4‘ University of Twente

Faculty of Electrical Engineering, Mathematics

k and Computer Science (EEMCS) Telematica

Instituul

Policy-based Handoffs acr oss | nter mediary
Multimedia Content Providers
in the Wireless I nternet

M alohat | brohimovna Kamilova

Thesisfor a degree of
Professional Doctor of Engineering

GRADUATION COMMITTEE: UNIVERSITY OF TWENTE

Prof. Dr. ir. E. Huizer (UT) Design and Analysis of Communication Systems
Dr.ir. I. Widya (UT) Architecture and Services of Network Applications
ir. C. Hesselman (Telematica Instituut & UT) Faculty of EEMCS

Dr. ir. H. Eertink (Telematica I nstituut)
TELEMATICA INSTITUUT

Enschede, the Netherlands
October 2004

Abstract

In the near future, the fringes of the Internet will consist of different types of wired and wireless
networks that are operated by different administrative authorities. Additionally, the growing
number of services available on the Internet enable a mobile host to receive these services
via multiple networks simultaneously, for instance when they roam into a hotspot.

In this research we consider the distribution of multimedia content through multiple content
aggregators over wireless Internet to mobile hosts. Aggregator is an intermediary content provider
that forwards the multimedia content from a source (e.g. cnn.news) to mobile hosts in a user-
friendly manner, i.e. different quality levels and prices. At some locations, such us in hotspots, a
mobile host can choose from different alternatives (i.e. quality, price) of this multimedia content
forwarded by different aggregators through different networks. These alternatives might change
for instance when user roams, which requires a user be able to handoff between aggregators.

We propose an application level policy-based control mechanism that enables mobile hosts to dedl
with (changing) alternatives automatically, therefore without burdening the user. The novelty of
this mechanism lies in the use of application-level policies, which determine when and how to
adapt the reception of multimedia content to changes in available (network) resources or
user preferences. Being equipped with these policies, the control mechanism enablesthe user to
roam across heterogeneous networks and aggregators, and receive the multimedia content in an
uninterrupted way.

We apply a policy-based control model, which is inspired by the IETF policy framework, in the
design and the prototype development of the control mechanism for the mobile host. We use
existing components of the mobile host that monitor the changes in the previousy mentioned
multimedia distribution environment. On command of the developed control mechanism, these
components initiate discovery and to handoff to one of the aggregators in the vicinity of the mobile
host. The prototype demonstrates the flexibility of policy based control and to a certain extent
validates the proposed policy model.

Preface

Thisresearch isajoint TWAIO project between the University of Twente and Telematica I nstituut
and is embedded in the PhD research project QUADAPT on adaptive distribution of live broadcast
in an Internet environment supported by wireless networks 'beyond-3G'. QUADAPT develops a
generic model for adaptive distribution of live Internet broadcasts, for example radio, TV and e-
cinema distribution, using distributed proxy stream servers and heterogeneous multicast-capable
wireless infrastructures. This TWAIO project focuses on the issues of smooth streaming of the
broadcast in a selected quality in accordance with the user preferences while user roams within
this environment. This research was carried out in Telematica I nstituut, where from the first day of
my work | felt avery warm and friendly atmosphere and a spirit of research that inspired me alot.

| feel very lucky to meet so kind and nice people that | would like to thank for their help during
my TWAIO course (atwo-years designer course).

First of al, | am grateful to my first teachers at the University of Twente Hans Daemen, Piet
Kommers and Henk Alblas for selecting me to participate in the EU project TRATMICT in 2000,
which opened me this opportunity to be a TWAIO student at the University of Twente in 2002-
2004.

During this project | enjoyed ateamwork with my supervisors Ing Widya, Cristian Hesselman and
Erik Huizer, and learned a lot from them. | would like to express them my sincere gratitude for
their kind support and generosity in teaching and encouraging me during this research. | am
thankful to them for being so much devoted to their work, for the long hours of discussions
analyzing the concepts, designing and developing the system, for their patience and kindness in
teaching me writing a good scientific paper. | learned from them how to work, which will guide
me in my future research. Due to this TWAIO project | have become rich for one more policy in
my life: if (you have such a great supervisors like | do) then (there is no doubt you will have a
success)!

I would like also to thank the Design and Analysis of Communication Systems group, the
Architecture and Services of Network Applications group and Telematica Instituut for giving me
the opportunity to carry out this research.

I would like to thank my colleagues from Telematica Instituut Hans Zandbelt, Remco Poortinga
and Arjan Peddemors for their help during the development of the prototype.

I am thankful to my friends Muzaffar Igamberdiev and Hans Daemen for their sincere friendship,
for encouragement on those days when | lost my hope and inspiration.

| would like to express my gratitude to my dear parents Oydin Hojieva and I brohim Gafurov, who
live in O’ zbekiston, for their endless love and support that | feel every step of my way even being
so far away from them, for encouraging me and staying by my side in difficult times of my life.
My special gratitude and love is for my sweet daughter Muhabbat Komilova, who with her
courage, patience and love made it possible for me to accomplish this TWAIO course.

Malohat I brohimovna Kamilova
October 2004, Enschede.

Table of Contents

F N 01 1 = o TP PP ii
PIEFACE ... ettt bttt R bRt R £ e e e e e e e Rt Rt Rt b e e Rt e Rt et e R e b neeebe b eneas iv
LI o) =0 @] 5 1= o (=SSP %
LISt OF FIQUIES. ...ttt ettt bbbt bbb bbbt b bbbt e bt b e e b et e e b e b e e enis Vii
1. NN I @ 110 L I 1 SR 1
11 ProbIEM SEBEEMENT ..o st et e e seeseesresseese e e eneeneenaeneesnens 1
12 F Y o] 0] (o TSP OE SO PRSP PTPRRPRTPPOTPRPIR 2
14 SErUCIUrE Of thE TNESIS.....ce ettt see e e 3

2. MOBILE STREAMING ENVIRONMENToooiiiiiiiciiiereee e e 4
21 Streaming via multiple CONtent aggregalorS........cuviueieerieereere e see s sre e e e eeesaesreas 4
2.2 Application level Protocol of the CORD SYSIEMcccviiiiiicieecece e e 6
221 [T o0V Y 6

222 L F= 1110 (0] 1 AU P PRSPPI 7

2.3 Channel configurations at AQQIrEgalOrS.......cueiueerueeiereeseeseereseeseeseesaeeseeeee e e sseeseessesseesseesses 7
24 AN 0open iSSUE iN the CORD SYSEIMc.uiiieiriieiriee et 8

3. POLICIES AND A POLICY MODEL ...coitiiiisitstiseeee et s see e 10
31 g1 0o 1 1 o o S 10
3.2 POICIES. ..ttt sttt ettt ettt b e ae et e et s et et et seeeEe R er e et e tenaenrenre e 11
321 0= 1T o o ST 11

322 Properties Of POlICIES.civiieeiriieee bbb 12

33 Policy specification @pPrOBCNES...........ccvvcieieee ettt 15
331 Ll = o o] o o SRRSO 15

332 PONAEY ...t h et ne b et eb e e e nn e 16

333 TRIMIL ettt b et e ekt b e e bt et e et e b e b bt b e e e et e e nnenrenreas 16

334 XML et e b e h e e bR bRt aE et e bRt eb e Rt eh e e e e nrenns 17

335 SUMMIBIY ..ottt e b e h bt e st e e e e ne e r e s bt er e s be e e e anesrennis 18

34 A POLICY MOTEL ... bbbt b e bt 19
341 A generic POLICY MOEooriiiiireee s 19

34.2 Application of the generic policy model in adistributed environmentcccccceeeeee 21

35 SUMMIBIY ..ottt et r bt h e e e e e se e Rt s bR e e e e e e e e se e r e neeen e e e e nenneerennis 23

4, THE APPLE SYSTEM POLICIES ...ttt see e sne 24
4.1 S0 (U= 01 £ 24
4.2 Policy-controlled HOSt BENAVIOTccveiieiieiecie ettt sneesne s 25
4.3 Policy classes of the APPLE SYSIEM........ccviieiieece ettt 27
431 DISCOVENY POIICY .uveiieiie ettt ettt e e st te e te e e eneeeraesseenteeteentenneesnnas 27

