystemC behaves similar to Verilog, VHDL, or other HDLs in key func-
tionalities. This covers for example the support of hardware data types or the type of
concurrency modeling. It is also very convenient that SystemC has an open IEEE standard.
This facilitates easy plug-in extensions. As a result, many famous hardware designers have
contributed to SystemC for more than 20 years up to now. At the same time, real-time
operating systems are not really standardized in practice. They are speci�c to their schedul-
ing, timing, eventing, and more. Despite this fact, the well understandable simulation
semantics and nice tooling emphasize SystemC as a good general representative for all
concurrent system models.
To sum up all outcomes of this chapter, there are three main reasons why we have chosen
SystemC as our modeling language:

1. SystemC extends the well-established software language C++ by support for the sim-
ulation of hardware elements. By this, it is a very powerful language for modelling

both hardware and software at the same time.
2. SystemC evolved by the need for early co-design of hardware and software, espe-

cially if they are deeply intertwined. It enables system design trade-o�s on various

levels of abstraction: Executable Speci�cations, (Un)timed Functional Models, TLM,
Hardware Models of di�erent granularities down to RTL models. Therefore, imple-
mentations in either hardware or software can be discussed early, and development
time and cost get reduced signi�cantly.

3. In history, SystemC has been the attempt to create a more uni�ed industry standard.
There exists a wide bunch of real-time operating systems in practice which are
speci�c to their concurrency, real-time modeling, eventing, and more. While SystemC

26

can not cover all of them, it is easy to extend tools for SystemC to other runtime

environments.

We now continue to introduce the tool for verifying our SystemC designs.

3.3 VerCors Verifier
The VerCors Veri�er2 is a tool for static veri�cation of concurrent and distributed pro-

grams developed by the Formal Methods and Tools Group, University of Twente
[Ver21]. Static veri�cation means that no execution of the program happens; instead,
program statements and their annotations are analyzed. This approach lets VerCors scale
nicely with increasing size of program parameters. Therefore, it �ts very well to our
research objective (cf. Section 1.2).
VerCors is designed to be language-independent. It enables direct veri�cation of annotated
Java, C, OpenMP and OpenCL programs, but can be extended to new frontend languages
easily. In addition, VerCors has its own Prototypal Veri�cation Language (PVL), which
realizes a very general concept of concurrency and parallelism. In Listing 3.10, we give a
simple example written in PVL.

1 class Counter {
2 int val;
3
4 r e qu i r e s Perm(val , 1);
5 ensures Perm(val , 1);
6 ensures val == \ old (val) + n + 25;
7 void incr(int n) {
8 val = val + 42;
9 val = val - 17;

10 val = val + n;
11 }
12 }

Listing 3.10: PVL Simple Counter Example.

The presented counter has a variable val, whose value is increased by the function incr.
The speci�cation Perm(val,1) denotes write permissions of the variable val. The function
requires its caller to have these permissions (precondition) and to give them back afterwards.
Under this assumption, the function ensures that the value of val after execution of incr is
equal to the previous value of val increased by the argument n and 25 (postcondition).
To verify the assertion of the new value of val, we call the PVL �le with the option
--Silver=silicon. It sets the used veri�cation tool to Silicon, which is part of the Veri�cation
Infrastructure for Permission-based Reasoning (Viper) [MSS16]. We give further informa-
tion about VerCors’s logical background and architecture in Section 3.3.1. For our example
of a counter, the veri�cation result is Pass, as presented in Listing 3.11. In general, the

2The name origin is inspired by a mountain massif called vercors, which is displayed in the website’s header
image.

3.3 VerCors Veri�er 27

other veri�cation result is Fail, but in this case VerCors would provide an error message
whether the assertion did not hold or what other problems occured.

$ vercors --Silver=silicon counter.pvl
Success!
The final verdict is Pass

Listing 3.11: VerCors Veri�cation Call and Result

In the following sections, we describe VerCors’s theoretical foundation and architecture, the
general syntax of PVL, and the Speci�cation Language for annotations. After understanding
the basics of both PVL and the Speci�cation Language, we provide a more detailed section
about concurrency modeling and veri�cation with VerCors. We sum up our explanations
by outlining the main advantages of VerCors. For all sections, one of our main literature
references is the VerCors website [Ver21]. It is managed by VerCors’s creator, the Formal
Methods and Tools Group, University of Twente, and provides multiple helpful pages
to get introduced to VerCors. A short website guide can be found in Table A.1.
We also refer to selected publications about VerCors and cite them in the corresponding
subsection. Since VerCors is an open source project, its full source code is available and
hosted on GitHub [Ver21g].

3.3.1 Logical Foundation and Architecture
In this section we give a short introduction to VerCors’s backend architecture and the
veri�cation process. Afterwards, we focus on the logical foundation. That means we will
investigate the mathematical, logical concepts on which VerCors is built.

Technical Backend Architecture

VerCors is not verifying properties standalone, but rather provides a convenient and
well-structured frontend of a powerful backend. The tool architecture is illustrated in
Fig. 3.7.

VerCors
Verifier

COL SMT

PVL

Java

C

...

Silver
File

Logical
Formula

Figure 3.7: VerCors Veri�er Tool Architecture (with Silicon)

VerCors takes a program written in PVL, Java, C, or one of the other supported input
languages and translates them into its intermediate data structure, an Abstract Syntax
Tree (AST). This repesentation is expressed in the Common Object Language (COL)

28

[Ami+12]. VerCors parses the AST multiple times to perform type checks and other
improvements. Afterwards, it encodes the AST into Silver, the intermediate veri�cation
language of Viper.
The Viper tool suite is developed and maintained by the Programming Methodology
Group, ETH Zürich [Vip21]. It o�ers a veri�cation-condition-generation-based veri�er
named Carbon and a symbolic-execution-based veri�er named Silicon [Sch16]. Previous
releases of VerCors only support Silicon, but the most current version (1.4.0) also enables
to use Carbon. Up until now, there exist no scienti�c publications comparing Silicon and
Carbon, but Kassios, Müller, and Schwerhoff investigated the e�ciency of condition
generation versus symbolic execution exempli�ed by Chalice and Syxc [KMS12]. They
concluded, that symbolic execution generally is more e�cient, so we see Silicon as a good
choice for our work. Note that the architecture of Viper slightly di�ers for Carbon, so
Fig. 3.7 shows the tool architecture when using Silicon.
The Silicon veri�er translates assertions written in Silver into logical formulas, precisely in
SMT-LIB format [BST+10]. Then, it passes them to the Z3 SMT Solver, a theorem prover
from Microsoft Research [DB08]. When Z3 solves a formula, it decides whether the
formula is satisi�able or not. The result is given back to Viper and from Viper to VerCors,
which presents a human-readable feedback related to the input program. Note that the
feedback given back by Silicon is a bit di�erent than the one by Carbon. Hence, for cases
which do not pass, it could be helpful to switch between Silicon and Carbon to yield
more feedback. To prove a formula, it is also useful to check whether the negation is
unsatis�able.

Logical Foundation

We mentioned that VerCors realizes a frontend for well-established backend architectures.
Now we describe on which logical concepts VerCors itself is built. For this, we refer to the
work by Amighi, Blom, and Huisman [ABH16].
VerCors’s logical foundation is a combination of Implicit Dynamic Frames (IDF) [SJP09]
and Concurrent Separation Logic (CSL) [BO16]. IDF is a program logic based on Hoare
Logic and extends it by reasoning about access permissions to heap locations. VerCors’s
inhale and exhale statements are complementing IDF for language constructs that are
implemented by VerCors, but not part of IDF.
CSL is a program logic for concurrency and provides fractional permissions. A thread
can only access shared memory from the heap if it owns su�cient permissions. We already
presented an example in Listing 3.10, where Perm(val, 1) denotes write permissions. Only
a value of 1 enables write permissions. Any other fraction greater than zero and less than
one denotes only read permissions. A value of 0 marks that the thread has no permissions
at all. We sum up the relation between permissions and their numerical range in Table 3.2.
The permission fractions of all threads to a certain location must always sum up to

1. As a result, write permissions are always exclusive. Permission handling is a notable

3.3 VerCors Veri�er 29

No Permission Read Permission Write Permission

0 0 < v < 1 1

Table 3.2: VerCors Permissions for Threads.

speci�cation overhead requested by VerCors, but it guarantees data race freedom and

memory safety without further e�ort. So the use of VerCors for sequential program
veri�cation may be exaggerated, but for concurrent programs it is well suited.
Besides its logical base, VerCors di�erentiates between veri�cation layers, depending
on the properties which should be veri�ed. The �rst layer enables the check for data

race freedom and memory safety in shared-memory concurrent programs. However,
the deduced invariants about memory resources are proven thread-locally. If this is not
su�cient for the considered properties, another layer is applied, which builds a relationship
between thread-local invariants and the global shared state of the program. The top
level even intensi�es the global state keeping of VerCors and adds a history about data
updates to the veri�cation. By this, functional correctness properties can be veri�ed. This
is a great achievement, since the veri�cation is happening on thread-level, but still, global
properties are veri�able. This is both e�cient and practical. All three layers are di�erently
encoded into annotated Silver �les for Silicon.
Due to the partition into di�erent layers, the veri�cation with VerCors is kept clear and
transparent. The use of wellreasoned program logics makes it to a sound and e�cient
veri�cation tool. Note that VerCors checks for partial correctness, but can not prove
termination properties. Only if the given program terminates, it satis�es its global postcon-
ditions. This might look inconvenient at �rst glance, since embedded systems are designed
as non-terminating in general. However, local properties of parts of the execution of an
in�nitely running thread can still be proven by VerCors, for example, pre- and postcon-
ditions of functions or loop invariants. They su�ce for many interesting properties of
SystemC designs.

3.3.2 Prototypal Verification Language
While VerCors supports Java, C, and more languages, it also has its own Prototypal
Veri�cation Language (PVL). PVL is mainly used for research purposes and provides new
features of VerCors �rst. It is inspired by the syntax and structure of Java, so it has
classes, methods, threads, and more. Note that the termin method is used in PVL due to its
origin in Java, while its equivalent in SystemC is a function, because it is the term used
by the C++ community. Technically, functions and methods are the same components of
the program structure. We only use di�erent terms to distinguish more clearly between
SystemC and PVL code. In contrast to Java, PVL has no visiblity modi�ers like public or
private, only the keyword static is used in method signatures.

30

PVL implements a type system and provides three base types: int, boolean, and void.
Further types can be added by implementing new classes. The standard operators to build
expressions from integer or boolean values and variables are presented in Table 3.3.

Logical Operators && || ! != ==

Comparison Operators < <= > >=

Arithmetic Operators + - ⁎ / ++ --

Conditional Operator b ? e1 : e2

Table 3.3: VerCors Standard Operators.

Note that the conditional operator takes a boolean value b, but returns an expression e1

or an expression e2 which can be of any type. The only restriction is that e1 end e2 must
be of the same type. So even if the conditional operator looks like a short if-statement at
�rst glance, it is an operator to build an expression instead of a control �ow statement.
VerCors also has control �ow statemens which are presented in Table 3.4. For assignments,
expression e has to match the type of variable x.

Assignment x = e; x: variable identi�er
e: expression

If-Statement if (b) then {s1} else {s2} b: boolean
s1, s2: sequence of statements

While-Loop while (b) {s} b: boolean
s: sequence of statements

For-Loop for(int i = e1; b; e2) {s} i: variable identi�er
e1, e2: integer expression of i
b: boolean
s: sequence of statements

Return return e; e: expression of method’s return
type

Table 3.4: VerCors Control Flow Statements and Assignment.

To create a branching, an if-statement can be used. Loops are also integrated in PVL. The
while-loop repeats a sequence of statements s as long as the boolean condition b ist ful�lled.
If a more speci�c control variable is requested, a for-loop can be used. The branching and
loop statements behave as generelly expected; their syntax is shown in Table 3.4.
The last presented expression is the return. The statement terminates the control �ow
within a method implemented in PVL by passing a return expression’s value matching the
method’s return type. To get a more general view of class and method structures in PVL,
we provide an example in Listing 3.12.
Like in Java, a class has a name, any number of �elds, any number of constructors and
optional further methods. Besides the base types, also arrays or objects of other classes can

3.3 VerCors Veri�er 31

1 class ClassName {
2
3 // Fields
4 boolean isField;
5 int[] integerArray;
6 AnotherClass objectOfClass;
7
8 // Constructor
9 ClassName(int arraySize) {

10 // this denotes the current object.
11 this.isField = true;
12 this.integerArray = new int[arraySize];
13 this.objectOfClass = new AnotherClass ();
14 }
15
16 /⁎ Method:
17 With a multiline comment.
18 ⁎/
19 void setNumber(int m) {
20 integerArray [0] = m;
21 }
22 }
23
24 class AnotherClass {
25 // Empty Class
26 }

Listing 3.12: VerCors Class Structures Example.

be declared as �elds like in lines 5f. In contrast to Java, PVL �les can contain more than
one class, which do not need to be subclasses of another. Corresponding, the �le name is
not necessarily required to match a class name.
Arrays can be of any type T—base type or self-de�ned classes—and get initalized by the
expression new T[i], where i is a non-negative integer value. The values of an array can
be accessed via their indices as shown in line 20.
Objects of a Class C are initalized by calling its constructor new C(...), providing necessary
arguments in parentheses. To refer to the current object, the keyword this is reserved.
It can also be used to distinguish between a method’s argument and a class’s �eld. The
keyword null speci�es that some variable is not set.
Methods in PVL can take any number of arguments and de�ne one return type. If no
value should be returned by the method, void is declared as the return type in the method’s
signature. At any point in a PVL �le, single-line or even multi-line comments can be added.
The explained PVL syntax is an excerpt handling the relevant statements for this work. For
a more detailed description, we recommend to have a look at the PVL Syntax Reference on
the VerCors’s website [Ver21].
If we called VerCors to verify our example class in Listing 3.12, it would complain, because
we did not de�ne any permissions about integerArray (line 5), although we modify it in the
setNumber method. So even if we do not write speci�c properties for veri�cation, we must

https://vercors.ewi.utwente.nl/wiki#pvl-syntax-reference

32

provide speci�cations of the program’s semantics for VerCors. Therefore, we introduce
the Speci�ciation Language within the next subsection.

3.3.3 Specification Language
First, we clarify that the Speci�cation Language is independent of PVL. The described
features are supported for all input languages: PVL, Java, C, OpenCL, and OpenMP. In this
work, we add speci�cations to PVL code only, but they could also be used in a program
written in any of the other input languages.
The style of speci�cations in VerCors is inspired by the Java Modeling Language (JML)
[LBR98]. Speci�cations consist of boolean expressions which are introduced by speci�ca-
tion keywords and �nished with a semicolon. For “real” input languages like Java or C,
speci�cations need to be put in comments starting with an @. In PVL, speci�cations can be
directly written into the code.

Assumptions and Assertions

The most basic types of speci�cations are assumptions and assertions. VerCors can
prove that an assertion holds under the assumption of a speci�c state. In particular, the
assumption does not even need to match the real program state. We give an example in
Listing 3.13.

1 int x = 0;
2 assume x == 1;
3 int v = x + 1;
4 a s s e r t v == 2;

Listing 3.13: VerCors Assumption and Assertion Example (Pass).

Although the real value of x is 0 in line 2, VerCors can assume it to be 1 instead. Under
this assumption, the assertion v == 2 holds. If we remove line 2, as in Listing 3.14, the
veri�cation by VerCors fails.

1 int x = 0;
2
3 int v = x + 1;
4 a s s e r t v == 2;

Listing 3.14: VerCors Assumption and Assertion Example (Fail).

Even if speci�cations need to be side-e�ect free to keep the program state correct, wrong
assumptions can in�uence the results. Assumption and assertion in combination behave
like a logical implication. If an unsatis�able assumption is made, then everything can be
concluded (“ex falso quodlibet”). For example, the program in Listing 3.15 always passes, no
matter what assertions are made. This is why assume can help to �nd a missing precondition,
but should not be used for the general veri�cation of speci�cations.

3.3 VerCors Veri�er 33

1 int x = 0;
2 assume (x == 0 && x != 0);
3 int v = x + 1;
4 a s s e r t v == 2;

Listing 3.15: VerCors unsatis�able Assumption Example (Pass).

However, assertions stated with they keyword assert are helpful to give VerCors extra
knowledge about the intermediate program state. Sometimes, di�cult speci�cations can
be proven more easily by providing more intermediate results. In particular, the concept
of assumptions and assertions is similar to preconditions and postconditions of methods.

Preconditions and Postconditions

Preconditions of a method de�ne in what state the program is required to be to have a valid
call of the method. They are introduced by the keyword requires, as shown in Listing 3.16.
Accordingly, postconditions specify the program state after the execution of the method.
They are denoted by the ensures statement. Speci�cations holding before and after the
method’s execution can be stated with the context keyword. It is convenient to use them
for permissions and null checks.

1 r e qu i r e s x == 25;
2 ensures v == 42;
3 void prePostExample(int x) {
4 v = x + 17;
5 }

Listing 3.16: VerCors Pre- and Postcondition Example.

VerCors assumes the preconditions and checks whether the postconditions can be deduced
from the method body. So the postconditions specify a method’s behaviour, and VerCors
checks whether it behaves as expected. This veri�cation is performed locally by VerCors.
That means that it does not include a check where the method is called, but only veri�es
the postcondition unter the assumption of precondition and the method implementation.
The veri�cation of the method’s preconditions takes place in the veri�cation of the method
of the caller.
For example, if a method calls prePostExample(25), VerCors would perform the precon-
ditions’ check while verifying the calling method. The veri�cation of prePostExample()

happens separately. As long as the method is not called somewhere, every precondition
is valid, since it has never been asserted somewhere. In Listing 3.17, we give an example
which passes, although the precondition is always false. However, since we know from the
principle of explosion in mathematical logics, any assertion can be deduced from a wrong
assumption. Only when another method would call unsatisfiablePreconditionExample(),
VerCors would complain about the unsatis�able precondition.

34

1 r e qu i r e s false;
2 ensures 17 == 42;
3 void unsatisfiablePreconditionExample () {
4 // Do anything.
5 }

Listing 3.17: VerCors Unsatis�able Precondition Example (Pass).

The modularity of the veri�cation is one of VerCors’s key concepts. By dividing the full
program veri�cation into local veri�cations of methods, the veri�cation performance
increases signi�cantly. Pre- and postconditions together build a contract, which must
be satis�ed by the method’s implementation. That is why veri�cation performed with
VerCors is called contract-based.
Note that the order of pre- and postconditions is important for VerCors. For example,
postconditions can not be speci�ed before preconditions. It is also possible to refer to a
�eld’s value before the method’s execution via the old(expr) statement. We already gave
an example of this in Listing 3.11. If the method does not return void, but has a return
value, speci�cations about this value can be made with \result.

Loop Invariants

Until now, we presented simple program examples with sequential statement �ows. If
more complex constructs like loops are used, further speci�cations are necessary to enable
the veri�cation. VerCors performs a static analysis, therefore it does not necessarily know
how often a loop is executed. However, this is rather a bene�t than a disadvantage, since
VerCors can prove the general behaviour speci�cation of loops. Speci�cations which hold
directly before entering and after evaluating one loop execution are called loop invariants.
They are declared in VerCors by the loop_invariant keyword.

1 r e qu i r e s a > 0 && b > 0;
2 ensures \ r e s u l t == a⁎b;
3 int mult(int a, int b) {
4
5 int res = 0;
6
7 l o op_ i nva r i an t res == i⁎a;
8 l o op_ i nva r i an t i <= b;
9 for (int i = 0; i < b; i++) {

10 res = res + a;
11 }
12
13 return res;
14 }

Listing 3.18: VerCors Loop Invariant Example [Ver21].

3.3 VerCors Veri�er 35

In Listing 3.18, we give an example of a multiplication performed within a loop. Our
loop invariants in lines 7 and 8 specify that the variable res computes the (intermediate)
product of a and b, and that the loop terminates correctly. The loop invariants hold before
entering the loop, because both res and i are initialized with zero and b is required to be
greater than zero by the method’s precondition. Furthermore, they still hold after a loop
execution, because i is incremented and a added to res once during one loop execution.
Under the assumption that res == i⁎a holds before a loop execution, it still holds after a
loop execution.
Due to the loop condition, VerCors knows that the loop exactly terminates if !(i < b)

holds. Together with the loop invariant i <= b, VerCors concludes that i == b must hold
after the termination of the loop. And since the invariant res == i⁎a has been preserved
by every loop iteration, the combined knowledge of it and i == b enables VerCors to assert
res == a⁎b when res is returned by the method. By this, the precondition \result == a⁎b

can be veri�ed.
With regard to their behavior, loop invariants can be seen as pre- and postconditions of one
loop evaluation. Together with the base check for entering the loop, the proof structure is
similar to a proof by mathematical induction. Like for the induction step, it is important
that the loop invariants hold before and after an arbitrary execution step. So again, VerCors
can prove this locally without knowing every possible value of the involved variables.
Still VerCors can not prove the termination of the loop. It asserts all speci�cations under
the assumption that the loop terminates (partial correctness).
Furthermore, the writing of necessary loop invariants can be very challenging, if the loop
implementation is more complex. The automatic creation of loop invariants is di�cult and
a highly active �eld of research.

Permissions, Resources and Predicates

So far, our examples reasoned about primitive stack variables, so we did not care about the
access to these variables3. Though real programs do not only manage stack variables, but
also variables located on the heap, which is shared memory. For the use of heap variables,
VerCors requires to de�ne explicitely which thread has read or write permissions. In
Section 3.3.1, we described the logical foundation of permissions, now we explain how
they are implemented in the Speci�cation Language.
Technically, permissions are encoded by a new data type called Resource. A resource
behaves like a boolean expression except for the fact that it can contain permissions as well.
We reuse our example from Listing 3.18, but replace the stack variables a and b—formerly
passed by arguments to the method—by class �elds, which are stored on the heap. The
resulting program is shown in Listing 3.19.

