Patch-based Finger Vein Recognition usingan Auto Encoder
PhD. Candidate: Tugce Arican(t.arican@ utwente.nl)

Supervisors: Raymond Veldhuis, Luuk Spreeuwers
University of Twente, Data Management and Biom etrics Group

Results

Evaluation is done on UTFVP dataset[3] by using 64 pixels

Introduction

Patch -based Finger Vein Recognition

Finger vein patterns are below the skin and can not be seen — pa.tCheS' Cosine sim iIari’.cy 's used to measure .thg
under visible light. So, they do not leave a trace, and it is difficult similarity between patch pairs.Image pair similarity is the
to alter or copy them, which adds to a biometric recognition average similarity of the remaining patch pairs.

system an additional security. Finger vein patterns have low contrast with the finger

background, and due to their sparsity, they are dominated by
global finger structures during training[4].
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Figure1: Finger vein recognition
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An auto encoder is trained to reconstruct its input through a
series of compression and de -compression operations. During
these series of operations, it learns a compact representation of
the input data, without the need of labeled data..
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(b) Patch level reconstruction Both the image pair similarity and the recognition
performance expressed in EER indicates the potential of

Figure4: Patch extraction and normalisation

B the patch-based approach.
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. ) Due to the sparsity of the vein patterns, not all of
G.rou nd —truth labels are hard to rea lise for Ia.rge The patch based method is sensitive to alignment errors. e eiEEE pEE s lnvelve weih iermerien, Tk
finger vein datasets. An unsupervised learning Therefore, these e"ogz’ rzh‘;‘rli'foge corrected before case is likely to increase false acceptance.
approach,such as Auto Encoder, could come in > ' CO”CIUSiOn &
_ handy in this case. Y, o o _ TRt
A sliding window approach is utilized in correcting the s A e 3 LNk
horizontal alignment between image pairs. - k
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[Sumiw) - sum(w2) 1000 Although the performance of the patch-based approach is
Cha”enges LW ——b . wi A behind the state-of-the-art, the sim plicity of it com pared to
. . oo SIREESS l oo PR " literature[1],[2],and the recognition performance expressed
Auto Encoders vs. Flnger Veins o I ) R in EER below 1% indicate the potential of the patch-based
e ) oneimeee T W e B o R approach finger vein recognition.
Auto encoders are good at capturing global structures of a (0 eeforeafgnment r— (d) Probe image after patch removal . . .
finger vein image such as joint shapes and illumination Because.ofthe simple vein patch reconstruction and
patterns, yet, vein patterns are not reconstructed well by 0 comparison scheme, the patch-based auto encoder
the autoencoder[4]. _ 100 approach holds a great potential for cross-database finger
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*Log-likelihood ratio classfier

informative patch -pairs based on an assumption
that in an imposter pair, non  -informative patch -pairs
are likely to have high similarity scores.

Figure3: Finger vein reconstruction with an auto encoder
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