4.3.2 [=107 (61 oo T oy S 27

4.3.3 Goals and examples of the APPLE System POliCIES........cccceveeieereereese s 28

434 100 010 11T o SR 30

44 Specifying the APPLE System POliCIES.coiiiiiiiierceeee e 31
441 XML syntax for policy SPeCIfiCatioNccoccerireieririeise e 31

442 Examples of POlICIES TN XML ..o e 33

45 (000101 11 ') o S 36

5. THE APPLE SYSTEM ARCHITECTURE......cooiiiiitnirereee e 37
51 (0] 1001 01= 0| 7 ST RTPRTRRTIN 37
511 [0 T 0 A = 001 1 (oY 38

51.2 LS S 1= =T 38

513 ENVIFONMENE MONITOT.......cviiieiiiiieieecee et sttt s see e e e e neeseeneas 39

514 POIICY DECISION POINE.......cviiitiieiieierieeees bbb 41

515 Policy ENfOrcement POINTcocoiiiiririiineeres e 42

5.2 BBIAVION ... e bt E b sh bRt h e et e r e e 43
521 Scenario 1: User provides hiS preferenCeso cecieceesees e s 43

522 Scenario 2: User selects achannel to WatCh...........ccceeeeieiiriiiieee e, 43

523 Scenario 3: User roams into anew NEEWOIK..........cooeieeieiinine e 44

524 Scenario 4: User roams out Of the NEIWOIKcooeierieiirieeeeee e 45

53 REIGIEA WOFK ...ttt ettt b et se bbb b s it e b e e e e e e nnesbe e e 46
54 (000101 11T) o S 47

6. Y Y N N I PSS 48
6.1 SOFtWArE OFGANIZALION ...ttt ettt bbbt b e b et b e b b e e b sre e 48
6.1.1 The APPLE SyStem COMPONENES.........coiiiiieerieieiesieeeie sttt sre s sre e ene e 49

6.1.2 The CORD SyStEM COMPONENES.......coveeeiirieeeierieeeie sttt e b e e b e e b e e sbeseeneas 52

6.2 LIS 0= PP 52
6.2.1 [R0T= 4 T 1o TS 1= 7= o T 53

7. CONCLUSIONS.....cc ottt b st et b e st e e e s e ns e s e b e st anseseseenaenes 59
7.1 Conclusions anNd OBSEINVALTONS........c.ciuirieieiee et b et sre e 59
7.2 FULUNE WOTK ...ttt ettt bbbt b bt et se bbb b et e nne b e sre e 60
REFEIEINCES ...t bbbt bbbt b et e ae e e e s e e besae e b e e aeeas e e et e neeebenneeneenes 63
Appendix A ADDIEVIBLIONS. ..o e e nnaennee s 67
Appendix B EXAMPIES Of POIICIESc.viueciiiiieiirieee bbbt e 68
Appendix C Fragments from the implementation COTE............ocovririrrineree e 74
Appendix D XML Schemafor poliCy rEPOSITONYccerireeeririeienie ettt ene s 86
Appendix E PUBIICELTION ...ttt 88

List of Figures

Figure 1. Streaming via multiple CONtent 800regatorS.cuiireiririeereiereseeei s 5
Figure 2. Scenario With @ r08MING USEN.ciiiieiriiieierieiete sttt ittt a e e bt sa bt sb e b e e ens 5
Figure 3. Protocol interactions for discovery of channel configurations at aggregators.cceeeveeerereeenne. 6
Figure 4. Typical protocol interactions for handofT. ..o 7
Figure 5. Channel configurations at aggregators, SPecified in SDP. ..o 8
Figure 6. Controlling Entity and Controll@d ENLILY.coeeieiirireineneeeneseeese e 11
Figure 7. The APPLE system controls the CORD system using POliCIES.ccovvvevieieeveeve e 12
Figure 8. Palicy hierarchy and refinement [25].c.cooeieeiieeiiere e nre e 13
Figure 9. A generiC POlICY MOUEL...........oceiiieecece et te e sae e e e sneenneenreens 19
Figure 10. Notification model of interactions between PDP and PEP............ccccco e 20
Figure 11. Polling model of interactions between PDP and PEP. ... iie v 21
Figure 12. Placement of the policy model componentsin the network nodes [RFC 2753].........ccccccveveninnne 21
Figure 13. Policy Implementation MOGE! [27].c..ceiiriiiireese ettt 22
Figure 14. WLAN and UMTS policy domains integrated under the same Operator..........cocoveerereeerieneenens 23
Figure 15. High level behavior of the Mobil@ hOSt ..o 25
Figure 16. Make-before-break strategy during the handoff State...........cccevvereieninninieee e 29
Figure 17. Graphical representation of the XML schemafor the APPLE policCies.........ccocccviniininncnenns 33
Figure 18. The structure of the example diSCOVErY POLICY......ccvevuviceiiiereeir e 34
Figure 19. The structure of the example handoff POIICYccevue e 34
Figure 20. Discovery policy markup With XIML.ccueiioiieiice e s ne e 35
Figure 21. Handoff policy markup With XIML.........cuecieiieicece e 35
Figure 22. Architecture of the PoliCy-based SYSEM ... 37
Figure 23. EXamMpPle USer INTEITACE.vceeceeee ettt ettt s sae s re e sneenneenreens 39
Figure 24. Components of the EnVironment MONITO............cccoiiiiiiiene s 40
Figure 25. Behavior of the mobile host when user preferences are provided...........ccoeveevenceiincncnenens 43
Figure 26. Behavior of the mobile host when user selects achannel............ccceereineneiienciseeee 44
Figure 27. Behavior of the mobile host at entering the hotSPOLcccoveiiiicicee e 44
Figure 28. Behavior of the mobile host at leaving the hotSPOLc.coeveiiiriie e 45
Figure 29. Implementation OrganiZation............ccoereererieeriereee sttt b e bbb sreseenea 48
Figure 30. User preferences structure stored in the MEMOTYcccoviieieerie e 49
FIQUre 31. A POLICY SETUCKUI.....ccueeiee ettt ete et et et e et e s e s e s e e saeeteeaeeesaessaeseenseensesneesnnesneesseanseensenns 50
Figure 32. THe @VENTE SLIUCLUIE.oove ettt s te et e e e et e st e e e enteeneessaesnnesnnesneenseensenns 51
Figure 33. The deCiSION SITUCLUIE.coiieieeie e eestee et ste e eesae et e et eesaestaeste e teensesneesnnesneesseensaensenns 51
LT[7 I i o= 52
Figure 35. Roaming user SCeNario 0N tESIDEA.ccoiiiiiiiieee e 54
Figure 36. Server side software running at the aggregator SEIVEScocerireineneene e 54
Figure 37. User selects achannel to WaCh & POINT A.c.oiviiiiiiireere et 55
Figure 38. User iSCoNNECtEd @l POINT A......oouiiiiiriiieierieriet ettt ettt et se e b et b e e b e e b b sneneas 55
Figure 39. Handoff to a better alternative at POINt B.cccoieiiiriiiiereese e 56
Figure 40. Handoff to available alternative at POINt C.........ooeiierieiienieereneerie et 56
Figure 41. User changeS NiS PrefEreNCES.........couiiiieiecee et st st ste e te e e st e st e e aesaesnaesneesneenseenseens 57
Figure 42. Handoff to the gold qUality [EVEL...........cce e s 57
Figure 43. Handoff to a better alternative al POINt D.c.cocveieeiieii e nee s 58

Figure 44. RemOte POliCY FEPOSITONY.ecveiierieeieeieseesieeseesteesteeeeseesseesseesteestesseesseesseessessesnsesseesseasseensenns 61

1.

