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Innovative Tools for Cyber-Physical Energy Systems (InnoCyPES)

The overall goal of the project is to deliver a decision-
making tool to enable energy companies to optimally
design and utilize the ICT infrastructure and develop digital
solutions, considering end-to-end data lifecycle and
solution.

Research Work Scope: Data Acquisition Systems
Application Scenario: Offshore wind farms
("wind farms of tomorrow”)
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This work has received funding from the European Union's
Horizon 2020 research and innovation programme under the
Marie Sklodowska Curie grant agreement No. 956433.

3 InnoCyPES Outlook

CUTTING EDGE RESEARCH AND TRAINING FOR DIGITAL TRANSFORMATION OF THE ENERGY

The increasing volume, velocity, and variety of data from a The transformation towards a fully digitalized energy system Their absence acts as a barrier for the energy industry in

massive number of dispersed “Internet of things” sensors in the requires substantial improvements in coordinated design of translating the fast-accumulating data into actionable knowled-
energy system offers opportunities for improved operational cyber and physical systems, end-to-end data processing fools, ge. The 15 ESR projects will target key bottlenecks for this
efficiency and reliability — but it also results in threats in the and enabling changes in policy, incentive and regulatory digital transformation. N

form of computational burden and cyber-attacks. mechanisms.

Electrical power networks

4 InnaCyPES

CYBER PHYSICAL ENERGY SYSTEMS
Design, modelling, assessment,
operation, maintenance,
planning.

Renewable power plants Data Curation
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Offshore 0il & gas production Data Management
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Innovative Tools for Cyber Physical Energy Systems (InnoCyPES)

Interdisciplinary and intersectoral research on digitalization of energy sector

Developing tools addressing the life-cycle of both cyber
and physical infrastructure.
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. InnoCyPES
Offshore Wind Farms

Q Offshore wind farms are growing in complexity and
size, expanding deeper into maritime environments to
capture stronger and steadier wind energy.

O Theintricacies of sea environments such as
unpredictable weather patterns and the long
distance from shore make manual monitoring and
maintenance a logistical challenge and economically
draining.

ILLUSTRATION: ENERGINET

QO Distance between individual WTGs and offshore

. . Grid connection
substot!on (tens of kms). Dlstonge between offshore Construction and operation
substation and onshore substation or control room by Energinet
(hundreds of kms).

Thor offshore wind farm (800MW-1000MW) established in the North Seq, West of Nissum Fjord,
~20km from shore of Thorsminde town. [Source]

§§% Utrecht a)  Mwangi, A. W. (2023). Horizon 2020: loT Data Acquisition System Design Method (Deliverable No. D1.2, Version 2.0, Project InnoCyPES). European Commission. Peer-reviewed by G. Yang, M. Gibescu, E. Fumagalli, M. Gryning, & F. Martin.
University https://ec.europa.eu/research/participants/documents/downloadPublic?documentlds=080166e5f9455af8&appld=PPGMS
b)  Mwangi, Agripping, Rishikesh Sahay, Elena Fumagalli, Mikkel Gryning, and Madeleine Gibescu. 2024. "Towards a Software-Defined Industrial loT-Edge Network for Next-Generation Offshore Wind Farms: State of the Art, Resilience, and Self-X
Network and Service Management" Energies 17, no. 12: 2897. https://doi.org/10.3390/en17122897
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Zenitel. (2023, August 8). Offshore wind: Huge potential for both energy and maritime operators. Zenitel (Norwegian
Offshore Wind). https://www.zenitel.com/news/offshore-wind-huge-potential-both-energy-and-maritime-operators
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Data Acquisition Systems in Offshore Wind Farms InnaCyPES
("Nerve Center”)

Generator Monitoring

Temperature
Level e

Gearbox Oil Bearings Temperature

Temperature Stator Winding

Position

Bearings

O The SCADA system are the “nerve center” for large-scale offshore wind
farms, collecting data from wind turbine generators, digital substation
components, and meteorological stations.

Prop Feathering

Pressure

s ™ e al O These systems are vital for overseeing and controlling wind farm
: % -/A . . . . . .

operations, offering comprehensive monitoring, control, and reporting
’>‘fa functions. They accurately log events, improving the precision of alarm

o and event records, and reducing troubleshooting time.

Turbine Shroud
Accelerometer

Q Offshore wind farm developers and operators usually procure SCADA
systems from wind turbine manufacturers, who also double as SCADA
suppliers.