3Precisely, some examples already involved permissions, but we left them out for simplicity. However, for
the sake of completeness, the listings’ source �les in directory /listings contain the complete working
code.

36

Since a and b are accessible outside of the method mult() now, the caller of mult() must
have permissions for a and b. They are speci�ed in lines 5 and 6. For both class �elds,
at least read permissions are required by the statement Perm(heapVar, frac). They are
denoted by a frac greater than zero and less than one. If frac is equal to one, the call of
mult() would require exclusive write permissions, like stated for b. In this case, no other
thread could access the heap variable during the method’s execution. For �eld a, other
threads can read it simultaneously with the read by mult().
frac is also a new data type introduced for speci�cations. Its syntax di�ers from a numerical
fraction, because it is written with a backslash; for example 1\2 and not 1/2. Permissions can
either be stated by one permission per line or combined within one line by the seperation
conjunction ⁎⁎, exempli�ed in line 8.

1 class Permissions {
2
3 int a, b;
4
5 r e qu i r e s Perm(a, 1\2); // Read Permissions
6 r e qu i r e s Perm(b, 1); // Write Permissions (exclusive)
7 r e qu i r e s a > 0 && b > 0;
8 ensures Perm(a, 1\2) ⁎⁎ Perm(b, 1);
9 ensures \ r e s u l t == a⁎b;

10 int mult() {
11
12 int res = 0;
13
14 l o op_ i nva r i an t Perm(a, 1\2) ⁎⁎ Perm(b, 1);
15 l o op_ i nva r i an t res == i⁎a;
16 l o op_ i nva r i an t i <= b;
17 for (int i = 0; i < b; i++) {
18 res = res + a;
19 }
20
21 return res;
22 }
23 }

Listing 3.19: VerCors Permissions Example.

Permissions required by a method call must be ensured after the termination of the method,
so that the permissions are passed back to the caller thread. For example, if Perm(b, 1\2)
would be speci�ed instead of Perm(b, 1) in line 8, a Permission Leak is created. It would
never again be possible to establish Perm(b, 1) at another point in the program, since 1\2
fraction of the permissions are lost.
In addition, the order of permission statements and general speci�cations is important.
Heap variables can only be used in speci�cations, if permissions for them have been stated
previously. So moving line 7 before line 5 lets the program veri�cation fail as well.
Permissions are not only required for the call of a method, but must also be added to the
loop invariant, if the �elds are used within the loop. By dealing with permissions, the lines

3.3 VerCors Veri�er 37

of speci�cation code increase largely. Though, to make the speci�cations less duplicate,
more modular and transparent, predicates can be used.
A predicate can sum up or abstract speci�cation statements. It is written like a function
with return type resource, but can only be “called” in speci�cations. We give an example
in line 4 of Listing 3.20. In this example, the predicate does not have any arguments, but
we could also pass a or b as an argument to fieldPerms() instead of addressing the �elds
directly. By using this predicate, we have to write detailed permissions only at one location
in the code.

1 class Predicates {
2
3 // Definition of inline predicate
4 i n l i n e re source fieldPerms () = Perm(a, 1\2) ⁎⁎ Perm(b, 1);
5 int a, b;
6
7 r e qu i r e s fieldPerms () ⁎⁎ (a > 0 && b > 0);
8 ensures fieldPerms () ⁎⁎ \ r e s u l t == a⁎b;
9 int mult() {

10
11 int res = 0;
12
13 l o op_ i nva r i an t fieldPerms () ⁎⁎ res == i⁎a ⁎⁎ i <= b;
14 for (int i = 0; i < b; i++) {
15 res = res + a;
16 }
17
18 return res;
19 }
20 }

Listing 3.20: VerCors Predicates Example.

In this work, we will only use inline predicates, which means that the stated speci�cations
of the predicates will be inlined, whereas the predicates are called before veri�cation. If no
inline keyword is added, we would have to explicitely fold (resp. unfold) the predicates.
This is more complex, but not used for our case studies, so we refer to the VerCors Wiki
for more details.
We simpli�ed our multiplication in Listing 3.20 even further by summing up all precon-
ditions in one line 7. Boolean expressions like (a > 0 && b > 0) can be conjuncted with
resources by the separation conjunction ⁎⁎. The full term is now of type resource instead of
boolean. Note that still boolean values could be conjuncted by the boolean conjunction &&,
but only conjuncted with resoures with the separation conjunction. So the parentheses in
line 7 are necessary, otherwise VerCors would evaluate fieldPerms() ⁎⁎ a > 0 �rst, but fail
to conjunct the result with b > 0 by && afterwards. It is also possible to conjuct multiple
boolean values one by one with a resource by the separation conjunction. An example is
shown in line 13 for the loop invariant.

https://github.com/utwente-fmt/vercors/wiki/Predicates

38

In examples up to now, only primitive �elds have been declared. If a program contains an
array, the reasoning about permissions of this array gets more extensive. Every element

of an array is treated as a seperate location of the heap. That means every time an array
element is accessed, the permission must not only be stated for the array �eld, but also for
its element’s �eld. In addition, this is only possible, if the array has been initialized and
the element’s index is within the array’s range.

1 class arrayIndexing {
2
3 int[] array;
4
5 r e qu i r e s Perm(array , 1\2);
6 r e qu i r e s array != null && array.length > 0;
7 r e qu i r e s Perm(array[0], 1);
8 void arrayPermissionExample () {
9 array [0] = 42;

10 }
11 }

Listing 3.21: VerCors Arrays and Permissions Example.

In Listing 3.21, we show an example. At least read permissions are necessary to use array

in the speci�cations. Furthermore, array must not be null and its length greater than zero.
Only after this speci�cations, VerCors can reason about the permissions of the array’s
�rst element a[0]. Furthermore, the caller of arrayPermissionExample() must have write
permissions for array[0], otherwise the assignment in line 9 would fail.
Depending on the program’s complexity, it is easier to write Perm(array[⁎], 1) for request-
ing write permissions for all elements of the array instead of explicitely stating permissions
for only the used element. The expression Perm(array[⁎], 1) is “Syntactic Sugar” and gets
rewritten to a quanti�ed speci�cation internally by VerCors. We describe quanti�ers in a
part of Section 3.3.3 later on.

Axiomatic Data Types

Speci�cations must be side-e�ect free. This is necessary to guarantee that appending of
speci�cations does not change program semantics. For this, axiomatic data types are a
convenient feature of the Speci�cation Language. In our work, we focus on the data type
seq<T>. It represents a sequence of elements of any type T. Like lists, sequences have an
order, and are immutable.
In Listing 3.22, we show how to create and use a sequence. The initialization is very similar
to arrays. However, the length of a sequence is di�erently denoted by |s|. It is possible to
access the sequence’s elements directly via an index, but not to assign new values directly.
So an assignment like startSeq[0] = 7 would fail. Still, sequences can be concatenated or
are combinded to a new sequence by appending new values. From an object-oriented view,

3.3 VerCors Veri�er 39

1 // Initalization
2 s eq< in t> startSeq = s eq< in t> {};
3 s eq< in t> finalSeq = s eq< in t> {17, 42};
4
5 // Check for Length
6 a s s e r t |startSeq| == 0;
7
8 // Indexing and Equality of Sequence Element
9 a s s e r t finalSeq [0] == 17;

10
11 // Concatenation
12 startSeq = startSeq + finalSeq;
13
14 // Check for pairwise -equal Elements and Order
15 a s s e r t finalSeq == startSeq;
16
17 // Appending of Value
18 startSeq = startSeq ++ 7;
19 a s s e r t startSeq [2] == 7;

Listing 3.22: VerCors Sequence Example.

these resulting sequences are completely new (immutable) objects, but not the old ones
which have been modi�ed.
Sequences facilitate the formulation of speci�cations. While we have to care about arrays
being not null, specifying explicit array lengths and handling permissions of the array
elements, sequences do not produce this overhead. They can be directly used for equality
checks and more. So we will use sequences for easing our case study’s speci�cations
instead of encoding everything into arrays.

�antifiers and Logical Implication

In general, speci�cations are composed of the same basic expressions as the original input
language, in our case PVL. In addition, some further expressions have been added to
the Speci�cation Language to facilitate the speci�cation writing. We use the implication
operator and quanti�ers in our case studies and present their syntaxes in Table 3.5.

Logical Implication ==>

Universal Quanti�er (\ forall varDecl; cond; expr)

Existential Quanti�er (\exists varDecl; cond; expr)

Table 3.5: VerCors Quanti�ers and Logical Implication.

The implication operator takes two boolean expresses and behaves as the conventional
logical implication. It enables reasoning under the assumption of speci�c assertions and
enables transparent case distinctions.

40

Quanti�ers are helpful to write speci�cations about multiple elements at once, for example,
array or sequence elements. Especially, quanti�ers can still reason about all elements of

the array without knowing its exact size. Similarly to a loop declaration, a quanti�er has
a control variable declared �rst. It is followed by a condition restricting the range of the
variable. The third part is the expression to reason about the elements. A basic example
would be

(\forall int i; 0 <= i && i < array.length; array[i] != 0)

which states that all elements of array are not zero. Also the syntactic sugar Perm(array[⁎], 1)

for permission reasoning is rewritten internally to a quanti�ed expression, precisely:

(\forall⁎ int i; 0 <= i && i < array.length; Perm(array[i], write))

Besides the universal quanti�er, also an existential quanti�er is implemented in the Speci-
�cation Language. So we could also reason whether there exists an element in the array
which is not zero. Quanti�ers can also be nested, but every nesting increases the di�-
culty of veri�cation. VerCors has to reason about every possible value of array[i], if it is
contained in speci�cation properties. VerCors may verify a program once, but another
veri�cation call on the same program may not even terminate. So in general, quanti�ers
should be cautiously used in VerCors.

3.3.4 Concurrency in VerCors
In the previous sections, we explained the base concepts and syntaxes of PVL and the
Speci�cation Language. Now, with a general understanding of veri�cation with VerCors,
we focus on concurrency concepts. Handling of concurrency or even parallelism with
VerCors is not yet widely explained in its wiki, but the publications by Haack et al.
[Haa+14] and Blom, Darabi, and Huisman [BDH15] describe the logical foundations and
their encodings into VerCors.
Haack et al. [Haa+14] focuse on the veri�cation of iteration contracts for loop parallelism,
while Blom, Darabi, and Huisman [BDH15, esp. chapters 3f] introduce the adaptation of
CSL to a multithreaded language and is highly relevant forthe subsequent sections.

Multithreading with PVL

PVL supports di�erent multithreading concepts. For our research, we use the concept of
the Fork-Join Model. It realizes dynamic thread creation. First, only one sequential master
thread exists, but several task threads can be dynamically created by the master thread.
New threads can also spawn more threads. This creation of task threads is called Fork.
Afterwards, the task threads execute in parallel and work with shared memory. So it is
necessary to handle read and write permissions for heap variables to avoid data races. If
no more execution instructions are left, the task threads synchronize with each other and

3.3 VerCors Veri�er 41

Master

Thread

Task Thread

Task Thread

Task Thread

Task Thread

Master

Thread

fork

fork

fork

fork

join

join

join

join

Figure 3.8: Fork-Join Model.

terminate, so they are joined with the thread that calls Join. We show an illustration of the
Fork-Join model in Fig. 3.8.
However, PVL does not have a speci�c master thread, but instead its statements fork and
join can be simply called within one of the program’s methods. The syntax is presented in
Table 3.6. A thread is not a particular data type, but an object whose class implements the
method void run(). By this, VerCors will assume the preconditions of the thread’s run()

method after the call of fork. Furthermore, permissions are passed from the master thread
to its task threads as speci�cations by the run() method’s preconditions when the task
threads are forked.

Create and Start Thread fork thread;

Synchronize and Terminate Thread join thread;

Table 3.6: VerCors Thread Intialization and Termination Statements.

While VerCors actually does not execute the PVL program for veri�cation, it still assumes
any possible execution order of the threads’ instructions. So both real parallelism aswell as

interleaving concurrency are considered for reasoning about the program’s speci�cations.
If the join statement is called, the postconditions of the run() are ensured. In particular, all
permissions stated in the postconditions are given back to the master thread. The absence
of data races and memory safety during execution of the task threads is guaranteed by
the correct de�nition of permissions. Permissions can be transferred between threads
during their execution. Moreover, multiple threads can read the same heap memory
simultaneously, but only one thread is allowed to write. This is encoded by the fractional
permissions based on CSL.

Synchronization of Threads

To pass permissions or to synchronize threads without �nally terminating them, Monitors

are introducted to PVL. A monitor comprises critical execution parts, which should not be
occupied by multiple threads at the same time, for example, a write assignment. A thread

42

which enters the monitor owns it, so that no other thread is able to enter the monitor at
the same time. After the owner of the monitor leaves it, any other thread can become the
new owner of the monitor.
To enter a monitor, a thread in PVL has to acquire a Lock by the statement lock lockObject.
For leaving the monitor, it has to release the lock. This is denoted by the statement
unlock lockObject. All speci�cations and information which should be exchanged between
threads, must be encoded in a Lock Invariant. They are asserted upon acquiring a lock
and proven upon releasing it. Furthermore, if the critical execution part contains a loop,
the ownership of the lock must be added to the loop invariant. This is speci�ed by the
statement held(lockObject). An overview of synchronization statements and speci�cations
is given by Table 3.7.

Aquire Lock lock lockObject;

Release Lock unlock lockObject;

Lock Invariant lock_invariant expr;

Lock Ownership held(lockObject);

Wait for Lock Ownership wait lockObject;

Noti�cation for Released Lock notify lockObject;

Table 3.7: VerCors Thread Synchronization Statements (PVL and Speci�cations).

Due to locks, the concept of mutual exclusion is integrated into PVL. However, in general,
monitors also have the functionality of cooperative scheduling. This concept is also
implemented by PVL, but it is not the same cooperative scheduling as in SystemC. A thread
can suspend its execution by calling a wait lockObject statement and release the ownership
of a monitor to another thread. Technically, the lock is released and the lock invariant gets
reestablished.
If another process calls the notify statement, the waiting thread can resume its execution by
acquiring the released lock. To keep correctness prescribed by the programming language
semantics, a call of notify lets VerCors check whether the calling thread indeed owned the
lock. Furthermore, if a thread calls notify lockObj, all waiting threads could potentially
proceed and compete to acquire the released lock.

3.3.5 Main Advantages of VerCors Tool Suite
In the previous sections, we described the VerCors tool architecture, PVL, and the Speci�-
cation Language in detail. Analogously to the SystemC chapter, we sum up why VerCors
is a suitable choice for our research purpose.
VerCors’s beginnings reach back around ten years, but have been focusing on concurrency
concepts from the bottom up. While other theorem provers only handle sequential input
languages, or only selected concurrency-enabling languages, VerCors pursues a language-

independent and general approach of concurrency veri�cation. This makes it applicable

3.3 VerCors Veri�er 43

for a wide range of interesting veri�cation problems. On top of that, VerCors does not only
perform its veri�cation modularly, but also has a modular tool architecture. Instead of
creating a completely new veri�cation tool, it uses well-established backend tools. VerCors
itself focuses on a sophisticated use of powerful solvers, but keeps the veri�cation interface
for input programs extendable and transparent. To sum up these advantages:

1. VerCors performs static analyses and its veri�cation is designed as modular, so it

scales very well for large state spaces, which is a weakness of all model checking
approaches.

2. VerCors can not only handle speci�c concurrency-modeling languages. Moreover, it
is designed to be language-independent.

3. VerCors is based on a very powerful backend: Both Viper [Vip21] and the Z3 SMT
Solver [DB08] are well-known in the formal methods community and among the
leading tools in their research area.

4. The logical foundation of concurrency and permission handling is based on a sophis-
ticated combination of Implicit Dynamic Frames [SJP09] and Concurrent Separation
Logic [BO16]. It is sound and well-constructed.

All in all, we see VerCors as a very promising choice for our approach to verify SystemC
designs.

4
Transformation from SystemC

Designs to PVL Programs

Our major research objective is to develop a semantics-preserving transformation from
SystemC designs to annotated PVL programs. By this transformation, we gain formal
semantics for the informally de�ned SystemC design and can verify properties deductively
with VerCors. Fig. 4.1 shows an overview of the veri�cation process. Currently, all of the
steps are performed manually, but allow more automation in future.

SystemC
Design

PVL
Program

SystemC
Design

PVL
Program

VerCors
Verifier

Pass

Fail

semantic
mapping

add of
specifications

Designer

VerCors
Verifier

Pass

Fail

transformation

program
specifications

property
specifications

Figure 4.1: Veri�cation Process of SystemC Designs with VerCors.

First, the SystemC code of the design is syntactically transformed into equivalent PVL
code. For this, we will present (informal) translation rules for an initial subset of SystemC
constructs. Second, permissions for heap variables and further speci�cations related to
the program structure must be added to enable the veri�cation with VerCors. While the
addition of speci�cations produces an extra e�ort for the transformation, we will outline a

46

set of speci�cations, which can be automatically deduced from the program’s structure.
Lastly, the property speci�cations must be added manually by the system designer. The
resulting annotated PVL program is passed to VerCors, which uses Silicon as its veri�cation
backend tool. Silicon veri�es the transformed program, either resulting in Pass or Fail.
If the transformation result will pass, we have already guaranteed data race freedom

and memory safety, and can conclude that the speci�ed safety properties hold. If the
veri�cation fails, VerCors will provide an error message which assertion does not hold. In
this case, the input SystemC design has not been safe, either with respect to the handling
of permissions, or it could not satisfy the stated safety properties.
A major challenge of the transformation is the implementation of SystemC’s cooperative
scheduling semantics in PVL. In SystemC, processes can not be interrupted, they only
suspend themselves. The event mechanism enables processes to stop their execution
at some point, and to continue it later. Thus, the process interleaving is determined by
the processes themselves. With VerCors, speci�cations are veri�ed for every possible
interleaving of processes. If no extra mechanisms are used, a process could be interrupted
at any time. Hence, in contrast to SystemC’s non-preemptive scheduling, PVL assumes
preemptive scheduling.
To solve this problem, we use the locking mechanism provided by PVL for synchronizations
of threads (cf. Section 3.3.4). If a thread wants to modify an object, it needs to own the
lock of this object. Hence, no other thread can access the object at the same time (mutual
exclusion). This results in our idea to collect permissions for all heap variables within
one global lock object. The global lock is passed between the threads and ensures that no
processes are executed simultaneously. Still, an interleaving of the threads is enabled by
releasing and reentering the global lock.
To sum up, we contribute to the transformation and veri�cation process by the following
achievements:

1. We present (informal) transformation rules for an initial subset of SystemC con-

structs. By following these rules, already simple SystemC designs can be transformed
into PVL programs.

2. We introduce a global lock mechanism, which keeps the cooperative scheduling

semantics during the transformation.
3. We identify a set of speci�cations that could potentially be added automatically to

ease veri�cation.

In the following sections, we explain the transformation steps one after one. We start with
the transformation rules for SystemC’s class structures, i. e., how modules and channels are
represented in PVL. Afterwards, we go into the details of the function transformation. In
particular, we describe which parts of the sequential code can be directly mapped, or which
expressions must be slightly adjusted. Based on this knowledge, we transform normal
SystemC functions and functions implementing thread processes into methods in PVL.
After the transformation of the class and function syntaxes, we add the necessary global

4.1 Supported SystemC Subset 47

lock to preserve the non-preemptive scheduling semantics. This is also the section, where
most of the new speci�cations are introduced, so it is the most complex one. Lastly, we
give an outlook on how events will be modeled in PVL in the future.
For selected SystemC components, we show the original source code and deduce the result
code in PVL. In order to distinguish more clearly between SystemC and PVL code, we use
di�erent highlighting colors for SystemC and PVL keywords.