11

INTRODUCTION

In the near future, the fringes of the Internet will consist of different types of wired and wireless
networks that are operated by different administrative authorities [1]. Additionally, the growing
number of Internet services enable a mobile host to receive these Internet services via multiple
networks simultaneously, for instance when they roam into a hotspot. This thesis addresses the
challenges of having alternatives of multimedia content providers and wireless networks at
hotspots.

This chapter is structured as follows:

Section 1.1 describes the problem statement, Section 1.2 presents the approach taken in thisthesis
to solve the stated problem, gives a short discussion on the work related to the techniques used in
the selected approach and discusses the novelty of our work. Section 1.3 outlines the structure of
this thesis by presenting an overview of chapters.

Problem Statement

In this report, we consider the distribution of real-time multimedia content (e.g. radio or TV
broadcasts) through multiple aggregators. An aggregator is an intermediary content provider that
aggregates content from a source and forwards it to a mobile host [2,3]. The aggregator packages
content into channels (e.g. CNN radio or BBC news) and offers them in various versions (e.g.
using different encodings) that differ in quality or price. The mobile host may receive these
channels via the wireless Internet, which consists of multiple types of wireless networks (e.g.
802.11 and UMTYS). At specific locations, the mobile host can connect to multiple networks
simultaneously (e.g. in a hotspot). As a result, it can potentially receive different alternative
versions of a channel from different aggregators through different interfaces.

An important feature of this environment is that mobile users can switch from one aggregator to
another while they are receiving a channel. The reason for that can be roaming of the user within
this environment as well as changing user preferences. For example, the price of the channel
version might be expensive for the user, so he might switch to the aggregator that provides the
same channel for a cheaper price or the quality of the channel version the user receives might be
not satisfactory, so the user switches to the version of this channel with a better quality level; or
an aggregator disappears as a result of roaming etc. Switching between aggregators are similar to
handoffs between base stations, except that they occur at the application-level rather than at the
network or I1P-level.

A generic research question in such an environment is how to maintain or adapt the service
continuity?

One of the systems developed for the above mentioned environment, is the CORD system [2-4],
which enables mobile hosts to discover available aggregators in the vicinity of the mobile host, to
connect to aggregator and to switch from one aggregator to another. This system puts the
responsibility of switching to another aggregator with the mobile host and uses standard IETF
protocols, notably SIP [5] and SDP[6].

Page 1 of 102

12

An open issue in the CORD system is that it does not provide a (flexible) mechanism that enables
mobile hosts to automatically invoke discovery of available aggregators, to select the best
aggregator, and then to switch to that aggregator. Such a mechanism is important, because the
complexity of the infrastructure (in terms of aggregators and networks operators) should be
shielded off from the user to improve user-friendliness[7].

Therefore the detailed research question is:

When to discover alternatives of a media channel and network connectivity;

how to select amongst these alternatives the best version of a multimedia channel, which matches
service facilities, network capabilities and user preferences;

and how to switch to the selected alternative transparently to the user?

The aim of this work is to develop a flexible mechanism to ensure service continuity and
adaptation, in particular, to enable the mobile host to automatically select the best one among
dternative aggregators, offering the same service with different quality or price through
different wireless networks.

Approach

In this research, we follow a policy based approach and propose an Application Level Policy-
based Handoff Control System (the APPLE system) as a controlling entity for the CORD system,
which enables mobile hosts to automatically invoke discovery of available aggregators, to select
the best aggregator, and then to switch to that aggregator.

Policies are “if-condition-then-action” rules that can be used by a controlling entity to constrain
(i.e. adapt) the behavior of a controlled entity in a way that the behavior of the controlled entity
becomes aligned with the goal of the policy [10, 11]. Policies provide flexibility [12-16], i.e. the
conditions and actions of the policies can be flexibly changed without modifying the controlled
entity. Policies are considered useful when the system has alternatives to choose from [17]. A set
of alternatives can be constrained by policies in accordance with the user defined guidelines (i.e.
price, quality etc.). Policies can be downloaded into the mobile host at run time, because they can
be maintained in a repository. This enables reconfiguration of control with new policies in a
flexible manner, see also [18].

Policies are defined in the literature in many different ways. Therefore we follow the following
approach: First we investigate the literature and analyze those policy-based systems. Then we
propose a policy model and afterwards we use this model in the design of the APPLE system.
The design of the APPLE system may therefore be viewed as a kind of validation of the proposed
model.

In this report, we largely follow the IETF's policy model [11, 18]. The IETF's policies are
typically used at the network-level for network management purposes, but we use policies at
application level for control purposes, particularly to control the mobile host in automatically
switching between aggregators.

Known systems for Internet service control can be considered as policy-based and non-policy-
based systems, according to the approach they have applied. Policy-based systems typically use
network level policies rather than application level policies. For example, Murray et al. [19] and
Wang et a. [17] use network level policies to determine which network (operator) provides the
best service. Wang et al. [17] select the best network based on the user preferences. Murray et al.
[19] select the best network for a mobile host based on the current load in overlay networks. In
both of them [17, 19] handoff istriggered by policies.

Non policy-based system (e.g. Clark et a. [20] and Lee et a. [21]) take a different approach to
determine the best service, which instead of policies use algorithms. Lee at al. use an input from a

Page 2 of 102

14

prediction function, network level information, application level information (i.e. identities of
running applications) and user preferences to automatically select the best network/service for the
mobile host. In their work, handoff from one network to another is triggered by this selection
agorithm.

The novelty of our policy-based system is that it uses application level policies to automatically
trigger discovery of aternative aggregators, to select the best one and to switch to selected
aggregator, thus providing service continuity from the user perspective.

Structure of thethesis

Thisthesis consists of 7 chapters, where we describe our work and the issues have been dealt with
throughout the research process. The structure of thisthesisis as follows:

Chapter 2 describes the CORD system and the mobile multimedia streaming environment for
which an Application level Policy-based Handoff Control System is designed.

Chapter 3 discusses the concepts around policies based on the literature and their application in
communication networks. We aso discuss the properties of policies and policy specification
approaches. Furthermore, we discuss a generic policy model that is commonly used in policy
research community.

Chapter 4 describes the process of designing and introducing policies into the APPLE system.
The section also provides examples of policies and a description of our approach in specifying
those policies.

Chapter 5 presents the architecture of the APPLE system. We aso discuss the related work in
policy based control, handoffs in heterogeneous networks and automatic service selection.

Chapter 6 explains the implementation phase of the research and the results obtained on the test
bed.

Chapter 7 gives the conclusions of this thesis and recommendations for future investigation in this
research area.

Page 3 of 102

21

MOBILE STREAMING ENVIRONMENT

This chapter presents briefly the CORD system that enables live-multimedia broadcast [2-4]. It's
purpose is to provide a better insight in the requirements of the controlling entity, i.e. the APPLE
system introduced in the previous chapter.

This chapter is structured as follows. Section 2.1 gives and overview of the CORD system and its
environment. Section 2.2 explains a Lightweight Application Level Protocol of the CORD system
and its interactions. Section 2.3 discusses how a channel configuration is specified in this
research. Section 2.4 discusses an open issue in the CORD system, the issue that is a challenge of
the current research.