Transformer

Windings Temperature Monitoring

Gearbox Monitoring

NG Accelerometer

Tower Sway

NS Position
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University a) Marti-Puig, P,; Blanco-M, A; Cdrdenas, J.J.; Cusido, J; Solé-Casals, J. Feature Selection Algorithms for Wind Turbine Failure Prediction. Energies 2019, 12, 453. https://doi.org/10.3390/en12030453
b) Mwangi, A. W. (2023). Horizon 2020: loT Data Acquisition System Design Method (Deliverable No. D1.2, Version 2.0, Project InnoCyPES). European Commission. Peer-reviewed by G. Yang, M. Gibescu, E. Fumagalli, M. Gryning, & F. Martin.
https://ec.europa.eu/research/participants/documents/downloadPublic?documentlds=080166e5f9455af8&appld=PPGMS
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Leveraging Industrial 4.0 technologies in next-generation data

acquisition systems

InnoCyPES

Innovative Tools for Cyber-Physical Energy Systems

“Embracing the digital era, the energy sector is undergoing a significant transformation that will see next-generation
offshore wind farms leverage the power of technologies from the fourth industrial revolution (Industry 4.0) such as
Industrial Internet of Things (lloT), edge computing, and programmable networks to improve their data-acquisition

systems.” (Mwangi et al, 2024)
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Monitor and manage offshore assets

with unprecedented precision.
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~EDGE COMPUTING -

»E8 e [a) s @ as

DISTRIBUTED COMPUTING  APPLICATION  DEVICE NODES DATAVOLUME TRAFFIC COSTS

Process big data generated by lloT
devices closer to the offshore assets
reducing dependency on distant data
centers

T
-

VIRTUALIZATION

Virtualization creates virtual instances
of physical assets enabling swift
deployment, scalability, and
management.

Farms: State of the Art, Resilience, and Self-X Network and Service Management" Energies 17, no. 12: 2897. https://doi.org/10.3390/en17122897

Software-defined networks where
network engineers can modify the
behavior of the network using
programming interfaces.

a)  Mwangi, Agripping, Rishikesh Sahay, Elena Fumagalli, Mikkel Gryning, and Madeleine Gibescu. 2024. "Towards a Software-Defined Industrial loT-Edge Network for Next-Generation Offshore Wind
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Next-generation data acquisition systems in offshore wind farms Misiebve Al

(Industrial Internet of Things - lloT)

Offshore digital substation rearchitectured
as a data center
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InnoCyPES
Next-generation data acquisition systems in offshore wind farms

(Edge computing platform for Industrial loT)
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Building resilient communication networks for next-generation offshore
data acquisition systems

“Orchestration of these Industry 4.0 technologies hinges on resilient communication networks.”

This research designs and validates software-defined communication networks capable of meeting
the stringent performance requirements for efficient coordination of offshore wind farm services.
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Building resilient communication networks for next-generation offshore
data acquisition systems
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Software-defined lloT-Edge communication network
(SD-lloT-Edge)
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Software-defined Industrial loT-Edge communication networks T InnoyPEs
(SD-lloT-Edge)
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An out-of-band control SDN-Enabled lloT-Edge network schematic illustrating the fiber-optic-based connectivity between a fleet of wind turbine generator
nacelle and tower switches connected to the offshore hub's data center switches FD{],...,9} leading to the server cluster's physical network interfaces and
virtualized networks within the ECP and vPAC nodes.
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Software-defined Industrial loT-Edge communication networks:

(Challenges and mitigation strategies)

While SDN/NFV architectures have demonstrated significant value in many application
scenarios, there remains scalability, performance, reliability, and security concerns that
hinder their implementation in mission critical applications such as offshore wind farm:s.
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Scalability in software-defined lloT-Edge communication networks
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InnoCyPES

Innovative Tools for Cyber-Physical Energy Systems

SDN Clusters guarantee redundancy by deploying (n+1) SDN controller to
manage the software-defined network. It is recormmended to have a

minimum of 3 SDN controllers for every network.

Running the raft algorithm to assign leadership roles in the SDN controller
cluster.
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INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

-atomix-oi Started

atomix-0] Starting server for partition PartitionId{id=1, group=system}
raft-server-system-partition-1] RaftServer{system-partition-
raft-server-system-partition-1] RaftServer{system-partition-
raft-server-system-partition-1] RaftServer{system-partition-
raft-server-system-partition-1] RaftServer{system-partition-
raft-server-system-partition-1] RaftServer{system-partition-

raft-partition-group-system-0] Started

raft-partition-group-system-0] Starting server for partition PartitionId{id=1, group=raft}
1] RaftServer{raft-partition-
1] RaftServer{raft-partition-
1] RaftServer{raft-partition-
1] RaftServer{raft-partition-
1] RaftServer{raft-partition-

raft-server-raft-partition-

raft-server-raft-partition-
raft-server-raft-partition-
raft-server-raft-partition-

raft-partition-group-raft-3] Started
raft-partition-group-raft-3] Started
raft-partition-group-system-2] Started
raft-partition-group-system-2] Started
SCR Component Actor] Started

FelixStartLevel] Updated node 192.168.0.6 state to ACTIVE

FelixStartlLevel] Started
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[raft-server-raft-partition-
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- Transitioning to FOLLOWER
- Transitioning to CANDIDATE
1}{role=CANDIDATE} -
- Transitioning to LEADER
- Found leader 192.168.0.6

Starting election

- Transitioning to FOLLOWER
- Transitioning to CANDIDATE
1}{role=CANDIDATE} -
- Transitioning to LEADER
- Found leader 192.168.08.6

Starting election
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Performance in software-defined lloT-Edge communication networks 02

Q Itisimportant for the software-defined lloT-Edge network Service Communication Direction Priority Data Rate Latency Reliability Packet Loss Rate

to meet the performance requirements for the different “rotection traffic WTG - VPAC 1 76,816 bytes's 4ms  99.999% <10
data traffic types.