4.1 Supported SystemC Subset
The IEEE SystemC Standard [IEEE11] consists of 638 pages in total. In addition, as a
C++ library, SystemC covers the full expressiveness of C++. Our transformation does
not support the full SystemC and C++ standard for now; instead we consider a smaller
language subset, which still covers relevant real SystemC designs.
While SystemC supports a large amount of data types, PVL has three primitive data types:
int, boolean, and void. Besides, it o�ers arrays, but has a limitied support for pointers and
dynamic memory management. Therefore, our transformation can handle int, boolean,
and void types, as well as arrays of these types, but no explicit pointer variables. It would
be possible to realize some of the more complex SystemC data types by an implementation
based of the integer representation in PVL, but we currently do not support this. The
VerCors team is already working on a �oating point data type, so we would like to extend
our approach to this new data type in the future.
The main parts of the actor-oriented design of SystemC can be kept in PVL. We support
the general division of processes encapsulated in modules, and communication �ow via
channels. Though, hierarchy and scopes are concepts that are not (yet) implemented by
PVL. There exist proposals and ideas how to add inheritence to VerCors [Rub20], but its
implementation is future work. So for now, we only support �attened SystemC designs.
Furthermore, we assume that all identi�ers are unique to avoid naming con�icts.
Channels are a particular design structure in SystemC, but can be modeled as shared
instances of newly implemented classes in PVL. We remove the abstraction components
like interfaces and ports, and simply keep the implementation details of channels. In
general, functions implementing loops or branching statements are transformed into the
corresponding expressions in PVL. Like mentioned above, this is only possible as they
contain no other than the supported data types. The switch, goto, break, and continue
statements are not included into our transformaton rules yet, but we plan to investigate
them in the future.
A SystemC module can hold any number of thread processes, but a PVL class can hold only
one. Hence, a module with multiple thread processes has to be split up, which increases
the tranformation complexity. That is why we describe the base case of a module with
only one thread process �rst, and explain the handling of a module with more than one
thread process afterwards. Method processes di�er from thread processes, because method
processes suspend themselves by calling a wait statement. Still, they can have a static
sensitivity list and get called by the SystemC scheduler, but this holds for thread processes

48

as well. So, in general, method processes can be simulated by thread processes. Therefore,
we restrict our current transformation to thread processes and leave out method processes
for simplicity.
We require that the given SystemC design has a static structure only, that means no

dynamic variable or process creation is involved. Dynamic variable or process creation
can be modeled with SystemC, but is only used by a small subset of embedded systems.
Therefore, our approach is still applicable for most SystemC designs.
Furthermore, we only support dynamic sensitivity and no static sensitivity, since static
sensitivity can always be replaced by dynamic sensitivity. Processes are sensitive to events;
either explicitly, or implicitly by their sensitivity to channels. The advantage, that a static
sensitivity is known before the simulation starts, is not important for the static veri�cation.
Every wait statement which is related to events from a static sensitivity list, can be replaced
by a wait statement listing explicitly the sensitivity list’s events.
The key feature of SystemC is its discrete-event simulation, which is cooperatively sched-
uled. In this work, we encode the cooperative scheduling semantics into PVL, which is
the �rst signi�cant part of the transformation. The second part is the implementation
of SystemC’s event mechanism in PVL, which is also challenging. PVL does not yet sup-
port a concept of events like SystemC. Therefore, the current state of our transformation
only supports SystemC designs with one event. If more than one event is involved in
the execution, the mapping of events must be speci�ed individually and depends on the
concrete SystemC design. However, the VerCors team is already working on a global lock

mechanism, which uses conditional variables for the event realization. We designed our
transformation to be extensible to this functionality.
The concept of time is a relevant part of the SystemC simulation as well. Since VerCors
performs static analyses and proves only partial correctness, it is not dedicated to specify
timing behaviors of the program. However, we think that a general handling of events
with PVL will enable the managing of time also, since speci�c points of time can also be
seen as events.
All in all, the supported SystemC subset is not exhaustive yet, but we provide an easily
extensible, modular and semantics-preserving transformation. Unsupported language
components are either rarely used in real SystemC designs, or can be added to the trans-
formation mapping based on future VerCors functionalities. Therefore, we see the current
state of our transformation not as a �nal solution, but rather as an important contribution
to a complete semantics-preserving transformation of general SystemC designs.

4.2 SystemC Design Example
We illustrate our transformation steps using a small and clear SystemC design, which is
illustrated in Fig. 4.2. It consists of two modules A and B, which communicate via a channel.
Module A holds only one thread process, while Module B contains an integer member
variable, a function, and two thread processes. The channel implements an interface
channel_if, and is bound to ports derived from this interface. Furthermore, the channel

4.3 Modules and Channels 49

Module A
Module B

int n;

int buffer[BUFFERSIZE];

sc_event decrElemNumEvent;

void writeToBuffer(int c){}

int returnElemNum(void){}

Channel

sc_port<channel_if>

channelA;

SC_THREAD(thread){}

sc_port<channel_if>

channelB;

int numberOfPorts;

int returnZero(bool b){}

SC_THREAD(thread1);

SC_THREAD(thread2){}

Figure 4.2: General SystemC Design before Transformation.

has an integer variable, an integer array, and two functions. The functions have di�erent
combinations of boolean, integer, and void arguments and return types. In addition, the
channel contains an event decrElemNumEvent. Processes wait for this event when the bu�er
is full. This is implemented within the writeToBuffer function. The event is noti�ed within
the returnElemNum function.

1 int sc_main(int argc , char⁎ argv []) {
2 // Elaboration Phase
3 channel c_inst("Channel");
4
5 moduleA mA_inst("ModuleA");
6 mA_inst.channelA(c_inst);
7
8 moduleB mB_inst("ModuleB");
9 mB_inst.channelB(c_inst);

10
11 // Simulation of Processes
12 sc_start ();
13
14 // No Further Post Processing
15 return 0; // Simulation Success
16 }

Listing 4.1: main.cpp of SystemC Design Example.

Listing 4.1 shows the sc_main of our example design. In the elaboration phase, two module
instances “ModuleA” and “Module B” are declared (Lines 5 and 8), and connected via a
channel instance “Channel” (Lines 3, 6 and 9). Afterwards, the simulation is started by
calling sc_start(). From this on, the SystemC scheduler controls the program execution.
For brevity, we do not show the full source code of the SystemC example design in this
section, instead it is listed in Appendix A.1.

4.3 Modules and Channels
Modules and Channels are the base of SystemC’s actor-oriented design. We keep the
dinstinction of these classes during the transformation to have a transparent result. In

50

addition, more comprehensive conclusions are possible, if the veri�cation of the resulting
program fails.
For the mapping of modules, we have the challenge that a PVL class can only contain
one thread, whereas SystemC modules encapsulate any number of thread processes. If
we assume the base case with only one thread procss within the module, we directly map
the module to a new PVL class exactly named as its SystemC origin, except for a small
adjustment. In order to have a clearer distinction, we de�ne as convention that SystemC
classes begin with a lowercase letter, and PVL classes with an uppercase letter. For instance,
moduleA from Fig. 4.2 becomes ModuleA in PVL as presented in Fig. 4.3.

ModuleA

Channel

ModuleBState

ModuleBState

moduleB_inst_State;

void run(){}

ModuleB

Thread1
ModuleBState

moduleB_inst_State;

void run(){}

ModuleB

Thread2

Channel channelB;

int numberOfPorts;

int returnZero(boolean b){}

Channel channelA;

void run(){}

int BUFFERSIZE;

int n;

int[] buffer;

void writeToBuffer(int c){}

int returnElemNum(){}

Figure 4.3: PVL Class Structure after Transformation.

Although we declared only one instance per module and channel for simplicity in Listing 4.1,
more instances of a module or channel can also be handled by the proposed transformation.
The correct mapping of channel and module instances is established by passing the channel
instances as arguments to the module instances’ constructors. Listing 4.2 shows how a
resulting Main method in PVL would look like.

1 Main () {
2 Channel channel_inst = new Channel ();
3 ModuleA moduleA_inst = new ModuleA(channel_inst);
4 // ...
5 }

Listing 4.2: Example Main Method after Transformation to PVL.

Now, we assume the more general case that a module contains more than one thread process.
Hence, at least two thread processes have access to the module’s member variables and
functions. To keep the shared access, we introduce a new class in PVL holding the module’s
shared state. It is named like the module su�xed with State, for example, moduleB from the
SystemC designs results in a PVL class ModuleBState. This shared state class contains all
member variables and functions of the original SystemC module. In the case of module

4.4 Functions 51

B, these are the integer variable numberOfPorts, the function returnZero, and the channel
variable channelB.
Each of the module’s thread processes is encapsulated into a new PVL class, which is named
as the module su�xed with the thread name. Hence, module B’s thread1 and thread2 result
in two new classes named ModuleBThread1 and ModuleBThread2. Both have a member variable
holding the same instance of ModuleBState. Every new thread class implements a method
run() holding the thread’s SystemC statements translated to PVL. More details about the
thread process implementation are given in Section 4.5.
A channel of a SystemC design is mapped to a new PVL class named like the channel class
in SystemC. It keeps all of the channel’s member variables except of events. We describe
the event transformation in Section 4.7. Furthermore, all of the channels functions are
transformed into PVL. The transformation details of data types and functions are described
in the next section.
SystemC components, which only exist for abstraction purposes, are completely removed
by the transformation. In particular, this comprises ports or channel interfaces. Since
VerCors does not execute the resulting PVL program, there is no advantage in having a
separation between computation and communication. Consequently, SystemC variables of
type sc_port<channel_if> are replaced by an equally-named variable of the channel type, in
this case simply Channel. Directives declaring values, like BUFFERSIZE in the SystemC design
example, are transformed into �elds, which are initialized in the new class’s constructor.
Note that SystemC module and channel classes �nish with a semicolon, but PVL classes
not.
Fig. 4.3 illustrates the resulting class structure of the SystemC design from Fig. 4.2. However,
it shows the general component structure, but not how exactly functions are mapped in
PVL. This is the next section’s topic.

4.4 Functions
In SystemC, functions hold the executable statements of the model. In our transformation,
every SystemC function is mapped to a new PVL method. The location of the method
depends on the translation rules introduced in the previous section. It is either a directly
mapped class, a thread class or a state class. In this section, we focus on general functions,
which do not implement thread processes.

Function Signatures and Data Types
The signature of a SystemC function is taken over; only functions without arguments
are slightly adjusted. The keyword void must be removed from the argument list in PVL
during the transformation. Also the boolean type bool in SystemC is mapped to the slightly
di�erent named type boolean in PVL. Listing 4.3 and Listing 4.4 show the SystemC function
signatures of our general model, and their resulting PVL method signatures.
The SystemC type int is mapped to PVL’s data type int. At this point, we have to mention
that PVL implements a mathematical interpretation of integers. It assumes that the set of

52

1 int returnZero(bool b) {
2 // ...
3 }
4
5 void writeToBuffer(int c) {
6 // ...
7 }
8
9 int returnElemNum(void) {

10 // ...
11 }

Listing 4.3: Function
Signatures in SystemC.

1 int returnZero(boolean b) {
2 // ...
3 }
4
5 void writeToBuffer(int c) {
6 // ...
7 }
8
9 int returnElemNum () {

10 // ...
11 }

Listing 4.4: Method
Signatures in PVL.

integers is in�nite, while SystemC’s built-in integer type sc_int has a �xed numerical range
de�ned by its bit width. We leave the correct handling of arithmetic over�ow as subject to
future work. The described data type mappings do not hold for function signatures only,
but also for every other use of data types, like member variables in the source code.
A special type of a function is the constructor in SystemC, denoted by the macro SC_CTOR.
It has no return type and takes the class name as its �rst argument. It is mapped to a
constructor method in PVL, whose name consists of the class name only. Listing 4.5
and Listing 4.6 show an example. The SystemC macro SC_THREAD is also removed by the
transformation, since no processes must be registered at the scheduler any more.

1 SC_CTOR(moduleA) {
2 SC_THREAD(thread);
3 // ...
4 }

Listing 4.5: Constructor of
Module A in SystemC.

1 ModuleA (Channel channel) {
2 // No Thread Declarations
3 // ...
4 }

Listing 4.6: Constructor of
Module A in PVL

(Intermediate State).

Besides primitive data types, arrays are also supported by our transformation. Though,
their declarations have to be slightly adjusted in PVL. An array of length i is declared
by T array[i] in SystemC, but must be changed to T[] array in PVL. The type T can be
either integer, or boolean. Furthermore, the array in SystemC does not need a separate
initialization after its declaration, before values can be written to it. This is di�erent in PVL,
where its initialization must be declared explicitely. So for every array member variable
in SystemC, we add its initialization to the class’s constructor by an additional statement
array = new T[i].
We illustrate the transformation process in Listing 4.7 and Listing 4.8, which show the
comparison between the SystemC channel and the PVL Channel. Up to now, we moved
the former SystemC directive to a PVL �eld, removed scoping and sensitivity keywords,
and adjusted the array declaration and the constructor signature.

4.4 Functions 53

1 #include <systemc.h>
2 #define BUFFERSIZE 42
3
4 // Interface Definition: channel_if
5
6 class channel : public sc_channel ,
7 public channel_if {
8
9 // Internal Data

10 private:
11 int n;
12 int buffer[BUFFERSIZE];
13
14 // Public Events and Functions
15 public:
16 sc_event decrElemNumEvent;
17
18 SC_CTOR(channel){
19 n = 0;
20 }
21
22
23
24
25 // Further Functions
26 };

Listing 4.7: Channel Class in
SystemC (Excerpt).

1 class Channel {
2
3 // Define Directives
4 int BUFFERSIZE;
5
6 // Internal Data
7 int n;
8 int[] buffer;
9

10 // No Events/Visibilities
11
12 // Permissions and Value Checks
13 ensures Perm(n, wri te);
14 ensures Perm(buffer , read);
15 ensures buffer != null;
16 ensures buffer.length == 42;
17 ensures Perm(buffer [⁎],wri te);
18 Channel () {
19 BUFFERSIZE = 42;
20
21 n = 0;
22 buffer = new int[BUFFERSIZE];
23 }
24
25 // Further Methods
26 }

Listing 4.8: Channel Class in PVL
(Intermediate State).

Permissions and Assertions
In order to make our resulting program veri�able by VerCors, it is important to add
speci�cations, like to the PVL constructor in Listing 4.8. We ensure write permissions
for every primitive �eld (Line 13), and read permissions and a null value check for every
object �eld (Lines 14f). If the object �eld holds an array, as shown in our example, we add
a speci�cation of the bu�er’s length and write permissions for all array elements (Lines
16f). However, the write permission for all elements are not necessary, but we provide all
of them to keep the transformation more general. Otherwise, we would have to analyze
every possible access to an array element in the whole program. This would lead to a
strong increase in the transformation complexity. Permissions can only be ensured by the
constructor initializing the �elds. Afterwards, they are owned by the caller method of the
constructor and crucially required, because otherwise no one has ever access to the class’s
�elds. We extend the speci�cation statements during the upcoming transformation steps.

Function Bodies
SystemC’s control statements and assignments are transformed to their natural equivalents
in PVL. They slightly di�er in the precise syntaxes, which is recorded in Table 4.1. While
C++ has a precise distinction of pointers and references, we do not keep this by our

54

transformations to PVL. The support of pointers by PVL is limited, so we can only handle
SystemC designs, where pointers can be replaced by references without changing the
program semantics. Under this assumption, function calls with an arrow -> in SystemC
are simpli�ed to the syntactic delimiter of a dot . in PVL.

SystemC PVL Remarks

x = e; x = e; No di�erence
if (b) s1 if (b) then {s1}
if (b) {s} if (b) then {s} s is sequence of statements
if (b) {s1} else {s2} if (b) then {s1} else {s2}
while (b) {s} while (b) {s} s is sequence of statements
for(int i = e1; b; e2) {s} for(int i = e1; b; e2) {s} No di�erence
return e; return e;
object->callFunction(); object.callFunction(); Care should be taken, if point-

ers are dereferenced in func-
tion calls.

Table 4.1: Transformation Rewriting Rules for Control Flow Statements.

Arithmetic and logical operators are taken over from the SystemC code. A complete
overview of supported operators is listed in Table A.2 of the appendix of this work. Com-
pound operators like x += 1 must be rewritten to x = x + 1, since PVL does not support
them, but this adds no technical complexity to the transformation.

4.5 Processes
As described in Section 4.3, a function denoted as a thread process by the macro SC_THREAD

is transformed to the run() method in PVL. Both, the thread’s SystemC function and its
PVL method must have void as the return type and no arguments. This is expressed by

void thread(void) {...}

in SystemC, and

void run() {...}

in PVL. In many SystemC designs, a thread process in SystemC is embedded into a
while(true) loop and shall not terminate. This is preserved by the transformation to PVL
and causes no problems, since VerCors does not check for termination, and can still verify
speci�cations locally.
If a thread process is the only one of its module, for instance module A’s thread, there are
only a few adjustments of its resulting PVL class necessary. While channels are bound to
ports within the sc_main in SystemC, they are simply passed as an argument to the module
class’s constructor in PVL. All other member variables and functions are preserved.
If a SystemC module contains more than one thread, like module B’s thread1 and thread2,
the transformation to PVL requires more e�ort. Instead of a direct access to its channel,

4.5 Processes 55

the thread class ModuleBThread1 has a �eld for the shared instance of class ModuleBState. The
state instance holds module B’s member variables, like the channel, and member functions.
Therefore, the state object—and not the channel object—is passed to the thread class via
its constructor’s argument. Listing 4.9 shows the short and rather simple excerpt of the
original SystemC module B with its thread process. In contrast to this, the resulting PVL
class presented in Listing 4.10 is more complex. All usages of module B’s variables, and
calls of its functions, must be rewritten to the state class instance instead. This is shown in
lines 17 and 18 of Listing 4.9.
Furthermore, the necessary speci�cations added to the PVL code make it much longer. First,
the constructor requires the given state object instance to be not null (Line 7). In addition,
read permissions must be ensured for the resulting �eld (Line 9). It is also speci�ed to be
not null (Line 10), and must hold the same object instance as passed by the argument after
execution of the constructor (Line 11). The combination of null checks, permissions, and
equalities of values is a standard construct, which we always have to add as speci�cations
for all non-primitive constructor arguments and class �elds.
The permissions for the state object and its �elds must be kept during the whole execution of
the thread. Otherwise, the access to module B’s bu�er element in line 26 would fail, because
the thread would have insu�cient permissions to do this. The reason is, that VerCors proves
assertions locally, and the permissions have to be owned by the thread before entering the
loop and after each iteration. They are ensured by the thread’s constructor, but this is not
known by VerCors, since it veri�es the constructor and the run() method separately.
To still pass the permissions between di�erent methods executed by the thread, they could
be either speci�ed by the method’s preconditions or as a lock invariant. To preserve the
non-preemptive scheduling semantics, we have to add a lock to every run() method, as
this is the easiest possiblity to pass permissions. For methods, which are not implementing
a thread, but are called by it, we specify the permissions as pre- and postconditions. The
explicit de�nition of the ownership of permissions is a bene�t of VerCors, since data races
would never pass the veri�cation.
So far, we presented transformation rules for classes, processes, and methods down to
single statements. We illustrated the rules by a transformation of the components of our
example SystemC design, but did not preserve the non-preemptive scheduling semantics
yet. We solve this remaining problem by introducing a global lock, which establishes the
correct execution order of the threads.

56

1 SC_MODULE(moduleB) {
2
3 sc_port<channel_if> channelB;
4
5 // Variables , Member Functions ...
6
7 // Constructor
8 SC_CTOR(moduleB) {
9 // Process Registration

10 SC_THREAD(thread1);
11 // ...
12 }
13
14 // Interruptable Process 1
15 void thread1(void) {
16 while(true) {
17 returnZero(true);
18 channelB ->writeToBuffer (42);
19 // ...
20 }
21 }
22 };

Listing 4.9: Module B’s Thread1 Process in SystemC.

1 class ModuleBThread1 {
2
3 // Original Fields/Functions moved to ModuleBState
4 ModuleBState moduleB_inst_State;
5
6 // NotNull Check of Arguments
7 r e qu i r e s moduleBState != null;
8 // Shared ModuleBState: Permissions and Value Checks
9 ensures Perm(moduleB_inst_State , read);

10 ensures moduleB_inst_State != null;
11 ensures moduleB_inst_State == moduleBState;
12 ModuleBThread1(ModuleBState moduleBState) {
13 moduleB_inst_State = moduleBState;
14 }
15
16 void run () {
17 // Must hold all specifications , conjuncted by ⁎⁎
18 l o op_ i nva r i an t true
19 ⁎⁎ Perm(moduleB_inst_State , read)
20 ⁎⁎ Perm(moduleB_inst_State.numberOfPorts , wri te)
21 ⁎⁎ Perm(moduleB_inst_State.channelB , read)
22 // ⁎⁎ more specifications added later ...
23 ;
24 while(true) {
25 moduleB_inst_State.returnZero(true);
26 moduleB_inst_State.channelB.writeToBuffer (42);
27 }
28 }
29 }

Listing 4.10: Module B’s Thread1 in PVL (Intermediate State).

4.6 Non-Preemptive Scheduler 57

4.6 Non-Preemptive Scheduler
In SystemC, the scheduler has the control over the simulation. Even if it can not interrupt
processes, it manages all wait statements and noti�cations of events. It handles the current
process state and possibly moves a process to the ready pool again. Such a concept does not
exist in VerCors. For the veri�cation of a multithreaded program, it assumes any possible
interleaving semantics of the threads’s executions. Our idea is to restrict the interleaving
of threads in PVL by collecting all permissions of shared heap variables within one global
lock.

The Global Lock and Main Class Structure

Fig. 4.4 visualizes the approach for our example SystemC design. To realize the global
lock, we implement two new classes with identi�ers Main and GlobalLock. The Main class
has not a technical functionality, but keeps the transformation more transparent. Its main()

method initializes the global lock and calls the lock’s simulation() function.

GlobalLock

ModuleA

Channel

ModuleBState

ModuleBState

moduleB_inst_State;

void run(){}

ModuleB

Thread1
ModuleBState

moduleB_inst_State;

void run(){}

ModuleB

Thread2

Channel channelB;

int numberOfPorts;

int returnZero(boolean b){}

Channel channelA;

void run(){}

int BUFFERSIZE;

int n;

int[] buffer;

void writeToBuffer(int c){}

int returnElemNum(){}

GlobalLock gLock

= new GlobalLock();

gLock.simulation();

Main

Figure 4.4: PVL Classes after Transformation with Global Lock.

The GlobalLock is the maintainer of all thread, state and channel class instances. Therefore,
they are declared as its �elds and get initialized in the global lock’s constructor. The general
structure of the global lock is presented in Listing 4.11.
We pass the global lock instance as an argument (this) to the constructor of all PVL classes.
Otherwise, it would not be possible to formalize speci�cations of the program state in
other classes than the global lock. For our example SystemC design, the classes receiving
the global lock via their constructor are the channel, module A, and module B’s state and

58

thread classes (Lines 16 to 20). The method simulation() is the transformation equivalent
to SystemC’s sc_start() function. It forks all threads and joins them afterwards.