Streaming via multiple content aggregators

Hesselman et al. [2-4] consider an environment that consists of application-level service providers
that deliver real-time multimedia content (e.g. radio or TV broadcasts) to mobile hosts in the form
of channels (e.g. CNN News). Two types of providers are distinguished in their work: content
sources and content aggregators. A content source is the origin of one or more channels and
distributes them to mobile hosts via one or more content aggregators. A content aggregator
operates a pool of proxy streaming servers (Figure 1) and offers channels in a way suitable for
wireless links and the limited capabilities of mobile devices, possibly by processing (e.g.
transcoding [22,23]) the streams it receives from sources. As a result the users will be able to
make use of a wider range of competitive offers from different aggregators via network providers,
which have special agreements with these aggregators.

The proxy-like distribution scheme via aggregators increases scalability in the absence of IP
multicast [24], which is important when channels need to be distributed to a potentially large
number of receivers.

Figure 1 shows an example in which source cnn.com® distributes video channel CNN News via
aggregators. stream-it.com and multimedia-forward.nl. User Bob receives CNN News either from
media-forward.nl through the UMTS network of network operator connect-you.nl, or from
stream-it.com through the 802.11 network of Twente.railway.nl. The solid line between stream-
it.com and Twente.railway.nl indicates that stream-it.com is only available through the 802.11
network. Similarly, media-forward.nl is only available through the UMTS network.

An aggregator can deliver its channels in different versions (see [22,23]). This enables it to dea
with different user requirements (e.g. pertaining to cost or quality) and to serve different types of
hosts that connect to the Internet through different types of wireless links. We refer to the
description of aversion of a channel as a configuration of a channel. Each aggregator supports its
own set of configurations of a channel. For example, in Figure 1 stream-it.com could support
various high-quality configurations of CNN News channel (e.g. in ‘TV’ quality), while media-
forward.nl could only support medium-quality configurations of the same channel (e.g. in
‘videophone' quality). Mobile hosts can thus receive the same channel from different aggregators
at different configurations, possibly through different interfaces (e.g. between points B and C in
Figure 1).

! The domain namesin this paper are for illustrative purposes only.

Page 4 of 102

medaforward’s

UMTS coverage
comeclyou.nl

streamit.com videophone quality

802.11 coverage
Twente.railway.nl

mulimedid
streams

L.I cnncom

multimedia, s
streams A~ A

medaforwardnil D =
CNN News, between B and C
CNN News, between A and B, and beyond C
agreement ——
RF coverage of networ k operator s
movement \JAPp
handoff/adaptation point '

Figure 1. Streaming via multiple content aggregators

Hesselman et a. have developed the CORD system for the above mentioned environment. The
CORD system enables mobile hosts to discover aternative aggregators that mobile host can
reach, to connect to an aggregator and to handoff from one aggregator to another. The CORD
system puts the responsibility of switching to another aggregator with the mobile host. The
challenge in this environment is to maintain multimedia streams despite events that force mobile
hosts to switch to another aggregator. When the user roams, the set of available configurations of
achannel at the aggregator as well as the set of available aggregators and network operators might
change. Mabile host must deal with these changes automatically and preferably transparently to
the user. For example, consider the scenario shown in Figure 2:

The quality of the -Ir?ﬁ\slt'rdeo (I:L'p

. . N eam g
video is getting better! is greet!
My terminal must havey ; ’

_ found aWLAN

I’marriving to my
office. My terminal will
automatically switch to
the gold quality
level

Figure 2. Scenario with a roaming user.

In this scenario, assume that Bob is coming from Utrecht to his office. He watches a video clip in
the train (point A). His terminal is connected to the UMTS network. When the train enters the

Page 5 of 102

2.2

221

train station area, the mobile terminal detects WLAN and switches smoothly to the WLAN
interface without interrupting the video clip. Bob notices that the quality of the video clip became
better (point B).

When Bob moves to the direction of his office, the WLAN at the train station becomes out of
reach and his terminal switches back to the UMTS interface without disrupting the video clip.
When Bob comes close to his office building, office WLAN becomes available to his terminal
that will be automatically switched to the WLAN interface again, because it offers a better version
of the same channel that Bob is watching.

During the entire trajectory, Bob's terminal adapts to Bob's movements and tries to provide
uninterrupted video streaming. Bob only needs to provide his preferences (e.g. quality, price), and
therest is taken care by the mobile terminal itself. Bob's terminal selects the service according to
the Bob's preferences in price and quality level, that of course should match with the available
resources, such as available networks, available configurations of the selected channel, mobile
terminal’s local resources. To create such a self-controlling flexible system, we need a controlling
mechanism for the CORD system. Because, the CORD system enables a mobile host to discover
available aternative aggregators in the vicinity of the mobile host and to handoff to one of the
aternative aggregators, but not yet flexibly, neither doesit take user preferences into account. The
controlling mechanism (the APPLE mechanism) , which will be developed in this work, provides
this flexibility and additionally includes control based on user preferences.

The CORD system realizes discovery and handoff by means of a lightweight application-level
protocol that builds on the Session Initiation Protocol (SIP) [5], which is an Internet standard.
Section 2.2 discusses this lightweight application-level protocol in more detail.

Application level Protocol of the CORD system

The application-level protocol makes use of SIP transactions and SIP headers. The protocol has
discovery and handoff service elements.

Discovery

Discovery service element enables a mobile host to request for configurations of a channel
available at the aggregators it can reach. Figure 3 shows the protocol interactions when Bob's
mobile host is querying media-forward.nl and stream-it.com at point B of Figure 1 to check which
configurations of CNN News channel they support.

Mobile

media-forward.nl stream-it.com
Terminal

CONFIG REQUEST
CONFIG REQUEST |

CONFIG RESPONSE
CONFIG RESPONSE —>

N
—

Figure 3. Protocol interactions for discovery of channel configurations at aggregators.

Bob’s host sends a configurations request CONFIG REQUEST to stream-it.com via its 802.11
interface (twente.railway.nl), and a request to media-forward.nl through its UMTS interface

Page 6 of 102

222

2.3

(connect-you). The aggregators respond to the mobile host with CONFIG RESPONSE, which
contains the list of available configurations of the requested channel.

Triggersfor discovery of alternatives

A mobile host may invoke the protocol for discovery when it is looking for a ‘better’
configuration of the channel it is receiving, for example when it moves into a subnet, where an
aggregator with a better configuration may appear. The mobile host may also invoke the protocol
for discovery when the user moves out of a subnet, which means that current aggregator may
disappear, consequently the mobile host needs to discover an alternative aggregator to continue
streaming. Other triggers that may invoke the protocol to make discovery of alternatives are the
assignment of a (new) IP address to one of the host’s network interfaces (e.g. to Bob’s 802.11
interface at point B), increasing packet losses or decreasing of the signal strength on the network
interface (e.g. at point C) and a change in user preferences.

Handoff

Handoff service element of the protocol comes into play, when the mobile host performs handoff
from one aggregator to another. Handoff is performed by connecting to the corresponding proxy
streaming server of the aggregator to which handoff is being executed. The Figure 4 shows the
protocol interactions when the mobile host hands off to media-forward.nl by sending a
DISCONNECT REQUEST to stream-it.com and a CONNECT REQUEST to media-forward.nl.

media-forward.nl stream-it.com Mobile Terminal

DISCONNECT REQUEST
-
DISCONNECT RESPONSE

CONNECT REQUEST

<

CONNECT RESPONSE

N

Figure 4. Typical protocol interactions for handoff.

The aggregator media-forward.nl sends CONNECT RESPONSE and begins to stream using the
configuration of the channel selected by the mobile host. From this moment the mobile host
continues receiving the same channel, being handed of to media-forward.nl (e.g. Figure 1, point
C). The handoff between the aggregators. media-forward.nl and stream-it.com is similar to a
handoff between base stations or access routers, except that it occurs at the application level,
rather than at the network level or IP-level. We call it an application level handoff, because
aggregators are application level entities and the handoff is executed from one configuration of
the channel to another configuration of this channel, so it is a handoff between different
configurations of the same channel. In the next Section we describe how we specified channel
configurations.

