Smart Grids supporting the Energy Value Chain

Theory and experiments

Seminar *The Future of our Energy Supply*Prof.dr.ir. J.G. Slootweg – Enexis, Eindhoven University of Technology

Enschede, October 18th, 2013

Agenda

- Introducing Enexis
- Enexis' vision for the future energy supply
- Contribution of Smart Grids
- Pilots and experiments
- Conclusions

Key figures Enexis

No. of employees: app. 4.200

Offices:

12, mainly in East-NL

Turnover (2012): 1.367 MEURO

Profit after taxes (2012):

229 MEURO

Service area Enexis

Electricity:

- ◆ 2,7 million connections
- ◆ 135,000 km MV / LV grid (50 kV –LV)
- ◆ 53,000 transformer cabinets

The future of our Energy Supply Enschede, 20 oktober 2013

Gas:

- ◆ 2,1 million connections
- ◆ 45,000 km HP / LP (8 bar 30 mbar)
- ◆ 25,000 stations

Organisation of the Dutch energy sector

Strategy Enexis

Mission Enexis

We do our utmost to achieve sustainable, reliable and affordable energy distribution.

Grid operation is a balancing act

Mission Enexis

We do our utmost to achieve sustainable, reliable and affordable energy distribution.

Agenda

- Introducing Enexis
- Enexis' vision for the future energy supply
- Contribution of Smart Grids
- Pilots and experiments
- Conclusions

Fossil fuels dominate energy consumption

TU/e Technische Universiteit Eindhoven University of Technology

Energy consumption in the Netherlands

Household consumption

- Electricity 10%

3.200 kWh

- Gas 48%

15.000 kWh (1500 m³ gas)

- Transportation 42%

13.000 kWh (1500 liter)

The road towards a sustainable energy supply

The energy transition is the transition from an energy supply relying on fossil fuels to an energy supply using renewable energy sources

Foundations of the energy transition:

- Produce energy from renewable sources
- Save energy by increasing conversion efficiency and reducing energy losses

Sustainable energy is abundantly available

Enexis's vision for a sustainable energy supply

Contribution of electricity will increase

- Most technologies for sustainable energy generation produce electricity
- Increased energy efficiency leads to substitution of gas and liquid fuels by electricity

Scale of electricity/energy production will decrease

- Make use of waste heat produced by thermal electricity production (difficult to transport)
- Low energy density of renewable energy sources

Controllability of electricity/energy production will decrease

Amount of flexible consumption will increase

Electrification of less time critical applications such as mobility and heating

Contribution of electricity will increase

- Most technologies for sustainable energy production produce electricity
- Increased energy efficiency leads to substitution of gas and liquid fuels by electricity **ENEXIS**

The future of our Energy Supply Enschede, 20 oktober 2013

Electrical vehicles increase efficiency

Source: European Union, 2006

TU/e Technische Universiteit Eindhoven University of Technology

Example 1: VW Golf Variant

- Battery capacity: 37 kWh
- Range: 150-200 km

- Top speed: 150 km/h
- Acceleration 0-100 km/h: ~7s

Example 2: Lotus Elise

- Battery capacity: 32 kWh
- Range: 200-250 km

- Top speed: 220 km/h
- Acceleration 0-100 km/h: <4s

Energy chains for powering mobility

Scale of electricity/energy production will decrease

Controllability of electricity/energy production will decrease

Amount of flexible consumption will increase

Electric vehicles:

- ◆ Electric vehicles stand still for 20 to 22 hours per day
- ◆ Charging the average daily driving distance in NL takes 2 to 6 hours
- Spreading 2 to 6 hours over 20 to 22 hours reults in flexibility

Heat pumps:

- ◆Temperature in a modern, isolated building is quite constant
- Within boundaries, heat pumps can be controlled without affecting temperature in the building too much

Agenda

- Introducing Enexis
- Enexis' vision for the future energy supply
- Contribution of Smart Grids
- Pilots and experiments
- Conclusions

Smart Grids -a definition

A Smart Grid is:

- An electricity network with technologies that make available information on the energy flows in the network
- and the state of its components
- and that allow control of energy flows in order to support the energy transition efficiently

energie in beweging

Smart Grids - an impression

Courtesy by Siemens AG PROD. NO. TAKE

Smart Grids supporting the future Energy Value Chain

Smart Grids support the future energy value chain by:

- ◆Enabling exchange of information between parties with repect to actual system balance/prices on the energy market
- ◆Enabling (sustainable) energy collectives
- ◆Balancing available flexibility and (forecasted) production of sustainable energy sources
- ◆Informing consumers about their consumption and cost
- ◆Enabling new commercial propositions and increased consumer choice

Agenda

- Introducing Enexis
- Enexis' vision for the future energy supply
- Contribution of Smart Grids
- Pilots and experiments
- Conclusions

Your Energy Moment (JEM) -Smart Grid Pilots Zwolle and Breda

Goal:

Mobilizing consumers' flexibility in electricity consumption

Required:

- Communication with consumers/participants
- Financial and emotional incentives
- Technologies (ICT)
- Interaction/User interfaces

Smart Grid pilot Breda

60 "energy neutral" family homes
Between Oosterhoutseweg and Cadettenkamp

Heat pumps PV panels

250 "CO2 neutral" appartments Ettensebaan

Combined Heat and Power – biomass fired Collective PV system

Smart Grid pilot Zwolle

Muziekwijk 266 family homes PV panels

Financial & emotional incentives

Consumer can shift the use of apliance during agreed timeframe: most optimal moment to use is determined by operator of demand side management

Optimal time slots are communicated to user 24hrs in advance

Consumer makes choices based on:

- Costs preferences
- Efficient use of locally produced electricity

Display interfaces

Zwolle:

huidige status huidige status totaal vandaag verbruik productie financiële momenten 12 13 14 15 16 17 18 19 20 21 22 23

Breda:

Ingredients

- Dynamic Energy Tariff (DONG, Greenchoice)
- Dynamic Grid Tariff (Enexis)
- Smart Meter DCMR 2.3 (Enexis)
- Smart Appliance (Aqualtis AQ113D 69 - Indesit)
- ICT (Technolution, Flexicontrol and CGI-Logica)

Smart Storage Unit/'Buurtbatterij'

Smart Storage Unit

The future of our Energy Supply Enschede, 20 oktober 2013

System design

MV-grid Controller LV-grid Power breaker switch PV PV -2-PV PV Storage Unit PV panels AC DC AC DC AC DC Primairy energy **Batteries** Digital interface

Internet connectivity

Inverters Batteries SSU

The future of our Energy Supply Enschede, 20 oktober 2013

Location: De Keen in Etten-Leur

Impression

The future of our Energy Supply Enschede, 20 oktober 2013

SSU: Inverters

2x 100 kW inverters

TUe Technische Universiteit Eindhoven University of Technology

SSU: Interior

A/C

Inverters

Battery strings

Smart Storage: Controller

Control SoC based on:

- Sun
- Wind
- Temperature
- Percipitation
- Decentral energy generation
- Load forecast
- APX
- ..?

More examples of pilots and experiments by/with Enexis

Smart charging of electric vehicles

Power Matching City Hoogkerk

 KRIS: cost reduction of MV/LV grid instrumentation through standardization

ENEXIS

Agenda

- Introducing Enexis
- Enexis' vision for the future energy supply
- Contribution of Smart Grids
- Pilots and experiments
- Conclusions

Conclusions

- A transition towards a sustainable energy supply is required
- This energy transition strongly affects electrical power systems:
 - Increasing role of electricity as an energy carrier
 - Downscaling electricity generation
 - Decreasing controllability of electricity generation
 - Increasing flexibility of consumption
- "Traditional" grids have not been designed to cope with these challenges
- Smart Grids are required to support a reliable, affordable and sustainable future energy supply
- Smart Grids pose significant technological and regulatory challenges

Our common future*

*Title of a report issued in 1987 by the World Commission on Environment and Development (WCED), generally considered to first ever put sustainablity on the global agenda

