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What are sparse data?

 We refer to sparse data
as a subset of the data

When an artificial neural
network consider to have
as an input sparse data?
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What are sparse training models?
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Can sparse training benefit from a data-efficient solution? How should the sparse training
models & sparse data interact? Can they possibly be simultaneously used to drive training
efficiency to the next level?
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Are the dynamic sparse training algorithms able to accommodate the hard-to-memorize
and easy-to-forget samples? To what extent can we find a subset of data that allows us to
overcome the catastrophic forgetting problem in sparse neural networks?
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Results
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Networks * We refer to sparse models
as being artificial neural
networks with a subset of
connections missing.
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Sparse tabular data

* Missing completely at random (MCAR) features

e \Various levels of data and model sparsities

e Static MLP has an Erdos-Rényi random sparse
initialization

Comparison
between a dense
MLP, a static MLP,
and SET-MLP
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Conclusions
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e Qurinitial results using data in an incomplete
observability environment showed a great
potential towards an impressive computational
reduction and an increase in the accuracy.

* These results are yet limited to one dynamic
sparse training algorithm (i.e., Sparse Evolutionary
Training [1]) and one dataset where the missing
completely at random features have been
simulated (Breast Cancer Wisconsin).

e Further theoretical considerations and empirical
results are currently under development to
generalize these results and support these
impactful claims.
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