Channel configurations at Aggregators

To provide flexibility to the users, aggregators need to be able to serve different types of mobile
hosts that connect to the Internet through different types of wireless networks. Besides,

Page 7 of 102

24

aggregators need to be able to deal with different user requirements regarding price and
perceptual quality. For this reason, each aggregator supports a number of configurations of a
channel that differs from the set of channel configurations offered by another aggregator in price
and quality. This enables a mobile host to receive the same channel in different versions
(supported by different configurations of a channel) through different aggregators and therefore
the users can choose from a range of competitive offers. Therefore, the users might want to switch
from one aggregator to another while they are receiving a channel. For example, the price of the
channel configuration might be expensive for the user, so he might want to switch to another
aggregator that provides the same channel configuration for a cheaper price. Another example is
the quality of the channel configuration the user is receiving might be not satisfactory, therefore
the user might want to switch to another channel configuration with better quality level etc.

In this research, we used the Session Description Protocol (SDP) [6] as a language to specify the
configurations of a channel. These configurations are conveyed in the payload of SIP messages,
sent by an aggregator to a mobile host, i.e. CONFIG RESPONSE in Figure 3.

Figure 5 illustrates an example of configurations of a CNN News channel, supported by stream-
it.com and media-forward.nl specified in SDP.

CNN_News@stream-it.com.sdp

nrvi deo 10000 RTP/ AVP 31

a=rtpmap: 31 H261/ 90000

a=fntp: 31 price=45; quality=90; franerate=30; bitrate=1024
a=fntp: 31 price=35; quality=75; franerate=25; bitrate=512
a=fntp: 31 price=25; quality=50; framerate=20; bitrate=256
a=fnmtp: 31 price=15; quality=25; framerate=15; bitrate=128

CNN_News@media-forward.nl.sdp

nmevi deo 10000 RTP/ AVP 32

a=rt pmap: 32 H263/ 90000

a=fntp: 32 price=50; quality=70; franerate=20; bitrate=512
a=fntp: 32 price=40; quality=40; franerate=15; bitrate=256
a=fntp: 32 price=30; quality=20; franerate=10; bitrate=128
a=fntp: 32 price=20; quality=10; framerate=5; bitrate=64

Figure 5. Channel configurations at aggregators, specified in SDP.

Each line starting with “a=f m p” together with the line starting with “a=r t pmap” in Figure 5,
specifies a configuration of a channel. Therefore, in the example of Figure 5, there are eight
configurations of the CNN News channel are specified, four of them are supported by stream-
it.com and four of them by media-forward.nl. A configuration of a channel specifies QoS
parameters, i.e. framerate (a value representing the number of frames one second of media stream
contains), quality (a relative value in % representing e.g. the number of pixels in one frame),
bitrate (a value in kbps representing required bitrate for this media stream). It also specifies its
price (in cents per minute). As you can see from Figure 1, in the hotspot between points B and C
the user has a choice of eight different configurations of the same channel, because in the hotspot
the mobile host can reach both aggregators.

An open issuein the CORD system

An open issue in the CORD system, is that it does not include a (flexible) mechanism that enables
mobile hosts to automatically invoke discovery of available aggregators, to select the best
aggregator, and then to switch to that aggregator. Such a mechanism is important, because the

Page 8 of 102

complexity of the infrastructure (in terms of aggregators and networks operators) should be
shielded off from the user to improve user-friendliness [7].

In this research we designed an Application Level Policy-based Handoff Control System (the
APPLE system) for the CORD system. The APPLE system is designed as a controlling entity for
the CORD system. The APPLE system uses policies to flexibly control the CORD system when
to discover and how to switch between aggregators in order to achieve service continuity and
service adaptation. In addition, the APPLE system selects among discovered alternatives of the
channel configurations the best, which matches user preferences, network capabilities and service
facilities.

Design of the APPLE system will be described in Chapter 4 and Chapter 5. First, in the next

chapter we address the concepts of policies and a policy model that we used for design of the
APPLE system.

Page 9 of 102

31

POLICIESAND A POLICY MODEL

As discussed in Chapter 2 the CORD system requires a flexible mechanism to enable a mobile
host to adapt to environment changes (e.g. due to roaming). We follow a policy-based approach to
design and devel op such a mechanism (i.e. the APPLE system). This chapter reports our literature
study on policies and policy models. It is presented in a way containing our interpretation and
useful in the design of the APPLE system. The readers who are familiar with policy systems may
skip reading this chapter and directly read Chapter 4.

This chapter is structured as follows: Section 3.1 gives a brief introduction on effortsin the policy
research community on defining the concepts for policy-based systems. Section 3.2 elaborates on
the concept of a policy. Section 3.3 describes a generic policy model commonly used in
communication networks.

Introduction

Our research is towards designing a mechanism for the CORD system that would control the
behavior of the mobile host, so that it maintains the multimedia streaming while user roams
across overlay networks. Our approach is to use policies to achieve this control over the mobile
host.

Policies are commonly used in network management area to control or to manage a system.
Policy-based control and management is considered more flexible, because the systems can adapt
to the rapid changes in the environment, in management area for instance by run-time
reconfiguration, without re-engineering [12,25,26].

The literature however shows that policy-based control and management is till a research topic.
The meaning of the term “policy” is not clearly defined yet, nor consistently used by different
authors and communities (i.e. ITU, IETF, DMTF and OMG) [25]. Although, there are strong
similarities in the concepts and techniques used by the different communities, there is no
commonly accepted terminology or notation for specifying policies [26].

In this research, we focus on the policy based control of the behavior of the mobile host. Similar

to policy-based management systems, a policy based control system typically contains a
controlling entity and a controlled entity (Figure 6), see aso [25].

Page 10 of 102

3.2

321

Controlling
Entity

enforces
policy decisions

Controlled
Entity

Figure 6. Controlling Entity and Controlled Entity.

The controlling entity controls the behavior of the controlled entity using policies. Polices under
certain predefined conditions enforce policy decisions on the controlled entity (Figure 7). In the
following Section we discuss the definition of policies, their properties and specification.

Policies

Definition

The literature shows that different authors give different definitions for the term “policy”. For
example:

- “Policies are administratively prescribed rules that specify actions that have to be performed
in response to defined criteria” [27];

- “"Policy rule is the binding of a set of actions to a set of conditions — where conditions are
evaluated to determine whether the actions are performed” [11].

- “"Policies are rules governing the choices in the behavior of the system” [12];

- “A Policy is formally defined as an aggregation of policy rules each of which has a set of
conditions and a set of actions’ [25];

- “Management policies describe the rules that must or may be applied to active nodes in order
to force adesirable service quality” [28];

From these examples we can conclude that a policy isarule. We adopt the concepts of IETF [11]
and follow IETF's policy model [18], which however focuses on admission control policies at
network level. Therefore we also generalize the concepts towards their use in the control area at
application level. Our description of apolicy is therefore as follows:

Policy isa rule that describes Actions to be taken when certain Conditions happen.

The action part of the policy determines a desired behavior of a system, typically represented by
the controlled entity. The condition part of the policy defines a condition under which this desired
behavior should be enforced.

In our work, policy conditions contain changes in packet loss, signa strength values on the
network interfaces of the mobile host, dynamical assignment of a new IP address to a network
interface of the mobile host during roaming and availability of a better aternative configuration
of a channel among discovered ones etc.