1 class GlobalLock {
2
3 // Fields for Channels , and Module ’s Threads and States
4 Channel channel_inst;
5 ModuleA moduleA_inst;
6 ModuleBState moduleB_inst_State;
7 ModuleBThread1 moduleB_inst_Thread1;
8 ModuleBThread2 moduleB_inst_Thread2;
9

10 // Permissions of all Objects and Fields
11 r e source l o c k _ i nv a r i a n t () = true
12 // ⁎⁎ ...
13 ;
14
15 GlobalLock () {
16 channel_inst = new Channel(this);
17 moduleA_inst = new ModuleA(this , channel_inst);
18 moduleB_inst_State = new ModuleBState(this , channel_inst);
19 moduleB_inst_Thread1 = new ModuleBThread1(this , moduleB_inst_State);
20 moduleB_inst_Thread2 = new ModuleBThread2(this , moduleB_inst_State);
21 }
22
23 void simulation () {
24 fork moduleA_inst;
25 fork moduleB_inst_Thread1;
26 fork moduleB_inst_Thread2;
27
28 join moduleA_inst;
29 join moduleB_inst_Thread1;
30 join moduleB_inst_Thread2;
31 }
32 }

Listing 4.11: PVL Global Lock Base Structure.

The main challenge of the global lock is that it must hold all permissions for all heap variables,
but these heap variables are distributed and shared by multiple threads encapsulated in
di�erent classes. For instance, VerCors needs to know whether the channel �elds of
module A and B are accessing the same heap object, or not. These equalities are semantic
knowledge formalized by speci�cations of the global program state. Their veri�cation
with VerCors is challenging, because VerCors’s speci�cation language does not implement
global invariants. The veri�cation is always done thread-locally, so we must encode global
speci�cations di�erently.
The particular point of execution, where the context is passed between threads, is when the
ownership of the global lock changes. Every time a thread acquires or releases the global
lock in PVL, the lock invariant is assumed. Therefore, the lock invariant is the place, where
we can pass speci�cations about the global program state between the threads. Hence, we

4.6 Non-Preemptive Scheduler 59

add a lock invariant to the global lock class, whose basic declaration is presented in Fig. 4.4,
line 11. Up to now, it is empty, and VerCors does not know anything about the relation
between �elds declared in separate classes. We describe the necessary speci�cations for a
successful veri�cation in the next section.

Specifications for Global Program State in Lock Invariant

The complete lock invariant is composed of read and write permissions, null checks, and
equality checks. They can be derived from the original SystemC design and the already
transformed PVL result classes by performing the following steps:

1. Read Permissions for Fields of Global Lock: For every �eld of the global lock class,
i. e., channel, state and thread classes of the transformed PVL program, read permis-
sions must be speci�ed. Otherwise, they could not be used to formalize the global
program state.

2. Read Permissions and Equality of Global Lock: The global lock instance, which is
passed as argument to the classes’s constructors, must be the same for all classes
of the program. Hence, for every class, read permissions for its �eld gLock must be
added. Also the equality of all global lock instances of the classes must be speci�ed.
By this, VerCors knows that all classes are related by the same global lock.

3. Read Permissions and Equality of State Classes: For all PVL thread classes derived
from a SystemC module with multiple threads, read permissions of their �elds holding
the shared state instance must be added. Then, the equality of all shared state instances
must be stated, so that the thread instances are truly working on the same shared
heap memory.

4. Read Permissions of Channels: For every channel, read permissions of the corre-
sponding channel �eld of thread/state classes must be added to the lock invariant.
To ensure, that the threads are really operating via the same channel instance, the
equality of the �eld’s values must be speci�ed.

5. Permissions, Null and Length Checks of further Heap Variables: For all not yet
handled �elds of the classes, write permissions for primitive �elds, and read permis-
sions plus not null checks for �elds holding arrays and objects are speci�ed. For array
�elds, write permissions for its �elds and a speci�cation of its length are necessary as
well.

Since every heap variable produces at least one speci�cation, the lock invariant grows fast.
As shown in Listing 4.12, the lock invariant of our small example SystemC design is already
41 lines long. The presented steps to build a lock invariant are complete with respect to all
variables and objects of a given model. It is possible that the program’s lock invariant does
not need to contain all of these speci�cations to be veri�able. A more detailed analysis of
the program’s source code could reduce the length of the lock invariant. Hence, the steps 1

60

to 5 are more general instructions for building a lock invariant to keep the transformation
most simple, but possibly less e�cient. We see the optimization as future work.

1 r e source l o c k _ i nv a r i a n t = true
2 // 1. Read Permissions for all Channel , State and Thread Classes
3 ⁎⁎ Perm(channel_inst , read)
4 ⁎⁎ Perm(moduleA_inst , read)
5 ⁎⁎ Perm(moduleB_inst_State , read)
6 ⁎⁎ Perm(moduleB_inst_Thread1 , read)
7 ⁎⁎ Perm(moduleB_inst_Thread2 , read)
8
9 // 2. Read Permissions & Equality of the Shared Global Lock

10 ⁎⁎ Perm(channel_inst.gLock , read)
11 ⁎⁎ Perm(moduleA_inst.gLock , read)
12 ⁎⁎ Perm(moduleB_inst_State.gLock , read)
13 ⁎⁎ Perm(moduleB_inst_Thread1.gLock , read)
14 ⁎⁎ Perm(moduleB_inst_Thread2.gLock , read)
15 ⁎⁎ this == channel_inst.gLock
16 ⁎⁎ this == moduleA_inst.gLock
17 ⁎⁎ this == moduleB_inst_State.gLock
18 ⁎⁎ this == moduleB_inst_Thread1.gLock
19 ⁎⁎ this == moduleB_inst_Thread2.gLock
20
21 // 3. Read Permissions & Equality of Shared Module States
22 ⁎⁎ Perm(moduleB_inst_Thread1.moduleB_inst_State , read)
23 ⁎⁎ Perm(moduleB_inst_Thread2.moduleB_inst_State , read)
24 ⁎⁎ moduleB_inst_Thread1.moduleB_inst_State == moduleB_inst_State
25 ⁎⁎ moduleB_inst_Thread2.moduleB_inst_State == moduleB_inst_State
26
27 // 4. Read Permissions & Equality of Shared Channels
28 ⁎⁎ Perm(moduleA_inst.channelA , read)
29 ⁎⁎ Perm(moduleB_inst_State.channelB , read)
30 ⁎⁎ channel_inst == moduleA_inst.channelA
31 ⁎⁎ channel_inst == moduleB_inst_State.channelB
32
33 // 5. Permissions , Null and Length Checks of further Heap Variables
34 ⁎⁎ Perm(moduleB_inst_State.numberOfPorts , wri te)
35 ⁎⁎ Perm(channel_inst.n, wri te)
36 ⁎⁎ Perm(channel_inst.buffer , read)
37 ⁎⁎ channel_inst.buffer != null
38 ⁎⁎ channel_inst.buffer.length == 42
39 ⁎⁎ Perm(channel_inst.buffer [⁎],wri te)
40 ;

Listing 4.12: PVL Lock Invariant for General SystemC Design.

The permissions and speci�cations required in the lock invariant are a formalization of
the global program state. Since this state is not created in the lock invariant, at least
the permissions must be ensured by another part of the program. The read permissions
speci�ed in Step 1 are ensured by the constructor of the global lock, because it initializes
the instances of the channel, state and thread classes. It must also ensure that they are
initialized after execution of the constructor. Furthermore, the read permissions and

4.6 Non-Preemptive Scheduler 61

equality speci�cations of the global lock are ensured by its constructor. Listing 4.13 shows
the resulting speci�cations of our example SystemC design. Note that there are 32 lines of
speci�cations in comparison to 5 lines of implementation code.

1 // Read Permissions and Null Check for Channels , Thread and State Classes
2 ensures Perm(channel_inst , read);
3 ensures Perm(moduleA_inst , read);
4 ensures Perm(moduleB_inst_State , read);
5 ensures Perm(moduleB_inst_Thread1 , read);
6 ensures Perm(moduleB_inst_Thread2 , read);
7 ensures channel_inst != null;
8 ensures moduleA_inst != null;
9 ensures moduleB_inst_State != null;

10 ensures moduleB_inst_Thread1 != null
11 ensures moduleB_inst_Thread2 != null;
12 // Read Permissions and Null Check for Global Lock
13 ensures Perm(channel_inst.gLock , read);
14 ensures channel_inst.gLock != null;
15 ensures Perm(moduleA_inst.gLock , read);
16 ensures moduleA_inst.gLock != null;
17 ensures Perm(moduleB_inst_State.gLock , read);
18 ensures moduleB_inst_State.gLock != null;
19 ensures Perm(moduleB_inst_Thread1.gLock , read);
20 ensures moduleB_inst_Thread1.gLock != null;
21 ensures Perm(moduleB_inst_Thread2.gLock , read);
22 ensures moduleB_inst_Thread2.gLock != null;
23 // Equality of the Shared Global Lock
24 ensures channel_inst.gLock == this;
25 ensures moduleA_inst.gLock == this;
26 ensures moduleB_inst_State.gLock == this;
27 ensures moduleB_inst_Thread1.gLock == this;
28 ensures moduleB_inst_Thread2.gLock == this;
29 // Status of Thread1 of ModuleB , Thread2 of ModuleB , and Thread of ModuleA
30 ensures idle(moduleB_inst_Thread1);
31 ensures idle(moduleB_inst_Thread2);
32 ensures idle(moduleA_inst);
33 GlobalLock () {
34 channel_inst = new Channel(this);
35 moduleB_inst_State = new ModuleBState(this , channel_inst);
36 moduleB_inst_Thread1 = new ModuleBThread1(this , moduleB_inst_State);
37 moduleB_inst_Thread2 = new ModuleBThread2(this , moduleB_inst_State);
38 moduleA_inst = new ModuleA(this , channel_inst);
39 }

Listing 4.13: PVL Constructor Speci�cations for General SystemC Design.

The global lock’s method simulation() which forks and joins the threads, must keep all
speci�cations of the constructor. So they are required and ensured as pre- and postcondi-
tions, which can be abbreviated by the keyword context. The full PVL code including the
speci�cations of the global lock can be found in the appendix, Listing A.6.
All speci�cations of channel, thread, and state class’s �elds must be ensured by the con-
structors of these classes. Listing 4.14 shows the completed constructor of module A after

62

1 // NotNull Check of Arguments
2 r e qu i r e s globalLock != null;
3 r e qu i r e s channel != null;
4 // Global Lock: Permissions and Value Checks
5 ensures Perm(gLock , read);
6 ensures gLock != null;
7 ensures gLock == globalLock;
8 // Field Channel: Permissions and Value Checks
9 ensures Perm(channelA , read);

10 ensures channelA != null;
11 ensures channelA == channel;
12 ModuleA (GlobalLock globalLock , Channel channel) {
13 gLock = globalLock;
14 channelA = channel;
15 }

Listing 4.14: PVL Constructor of Module A of General SystemC Design.

the transformation to PVL. It requires the passed global lock and channel instance to be not
null. Under this assumption, it ensures read permissions of the corresponding �elds, that
they are not null, and that they hold the instances given as arguments to the constructor.

Applying the Global Lock on Threads

So far, we described the general idea of the global lock. We explained its implementation
and the necessary speci�cations. Now we apply the global lock mechanism on the threads
to achieve the non-preemptive scheduling semantics.
Every thread must be forced to acquire the global lock, before it executes a statement. Since
only one thread can own the global lock, multiple threads can never execute simultaneously.
If the thread does not release the global lock itself, it can not be taken by any other thread.
Hence, the thread scheduling becomes non-preemptive. To implement the acquisition of
the lock in a thread, we add the lock acquisition lock gLock as the �rst statement to its run()

method. The corresponding lock release by unlock gLock is placed as the last statement in
run(). We assume that gLock is the identi�er of every global lock �eld.
To acquire the global lock gLock, the run() method must have read permissions for it, and
the global lock must not be null. Therefore, this is required in the method’s preconditions.
The speci�cations must also be ensured as postconditions. Hence, they are denoted with
the keyword context. The equality of the current thread and the instance of the global lock
is also speci�ed. Listing 4.15 shows the resulting run() method of module A in PVL.
The current state of the run() method would not yet pass the veri�cation. VerCors asserts
the global lock’s invariant when the global lock is acquired, which is no problem. However,
it asserts the lock invariant again when the global lock is relased, which is not that easy.
The additional di�culty derives from the involved while(true) loop. VerCors needs further
knowledge about the program state before and after the loop executions, otherwise it can
not assert the lock invariant afterwards. That is why we have to encode all speci�cations

4.6 Non-Preemptive Scheduler 63

1 con tex t Perm(gLock , read) ⁎⁎ gLock != null;
2 con tex t Perm(gLock.moduleA_inst , read);
3 con tex t gLock.moduleA_inst == this;
4 void run () {
5 lock gLock;
6
7 l o op_ i nva r i an t true
8 // ⁎⁎ ...
9 ;

10 while(true) {
11 // ...
12 }
13
14 unlock gLock;
15 }

Listing 4.15: PVL Thread Implementation of Module A with Global Lock.

from the lock invariant into loop invariants within a lock area as well.
The global lock instance is the only relation between the other heap variables and the
current thread, so it is needed to formalize the loop invariant correctly. Listing 4.16 shows
the complete run() method of module A of the example SystemC design. Since it is very
long, we highlighted the parts of the speci�cations which di�er from the loop invariant
in Listing 4.12. The lines 8 to 11 express the permissions, null check, and ownership of
the global lock. By the equality in line 21, a relation between the global lock’s instance of
module A and the current thread can be drawn. All other modi�cations are only insertions
of the pre�x gLock, because we have a di�erent context in this loop invariant in contrast to
the lock invariant. Moreover, the lines 36 and 43 have already been included in the lock
invariant without the gLock pre�x.

1 con tex t Perm(gLock , read) ⁎⁎ gLock != null;
2 con tex t Perm(gLock.moduleA_inst , read);
3 con tex t gLock.moduleA_inst == this;
4 void run () {
5 lock gLock;
6
7 l o op_ i nva r i an t true
8 // Permissions and Ownership of Global Lock
9 ⁎⁎ Perm(gLock, read)

10 ⁎⁎ gLock != null
11 ⁎⁎ held(gLock)
12
13 // Read Permissions for all Channel , State and Thread Classes
14 ⁎⁎ Perm(gLock.channel_inst , read)
15 ⁎⁎ Perm(gLock.moduleA_inst , read)
16 ⁎⁎ Perm(gLock.moduleB_inst_State , read)
17 ⁎⁎ Perm(gLock.moduleB_inst_Thread1 , read)
18 ⁎⁎ Perm(gLock.moduleB_inst_Thread2 , read)
19

64

20 // Equality of Global Lock’s ModuleA and this
21 ⁎⁎ gLock.moduleA_inst == this
22
23 // Read Permissions & Equality of the Shared Global Lock
24 ⁎⁎ Perm(gLock.channel_inst.gLock , read)
25 ⁎⁎ Perm(gLock.moduleA_inst.gLock , read)
26 ⁎⁎ Perm(gLock.moduleB_inst_State.gLock , read)
27 ⁎⁎ Perm(gLock.moduleB_inst_Thread1.gLock , read)
28 ⁎⁎ Perm(gLock.moduleB_inst_Thread2.gLock , read)
29 ⁎⁎ gLock == gLock.channel_inst.gLock
30 ⁎⁎ gLock == gLock.moduleA_inst.gLock
31 ⁎⁎ gLock == gLock.moduleB_inst_State.gLock
32 ⁎⁎ gLock == gLock.moduleB_inst_Thread1.gLock
33 ⁎⁎ gLock == gLock.moduleB_inst_Thread2.gLock
34
35 // Read Permissions & Equality of Shared Module States
36 ⁎⁎ Perm(gLock.moduleB_inst_State, read)
37 ⁎⁎ Perm(gLock.moduleB_inst_Thread1.moduleB_inst_State , read)
38 ⁎⁎ Perm(gLock.moduleB_inst_Thread2.moduleB_inst_State , read)
39 ⁎⁎ gLock.moduleB_inst_Thread1.moduleB_inst_State == gLock.moduleB_inst_State
40 ⁎⁎ gLock.moduleB_inst_Thread2.moduleB_inst_State == gLock.moduleB_inst_State
41
42 // Read Permissions & Equality of Shared Channels
43 ⁎⁎ Perm(gLock.channel_inst, read)
44 ⁎⁎ Perm(gLock.moduleA_inst.channelA , read)
45 ⁎⁎ Perm(gLock.moduleB_inst_State.channelB , read)
46 ⁎⁎ gLock.channel_inst == gLock.moduleA_inst.channelA
47 ⁎⁎ gLock.channel_inst == gLock.moduleB_inst_State.channelB
48
49 // Permissions , Null and Length Checks of further Heap Variables
50 ⁎⁎ Perm(gLock.moduleB_inst_State.numberOfPorts , wri te)
51 ⁎⁎ Perm(gLock.channel_inst.n, wri te)
52 ⁎⁎ Perm(gLock.channel_inst.buffer , read)
53 ⁎⁎ gLock.channel_inst.buffer != null
54 ⁎⁎ gLock.channel_inst.buffer.length == 42
55 ⁎⁎ Perm(gLock.channel_inst.buffer [⁎],wri te)
56 ;
57 while(true) {
58 // ...
59 }
60
61 unlock gLock;
62 }

Listing 4.16: PVL Thread Implementation of Module A with Loop Invariant.

The loop invariants for thread1 and thread2 are equally derived from the lock invariant, so
we do not explicitly outline them in this section. Another aspect of the transformation is
that all methods, which are called by a thread, must have the invariants’ speci�cations as

4.7 Outlook: Events 65

its pre- and postconditions. Otherwise VerCors can not verify whether they still hold after
the execution of the method. For example, the methods void writeToBuffer(int c){} and
int returnElemNum(){} of the channel class are enriched with the invariant’s speci�cations.
The fully transformed PVL program with all invariants can be found in Appendix A.3.
We achieved to implement non-preemptive scheduling semantics by a global lock in PVL.
Still, the presented transformation rules can only be applied on a subset of industrial
SystemC designs. If more than one event is involved in the process scheduling, our trans-
formation rules can not guarantee that the transformation is fully semantics-preserving.
To support the full event mechanism of SystemC, we need an extension of VerCors’s
reasoning process. Even if we do not present a transformation rule for events in this work,
we outline our idea how to capture events with VerCors in the future.

4.7 Outlook: Events
Thread processes in SystemC can wait for the noti�cation of an event, before they continue
their execution. Since events are not implemented by PVL, the speci�cation of an order
of threads de�ned by events is not simple. However, in PVL, a thread can wait for a lock,
which is very similar to the waiting for an event in SystemC. When a thread waits for a
lock, the lock invariant is asserted and the lock released. If another thread acquires the
lock afterwards, the lock invariant is asserted again.
Analogeously to the noti�cations of events, also threads can be noti�ed of a lock, so that
they can continue with their execution. VerCors only checks, whether the notifying thread
holds the lock for the noti�cation. So for our simple example SystemC design, we keep the
event semantics by using the waiting for and noti�cation of the global lock. Listing 4.17
shows the implementation in the channel class. The thread which calls writeToBuffer(...)

suspends its execution when reaching line 14. It only continues the execution, if another
thread noti�es the global lock like shown in line 24. Still, the notifying thread must release
the lock, otherwise no other thread can (re)acquire it.
In our general SystemC design, we only have one event involved. Real SystemC designs
normally involve multiple events, which denote di�erent global program states. The
execution order of the SystemC thread processes depends on the order of event noti�cations,
and whether a thread process has been waiting for it. Currently, these semantics of an
event-driven simulation can not be formalized with PVL.
An idea to solve this problem, is the implementation of condition variables into PVL. They
are a concurrency concept implemented by many software languages with multithreading
functionality, for example Java. Condition Variables have already facilitated deductive
veri�cation of concurrent Java programs in the past [BK07]. In general, they divide the
waiting threads into di�erent sets. Each set is related to a condition variable, which denotes
a di�erent state of the program. Noti�cations with condition variables can target threads
of a speci�c set instead of all threads. The challenge in the implementation of conditional
variables is, that they specify global state informations, which are di�cult to prove with
VerCors. For example, for a concrete event, VerCors may has to verify that

66

1 class Channel {
2
3 GlobalLock gLock;
4
5 // Fields , Constructor , ...
6
7 // Pre -/ Postconditions ...
8 void writeToBuffer(int c) {
9

10 l o op_ i nva r i an t true
11 // ...
12 ;
13 while (n == buffer.length) {
14 wait gLock;
15 }
16
17 buffer [17] = c;
18 n++;
19 }
20
21 // Pre -/ Postconditions ...
22 int returnElemNum () {
23 n--;
24 notify gLock;
25
26 return n;
27 }
28 }

Listing 4.17: PVL Wait and Noti�cation of Global Lock within Channel
Class.

1. a noti�cation is made, when the event occurs,
2. the program state between release and new acquiration of the global lock with the

condition variable does not change,
3. and possibly even that a thread has been be waiting for the event before it is noti�ed.

Especially, the third assertion is related to liveness properties, which are not natural to
prove for VerCors. This is why the concrete implementation of the conditional global lock
and veri�cation of events in VerCors is di�cult and an open research topic. However, we
believe, that it will be solved by future work within the SAVES project [SAVES21].
All in all, we presented transformation rules which fully preserve the non-preemptive
scheduling semantics of an initial subset of SystemC designs. In addition, we identi�ed a
set of speci�cations that could potentially be added automatically to ease the veri�cation
process. Finally, we proposed an idea how the event mechanism can be rebuilt with PVL.
What we did not show until now, is, how properties of the transformed programs can be
deductively veri�ed using VerCors. This is investigated in the next chapter.