Analogue measurements  WTG — vPAC/ECP 2 225,544 bytesls 16ms  99.999% <1078
O These data traffic types are categorized into: Status information WTG — ECP 2 58 bytes/s 16ms  99.999% <1078
. . . . . eporting and logging ~ WTG — ECP 3 15KBevery10mn 18 99.999% <107
Q Critical, time-sensitive data traffic (protection,
control, Qng[ogue measurements, status /ideo surveillance WTG — ECP : 250 kb/s-1.5 Mbrs 18 99% No specific requirement
information, and data polling WPP services). Sontrolraffc VPAC — WTG I kspertubne  16ms  99999% <10
surveillance, and wireless network connectivity for ntemet connection Intemet — WTGIECPIPAC 3 1.GB every twomonths 60 min 9% No specific requirement

O&M personnel).
Offshore wind farm data communication parameters between the wind turbine
generators (WTG), the offshore hub-mounted data center components, and the Internet.

§§% Utrecht
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Performance in software-defined lloT-Edge communication networks

Minimize the maximum

drop in performance

Performance

A
yt)

Disruption

1/ f

Y +---

y.'_D =

maximum
drop in
performance

I

»

tr Time

At
time to recover from disrup

tN

full recovery

LEGEND

partial recovery

tR
At
Ym

y(t)
yrp

Vi

: time of disruption
: time of recovery to

: time to recover from
: minimum post-

: performance of system
: post-disruption partially

: post-disruption restored

steady state
disruption

disruption performance

restored performance

performance

§3& Utrecht

%ﬂ}§ University

InnoCyPES

Innovative Tools for Cyber-Physical Energy Systems

O Like any other communication network, the proposed SDN-
enabled lloT-Edge network is susceptible to stochastic
failures (random component failure, software glitches,
resource fluctuation, etc.) that disrupt service.

Q Offshore wind farms transmit critical, latency-sensitive data
samples through the proposed network hence we must
guarantee resilience in the proposed network.

d Objective:
O Investigate the dependability of the proposed network
O Buildresilience using RL approaches for zero-touch
networks (proactive network automation trends)

recovery

Minimize the time to




System Methodology

Developed a simulation testbed in collaboration with the TU
Delft Control Room of the Future (CRoF) team.

Using Mininet to simulate the proposed SDN-enabled lloT-
Edge network (running scripts to mimic the critical, latency-
sensitive data samples).

Using OpenDayLight SDN control with a flat distributed
architecture for workload balancing (flow management).

Using DDPG to design the resilience model that proactively
manages the network to guarantee swift response to
stochastic failures.
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Performance in software-defined lloT-Edge communication networks Moy

The effect of Switch Failures on Data Transfer Rates Over Time
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O The plot shows the effect of switch failureson WWWMWWWNW*W

data transfer rates over time, where the §

baseline throughput remains stable, but a %0'8

switch failure causes a significant drop in the < o6

transfer rate, leading to lower, fluctuating “é 04
performance thereafter. = W

0o Switch failure

o S ® ORI PO P PSPPI PSP OO PP S PP PP
00 Q(;!, & 0'\0 Q\q’ Q"'Q @'q' NG ()er 6;" & Q"‘Q Q"‘q’ N ()("Q Qq’ & Q“’Q 0“;" & &Q 60’ Qv Q“’Q 6‘;" N @Q @q’ &
& & $ & @ FF FFFFFIFFIFFFFFTFSFSTSTFSETHEFSS& S

Time

Plot of Transfer (GBytes) per second with 10% Packet Loss

12 A /\\ F |
. . M |\
O The plotillustrates the impact of 10% packet L I MA\{ V1AW i N N
loss on data transfer rates over time, where 2 | V [V WM il W) WV
. . S 10
the baseline shows stable performance, while 3 !
the network with packet loss experiences g oo
reduced and more erratic transfer rates. = o8 1l ‘W Al i\ (
| v\ \
Degraded Network U v ‘ /\’ \| U '
0.7 —— Baseline ‘ V J
—— 10% packet loss
@QQQQ @,@39 @@@ @Q\'Q @@Q @@Q @&@ @&r& @&a @@@ @@,}9 @&‘@ @&0 @Q&q? &&Q @&@ @60'9
Time

”% Utrecht

University



Reliability in software-defined lloT-Edge communication networks TInnoCyPES

O Thereliability of the software-defined lloT—Edge network
addresses architectural robustness, failover mechanisms, and
performance under stress conditions.

O Given that these networks are deployed in extreme
environments with unpredictable weather, there is a need to
deploy ruggedized equipment that can withstand the harsh
conditions of the offshore environment.

0 The network reliability and availability are constantly
affected, and, as a result, more advanced fast failover
recovery methods are studied to tackle the availability issues
by defining reliability or failure models and making inferences
from the model results to determine the availability.

§3@ Utrecht
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