The action part of the policy may determine a decision to accept or reject a service request. In
general, the action part of the policy may also contain the decision to fetch other policies from a
policy server [13,27] or to evaluate some other policies. Because actions of a policy may result in
some post conditions which match with the conditions of other policies, therefore causing a
chaining effect of policy actions [25].

Page 11 of 102

3.2.2

Similar to the literature in the management area [18,25,26], we can refine the description of a
policy by introducing a new element, i.e. a policy goal. A policy goal describes the intention
strived by the policy actions. The goal of a policy in our system will reflect what we want to
control in the behavior of the mobile host. Therefore, we can define a policy as

an if (condition) then(action) rulewith a goal .

In the literature, especialy in the management area, other elements of policies besides goals,
conditions and actions, have been introduced, for instance policy targets (entities where the
actions are enforced), policy subjects (entities where conditions are evaluated) and triggers
(entities that initiate the evaluation of the policy conditions) [16,25,28,29]. Since our controlling
and controlled entities both reside on the mobile host and the mobile host is the only entity of our
design concern, we do not include subjects and targets in our policy definition.

In our policy based system, policy decisions, i.e. the actions are enforced on the controlled entity
by controlling entity. The controlling entity is the APPLE system and the controlled entity is the
CORD system. Therefore, Figure 6 applied in our case can be seen as shown in Figure 7:

A
APPLE

enforces
policy decisions

CORD

Figure 7. The APPLE system controls the CORD system using policies.

Properties of policies

Policies are widely used because of their advantageous properties, however they also have some
disadvantages. In this Section we summarize these properties, i.e. persistency, flexibility,
hierarchies, types, classes and conflicts.

Persistency

Policies are persistent and meant for persistent monitoring of system’s behavior [25,26].
Therefore, policy based control differs from the one-shot if-then or event-condition-action (ECA)
commands, used in state machine specification or agent based systems [30]. ECA commands will
result in an immediate action being taken by a system, but once the action is taken the command
has been completed and often stops to exist, whereas policies control the system’s behavior
during its lifetime persistently. This means that policies continuously affect the behavior of the
system, until they are revoked or replaced by other policies. This aso implies that policies
continuously monitor the system’s or its environment’s behavior [e.g. 12].

Flexibility

Flexibility of policies is the most important reason why many researches tend to use the policy
based systems. Because policies help to flexibly control the system in dynamically changing
environment. By applying policies the system’s behavior can be adapted to the environment
changes. Introducing new policies into the system may result in a system’s new observable
behavior.

We distinguish three forms of flexibility that may exist in the policy based systems:

Page 12 of 102

- adaptive behavior of the system: because a set of actions (i.e. policy decisions) is
determined by a set of conditions, which reflect different situations;

- flexible control of the system's behavior: because the conditions and the actions (i.e.
policy decisions) can be tuned at runtime. Therefore the behavior of the system can be flexibly
atered by dynamically updating the policy rules [see aso 14].

- flexible evolution of the system: because new policies can be introduced (e.g.
downloaded) while the policy based controlled system is in operation. Therefore, a policy based
system is flexible as it does not require stopping or reengineering after new policies have been
downloaded into the controlling entity.

Policy hierarchy and refinement

Depending on how policies are presented, what level of details they provide, they can be placed
in different levels of abstraction [15,25]. In this way, we can observe a policy hierarchy. Benefits
of this hierarchy is that administrator can easily control the system, defining high level policies,
which are interpreted by the policy-based system into low-level machine executable policies.

An illustration of policy refinement from abstract policies into concrete policies is presented by
Cox and Davidson in [25]. They give an example of a possible policy hierarchy by the following
picture:

ﬂ human friendly = managenent nust do ensure the
(man-readable, equipment-independent, performance on the network
network-wide)
equipment-independent => bandwi dt h managenment must on Uil > 70%

- (machine-readable, equipment-independant, do increase VP by 10% on network
@ network-wida)
5
= equipment-specific = [VP_tuner_01] must on Wil > 70% do
s {machine-readable, equipment-cependant, increase VP by 10% on | owmQS VPs
o individual)
]

executable = [VP_tuner_01] nust on util > 70% do

(machine-executable, equipment-dependent, increase VP by 10%on (VP1, VP2, VP3)

individual)

Figure 8. Policy hierarchy and refinement [25].

Human-friendly policies represent the highest level of the policy hierarchy shown in Figure 8. On
this level policies are expressed in a form easy to read for humans, abstracting from network
equipment details, the lower level and equipment specific information. The example on the right
sideis a human friendly high level abstract policy.

Equipment-independent policies are network-wide applicable and abstract from the equipment,
but not easy to read for humans. The example on the right side illustrates the refined policy that
contains lower level details, such as bandwidth management, Util (i.e. utilization) and VP (i.e.
virtual path).

The lowest level in the hierarchy shown in Figure 8 accommodates executable policies —policies
with the actions to execute a code in atarget system (i.e. the controlled entity, Figure 6).

In conclusion, policy hierarchy can be considered as a means to hide the system complexity by
bridging the gap between the high level (administrative, business or other) goals and network
level configuration [26]. Having high-level user friendly policies a policy-based system provides
the network administrator a simple high-level view of the complex low-level policies.

Page 13 of 102

Even in a non-hierarchical policy-based system, the policy goa which reflects higher level aim,
can be used to select the relevant policies for specific situations.

Policy classes

Policies can be classified according to their goals. Policies of different classes therefore differ
from each other by their use (usage area) or intent. In policy based systems, the control can be
performed by several interleaved and simple (i.e. not complex) policies, each of them classified in
respect to a concern.

Cao and Sloman [12] describe two classes of policies found in the adaptive systems:
management policies and security policies. Management policies are related to the network
management, for example resource alocation strategy for a particular user. Security policies
contain authorization policies that are used to define what services or resources can be accessed
by user etc. PCIM [31] defines policy classes that can be used for different purposes:
Motivational, Configuration, Installation, Error and Event, Usage, Security and Service policies.
OMG permits only two classes of policies— Initialization policies and Validation policies [25].

In our system, we define two policy classes. Discovery and Handoff. More details can be found
in Chapter 4.

Policy types

ODP' s enterprise viewpoint introduces the following types of policies[25,32,33]: Permission,
Obligation and Prohibition. According to the ODP Reference Model [33]:

- Permission policy contains actions, prescribing that a particular behaviour is allowed to
occur, but there is no obligation for this behavior to occur.

- Obligation policy contains actions, prescribing that a particular behaviour is required, so
this behavior must occur.

- Prohibition policy contains actions, prescribing that a particular behaviour must not
occur. Thisis equivalent to the obligation for this behaviour not to occur.

In our policies, whenever the condition of the policy becomes true, the CORD system must
execute the action part of the policy. Therefore, our policies are Obligation policies.

Policy conflicts

Policies need a careful design, because the actions of policies enforced on the system may
conflict each other [25]. It may happen, for example when the condition or the action parts of
different policies overlap. Conflicting policies running in the system may result in inconsistency
of system’'s behavior, because one policy may negate the effect of the other policy, so that the
controlled system might not behave as it is expected to behave and even might crash.

The policy-based system itself should be designed in away, that it would know how to behavein
the case of conflicting policies. For example, using means of detecting and resolving conflicts,
the system may go to the well-behaved error state where some conflict resolution function
corrects the policies, or some higher level decision entity resolves the conflict [see also 13,14].

In our work, the policy evaluation may execute a chain of policies, e.g. when the outcome of one
policy action serves as condition for another policy. But the APPLE policies are simple and not
conflicting. However, policy conflict detection, analysis and resolution are beyond the scope of
thisresearch.

Page 14 of 102

3.3

331

Policy specification approaches
“... there are no success stories around policy specification languages...” [34].