5
Specification and Verification of

Safety Properties with VerCors

In this chapter, we give an introduction how properties of SystemC designs can be formal-
ized and veri�ed with VerCors. In general, they can be categorized into two classes: Safety
and Liveness [MK06]. Safety means that nothing bad will happen during the system’s
execution. For example, over�ows, divions by zero, memory accesses out of the range,
or data races are errors which violate the correct program state. Liveness expresses that
something good will eventually happen. For instance, no livelocks can occur, and that the
program has a desirable progess during its execution. The termination of a program is
also part of its liveness, if it is requested as the valid �nal state. Moreover, there exist
incorrect program states, which violate both safety and liveness of a program. For example,
a deadlock is an invalid program state, and also stops its execution.
In general, liveness properties of concurrent programs are more di�cult to prove than safety
properties, since they involve the formalization of the scheduling semantics. VerCors does
not prove total correctness, but partial correctness. It can not verify, whether a program
terminates. VerCors proves all assertions under the assumption, that the considered part
of the program terminates. However, it is possible to specify some properties about the
program’s progress, but they are very challenging to formalize in VerCors, since they need
a complex encoding into invariants.
In the following, we investigate some interesting properties of integrated hardware/soft-
ware systems. We focus on safety properties, because they are natural to prove with
VerCors’s modular veri�cation approach. Moreover, liveness properties are easier to prove
with model checking approaches than safety properties. To state that something eventually
appears, it su�ces to �nd one satisfying state. In contrast, the absence of invalid program
states, which is expressed by safety, is much more di�cult for model checkers, since it
possibly involves very large state spaces. VerCors can abstract this state spaces very well.

68

5.1 Data Race Freedom and Memory Safety
VerCors’s requirement to explicitly de�ne all permissions of heap variables increases
the e�ort of transformations from SystemC designs to PVL programs. However, the
speci�cation of permissions can be generalized and automatized with an implementation
of our presented transformation rules in the future. If the resulting PVL program passes
the veri�cation, then data race freedom and memory safety are ensured by VerCors.
We illustrate the data race freedom and memory safety by a simple producer-consumer
case study. Two threads, a producer and a consumer, are communicating via a shared
channel implementing a FIFO. The producer writes integer values to the channel, while
the consumer reads them out. The FIFO is complex due to its bu�er implementation. The
bu�er is modeled as a ring bu�er, which means that the next position to be written after the
bu�er’s last position is the �rst position again. To count the next read and write positions,
two variables w_pos and r_pos are port of the implementation. The number of elements in
the bu�er is denoted by an additional variable n.
We transformed the producer-consumer case study by following the transformation rules
described in Chapter 4. The result can be found in directory listings\prod1cons1\pvl.
In order to focus on the properties instead of transformation details, we simpli�ed the
resulting PVL program while keeping the formalization of the SystemC semantics. There is
no global lock applied on the run() methods of the producer and consumer threads anymore.
Instead a lock of the FIFO object is acquired and released in every method of the FIFO
class. For this particular case study, this simpli�cation still preserves the non-preemptive
scheduling semantics, since the FIFO contains all shared heap variables. An intuition could
also be, that for this case the FIFO is the global lock. Listing 5.1 shows the complete Fifo

class in PVL. The consumer and producer threads are calling its readV() and writeV(int c)

methods. The full source code of the case study and the following properties is available
in the subdirectories under listings\prod1cons1.

1 class Fifo {
2
3 int[] buffer;
4 int n, r_pos , w_pos;
5
6 // ---------- NEEDED FOR GENERAL VERIFICATION - BEGIN -----------
7 static pure boolean validBuffer(int[] buffer , int r_pos , int w_pos)
8 = buffer != null && buffer.length != 0
9 && 0 <= w_pos && w_pos < buffer.length

10 && 0 <= r_pos && r_pos < buffer.length;
11
12 i n l i n e re source bufferPerms () = Perm(n,1) ⁎⁎ Perm(r_pos ,1)
13 ⁎⁎ Perm(w_pos ,1) ⁎⁎ Value(buffer)
14 ⁎⁎ validBuffer(buffer ,r_pos ,w_pos) ⁎⁎ Perm(buffer [⁎] ,1);
15
16 r e source l o c k _ i nv a r i a n t () = bufferPerms ();
17 // ---------- NEEDED FOR GENERAL VERIFICATION - END ------------

5.1 Data Race Freedom and Memory Safety 69

18
19 r e qu i r e s 0 < BUFFERSIZE;
20 Fifo(int BUFFERSIZE) {
21 buffer = new int[BUFFERSIZE];
22 n = 0;
23 r_pos = 0;
24 w_pos = 0;
25 }
26
27 void writeV(int c) {
28 lock this;
29
30 l o op_ i nva r i an t bufferPerms () ⁎⁎ held (this);
31 while (n == buffer.length) {
32 wait(this);
33 }
34
35 buffer[w_pos] = c;
36 n = n + 1;
37 w_pos = (w_pos + 1) % buffer.length;
38
39 notify this;
40 unlock this;
41 }
42
43 int readV() {
44 lock this;
45
46 int c;
47 l o op_ i nva r i an t bufferPerms () ⁎⁎ held (this);
48 while (n == 0) {
49 wait(this);
50 }
51
52 c = buffer[r_pos];
53 n = n - 1;
54 r_pos = (r_pos + 1) % buffer.length;
55
56 notify this;
57 unlock this;
58 return c;
59 }
60 }

Listing 5.1: Channel Class of Producer-Consumer Case Study.

The permissions and speci�cations in lines 7 to 16 are necessary to verify the producer-
consumer case study. The keyword pure in line 7 denotes that the method validBuffer(...)

must be free of side e�ects. The method validBuffer(...) speci�es null checks and value

70

range restrictions for the bu�er, read position, and write position passed as arguments. We
use pure methods for a better overview of the speci�cations, without the risk of accidentally
modifying the program state. In lines 12 to 14, the permissions for all �elds, and the valid
bu�er property for buffer, r_pos and w_pos are speci�ed. They express the memory safety
of the FIFO. The bufferPerms() are added to the lock invariant and to all loop invariants. By
this, both data races absence, and memory safety can be guaranteed globally by VerCors.
In contrast to the original SystemC design, we abstracted the exact bu�er size. The
constructor of the Fifo class (lines 19 to 25) only requires, that BUFFERSIZE is greater than
zero. This assumption is also speci�ed as a precondition of the main() method in the Main

class, as shown in line 3 of Listing 5.2. VerCors does not need the exact size, which is a
great achievement for the veri�cation. While model checking approaches su�er from the
state space explosion created by the bu�er size, VerCors can even prove properties for
general cases of the bu�er size.

1 class Main {
2
3 r e qu i r e s 0 < BUFFERSIZE;
4 void main(int BUFFERSIZE) {
5 Fifo fifo = new Fifo(BUFFERSIZE);
6 Producer prod = new Producer(fifo);
7 Consumer cons = new Consumer(fifo);
8
9 fork prod;

10 fork cons;
11 join prod;
12 join cons;
13 }
14 }

Listing 5.2: Main Class of Producer-Consumer Case Study.

5.2 Variable and Bu�er Overflows
In Section 4.4, we explained that VerCors has a mathematical interpretation of integers.
Hence, VerCors assumes that integer values can be in�nitely large. This does not hold
for integrated hardware/software systems, since memory is always a limited resource.
Therefore, as a common error the over�ow of variables occurs. If the maximal integer
value is assigned to a variable, and this variable is increased, it is wrapped and set to the
lowest possible value, or an exception is thrown. To detect such errors, simple assertions
can be added to the PVL code.
The producer of our producer-consumer case study writes integer values to the bu�er.
These values are not randomly chosen; instead they start with 0 and, after every write
transaction, the next value written to the bu�er is increased by 1. Listing 5.3 shows the
corresponding source code of the Producer class in PVL.
Since VerCors does not de�ne a maximal integer value, we added it manually to the Producer

class (line 3). We assumed that 32 bits are used to represent an integer. For general SystemC

5.3 Written Bu�er Data is Eventually Read 71

1 int produce(int c_param) {
2
3 // Property: No Variable Value Overflow (fail)
4 int INT_MAX = 2147483647;
5 a s s e r t c_param < INT_MAX;
6
7 c_param = c_param + 1;
8 return c_param;
9 }

Listing 5.3: produce() method of Producer of Producer-Consumer Case
Study.

designs our idea is to add the constants for minimal and maximal values to the global
lock class. In this case study, we speci�ed an assertion of the value of c_param in line 5. If
c_param is smaller than the maximal integer value, its subsequent incrementation is safe. In
our case study, this assertion does not pass, i. e., there is a risk of an arithmetical over�ow
for this value during the program’s execution.
Another possible over�ow in the producer-consumer case study is related to the bu�er
capacity. The variable n denotes the number of elements in the bu�er, but its range is not
restricted yet. To verify, that n never exceeds the bu�er capacity, we specify this behavior
in the FIFO class by an additional inline resource:

inline resource noBufferOverflow() = (0 <= n && n <= buffer.length);

The resource noBufferOverflow() is added to the lock and all loop invariants. It passes for
the producer-consumer case study. However, until now, we have not considered that the
FIFO is realized by a ring bu�er. Already read elements will be overwritten again, so the
more interesting safety property is whether an unread element is eventually overwritten.
This property is speci�c to the functionality of the producer-consumer case study.

5.3 Wri�en Bu�er Data is Eventually Read
The program state remains safe, if an unread element of the bu�er is never overwritten.
The stronger property, which is even more interesting, is, that all elements are eventually
received in the future. Since this also expresses a liveness property of the program, it is
very challenging to prove it with VerCors. At the same time, it is not easy to be proved with
model checking approaches as well, but su�ers from other parts of the design. Herber,
Fellmuth, and Glesner [HFG08] investigated a producer-consumer case study with two
producers and one consumer, and veri�ed whether the number of bu�er elements n is
kept in range. They checked their FIFO model with multiple bu�er sizes from 10 up to
1000. The veri�cation time of the model checker Uppaal increased exponentially and took
approximately 3 hours for a bu�er size of 1000. If even a much simpler property lets the
veri�cation time of model checking scale poorly, the veri�cation time of a more complex
property like “written data is eventually read” with large bu�er sizes will behave even
worse.

72

Currently, we can not prove that all written elements will eventually be read with VerCors,
because this is an assertion of the global progress of the program state. Instead, we can
prove a related and slightly weaker property: All values, which have been written to the
bu�er, are either still waiting in the bu�er, or have been read. It does not state, whether
the waiting elements will be read eventually, but that they are not lost. Hence, no unsafe
program state can be reached. For simplicity in the following sections, we will refer to the
weaker property as the “written data is read” property.
In order to prove the all written elements are read, we need to reason about every newly
written or read element. For this, we have to save them outside of the bu�er, since the ring
bu�er overwrites its positions with new elements. Without extra saving of the elements,
we have no knowledge about their state, since VerCors can not reason about a past or
future state of the bu�er without extra e�ort.
Therefore, we add ghost code to the FIFO source code. Ghost code are statements, which
are only used for speci�cation purposes, and must not change the program state. In
Section 3.3.3, we introduced the axiomatic data type sequence, which is also some sort of
ghost code. In contrast to arrays, sequences have the advantage, that they are immutable
and easier to use in speci�cations. It is not necesary to have permissions for their elements,
or to state speci�cations of their lengths. At the same time, a �eld holding a sequence can
be reassigned to a new extended sequence. Consequently, they �t very well as a storage
recording all ever written or read elements.
Listing 5.4 shows the Fifo class annotated with ghost code, highlighted by yellow background .
We add two sequences sent and rcvd as �elds to the Fifo class (Lines 4f). The only necessary
permissions Perm(sent, 1) and Perm(rcvd, 1) are added to the lock and loop invariants
(Lines 17, 37, 58 and 81). Furthermore, we synchronize the sent and rcvd sequences with
the bu�er within the writeV and readV methods. Every time, a new element is written, it is
also added to the sent sequence (Line 66). Accordingly, every read element is appended to
the rcvd sequence (Line 89).

1 class Fifo {
2 // SPECIFICATION ONLY - BEGIN (Property: Sent Data is Received)
3 // ------------- DATA OBJECTS ------------------------------------
4 seq<int> sent;
5 seq<int> rcvd;
6 // ------------- DATA OBJECTS ------------------------------------
7
8 // ------------- HELPER FUNCTIONS --------------------------------
9 r e qu i r e s 0 <= value && 0 < m && (value - m) < m;

10 ensures (value < m) ==> \ r e s u l t == value;
11 ensures (value >= m) ==> \ r e s u l t == (value - m);
12 static pure int wrap(int value , int m)
13 = (value < m ? value : value - m);
14 // ------------- HELPER FUNCTIONS --------------------------------
15
16 // ------------- RESOURCES AND PREDICATES (Lemmas) ---------------

5.3 Written Bu�er Data is Eventually Read 73

17 inline resource seqPerms() = Perm(sent, 1) ⁎⁎ Perm(rcvd, 1);
18 // ...
19 // ------------- RESOURCES AND PREDICATES (Lemmas) ---------------
20 // SPECIFICATION ONLY - END (Property: Sent Data is Received)
21
22 int[] buffer;
23 int n, r_pos , w_pos;
24
25 // ------------- NEEDED FOR GENERAL VERIFICATION - BEGIN ---------
26 static pure boolean validBuffer(int[] buffer , int r_pos , int w_pos)
27 = buffer != null && buffer.length != 0
28 && 0 <= w_pos && w_pos < buffer.length
29 && 0 <= r_pos && r_pos < buffer.length;
30
31 i n l i n e re source bufferPerms () = Perm(n,1) ⁎⁎ Perm(r_pos ,1)
32 ⁎⁎ Perm(w_pos ,1) ⁎⁎ Value(buffer)
33 ⁎⁎ validBuffer(buffer ,r_pos ,w_pos) ⁎⁎ Perm(buffer [⁎] ,1);
34
35 r e source l o c k _ i nv a r i a n t () = true
36 ⁎⁎ bufferPerms ()
37 ⁎⁎ seqPerms()
38 // ⁎⁎ lemmas
39 ; // from 2nd line: ghost code
40 // ------------- NEEDED FOR GENERAL VERIFICATION - END -----------
41
42
43 r e qu i r e s 0 < BUFFERSIZE;
44 Fifo(int BUFFERSIZE) {
45 buffer = new int[BUFFERSIZE];
46 n = 0;
47 r_pos = 0;
48 w_pos = 0;
49 sent = seq<int> {}; // ghost code
50 rcvd = seq<int> {}; // ghost code
51 }
52
53 void writeV(int c) {
54 lock this;
55
56 l o op_ i nva r i an t bufferPerms ()
57 ⁎⁎ held (this)
58 ⁎⁎ seqPerms() // ghost code
59 // ⁎⁎ lemmas
60 ;
61 while (n == buffer.length) {
62 wait(this);
63 }
64
65 buffer[w_pos] = c;

74

66 sent = sent ++ c; // ghost code
67 n = n + 1;
68 w_pos = wrap(w_pos + 1, buffer.length);
69
70 notify this;
71 unlock this;
72 }
73
74
75 int readV() {
76 lock this;
77
78 int c;
79 l o op_ i nva r i an t bufferPerms ()
80 ⁎⁎ held (this)
81 ⁎⁎ seqPerms() // ghost code
82 // ⁎⁎ lemmas
83 ;
84 while (n == 0) {
85 wait(this);
86 }
87
88 c = buffer[r_pos];
89 rcvd = rcvd ++ c; // ghost code
90 n = n - 1;
91 r_pos = wrap(r_pos + 1, buffer.length);
92
93 notify this;
94 unlock this;
95 return c;
96 }
97
98 }

Listing 5.4: Fifo Class of Producer-Consumer Case Study extended by Ghost Code.

The bu�er should contain the elements, which are written, but not yet read. Since w_pos

points to the next position which should be written, and r_pos to the next element to
be read, the elements of interest are exactly located between the counters. Therefore,
to reason about written, but not read elements, we must relate r_pos, w_pos and n in the
speci�cations.
For this, we have to replace the modulo operations for the bu�er wrap (Lines 37 and 54
in Listing 5.1). Silicon, the veri�cation backend tool used by VerCors, can not handle
modulo operations very well, therefore, we rewrite them to a more simple call of a helper
function wrap(), which is de�ned in Lines 9 to 13 in Listing 5.4. The adjustments are also
highlighted for a more convenient distinction.

5.3 Written Bu�er Data is Eventually Read 75

The lines 16 and 19 of Listing 5.4 show, that we have to de�ne some lemmas. The property,
that all sent elements are received, must be di�erently formulated depending on how r_pos,
w_pos and n are related to each other. For a better overview, we divide these di�erent cases,
and specify them in seperate lemmas. All of them are added to the lock and loop invariants.
Listing 5.5 shows all necessary lemmas.

1 // -------- RESOURCES AND PREDICATES (Lemmas) ------------------
2 i n l i n e re source validNumberOfElems()
3 = (0 <= n && n <= buffer.length);
4
5 i n l i n e re source sentLengthEqRcvdLengthPlusNLemma()
6 = (|sent| == (|rcvd| + n));
7
8 // Conclusions by Relations of r_pos and w_pos
9 i n l i n e re source readLessWritePosLemma()

10 = (r_pos < w_pos ==> (n == w_pos - r_pos));
11
12 i n l i n e re source readGreaterWritePosLemma()
13 = (r_pos > w_pos ==> (n == buffer.length + w_pos - r_pos));
14
15 i n l i n e re source readEqWritePosLemma()
16 = ((r_pos == w_pos) ==> ((n == 0) || (n == buffer.length)));
17
18 // Conclusions by Value of n
19 i n l i n e re source zeroElemsLemma()
20 = (n == 0) ==> (r_pos == w_pos);
21
22 i n l i n e re source maxNumberOfElemsLemma()
23 = (n == buffer.length) ==> (r_pos == w_pos);
24
25 // Conclusions by Positive Values of w_pos and r_pos
26 i n l i n e re source writeIncrSentLengthLemma()
27 = (w_pos > 0) ==> (|sent| > 0);
28
29 i n l i n e re source readIncrRcvdLengthLemma()
30 = (r_pos > 0) ==> (|rcvd| > 0);
31
32 // Synchronization of Buffer and Sent Sequence Lemmas
33 i n l i n e re source notRcvdSentElemsLemma0()
34 = (w_pos > 0) ==> (buffer[w_pos -1] == sent[|sent |-1]);
35
36 i n l i n e re source notRcvdSentElemsLemma1()
37 = (w_pos == 0 && |sent| > 0)
38 ==> (buffer[buffer.length -1] == sent[|sent |-1]);
39
40 // Conclusions by Number of Elements n
41 i n l i n e re source existNumberOfElemsLemma()
42 = (0 < n && n < buffer.length) ==> (r_pos != w_pos);
43

76

44 // Sent Data is Received depending on the Different Cases
45 i n l i n e re source sentDataIsReceived() = true
46 && (((r_pos == w_pos) && n == buffer.length)
47 ==> (\ f o r a l l int i; r_pos <= i && i < buffer.length;
48 buffer[i] == sent[|sent| - n - r_pos + i])
49)
50 && (((r_pos == w_pos) && n == buffer.length)
51 ==> (\ f o r a l l int i; 0 <= i && i < r_pos ;
52 buffer[i] == sent[|sent| - n + i])
53)
54
55 && (((r_pos == w_pos) && n == 0)
56 ==> |sent| == |rcvd|)
57 && (((r_pos == w_pos) && n == 0)
58 ==> (\ f o r a l l int i; 0 <= i && i < |sent|;
59 sent[i] == rcvd[i])
60)
61
62 && ((r_pos < w_pos)
63 ==> (\ f o r a l l int i; r_pos <= i && i < n + r_pos ;
64 buffer[i] == sent[|sent| - n - r_pos + i])
65)
66 && ((r_pos > w_pos)
67 ==> (\ f o r a l l int i; r_pos <= i && i < buffer.length;
68 buffer[i] == sent[|sent| - n - r_pos + i])
69)
70 && ((r_pos > w_pos)
71 ==> (\ f o r a l l int i; 0 <= i && i < w_pos;
72 buffer[i] == sent[|sent| - n + i])
73)
74
75 && r_pos != w_pos ==> n > 0
76 ;
77 // -------- RESOURCES AND PREDICATES (Lemmas) ------------------

Listing 5.5: Lemmas for “written data is read” Property of Producer-Consumer Case
Study.

We explain what the lemmas express and why they are needed.

1. validNumberOfElems(): We already introduced this assertion as bu�er over�ow
absence. In this context, it also has an additional meaning: The number of written,
but unread elements must always be between zero and the maximal bu�er size.

2. sentLengthEqRcvdLengthPlusNLemma(): The number of written elements must be
equal to the number of read elements summed up with the number of written, but
not read elements.

3. readLessWritePosLemma(): If the read position is smaller than the write position,
the elements of the bu�er are not wrapped around them, but are located between the

5.3 Written Bu�er Data is Eventually Read 77

read and write position.
4. readGreaterWritePosLemma(): If the write position ist greater than the read position,

the elements are wrapped around the bu�er. In detail, the written, but unread elements
are located from the read position up to the bu�er length, and also from the bu�er
start to the read position.

5. readEqWritePosLemma(): If the read and write positions are equal, either the bu�er
is empty or it is full.

6. zeroElemsLemma(): If no elements are in the bu�er, the read and write position must
be equal.

7. maxNumberOfElemsLemma(): If the bu�er is full, the read position equals the write
position.

8. writeIncrSentLengthLemma(): If the write position is greater than zero, at least one
element must have been written to the bu�er. Therefore the size of the sent sequence
must be greater than zero.

9. readIncrRcvdLengthLemma(): If the read position is greater than zero, at least one
element must have been read. Therefore the size of the rcvd sequence must be greater
than zero.

10. notRcvdSentElemsLemma0(): If the write position is greater than zero, then at least
one element has been written to the bu�er. It follows, that the last written element in
the bu�er is equal to the last element of the sent sequence.