Several specification languages have been developed. However, currently there is no standard
language for specifying policies [34], there are only some draft proposals, each concerning a
different application field. N. Damianou et al. [14] provide a nice overview of different
approaches in the specification of management and security policies.

The abstraction level of a policy may influence the suitability of a language. Cox and Davison
[25] provide an example of a high level abstract policy and derived from it a low level policy,
which can be enforced by the controlling entity, i.e. Virtual Path tuner in ATM network. The
abstract policy is on ensuring network performance in ATM networks and is as follows:

The management must do ensure the performance on the network.

The associated policy at alower level is specified as follows:

(VP_tuner_01) muston util > 70%
do increase VP by 10%
on (VP1, VP2, VP3).

This policy reads. the Virtual Path tuner 1 must increase the bandwidth allocation to 10% on
Virtual Paths 1 - 3, if the utilization of the available bandwidth becomes more than 70 %. We can
observe that the “must on Util >70%" corresponds to the “if (condition)” part and “do increase
VP by 10%" corresponds to the “then (action)” part of our policy description. In this specification
(VP_tuner_01) isthe subject part and (VP1, VP2, VP3) are the target parts of the policy.

We discuss some of the IETF approaches ([11,35]), Ponder [36] and the XML approach [28] to
specify policies.

|[ETF approach

As in most policy specification approaches, IETF describes a policy as an if<condition(s)>
then<action(s)> rule [11]. The condition part of the policy can be simple or compound
expression, the action part of the rule can be a set of actions that must be executed when the
conditions are true. This type of IETF policies have semantics similar to an obligation type of
policies but does not explicitly specify triggers, subjects and targets. An example of a simple
IETF policy that can be specified by an administrator is given in [14]:

i f ((sourcel PSubnet = 240.0.0.0/240.0.0.0) AND
(ti meCf Day = 1800-2300) AND
(dayOr Week = Monday))

then set Priority:=5

This rule can be interpreted, as follows: traffic for the corporate management sub-network gets
priority level 5 on Monday nights from 6:00 pm to 23:00 pm (e.g. for important sports
broadcasts).

IETF has a so proposed a Security Policy Specification Language (SPSL). It is alimited language
designed for communications security policies. The policy actions specified in SPSL can beto
permit, deny and forward the communication [62], which are Permission type of policies.
However, in this report we focus only on Obligation type of policies.

Page 15 of 102

3.3.2 Ponder

3.33

Ponder is a language defined at Imperial College for specifying policies [36] and is popular in
policy research community [16,37-39]. It is a declarative, object-oriented language that can be
used to specify management and security policies.

Lytfiyya et al. [16] use Ponder for specifying policies on QoS requirements. An example of a
QoS requirement for a multimedia application that receives a video stream is the following: “The
number of video frames per second displayed to the user must be at least 25 plus or minus 2
frames’. The application QoS policy redizing this requirement can be specified in Ponder in the
following way:

1 oblig NotifyQoSViolation {

2 subj ect Vi deoAppli cati on/ gosl _coordi nator

3 target fps_sensor, jitter_sensor, buffer_sensor, QoSHost Manager

4 on not (franme_rate = 25(+2)(-2) AND jitter_rate < 1.25)

5 do fps_sensor->read(out frane_rate);

6 jitter_sensor->read(out jitter_rate);

7 buf f er _sensor->read(out buffer_size);

8 QoSHost Manager - >notify(frame_rate, jitter_rate, buffer_size);
9 }

This is an Obligation policy on notifying the QoSHostManager by the violation of QoS. The
subject is the real actual application that the policy applies to and it will have the responsibility
for the policy. Vi deoApplication refers to the name of an application,
gosl _coordi nat or referesto the component that evaluates the conditions stated in policies
a run-time. The targets of the policy are sensors that monitor the frane_rate,
jitter_rate and communication buf f er _si zes and the QoSHost Manager .

The line 4 starting with the term “on” is the condition of the policy. In this policy, if the value of
thefrane_r at e attribute is less than 23 or greater than 27 orthejitter _rate islessthan
1.25, then the policy is considered to be violated.

Theline 5 starting with the term “do* specifies the actions of the policy, that are to be carried out
when the policy has been violated. The actions of this policy are specified in the lines 5-8. The
actions to be taken are: to read and notify QoSHostManager about the frame rate, jitter rate and
buffer size.

Ponder is also used by Lymberopoulos et a [37] for specifying Obligation policies for network
services managers. Montanari et al. [38] propose Policy-Enabled Maobile Applications (Poema)
framework, for which they specify reconfiguration strategies in terms of Ponder Obligation
policies.

IRML

The Intermediary Rule Markup Language (IRML) is an XML-based language to specify policies
[35,55]. It was proposed in IETF Internet drafts from the Working Group Open Pluggable Edge
Services. IRML can be used to describe service-specific execution policy rules for network edge
intermediaries. It allows clients, access providers and content providers to specify when and how
to execute intermediary services.

The following is an example of a policy rule, which is specified in IRML for HTML page
adaptation to the alocated bandwidth on the client host.

<rul e processing-point="4">

<!-- checks the allocated bandw dth, adapts accordingly -->

Page 16 of 102

334

<property sub- syst en¥” QoS”
nane="al | ocat ed- bandwi dt h"
mat ches="<9600" >

<l-- Bandwidth is low, no inmge -->
<action>proxylet://|ocal host/htm 2wn ?i rage=no</ acti on>
</ property>

<property sub-systen’ QS
nane="al | ocat ed- bandwi dt h"
mat ches=">=9600" >

<!-- Bandw dth is high, can enbed inage -->
<action>proxylet://|ocal host/htm 2wn ?i mage=yes</ acti on>
</ property>
</rul e>

In this specification approach the conditions of the polices are specified within <property> tags,
and actions of the policies are specified with <action> tags. Policies do not explicitly specify
subjects, targets and triggers.

In this example, the allocated bandwidth on client host is used to determine how the HTML page
istranslated to WML page. This example illustrates two policies. Thefirst policy reads:

If the allocated bandwidth is smaller than 9.6 kbps, the trandated WML page will not contain
bitmaps, i.e. bitmaps will be replaced by alternate text.

The second policy reads.

If the allocated bandwidth islarge than 9.6 kbps, the trandated WML page will contain some
bitmaps.

XML

Liabotis et a. [28] express the policies of their system in XML. Their example policy for
enforcing the resource allocation according to the user requirements is the following:

<pol i cy>

<creator>
<aut hority>
<donai n>USER</ domai n>
<rol e>Appl i cati onProvi der</rol e>
</ authority>
<identity>/VideoApplicati on/ ADM N</i dentity>
<repl y_address>128. 40. 40. 18</repl y_addr ess>
</ creat or >

<i nf 0>
<nane>Resource Al location for |mage Transcoder </ name>
<nodal i t y>Obl i gati on</ nodal i ty>
<servi cel evel >
<del i very>Quar ant eed</ del i very>
<executi on>Cpti onal </ executi on>
</ servicel evel >
<priority>l</priority>
</info>

<subj ect var = "RAC'>
<subj ect | i st >Resour ceManager </ subj ect | i st>
</ subj ect >

<trigger>

Page 17 of 102

335

<event >
<sour ce>USER</ sour ce>
<cat egor y>Resour ceManagenent </ cat egor y>
<eventt ype>Proxyl et Load</ eventt ype>
</ event >
</trigger>

<actions>
<action>
<t ar get >Resour ceAl | ocati onControl | er</target>
<met hod>Al | ocat eCPU(b2j | et, 25% </ met hod>
</ action>
</ actions>

</ policy>

The policy information, including a policy name, modality and a service level is given after the
creator tags describing the creator details. This policy specification approach explicitly defines
tags for a policy <subject> (e.g. Resource Manager), a policy <target> (e.g. Resource Allocation
Controller), a <trigger>, an <event> and the <actions>. However, there is no <condition> tag in
this policy, the condition of the policy is placed into <eventtype> tag. In this specification, the
receipt of an event is considered as the condition to trigger the policy.