11. notRcvdSentElemsLemma1(): If the write position is equal to zero, but still an ele-
ment has been written, then a wrap of the write position has happened, and the last
written element is located at the end of the bu�er. It is still equal to the last element
of the sent sequence.

12. existNumberOfElemsLemma(): If written, but unread elements exist in the bu�er,
then the read and write positions can not be equal.

13. writtenDataIsRead(): This is not a lemma like the other ones, but rather the main
assertion of the property. Seperated into di�erent cases, we formalize that all elements
of the sent sequence are either contained in the rcvd sequence or in the bu�er. Since
this holds always and globally, we can conclude, that no element is written, but
overwritten before it is read.

The lemmas are necessary to give VerCors some extra knowledge to perform the veri�cation.
If one of the lemmas is removed, VerCors can not prove the “written data is read” property
anymore. For our producer-consumer case study, we could verify the “written data is read”
property. There are multiple aspects of the FIFO case study, which makes the “written data
is read” property so complex to prove:

1. The arithmetical relations of the read position, write position and the number of
elements,

2. the wrapping property of the ring bu�er,
3. the abstracted bu�er size, which is not explicitly de�ned except for being positive.

78

During our research, we experienced, that even the order of the stated lemmas decides on
a failing or a passing veri�cation. If the simple assertion in Line 75 of Listing 5.5 is moved
upwards and exchanged with the assertion in Line 70, the veri�cation fails. We assume
that this is related to the heuristics and randomization used by Silicon in the backend.
Even though a change of the order of boolean expressions within a conjunction does not
change the logical meaning of the formula, it triggers di�erent approaches in VerCor’s
technical backend. The relevance of the order increased the di�culty to correctly formalize
properties with VerCors, but still, it has been possible to prove an important functional
property. In the future, we plan to investigate more detailed how the order of boolean
formulas is related to the veri�cation success.

6
Conclusion and Outlook

In this chapter, we sum up our contributions to the deductive veri�cation of integrated
hardware/software systems. For this, we discuss the results of the previous chapters and
relate them to the research objective we stated in the beginning of this thesis. Afterwards,
we outline possible improvements and extensions of our research approach, and present
proposals for future work.

6.1 Results and Contributions
All approaches to verify integrated hardware/software systems in the past shared the
problem of limited scalability. In contrast, deductive veri�cation o�ers the advantage, that
is must not investigate the whole state space of a program in order to prove properties
of it. In particular, the VerCors Veri�er performs a static analysis of the input program,
thereby the veri�cation is done without any execution at all. Its modular approach enables
the abstraction of program components, like the bu�er size of the producer-consumer case
study presented in Chapter 5.
We introduced SystemC as a representative modeling language for the design of integrated
hardware/software systems. Its key feature is an event-driven simulation, whose scheduling
is performed cooperatively. However, the semantics of the SystemC language are only
informally de�ned. To verify them, we need to formalize them �rst. Therefore, we
investigated how to manually transform SystemC Designs to annotated PVL programs.
In Chapter 4, we introduced multiple contributions to a semantics-preserving transforma-
tion from SystemC Designs to PVL programs. First, we presented transformation rules
for an initial subset of SystemC constructs. Currently, these transformation rules must be
considered manually, but they can be easily automated by an implementation in the future.
A particular challenge for the development of the transformation rules was the preservation
of the cooperative scheduling schemantics. We achieved this objective by developing a
global lock, which controls the permissions for all heap variables of the program. While

80

the speci�cations of the result program must be added manually at this time, and therefore
increase the e�ort for the designer, we already outlined a set of speci�cations, that could
potentially be added automatically to ease the veri�cation. Furthermore, we outlined our
ideas how to implement the event mechanism of the SystemC scheduler into PVL. We
demonstrated our transformation on a small SystemC design and veri�ed it with VerCors.
Besides the transformation, we also showed how interesting properties of SystemC designs
can be formalized in VerCors’s speci�cation language in Chapter 5. The absence of
data races, and memory safety are built-in features of VerCors. Also the the absence
of arithmetical or bu�er over�ows is easy to specify with VerCors. The last presented
property, that all elements written into a ring a bu�er by a producer, are either still in the
bu�er or have been read by the a consumer, was much more complex to prove. One of the
di�culties has been, that the property expresses an assertion of the global program state
and its progress. This is not natural for VerCors to verify. To overcome the challenge, we
had to add several lemmas to give VerCors extra knowledge about the program state.
In Section 1.2, we de�ned as our research goal to investigate deductive veri�cation tech-
niques for integrated harware/software systems. We stated, that our approach should be
semantics-preserving and scalable with respect to the number and size of the system’s
components. After working several months on deductive veri�cation of SystemC designs,
we draw the conclusion, that the development of a semantics-preserving transformation
for general SystemC designs without restrictions of the supported language set is very
ambitious, but achievable in the future. We think that this thesis has contributed in the
following ways:

1. We presented informal transformation rules which precisely capture an initial subset
of SystemC designs.

2. We developed a global lock mechanism which preserves the cooperative scheduling
semantics during the transformation.

3. We could deduce an automatable set of speci�cations from the transformed pro-

gram to ease the veri�cation.

Even if the presented small SystemC example design has been transformed manually for this
thesis, our approach is extensible to the automation of multiple parts of the transformation
process. We describe the improvements in Section 6.2.
Our research objective has also been to identify interesting properties to veri�y, and to
evaluate their veri�cation in appropriate case studies. Besides the easy speci�ation and
veri�cation of over�ow properties, we also have proven a complex property of a Producer
Consumer design sharing a FIFO implemented by a ring bu�er. We could not prove the
stronger property, that all written elements are read eventually, but have proven the
slightly weaker property, that all written elements are either read or still in the bu�er. The
investigation of these properties gave us an intuition, which sort of properties are more
di�cult to prove with VerCors and why. Furthermore, this case study is representative for

6.2 Future Work 81

several SystemC designs, so we think the gained knowledge will improve the formulation
of further and even more complex properties in the future.

6.2 Future Work
We outlined the results of this thesis, now we present how the work can be enhanced in
future. Our approach of deductive veri�cation of integrated hardware/software systems is
designed to be extendable. Therefore, it can be improved in multiple ways.
First of all, we have ideas to improve the transformation process. The semantics-preserving
transformation can become more easy to use, if it is automated by an implementation of the
presented transformation rules. Hence, we see this as a �rst, but important step for future
work. Furthermore, we plan to extend the supported subset of the SystemC language.
Construcs like Method Processes, Static Sensitivity, and more have been left out in this
work for simplicity, but their support would increase the usability of our transformation
and make it more complete. Especially, the support of SystemC’s event mechanism is an
important objective we would like to implement in future. Its realization will increase the
set of supported SystemC designs signi�cantly.
For some improvements, enhanced functionality of the VerCors Veri�er is necessary.
We mentioned that the VerCors team is already working on a �oating point data type,
which would be interesting for the transformation of SystemC’s �oating point based data
types as well. Besides, SystemC o�ers bit-precise data types, whose support by VerCors
would be very interesting. Currently, also the implementation of inheritance into VerCors
gets investigated and may enable the support of more hierarchical SystemC designs. In
general, we see every new feature of the VerCors Veri�er as a possiblity to improve our
transformation rules and to support more interesting SystemC designs.
Furthermore, we formalized a small selection of safety properties for SystemC designs and
veri�ed them for the producer-consumer case study. Based on the knowledge we gained
by this research work, we would like to verify more properties of di�erent case studies
with VerCors. For instance, Anti-lock Braking Systems and Anti-Slip Regulation Systems
are very interesting SystemC designs and have properties to prove, which are similar to
the “written elements are read” property of our producer-consumer case study. We also
consider an experimental comparison of the logical backends used by VerCors. In this
thesis, we used Silicon, which is based on sound symbolic execution. Another tool of the
Viper architecture is Carbon, which is a veri�cation-condition-generation-based veri�er.
It is possible, that some properties are easier to verify with Carbon instead of Silicon.
In summary, we contributed to the deductive veri�cation of integrated hardware/software
systems by multiple achivements presented in this thesis. Furthermore, we proposed ideas
how to improve and extend the results. We conclude, that the approach to use deductive
veri�cation techniques for integrated hardware/software systems is promising, and should
be furtherly pursued in future.

A
Appendix

Getting Started
This menu point shows a constantly expanded wik-
i/tutorial. It covers topics like an installation guide,
PVL syntax, the speci�cation language syntax, per-
missions, axiomatic data types, atomics and locks,
resources and predicates, and how to understand
error messages produced by VerCors.

Showcases
Here, a lot of already veri�ed examples are shown.
They can be �ltered by, inter alia, the example title, its
veri�cation features, and implementation language.

Publications
A complete list of all VerCors-related publications.
The �rst publication is from 2008—VerCors’s found-
ing year—up to publications which have been just
recently published.

Try VerCors Online
Instead of downloading an executable version of Ver-
Cors, it is possible to try out very simple examples
with the online veri�cation user interface.

Table A.1: VerCors Website Guide.

84

A.1 SystemC Design Example for Transformation

The full source code is also available as compilable �les under listings\transformation\sc.

1 #include <systemc.h>
2 #include "channel.h"
3 #include "moduleA.h"
4 #include "moduleB.h"
5
6 int sc_main(int argc , char⁎ argv []) {
7 // Elaboration Phase
8 channel c_inst("Channel");
9

10 moduleA mA_inst("ModuleA");
11 mA_inst.channelA(c_inst);
12
13 moduleB mB_inst("ModuleB");
14 mB_inst.channelB(c_inst);
15
16 // Simulation of Processes
17 sc_start ();
18
19 // No Further Post Processing
20 return 0; // Simulation Success
21 }

Listing A.1: SystemC Main Function (main.cpp).

1 #include <systemc.h>
2
3 SC_MODULE(moduleA) {
4 // Ports connected to Channels
5 sc_port<channel_if> channelA;
6
7 // Constructor
8 SC_CTOR(moduleA) {
9 // Processes (No Static Sensitivity)

10 SC_THREAD(thread);
11 }
12
13 // Interruptable Process
14 void thread(void) {
15 while(true) {
16 // ...
17 }
18 }
19 };

Listing A.2: SystemC Module A (moduleA.h).

A.1 SystemC Design Example for Transformation 85

1 #include <systemc.h>
2
3 SC_MODULE(moduleB) {
4 // Ports connected to Channels
5 sc_port<channel_if> channelB;
6
7 // Member Data Instances
8 int numberOfPorts;
9

10 // Constructor
11 SC_CTOR(moduleB) {
12 // Processes (No Static Sensitivity)
13 SC_THREAD(thread1);
14 SC_THREAD(thread2);
15
16 // Other Initialization
17 numberOfPorts = 2;
18 }
19
20 // Immediate Computations
21 int returnZero(bool b) {
22 if(b) {
23 return 0;
24 } else {
25 return -1;
26 }
27 }
28
29 // Interruptable Process 1
30 void thread1(void) {
31 while(true) {
32 returnZero(true);
33 channelB ->writeToBuffer (42);
34 // ...
35 }
36 }
37
38 // Interruptable Process 2
39 void thread2(void) {
40 while(true) {
41 channelB ->writeToBuffer (3);
42 // ...
43 }
44 }
45 };

Listing A.3: SystemC Module B (moduleB.h).

86

1 #include <systemc.h>
2 #define BUFFERSIZE 42
3
4 class channel_if : virtual public sc_interface {
5 public:
6 virtual void writeToBuffer(int c) = 0;
7 virtual int returnElemNum(void) = 0;
8 };
9

10 // Channel Class implements Channel Interface
11 class channel : public sc_channel ,
12 public channel_if {
13
14 // Internal Data
15 private:
16 int n;
17 int buffer[BUFFERSIZE];
18
19 // Public Events and Functions
20 public:
21 sc_event decrElemNumEvent;
22
23 SC_CTOR(channel){
24 n = 0;
25 }
26
27 void writeToBuffer(int c) {
28 while (n == BUFFERSIZE) {
29 wait(decrElemNumEvent);
30 }
31
32 buffer [17] = c;
33 n++;
34 }
35
36 int returnElemNum(void) {
37 n--;
38 notify(decrElemNumEvent);
39
40 return n;
41 }
42 };

Listing A.4: SystemC Channel (channel.h).

A.2 Transformation Rewritings Rules 87

A.2 Transformation Rewritings Rules
The following tables show an overview over the translation rules for standard operators
and data types. More explanations, and the mapping of further language constructs are
given in Chapter 4.

SystemC PVL Remarks

&& &&
|| ||
! !
!= !=
== ==
< <
<= <=
> >
>= >=
+ +
- -
⁎ ⁎
/ /
++ ++
-- --
% % Possibly replaced for speci�cations.

Table A.2: Supported Subset of Standard Operators.

SystemC PVL Remarks

int int Particular handling of numerical range
required.

bool boolean
void void If as return type.
void If as argument type, then removed.
T array[i]; T[] array; length i only necessary in initalization

Table A.3: Transformation Rewriting Rules for Data Types.

88

A.3 Resulting PVL Program a�er Transformation
The full source code is also available as veri�able �les under listings\transformation\pvl.
It can be veri�ed by calling (within one command line call):

vercors --silicon Main.pvl GlobalLock.pvl ModuleA.pvl ModuleBState.pvl
ModuleBThread1.pvl ModuleBThread2.pvl Channel.pvl

1 class Main {
2 void main() {
3 GlobalLock gLock = new GlobalLock ();
4 gLock.simulation ();
5 }
6 }

Listing A.5: PVL Main (Main.pvl).

1 class GlobalLock {
2
3 // Fields for Channels , Threads , and Shared Module Data
4 Channel channel_inst;
5 ModuleA moduleA_inst;
6 ModuleBState moduleB_inst_State;
7 ModuleBThread1 moduleB_inst_Thread1;
8 ModuleBThread2 moduleB_inst_Thread2;
9

10 // Lock Invariant asserted at lock and unlock Statements
11 r e source l o c k _ i nv a r i a n t () = true
12 // Read Permissions for all Channel , State and Thread Classes
13 ⁎⁎ Perm(channel_inst , read)
14 ⁎⁎ Perm(moduleA_inst , read)
15 ⁎⁎ Perm(moduleB_inst_State , read)
16 ⁎⁎ Perm(moduleB_inst_Thread1 , read)
17 ⁎⁎ Perm(moduleB_inst_Thread2 , read)
18
19 // Read Permissions & Equality of the Shared Global Lock
20 ⁎⁎ Perm(channel_inst.gLock , read)
21 ⁎⁎ Perm(moduleA_inst.gLock , read)
22 ⁎⁎ Perm(moduleB_inst_State.gLock , read)
23 ⁎⁎ Perm(moduleB_inst_Thread1.gLock , read)
24 ⁎⁎ Perm(moduleB_inst_Thread2.gLock , read)
25 ⁎⁎ this == channel_inst.gLock
26 ⁎⁎ this == moduleA_inst.gLock
27 ⁎⁎ this == moduleB_inst_State.gLock
28 ⁎⁎ this == moduleB_inst_Thread1.gLock
29 ⁎⁎ this == moduleB_inst_Thread2.gLock
30
31 // Read Permissions & Equality of Shared Module States
32 ⁎⁎ Perm(moduleB_inst_Thread1.moduleB_inst_State , read)
33 ⁎⁎ Perm(moduleB_inst_Thread2.moduleB_inst_State , read)

A.3 Resulting PVL Program after Transformation 89

34 ⁎⁎ moduleB_inst_Thread1.moduleB_inst_State == moduleB_inst_State
35 ⁎⁎ moduleB_inst_Thread2.moduleB_inst_State == moduleB_inst_State
36
37 // Read Permissions & Equality of Shared Channels
38 ⁎⁎ Perm(moduleA_inst.channelA , read)
39 ⁎⁎ Perm(moduleB_inst_State.channelB , read)
40 ⁎⁎ channel_inst == moduleA_inst.channelA
41 ⁎⁎ channel_inst == moduleB_inst_State.channelB
42
43 // Permissions , Null and Length Checks of further Heap Variables
44 ⁎⁎ Perm(moduleB_inst_State.numberOfPorts , wri te)
45 ⁎⁎ Perm(channel_inst.n, wri te)
46 ⁎⁎ Perm(channel_inst.buffer , read)
47 ⁎⁎ channel_inst.buffer != null
48 ⁎⁎ channel_inst.buffer.length == 42
49 ⁎⁎ Perm(channel_inst.buffer [⁎],wri te)
50 ;
51
52
53 // Read Permissions and Null Check for Channels , Thread , State Classes
54 ensures Perm(channel_inst , read);
55 ensures Perm(moduleA_inst , read);
56 ensures Perm(moduleB_inst_State , read);
57 ensures Perm(moduleB_inst_Thread1 , read);
58 ensures Perm(moduleB_inst_Thread2 , read);
59 ensures channel_inst != null;
60 ensures moduleA_inst != null;
61 ensures moduleB_inst_State != null;
62 ensures moduleB_inst_Thread1 != null;
63 ensures moduleB_inst_Thread2 != null;
64 // Read Permissions and Null Check for Global Lock
65 ensures Perm(channel_inst.gLock , read);
66 ensures Perm(moduleA_inst.gLock , read);
67 ensures Perm(moduleB_inst_State.gLock , read);
68 ensures Perm(moduleB_inst_Thread1.gLock , read);
69 ensures Perm(moduleB_inst_Thread2.gLock , read);
70 ensures channel_inst.gLock != null;
71 ensures moduleA_inst.gLock != null;
72 ensures moduleB_inst_State.gLock != null;
73 ensures moduleB_inst_Thread1.gLock != null;
74 ensures moduleB_inst_Thread2.gLock != null;
75 // Equality of the Shared Global Lock
76 ensures channel_inst.gLock == this;
77 ensures moduleA_inst.gLock == this;
78 ensures moduleB_inst_State.gLock == this;
79 ensures moduleB_inst_Thread1.gLock == this;
80 ensures moduleB_inst_Thread2.gLock == this;
81 // Status of ModuleB ’s Thread1 and Thread2 , and ModuleA ’s Thread
82 ensures idle(moduleB_inst_Thread1);

90

83 ensures idle(moduleB_inst_Thread2);
84 ensures idle(moduleA_inst);
85 GlobalLock () {
86 channel_inst = new Channel(this);
87 moduleB_inst_State = new ModuleBState(this , channel_inst);
88 moduleB_inst_Thread1 = new ModuleBThread1(this , moduleB_inst_State);
89 moduleB_inst_Thread2 = new ModuleBThread2(this , moduleB_inst_State);
90 moduleA_inst = new ModuleA(this , channel_inst);
91 }
92
93 // Read Permissions and Null Check for Channels , Thread , State Classes
94 con tex t Perm(channel_inst , read);
95 con tex t Perm(moduleA_inst , read);
96 con tex t Perm(moduleB_inst_State , read);
97 con tex t Perm(moduleB_inst_Thread1 , read);
98 con tex t Perm(moduleB_inst_Thread2 , read);
99 con tex t channel_inst != null;

100 con tex t moduleA_inst != null;
101 con tex t moduleB_inst_State != null;
102 con tex t moduleB_inst_Thread1 != null;
103 con tex t moduleB_inst_Thread2 != null;
104 // Read Permissions and Null Check for Global Lock
105 con tex t Perm(channel_inst.gLock , read);
106 con tex t Perm(moduleA_inst.gLock , read);
107 con tex t Perm(moduleB_inst_State.gLock , read);
108 con tex t Perm(moduleB_inst_Thread1.gLock , read);
109 con tex t Perm(moduleB_inst_Thread2.gLock , read);
110 con tex t channel_inst.gLock != null;
111 con tex t moduleA_inst.gLock != null;
112 con tex t moduleB_inst_State.gLock != null;
113 con tex t moduleB_inst_Thread1.gLock != null;
114 con tex t moduleB_inst_Thread2.gLock != null;
115 // Equality of the Shared Global Lock
116 con tex t channel_inst.gLock == this;
117 con tex t moduleA_inst.gLock == this;
118 con tex t moduleB_inst_State.gLock == this;
119 con tex t moduleB_inst_Thread1.gLock == this;
120 con tex t moduleB_inst_Thread2.gLock == this;
121 // Status of ModuleB ’s Thread1 and Thread2 , and ModuleA ’s Thread
122 con tex t idle(moduleB_inst_Thread1);
123 con tex t idle(moduleB_inst_Thread2);
124 con tex t idle(moduleA_inst);
125 void simulation () {
126 fork moduleB_inst_Thread1;
127 fork moduleB_inst_Thread2;
128 fork moduleA_inst;
129
130 join moduleB_inst_Thread1;
131 join moduleB_inst_Thread2;

A.3 Resulting PVL Program after Transformation 91

132 join moduleA_inst;
133 }
134 }

Listing A.6: PVL Global Lock (GlobalLock.pvl).

1 class ModuleA {
2
3 GlobalLock gLock;
4
5 Channel channelA;
6
7 // NotNull Check of Arguments
8 r e qu i r e s globalLock != null;
9 r e qu i r e s channel != null;

10 // Global Lock: Permissions and Value Checks
11 ensures Perm(gLock , read);
12 ensures gLock != null;
13 ensures gLock == globalLock;
14 // Channel: Permissions and Value Checks
15 ensures Perm(channelA , read);
16 ensures channelA != null;
17 ensures channelA == channel;
18 ModuleA (GlobalLock globalLock , Channel channel) {
19 gLock = globalLock;
20 channelA = channel;
21 }
22
23 con tex t Perm(gLock , read) ⁎⁎ gLock != null;
24 con tex t Perm(gLock.moduleA_inst , read);
25 con tex t gLock.moduleA_inst == this;
26 void run () {
27 lock gLock;
28
29 l o op_ i nva r i an t true
30 // Permissions and Ownership of Global Lock
31 ⁎⁎ Perm(gLock , read)
32 ⁎⁎ gLock != null
33 ⁎⁎ held (gLock)
34
35 // Read Permissions for all Channel , State and Thread Classes
36 ⁎⁎ Perm(gLock.channel_inst , read)
37 ⁎⁎ Perm(gLock.moduleA_inst , read)
38 ⁎⁎ Perm(gLock.moduleB_inst_State , read)
39 ⁎⁎ Perm(gLock.moduleB_inst_Thread1 , read)
40 ⁎⁎ Perm(gLock.moduleB_inst_Thread2 , read)
41
42 // Equality of Global Lock’s Thread1 and this
43 ⁎⁎ gLock.moduleA_inst == this
44

92

45 // Read Permissions & Equality of the Shared Global Lock
46 ⁎⁎ Perm(gLock.channel_inst.gLock , read)
47 ⁎⁎ Perm(gLock.moduleA_inst.gLock , read)
48 ⁎⁎ Perm(gLock.moduleB_inst_State.gLock , read)
49 ⁎⁎ Perm(gLock.moduleB_inst_Thread1.gLock , read)
50 ⁎⁎ Perm(gLock.moduleB_inst_Thread2.gLock , read)
51 ⁎⁎ gLock == gLock.channel_inst.gLock
52 ⁎⁎ gLock == gLock.moduleA_inst.gLock
53 ⁎⁎ gLock == gLock.moduleB_inst_State.gLock
54 ⁎⁎ gLock == gLock.moduleB_inst_Thread1.gLock
55 ⁎⁎ gLock == gLock.moduleB_inst_Thread2.gLock
56
57 // Read Permissions & Equality of Shared Module States
58 ⁎⁎ Perm(gLock.moduleB_inst_State , read)
59 ⁎⁎ Perm(gLock.moduleB_inst_Thread1.moduleB_inst_State , read)
60 ⁎⁎ Perm(gLock.moduleB_inst_Thread2.moduleB_inst_State , read)
61 ⁎⁎ gLock.moduleB_inst_Thread1.moduleB_inst_State
62 == gLock.moduleB_inst_State
63 ⁎⁎ gLock.moduleB_inst_Thread2.moduleB_inst_State
64 == gLock.moduleB_inst_State
65
66 // Read Permissions & Equality of Shared Channels
67 ⁎⁎ Perm(gLock.channel_inst , read)
68 ⁎⁎ Perm(gLock.moduleA_inst.channelA , read)
69 ⁎⁎ Perm(gLock.moduleB_inst_State.channelB , read)
70 ⁎⁎ gLock.channel_inst == gLock.moduleA_inst.channelA
71 ⁎⁎ gLock.channel_inst == gLock.moduleB_inst_State.channelB
72
73 // Permissions , Null and Length Checks of further Heap Variables
74 ⁎⁎ Perm(gLock.moduleB_inst_State.numberOfPorts , wri te)
75 ⁎⁎ Perm(gLock.channel_inst.n, wri te)
76 ⁎⁎ Perm(gLock.channel_inst.buffer , read)
77 ⁎⁎ gLock.channel_inst.buffer != null
78 ⁎⁎ gLock.channel_inst.buffer.length == 42
79 ⁎⁎ Perm(gLock.channel_inst.buffer [⁎],wri te)
80 ;
81 while(true) {
82 // ...
83 }
84
85 unlock gLock;
86 }
87 }

Listing A.7: PVL Module A (ModuleA.pvl).

1 class ModuleBState {
2
3 GlobalLock gLock;
4

A.3 Resulting PVL Program after Transformation 93

5 Channel channelB;
6
7 // Internal Data
8 int numberOfPorts;
9

10 // NotNull Check of Arguments
11 r e qu i r e s globalLock != null;
12 r e qu i r e s channel != null;
13 // Global Lock: Permissions and Value Checks
14 ensures Perm(gLock , read);
15 ensures gLock != null;
16 ensures gLock == globalLock;
17 // Channel: Permissions and Value Checks
18 ensures Perm(channelB , read);
19 ensures channelB != null;
20 ensures channelB == channel;
21 // numberOfPorts: Permissions and Value Checks
22 ensures Perm(numberOfPorts , wri te);
23 ensures numberOfPorts == 1;
24 ModuleBState(GlobalLock globalLock , Channel channel) {
25 gLock = globalLock;
26 channelB = channel;
27 numberOfPorts = 1;
28 }
29
30 // Immediate Computations
31 int returnZero(boolean b) {
32 if (b) {
33 return 0;
34 } else {
35 return -1;}
36 }
37 }

Listing A.8: PVL Shared Module B State (ModuleBState.pvl).

1 class ModuleBThread1 {
2
3 GlobalLock gLock;
4
5 ModuleBState moduleB_inst_State;
6
7 // NotNull Check of Arguments
8 r e qu i r e s globalLock != null;
9 r e qu i r e s moduleBState != null;

10 // Global Lock: Permissions and Value Checks
11 ensures Perm(gLock , read);
12 ensures gLock != null;
13 ensures gLock == globalLock;
14 // Shared ModuleBState: Permissions and Value Checks

94

15 ensures Perm(moduleB_inst_State , read);
16 ensures moduleB_inst_State != null;
17 ensures moduleB_inst_State == moduleBState;
18 ModuleBThread1(GlobalLock globalLock , ModuleBState moduleBState) {
19 gLock = globalLock;
20 moduleB_inst_State = moduleBState;
21 }
22
23
24 con tex t Perm(gLock , read);
25 con tex t gLock != null;
26 con tex t Perm(gLock.moduleB_inst_Thread1 , read);
27 con tex t gLock.moduleB_inst_Thread1 == this;
28 void run () {
29 lock gLock;
30
31 l o op_ i nva r i an t true
32 // Permissions and Ownership of Global Lock
33 ⁎⁎ Perm(gLock , read)
34 ⁎⁎ gLock != null
35 ⁎⁎ held (gLock)
36
37 // Read Permissions for all Channel , State and Thread Classes
38 ⁎⁎ Perm(gLock.channel_inst , read)
39 ⁎⁎ Perm(gLock.moduleA_inst , read)
40 ⁎⁎ Perm(gLock.moduleB_inst_State , read)
41 ⁎⁎ Perm(gLock.moduleB_inst_Thread1 , read)
42 ⁎⁎ Perm(gLock.moduleB_inst_Thread2 , read)
43
44 // Equality of Global Lock’s Thread1 and this
45 ⁎⁎ gLock.moduleB_inst_Thread1 == this
46
47 // Read Permissions & Equality of the Shared Global Lock
48 ⁎⁎ Perm(gLock.channel_inst.gLock , read)
49 ⁎⁎ Perm(gLock.moduleA_inst.gLock , read)
50 ⁎⁎ Perm(gLock.moduleB_inst_State.gLock , read)
51 ⁎⁎ Perm(gLock.moduleB_inst_Thread1.gLock , read)
52 ⁎⁎ Perm(gLock.moduleB_inst_Thread2.gLock , read)
53 ⁎⁎ gLock == gLock.channel_inst.gLock
54 ⁎⁎ gLock == gLock.moduleA_inst.gLock
55 ⁎⁎ gLock == gLock.moduleB_inst_State.gLock
56 ⁎⁎ gLock == gLock.moduleB_inst_Thread1.gLock
57 ⁎⁎ gLock == gLock.moduleB_inst_Thread2.gLock
58
59 // Read Permissions & Equality of Shared Module States
60 ⁎⁎ Perm(moduleB_inst_State , read)
61 ⁎⁎ Perm(gLock.moduleB_inst_State , read)
62 ⁎⁎ Perm(gLock.moduleB_inst_Thread1.moduleB_inst_State , read)
63 ⁎⁎ Perm(gLock.moduleB_inst_Thread2.moduleB_inst_State , read)

A.3 Resulting PVL Program after Transformation 95

64 ⁎⁎ gLock.moduleB_inst_State == moduleB_inst_State
65 ⁎⁎ gLock.moduleB_inst_Thread2.moduleB_inst_State
66 == moduleB_inst_State
67
68 // Read Permissions & Equality of Shared Channels
69 ⁎⁎ Perm(gLock.channel_inst , read)
70 ⁎⁎ Perm(gLock.moduleA_inst.channelA , read)
71 ⁎⁎ Perm(moduleB_inst_State.channelB , read)
72 ⁎⁎ gLock.channel_inst == gLock.moduleA_inst.channelA
73 ⁎⁎ gLock.channel_inst == moduleB_inst_State.channelB
74
75
76 // Permissions , Null and Length Checks of further Heap Variables
77 ⁎⁎ Perm(moduleB_inst_State.numberOfPorts , wri te)
78 ⁎⁎ Perm(gLock.channel_inst.n, wri te)
79 ⁎⁎ Perm(gLock.channel_inst.buffer , read)
80 ⁎⁎ gLock.channel_inst.buffer != null
81 ⁎⁎ gLock.channel_inst.buffer.length == 42
82 ⁎⁎ Perm(gLock.channel_inst.buffer [⁎],wri te)
83 ;
84 while(true) {
85 moduleB_inst_State.returnZero(true);
86 moduleB_inst_State.channelB.writeToBuffer (42); // Writes to Buffer
87 }
88
89 unlock gLock;
90 }
91 }

Listing A.9: PVL Module B Thread 1 (ModuleBThread1.pvl).

1 class ModuleBThread2 {
2
3 GlobalLock gLock;
4
5 ModuleBState moduleB_inst_State;
6
7 // NotNull Check of Arguments
8 r e qu i r e s globalLock != null;
9 r e qu i r e s moduleBState != null;

10 // Global Lock: Permissions and Value Checks
11 ensures Perm(gLock , read);
12 ensures gLock != null;
13 ensures gLock == globalLock;
14 // Shared ModuleBState: Permissions and Value Checks
15 ensures Perm(moduleB_inst_State , read);
16 ensures moduleB_inst_State != null;
17 ensures moduleB_inst_State == moduleBState;
18 ModuleBThread2(GlobalLock globalLock , ModuleBState moduleBState) {
19 gLock = globalLock;

96

20 moduleB_inst_State = moduleBState;
21 }
22
23
24 con tex t Perm(gLock , read);
25 con tex t gLock != null;
26 con tex t Perm(gLock.moduleB_inst_Thread2 , read);
27 con tex t gLock.moduleB_inst_Thread2 == this;
28 void run () {
29 lock gLock;
30
31 l o op_ i nva r i an t true
32 // Permissions and Ownership of Global Lock
33 ⁎⁎ Perm(gLock , read)
34 ⁎⁎ gLock != null
35 ⁎⁎ held (gLock)
36
37 // Read Permissions for all Channel , State and Thread Classes
38 ⁎⁎ Perm(gLock.channel_inst , read)
39 ⁎⁎ Perm(gLock.moduleA_inst , read)
40 ⁎⁎ Perm(gLock.moduleB_inst_State , read)
41 ⁎⁎ Perm(gLock.moduleB_inst_Thread1 , read)
42 ⁎⁎ Perm(gLock.moduleB_inst_Thread2 , read)
43
44 // Equality of Global Lock’s Thread1 and this
45 ⁎⁎ gLock.moduleB_inst_Thread2 == this
46
47 // Read Permissions & Equality of the Shared Global Lock
48 ⁎⁎ Perm(gLock.channel_inst.gLock , read)
49 ⁎⁎ Perm(gLock.moduleA_inst.gLock , read)
50 ⁎⁎ Perm(gLock.moduleB_inst_State.gLock , read)
51 ⁎⁎ Perm(gLock.moduleB_inst_Thread1.gLock , read)
52 ⁎⁎ Perm(gLock.moduleB_inst_Thread2.gLock , read)
53 ⁎⁎ gLock == gLock.channel_inst.gLock
54 ⁎⁎ gLock == gLock.moduleA_inst.gLock
55 ⁎⁎ gLock == gLock.moduleB_inst_State.gLock
56 ⁎⁎ gLock == gLock.moduleB_inst_Thread1.gLock
57 ⁎⁎ gLock == gLock.moduleB_inst_Thread2.gLock
58
59 // Read Permissions & Equality of Shared Module States
60 ⁎⁎ Perm(moduleB_inst_State , read)
61 ⁎⁎ Perm(gLock.moduleB_inst_State , read)
62 ⁎⁎ Perm(gLock.moduleB_inst_Thread1.moduleB_inst_State , read)
63 ⁎⁎ Perm(gLock.moduleB_inst_Thread2.moduleB_inst_State , read)
64 ⁎⁎ gLock.moduleB_inst_State == moduleB_inst_State
65 ⁎⁎ gLock.moduleB_inst_Thread1.moduleB_inst_State
66 == moduleB_inst_State
67
68 // Read Permissions & Equality of Shared Channels

A.3 Resulting PVL Program after Transformation 97

69 ⁎⁎ Perm(gLock.channel_inst , read)
70 ⁎⁎ Perm(gLock.moduleA_inst.channelA , read)
71 ⁎⁎ Perm(moduleB_inst_State.channelB , read)
72 ⁎⁎ gLock.channel_inst == gLock.moduleA_inst.channelA
73 ⁎⁎ gLock.channel_inst == moduleB_inst_State.channelB
74
75
76 // Permissions , Null and Length Checks of further Heap Variables
77 ⁎⁎ Perm(moduleB_inst_State.numberOfPorts , wri te)
78 ⁎⁎ Perm(gLock.channel_inst.n, wri te)
79 ⁎⁎ Perm(gLock.channel_inst.buffer , read)
80 ⁎⁎ gLock.channel_inst.buffer != null
81 ⁎⁎ gLock.channel_inst.buffer.length == 42
82 ⁎⁎ Perm(gLock.channel_inst.buffer [⁎],wri te)
83 ;
84 while(true) {
85 moduleB_inst_State.channelB.writeToBuffer (3); // Writes to Buffer
86 }
87
88 unlock gLock;
89 }
90 }

Listing A.10: PVL Module B Thread 2 (ModuleBThread2.pvl).

1 // No visilibity modifiers anywhere!
2 class Channel {
3
4 GlobalLock gLock;
5
6 // Define Directives
7 int BUFFERSIZE;
8
9 // Internal Data

10 int n;
11 int[] buffer;
12
13 // Constructor
14 // NotNull Check of Argument
15 r e qu i r e s globalLock != null;
16 // Global Lock: Permissions and Value Checks
17 ensures Perm(gLock , read);
18 ensures gLock != null;
19 ensures gLock == globalLock;
20 // Internal Data Fields: Permissions and Value Checks
21 ensures Perm(n, wri te);
22 ensures Perm(buffer , read);
23 ensures buffer != null;
24 ensures buffer.length == 42;
25 ensures Perm(buffer [⁎],wri te);

98

26 Channel(GlobalLock globalLock) {
27 BUFFERSIZE = 42;
28
29 gLock = globalLock;
30 n = 0;
31 buffer = new int[BUFFERSIZE];
32 }
33
34
35 // Permissions and Ownership of Global Lock
36 con tex t Perm(gLock , read);
37 con tex t gLock != null;
38 con tex t he ld (gLock);
39 // Read Permissions for all Channel , State and Thread Classes
40 con tex t Perm(gLock.channel_inst , read);
41 con tex t Perm(gLock.moduleA_inst , read);
42 con tex t Perm(gLock.moduleB_inst_State , read);
43 con tex t Perm(gLock.moduleB_inst_Thread1 , read);
44 con tex t Perm(gLock.moduleB_inst_Thread2 , read);
45 // Equality of Global Lock’s, moduleB ’s Channel and this
46 con tex t Perm(gLock.channel_inst , read);
47 con tex t Perm(gLock.moduleA_inst.channelA , read);
48 con tex t Perm(gLock.moduleB_inst_State.channelB , read);
49 con tex t gLock.channel_inst == this;
50 con tex t gLock.moduleA_inst.channelA == this;
51 con tex t gLock.moduleB_inst_State.channelB == this;
52 // Read Permissions & Equality of the Shared Global Lock
53 con tex t Perm(gLock.channel_inst.gLock , read);
54 con tex t Perm(gLock.moduleA_inst.gLock , read);
55 con tex t Perm(gLock.moduleB_inst_State.gLock , read);
56 con tex t Perm(gLock.moduleB_inst_Thread1.gLock , read);
57 con tex t Perm(gLock.moduleB_inst_Thread2.gLock , read);
58 con tex t gLock == gLock.channel_inst.gLock;
59 con tex t gLock == gLock.moduleA_inst.gLock;
60 con tex t gLock == gLock.moduleB_inst_State.gLock;
61 con tex t gLock == gLock.moduleB_inst_Thread1.gLock;
62 con tex t gLock == gLock.moduleB_inst_Thread2.gLock;
63 // Read Permissions & Equality of Shared Module States
64 con tex t Perm(gLock.moduleB_inst_State , read);
65 con tex t Perm(gLock.moduleB_inst_Thread1.moduleB_inst_State , read);
66 con tex t Perm(gLock.moduleB_inst_Thread2.moduleB_inst_State , read);
67 con tex t gLock.moduleB_inst_Thread1.moduleB_inst_State
68 == gLock.moduleB_inst_State;
69 con tex t gLock.moduleB_inst_Thread2.moduleB_inst_State
70 == gLock.moduleB_inst_State;
71 // Permissions , Null and Length Checks of further Heap Variables
72 con tex t Perm(gLock.moduleB_inst_State.numberOfPorts , wri te);
73 con tex t Perm(gLock.channel_inst.n, wri te);
74 con tex t Perm(gLock.channel_inst.buffer , read);

A.3 Resulting PVL Program after Transformation 99

75 con tex t gLock.channel_inst.buffer != null;
76 con tex t gLock.channel_inst.buffer.length == 42;
77 con tex t Perm(gLock.channel_inst.buffer [⁎],wri te);
78 void writeToBuffer(int c) {
79
80 l o op_ i nva r i an t true
81 ⁎⁎ Perm(gLock , read)
82 ⁎⁎ gLock != null
83 ⁎⁎ held (gLock)
84
85 // Read Permissions for all Channel , State and Thread Classes
86 ⁎⁎ Perm(gLock.channel_inst , read)
87 ⁎⁎ Perm(gLock.moduleA_inst , read)
88 ⁎⁎ Perm(gLock.moduleB_inst_State , read)
89 ⁎⁎ Perm(gLock.moduleB_inst_Thread1 , read)
90 ⁎⁎ Perm(gLock.moduleB_inst_Thread2 , read)
91
92 // Equality of Global Lock’s, moduleB ’s Channel and this
93 ⁎⁎ Perm(gLock.channel_inst , read)
94 ⁎⁎ Perm(gLock.moduleA_inst.channelA , read)
95 ⁎⁎ Perm(gLock.moduleB_inst_State.channelB , read)
96 ⁎⁎ gLock.channel_inst == this
97 ⁎⁎ gLock.moduleA_inst.channelA == this
98 ⁎⁎ gLock.moduleB_inst_State.channelB == this
99

100 // Read Permissions & Equality of the Shared Global Lock
101 ⁎⁎ Perm(gLock.channel_inst.gLock , read)
102 ⁎⁎ Perm(gLock.moduleA_inst.gLock , read)
103 ⁎⁎ Perm(gLock.moduleB_inst_State.gLock , read)
104 ⁎⁎ Perm(gLock.moduleB_inst_Thread1.gLock , read)
105 ⁎⁎ Perm(gLock.moduleB_inst_Thread2.gLock , read)
106 ⁎⁎ gLock == gLock.channel_inst.gLock
107 ⁎⁎ gLock == gLock.moduleA_inst.gLock
108 ⁎⁎ gLock == gLock.moduleB_inst_State.gLock
109 ⁎⁎ gLock == gLock.moduleB_inst_Thread1.gLock
110 ⁎⁎ gLock == gLock.moduleB_inst_Thread2.gLock
111
112 // Read Permissions & Equality of Shared Module States
113 ⁎⁎ Perm(gLock.moduleB_inst_State , read)
114 ⁎⁎ Perm(gLock.moduleB_inst_Thread1.moduleB_inst_State , read)
115 ⁎⁎ Perm(gLock.moduleB_inst_Thread2.moduleB_inst_State , read)
116 ⁎⁎ gLock.moduleB_inst_Thread1.moduleB_inst_State
117 == gLock.moduleB_inst_State
118 ⁎⁎ gLock.moduleB_inst_Thread2.moduleB_inst_State
119 == gLock.moduleB_inst_State
120
121 // Permissions , Null and Length Checks of further Heap Variables
122 ⁎⁎ Perm(gLock.moduleB_inst_State.numberOfPorts , wri te)
123 ⁎⁎ Perm(gLock.channel_inst.n, wri te)

100

124 ⁎⁎ Perm(gLock.channel_inst.buffer , read)
125 ⁎⁎ gLock.channel_inst.buffer != null
126 ⁎⁎ gLock.channel_inst.buffer.length == 42
127 ⁎⁎ Perm(gLock.channel_inst.buffer [⁎],wri te)
128 ;
129 while (n == buffer.length) {
130 wait gLock;
131 }
132
133 buffer [17] = c;
134 n++;
135 }
136
137 // Permissions and Ownership of Global Lock
138 con tex t Perm(gLock , read);
139 con tex t gLock != null;
140 con tex t he ld (gLock);
141 // Read Permissions for all Channel , State and Thread Classes
142 con tex t Perm(gLock.channel_inst , read);
143 con tex t Perm(gLock.moduleA_inst , read);
144 con tex t Perm(gLock.moduleB_inst_State , read);
145 con tex t Perm(gLock.moduleB_inst_Thread1 , read);
146 con tex t Perm(gLock.moduleB_inst_Thread2 , read);
147 // Equality of Global Lock’s, moduleB ’s Channel and this
148 con tex t Perm(gLock.channel_inst , read);
149 con tex t Perm(gLock.moduleA_inst.channelA , read);
150 con tex t Perm(gLock.moduleB_inst_State.channelB , read);
151 con tex t gLock.channel_inst == this;
152 con tex t gLock.moduleA_inst.channelA == this;
153 con tex t gLock.moduleB_inst_State.channelB == this;
154 // Read Permissions & Equality of the Shared Global Lock
155 con tex t Perm(gLock.channel_inst.gLock , read);
156 con tex t Perm(gLock.moduleA_inst.gLock , read);
157 con tex t Perm(gLock.moduleB_inst_State.gLock , read);
158 con tex t Perm(gLock.moduleB_inst_Thread1.gLock , read);
159 con tex t Perm(gLock.moduleB_inst_Thread2.gLock , read);
160 con tex t gLock == gLock.channel_inst.gLock;
161 con tex t gLock == gLock.moduleA_inst.gLock;
162 con tex t gLock == gLock.moduleB_inst_State.gLock;
163 con tex t gLock == gLock.moduleB_inst_Thread1.gLock;
164 con tex t gLock == gLock.moduleB_inst_Thread2.gLock;
165 // Read Permissions & Equality of Shared Module States
166 con tex t Perm(gLock.moduleB_inst_State , read);
167 con tex t Perm(gLock.moduleB_inst_Thread1.moduleB_inst_State , read);
168 con tex t Perm(gLock.moduleB_inst_Thread2.moduleB_inst_State , read);
169 con tex t gLock.moduleB_inst_Thread1.moduleB_inst_State
170 == gLock.moduleB_inst_State;
171 con tex t gLock.moduleB_inst_Thread2.moduleB_inst_State
172 == gLock.moduleB_inst_State;

A.3 Resulting PVL Program after Transformation 101

173 // Permissions , Null and Length Checks of further Heap Variables
174 con tex t Perm(gLock.moduleB_inst_State.numberOfPorts , wri te);
175 con tex t Perm(gLock.channel_inst.n, wri te);
176 con tex t Perm(gLock.channel_inst.buffer , read);
177 con tex t gLock.channel_inst.buffer != null;
178 con tex t gLock.channel_inst.buffer.length == 42;
179 con tex t Perm(gLock.channel_inst.buffer [⁎],wri te);
180 int returnElemNum () {
181 n--;
182 notify gLock;
183
184 return n;
185 }
186 }

Listing A.11: PVL Channel (Channel.pvl).

List of Abbreviations

AMBA Advanced Microcontroller Bus Architecture 14

AMS Analog/Mixed-Signal . 12

ASIC Application-Speci�c Integrated Circuit . 10

AST Abstract Syntax Tree . 27

COL Common Object Language . 27

CSL Concurrent Separation Logic . 2

DSP Programmable Digital Signal Processor . 10

FIFO First-In–First-Out Queue . 14

HDL Hardware Description Language . 11

IDF Implicit Dynamic Frames . 28

ISA Instruction Set Architecture . 10

JML Java Modeling Language . 32

LRM Language Reference Manual . 23

PVL Prototypal Veri�cation Language . 2

RTL Register-Transfer Level . 10

SAT Boolean Satis�ability . 5

SMT Satis�ability Modulo Theories . 5

104

STL Standard Template Library . 11

SCV SystemC Veri�cation Library . 12

TLM Transaction-Level Modeling . 10

VHDL Very High Speed Integrated Circuit Hardware Description Language 11

Viper Veri�cation Infrastructure for Permission-based Reasoning 26

List of Figures

3.1 Technological Levels of Programming . 9
3.2 Overview of SystemC Communication Components. 15
3.3 Read/Write Interfaces connected to Channel in SystemC. 16
3.4 SystemC Simulation Kernel and Scheduling (without Concurrency). 22
3.5 SystemC Simulation Kernel and Scheduling (without Time Advancement). 23
3.6 SystemC Simulation Kernel and Scheduling. 24
3.7 VerCors Veri�er Tool Architecture (with Silicon) 27
3.8 Fork-Join Model. 41

4.1 Veri�cation Process of SystemC Designs with VerCors. 45
4.2 General SystemC Design before Transformation. 49
4.3 PVL Class Structure after Transformation. 50
4.4 PVL Classes after Transformation with Global Lock. 57

List of Tables

3.1 SystemC Architecture. 11
3.2 VerCors Permissions for Threads. 29
3.3 VerCors Standard Operators. 30
3.4 VerCors Control Flow Statements and Assignment. 30
3.5 VerCors Quanti�ers and Logical Implication. 39
3.6 VerCors Thread Intialization and Termination Statements. 41
3.7 VerCors Thread Synchronization Statements (PVL and Speci�cations). . . 42

4.1 Transformation Rewriting Rules for Control Flow Statements. 54

A.1 VerCors Website Guide. 83
A.2 Supported Subset of Standard Operators. 87
A.3 Transformation Rewriting Rules for Data Types. 87

Listings

3.1 SystemC Module Example. 13
3.2 SystemC Interface Example. 15
3.3 SystemC Read Interface Example. 16
3.4 SystemC Write Interface Example. 16
3.5 SystemC Channel Example. 17
3.6 SystemC Starting Point of Simulation Example (sc_main). 18
3.7 SystemC Event and Static Sensitivity Example. 19
3.8 SystemC Event and Dynamic Sensitivity Example. 20
3.9 SystemC Channel with Events Example. 21
3.10 PVL Simple Counter Example. 26
3.11 VerCors Veri�cation Call and Result . 27
3.12 VerCors Class Structures Example. 31
3.13 VerCors Assumption and Assertion Example (Pass). 32
3.14 VerCors Assumption and Assertion Example (Fail). 32
3.15 VerCors unsatis�able Assumption Example (Pass). 33
3.16 VerCors Pre- and Postcondition Example. 33
3.17 VerCors Unsatis�able Precondition Example (Pass). 34
3.18 VerCors Loop Invariant Example [Ver21]. 34
3.19 VerCors Permissions Example. 36
3.20 VerCors Predicates Example. 37
3.21 VerCors Arrays and Permissions Example. 38
3.22 VerCors Sequence Example. 39

4.1 main.cpp of SystemC Design Example. 49
4.2 Example Main Method after Transformation to PVL. 50
4.3 Function Signatures in SystemC. 52
4.4 Method Signatures in PVL. 52
4.5 Constructor of Module A in SystemC. 52
4.6 Constructor of Module A in PVL (Intermediate State). 52
4.7 Channel Class in SystemC (Excerpt). 53
4.8 Channel Class in PVL (Intermediate State). 53
4.9 Module B’s Thread1 Process in SystemC. 56
4.10 Module B’s Thread1 in PVL (Intermediate State). 56

110

4.11 PVL Global Lock Base Structure. 58
4.12 PVL Lock Invariant for General SystemC Design. 60
4.13 PVL Constructor Speci�cations for General SystemC Design. 61
4.14 PVL Constructor of Module A of General SystemC Design. 62
4.15 PVL Thread Implementation of Module A with Global Lock. 63
4.16 PVL Thread Implementation of Module A with Loop Invariant. 63
4.17 PVL Wait and Noti�cation of Global Lock within Channel Class. 66

5.1 Channel Class of Producer-Consumer Case Study. 68
5.2 Main Class of Producer-Consumer Case Study. 70
5.3 produce() method of Producer of Producer-Consumer Case Study. 71
5.4 Fifo Class of Producer-Consumer Case Study extended by Ghost Code. . . 72
5.5 Lemmas for “written data is read” Property of Producer-Consumer Case

Study. 75

A.1 SystemC Main Function (main.cpp). 84
A.2 SystemC Module A (moduleA.h). 84
A.3 SystemC Module B (moduleB.h). 85
A.4 SystemC Channel (channel.h). 86
A.5 PVL Main (Main.pvl). 88
A.6 PVL Global Lock (GlobalLock.pvl). 88
A.7 PVL Module A (ModuleA.pvl). 91
A.8 PVL Shared Module B State (ModuleBState.pvl). 92
A.9 PVL Module B Thread 1 (ModuleBThread1.pvl). 93
A.10 PVL Module B Thread 2 (ModuleBThread2.pvl). 95
A.11 PVL Channel (Channel.pvl). 97

Bibliography

[ABH16] Afshin Amighi, Stefan Blom, and Marieke Huisman. “VerCors: A layered
approach to practical veri�cation of concurrent software”. In: 2016 24th Eu-
romicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP). IEEE. 2016, pp. 495–503 (cit. on p. 28).

[Acc21a] Accellera Systems Initiative. SystemC Standards. url: https://www.
accellera.org/downloads/standards/systemc (visited on 08/07/2021)
(cit. on p. 12).

[Acc21c] Accellera Systems Initiative.About SystemC. url: https://www.accellera.
org/community/systemc/about-systemc (visited on 08/10/2021) (cit. on
p. 12).

[Ami+12] Afshin Amighi, Stefan Blom, Marieke Huisman, and Marina Zaharieva-
Stojanovski. “The VerCors project: Setting up basecamp”. In: Proceedings
of the sixth workshop on Programming languages meets program veri�cation.
ACM, 2012, pp. 71–82 (cit. on p. 28).

[BD04] David C. Black and Jack Donovan. SystemC: From the Ground Up. Springer,
2004 (cit. on pp. 11, 14).

[BDH15] Stefan Blom, Saeed Darabi, and Marieke Huisman. “Veri�cation of loop
parallelisations”. In: International conference on fundamental approaches to
software engineering. Springer. 2015, pp. 202–217 (cit. on p. 40).

[BK07] Bernhard Beckert and Vladimir Klebanov. “A dynamic logic for deductive
veri�cation of concurrent Java programs with condition variables”. In: Satellite
Workshop at CONCUR 2007. 2007, p. 3 (cit. on p. 65).

[BO16] Stephen Brookes and Peter W. O’Hearn. “Concurrent Separation Logic”. In:
ACM SIGLOG News 3.3 (2016), pp. 47–65 (cit. on pp. 2, 28, 43).

[BST+10] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. “The smt-lib standard:
Version 2.0”. In: Proceedings of the 8th international workshop on satis�ability
modulo theories (Edinburgh, England). Vol. 13. 2010, p. 14 (cit. on p. 28).

https://www.accellera.org/downloads/standards/systemc
https://www.accellera.org/downloads/standards/systemc
https://www.accellera.org/community/systemc/about-systemc
https://www.accellera.org/community/systemc/about-systemc

112

[Cho+10] Chun-Nan Chou, Chang-Hong Hsu, Yueh-Tung Chao, and Chung-Yang
Huang. “Formal deadlock checking on high-level SystemC designs”. In:
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE.
2010, pp. 794–799 (cit. on p. 6).

[DB08] Leonardo De Moura and Nikolaj Björner. “Z3: An e�cient SMT solver”.
In: International conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer. 2008, pp. 337–340 (cit. on pp. 28, 43).

[DG97] Giovanni De Micheli and Rajesh K. Gupta. “Hardware/Software Co-Design”.
In: Proceedings of the IEEE 85.3 (1997), pp. 349–365 (cit. on pp. 2, 9, 10).

[Dij72] Edsger W. Dijkstra. “The Humble Programmer”. In: Communications of the
ACM 15.10 (1972), pp. 859–866 (cit. on p. 1).

[Grö+02] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with SystemC™.
Springer US, 2002 (cit. on p. 11).

[Haa+14] Christian Haack, Marieke Huisman, Clément Hurlin, and Afshin Amighi.
“Permission-based separation logic for multithreaded Java programs”. In:
arXiv preprint arXiv:1411.0851 (2014) (cit. on p. 40).

[Her+18] Vladimir Herdt, Hoang M. Le, Daniel Grosse, and Rolf Drechsler. “Verify-
ing SystemC using intermediate veri�cation language and stateful symbolic
simulation”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 38.7 (2018), pp. 1359–1372 (cit. on p. 7).

[Her10] Paula Herber. A Framework for Automated HW/SW Co-Veri�cation of SystemC
Designs using Timed Automata. Logos Verlag Berlin GmbH, 2010 (cit. on p. 25).

[Her14] Paula Herber. “The RESCUE Approach - Towards Compositional Hardware/-
Software Co-veri�cation”. In: IEEE. 2014, pp. 721–724 (cit. on p. 6).

[HFG08] Paula Herber, Joachim Fellmuth, and Sabine Glesner. “Model checking
SystemC designs using timed automata”. In: IEEE. 2008, pp. 131–136 (cit. on
pp. 5, 71).

[HGD21] Vladimir Herdt, Daniel Grosse, and Rolf Drechsler. “Formal Veri�cation
of SystemC-Based Designs using Symbolic Simulation”. In: Enhanced Virtual
Prototyping. Springer, 2021, pp. 59–117 (cit. on p. 7).

[HH14] Paula Herber and Bettina Hünnemeyer. “Formal Veri�cation of SystemC
Designs using the BLAST Software Model Checker”. In: ACESMB@ MoDELS.
2014, pp. 44–53 (cit. on p. 6).

[HL20] Paula Herber and Timm Liebrenz. “Dependence Analysis and Automated
Partitioning for Scalable Formal Analysis of SystemC Designs”. In: 18th ACM-
IEEE International Conference on Formal Methods and Models for System Design
(MEMOCODE). IEEE. 2020, pp. 1–6 (cit. on p. 7).

Bibliography 113

[HPG15] Paula Herber, Marcel Pockrandt, and Sabine Glesner. “STATE – A SystemC
to Timed Automata Transformation Engine”. In: IEEE. 2015, pp. 1074–1077
(cit. on p. 6).

[IEEE11] Accellera Systems Initiative et al. “IEEE Standard for Standard SystemC®
Language Reference Manual”. In: IEEE Std 1666–2011 (Revision of IEEE Std
1666–2005) (2011) (cit. on pp. 12, 17, 23, 47).

[JH15] Lydia Jass and Paula Herber. “Bit-Precise Formal Veri�cation for SystemC
Using Satis�ability Modulo Theories Solving”. In: International Embedded
Systems Symposium. Springer. 2015, pp. 51–63 (cit. on p. 7).

[KEP06] Daniel Karlsson, Petru Eles, and Zebo Peng. “Formal veri�cation of SystemC
designs using a Petri-net based representation”. In: Proceedings of the Design
Automation & Test in Europe Conference. Vol. 1. IEEE. 2006, pp. 1–6 (cit. on
p. 6).

[KMS12] Ioannis T Kassios, Peter Müller, and Malte Schwerhoff. “Comparing veri-
�cation condition generation with symbolic execution: an experience report”.
In: International Conference on Veri�ed Software: Tools, Theories, Experiments.
Springer. 2012, pp. 196–208 (cit. on p. 28).

[KS05] Daniel Kroening and Natasha Sharygina. “Formal veri�cation of SystemC
by automatic hardware/software partitioning”. In: Proceedings. Second ACM
and IEEE International Conference on Formal Methods andModels for Co-Design,
2005. MEMOCODE’05. IEEE. 2005, pp. 101–110 (cit. on p. 6).

[LBR98] Gary T Leavens, Albert L Baker, and Clyde Ruby. “JML: a Java modeling lan-
guage”. In: Formal Underpinnings of Java Workshop (at OOPSLA’98). Citeseer.
1998, pp. 404–420 (cit. on p. 32).

[Le+13] Hoang M Le, Daniel Grosse, Vladimir Herdt, and Rolf Drechsler. “Ver-
ifying SystemC using an intermediate veri�cation language and symbolic
simulation”. In: Proceedings of the 50th Annual Design Automation Conference.
2013, pp. 1–6 (cit. on p. 7).

[Lee02] Edward A. Lee. “Embedded Software”. In: Advances in Computers. Vol. 56.
Elsevier, 2002, pp. 55–95 (cit. on pp. 2, 12).

[LX20] Bin Lin and Fei Xie. “A Systematic Investigation of State-of-the-Art SystemC
Veri�cation”. In: Journal of Circuits, Systems and Computers 29.15 (2020) (cit.
on p. 8).

[MK06] Je� Magee and Je� Kramer. Concurrency: State Models and Java Programs.
2nd. Wiley Publishing, 2006 (cit. on p. 67).

114

[MSS16] P. Müller, M. Schwerhoff, and A. J. Summers. “Viper: A Veri�cation Infras-
tructure for Permission-Based Reasoning”. In: Veri�cation, Model Checking,
and Abstract Interpretation (VMCAI). Ed. by B. Jobstmann and K. R. M. Leino.
Vol. 9583. LNCS. Springer-Verlag, 2016, pp. 41–62 (cit. on p. 26).

[ORe17] Gerard O’Regan. Concise Guide to Formal Methods. Springer, 2017 (cit. on
p. 1).

[RS20] Jürgen Reichardt and Bernd Schwarz. VHDL-Simulation und -Synthese. De
Gruyter Oldenbourg, 2020 (cit. on p. 11).

[Rub20] RB Rubbens. “Improving Support for Java Exceptions and Inheritance in
VerCors”. MA thesis. University of Twente, 2020 (cit. on p. 47).

[SAVES21] Formal Methods and Tools Group (UT) and Embedded Systems Group
(WWU). SAVES: Scalable Veri�cation of Industriaal Embedded Control Systems.
url: https://www.utwente.nl/en/eemcs/fmt/research/projects/
saves/ (visited on 09/27/2021) (cit. on p. 66).

[Sch16] Malte H Schwerhoff. “Advancing Automated, Permission-Based Program
Veri�cation Using Symbolic Execution”. PhD thesis. ETH Zurich, 2016 (cit. on
p. 28).

[SH20] Simon Schwan and PaulaHerber. “Optimized Hardware/Software Co-Veri�cation
using the UCLID Satis�ability Modulo Theory Solver”. In: IEEE 29th Interna-
tional Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE). IEEE. 2020, pp. 225–230 (cit. on pp. 7, 8).

[SJP09] Jan Smans, Bart Jacobs, and Frank Piessens. “Implicit dynamic frames: Com-
bining dynamic frames and separation logic”. In: European Conference on
Object-Oriented Programming. Springer. 2009, pp. 148–172 (cit. on pp. 28, 43).

[TM08] Donald Thomas and Philip Moorby. The Verilog® hardware description lan-
guage. Springer Science & Business Media, 2008 (cit. on p. 11).

[Ver21] Formal Methods and Tools Group, University of Twente. The VerCors
Veri�er Online. url: https : / / vercors . ewi . utwente . nl/ (visited on
08/07/2021) (cit. on pp. 2, 26, 27, 31, 34, 109).

[Ver21g] FormalMethods and Tools Group, University of Twente. VerCors Source
Code on GitHub. url: https://github.com/utwente-fmt/vercors (visited
on 08/29/2021) (cit. on p. 27).

[Vip21] Programming Methodology Group, ETH Zürich. Viper Online. url: http:
//viper.ethz.ch (visited on 08/31/2021) (cit. on pp. 28, 43).

https://www.utwente.nl/en/eemcs/fmt/research/projects/saves/
https://www.utwente.nl/en/eemcs/fmt/research/projects/saves/
https://vercors.ewi.utwente.nl/
https://github.com/utwente-fmt/vercors
http://viper.ethz.ch
http://viper.ethz.ch

Declaration of Academic Integrity

I, Stefanie Eva Drerup, hereby con�rm that this thesis on

Deductive Veri�cation of Integrated Hardware/Software Systems
with the VerCors Veri�cation Tool

is solely my own work and that I have used no sources or aids other than the ones stated.
All passages in my thesis for which other sources, including electronic media, have been
used, be it direct quotes or content references, have been acknowledged as such and the
sources cited.

Münster, September 30, 2021
Stefanie Eva Drerup

I agree with a comparison of the thesis with other texts in order to �nd matches and with
the storage of this thesis in a database for this purpose.

Münster, September 30, 2021
Stefanie Eva Drerup

Eidessta�liche Erklärung

Hiermit versichere ich, Stefanie Eva Drerup, dass die vorliegende Arbeit über

Deductive Veri�cation of Integrated Hardware/Software Systems
with the VerCors Veri�cation Tool

selbstständig verfasst worden ist, dass keine anderen Quellen und Hilfsmittel als die
angegebenen benutzt worden sind und dass die Stellen der Arbeit, die anderen Werken
– auch elektronischen Medien – dem Wortlaut oder Sinn nach entnommen wurden, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht worden sind.

Münster, 30. September 2021
Stefanie Eva Drerup

Ich erkläre mich mit einem Abgleich der Arbeit mit anderen Texten zwecks Au�ndung
von Übereinstimmungen sowie mit einer zu diesem Zweck vorzunehmenden Speicherung
der Arbeit in einer Datenbank einverstanden.

Münster, 30. September 2021
Stefanie Eva Drerup

	Contents
	Introduction
	Problem of Verifying Embedded Systems
	Research Objective and Criteria
	Proposed Solution
	Organization of this Work

	Related Work
	Model Checking Monolithic SystemC Designs
	Automatic HW/SW Partitioning and Verification
	Separation of Formalization and Verification Tool
	SMT Solving and Deductive Verification
	Current State of SystemC Verifications

	Preliminaries
	Hardware/Software Co-Design
	SystemC
	Structural Components
	Communication Modeling
	Concurrency Simulation
	Main Advantages of SystemC

	VerCors Verifier
	Logical Foundation and Architecture
	Prototypal Verification Language
	Specification Language
	Concurrency in VerCors
	Main Advantages of VerCors Tool Suite

	Transformation from SystemC Designs to PVL Programs
	Supported SystemC Subset
	SystemC Design Example
	Modules and Channels
	Functions
	Processes
	Non-Preemptive Scheduler
	Outlook: Events

	Specification and Verification of Safety Properties with VerCors
	Data Race Freedom and Memory Safety
	Variable and Buffer Overflows
	Written Buffer Data is Eventually Read

	Conclusion and Outlook
	Results and Contributions
	Future Work

	Appendix
	SystemC Design Example for Transformation
	Transformation Rewritings Rules
	Resulting PVL Program after Transformation

	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Bibliography