The Resource Manager (i.e. subject) on the receipt of the event with the type "ProxyletLoad",
invokes the “AllocateCPU” method on the Resource Allocation Controller (i.e. target). As an
enforcement of this policy, the Resource Allocation Controller allocates 25 % of CPU on “b2jlet”
proxylet.

Summary

We have discussed some approaches, i.e. IETF approach, Ponder language and XML for
specifying policies. In these examples we observe that al specification approaches specify
conditions and actions, although conditionsin some of them (i.e. IRML) are named differently.
The following table shows what elements of a policy are specified in these approaches:

IETF Ponder IRML XML
Condition + + + T
Action + + + +
Subject - + - +
Target - + - +
Event - + - +

Table 1. Comparison of policy specifications.

In the discussed examples, policies are written to achieve a certain control, namely:

1. The IETF s policy example given in this Section controls the priority settings to certain traffic
at certain periods of aweek.

2. The Ponder example is a policy that controls the violation of QoS requirements of a certain
media application.

3. In the IRML example [35], the policy controls the HTML page adaptation to the allocated
bandwidth on the client host at translating this page to a WML page to display it on the client
host.

4. The XML policy [28] controls the CPU allocation by Resource Manager to running processes
in the system.

A policy specification approach isimportant to facilitate the integration of policiesinto the system
and their implementation. We discuss our approach to specify the APPLE policiesin Chapter 4.

Page 18 of 102

34

34.1

A Policy Modéel

A generic policy model

Our literature study gives us an overview of a generic policy model used by the policy research
community, most of them from the management area, Figure 9.

Policy Policy Environment
Enforcement € > Decision <—> M onitor
Point Point
Policy
Repository

Figure 9. A generic Policy Model

In our research, we identify the following components of the policy models typically used in most
(Obligation type) policy based control and management systems:

- afunctionality responsible for making policy decisions - Policy Decision Point (PDP);

- afunctionality responsible for executing policy decisions - Policy Enforcement Point (PEP);
- afacility for storing policies (rules) - Policy Repository (PR);

- afunctionality responsible for monitoring the environment - Environment Monitor (EM).

In this research, we follow the IETF's policy model [18] which uses the concepts of a Policy
Decision Point (PDP) and a Policy Enforcement Point (PEP).

A PDP represents a controlling entity that applies policies to control the behavior of a controlled
entity (the PEP). The PDP evaluates policies. If the circumstances are such that the “if” condition
of apolicy becomes true, then the PDP decides to enforce the actions defined in the “then” part of
the policy.

A PEP represents the controlled entity upon which policy decisions are being enforced (by the
PDP), yielding a constrained behavior of the PEP. A PEP therefore receives directives from a
PDP.

A PR contains (inactive) policies written in apolicy specification language such as IRML [35]. A
policy repository alows policies to be flexibly downloaded into a PDP, possibly at run-time.
Therefore, while inactive policies reside in the PR, the active (i.e. running) policiesresidein the
PDP. Palicies running in the PDP can be replaced by downloading new policies from the PR.
Policies can be downloaded according to a certain criteria (e.g. agoal of the policy). The PDP
and the PEP together realize the goa of a policy the PDP retrieves.

A PDP can generally use external information sources to come to its decisions [18]. The external
information source in the policy model is Environment Monitor (EM). It is responsible for
monitoring available resources, such as availability of networks, available bandwidth, signal
strength on the network interfaces etc. The PDP accesses this information by requesting it or by
listening to events from the EM.

Page 19 of 102

L ocation/distribution of the components.

The components PEP, PDP, PR and EM can be co-located (local) in one network node or
distributed (remote) across the domain(s). A PEP resides in the local node, because it enforces the
policy decisions on that node.

There are two types of PDP defined in the IETF s policy model: Local PDP (LDP) and Remote
PDP. A Loca PDP is located in the node and is responsible for making local policy decisions,
which depend on information and conditions local to that particular node. If a PDP is located in
another node, it is called a Remote PDP. For instance, Remote PDP can reside at a centralized
policy server. If so, it could be responsible for policy decisions for multiple network nodes of an
administrative domain and evaluates policies that are common across the administrative domain.
In this case, its policy decision might be enforced in several PEPs in this domain. This is
convenient, for example for network administrators to reconfigure several nodes in one shot with
asingle policy. Remote PDP can convey the policy decision to a PEP at the controlled node using
COPS (Common Open Policy Service) protocol [40-42] or some other proprietary protocol.

A PR can belocal or remote, similar to aPDP. A remote PR can store policies for only one single
node or for the entire administrative domain. If the PR isremote, e.g. resides in a centralized node
of the administrative domain, then it is possible to consistently apply the policies to all nodesin
this domain. Policies can be downloaded from the PR to the PDP any time when required. To
download policies a PDP uses a protocol, for example LDAP (Light-weight Directory Access
Protocol) or some other proprietary protocol.

An EM can aso be loca or remote. A remote EM can be exemplified by a Bandwidth Broker in
the UMTS domain that monitors the load in the domain. A local EM can be a component that
resides on the mobile host and monitors events local to the mobile host (e.g. events coming from
the network interfaces, battery power etc.).

Interaction of components

Different choices in interaction patterns between components and in distribution of components of
the policy model leads to different implementation scenarios of policy-based systems built
according to the generic policy model illustrated in Figure 9.

There are two interaction patterns, that can be modelled between any of two components of the
policy model shown in Figure 9: Polling and Notification. We discus the interaction patterns in
the example of PEP and PDP.

In the policy model presented earlier, the basic interaction between the components (Figure 9)
begins when PDP receives an event from any of other components and this event triggers a policy
decision. PDP by the receipt of the event, evaluates the conditions of the policies, and if a
condition of some policy becomes true — this “policy fires’. PDP produces a policy decision
containing the actions to be executed and pushes the decision to PEP. PEP then enforces this
policy decision, i.e. executes the action of the fired policy. This interaction model corresponds to
the Notification model, Figure 10.

event

PEP %gGson| PDP [¢

Figure 10. Notification model of interactions between PDP and PEP.

Page 20 of 102

34.2

In the Polling model, a PEP receives an event that requires a policy decision. The PEP then polls
the PDP for such a policy decision. The PDP in its turn evaluates the policies associated to the
request (or event) and produces the decision, which isthen is enforced on the PEP (Figure 11).

event request
PEP —» PDP
< decision

Figure 11. Polling model of interactions between PDP and PEP.
In this thesis we use the terms “Polling” and “Notification”, although in the literature these
interaction patterns are called “Outsourcing” and “Provisioning” interaction types[43].

In the next section we discuss how the generic policy model is applied in a distributed
environment.

Application of the generic policy model in a distributed environment

A policy model for admission control

The generic policy model (Figure 9) has a broad applicability in the literature. Figure 12 shows
the distribution of the components of a policy model, applied in the network nodes for providing a
policy control over the admission control in the RSVP routers[18].

2l RFC 2753 (rfc2753) - A Framework for Policy-based Admission Contrel

File Edit Wisw Favorites Tools Help qﬂ'
- a2 - " »
o Back ~ (g Iﬂ IELI) y) Search ‘:\7‘ Favorites @Media 6’-‘: " i
Address :E"I hkkp: i Fags, argfrfos rFc2 753, html b a G0
A
AD-1 AD-2 AD-3
A A A
{ i { 1 { 1
b B C o E
| RSVE | | RSVP| | RIVE | | RIVE | | RSVE |
i T R [it | | | | | | |
I 81 |-—=1 P | L |--I| |=—===1 P | L |[-===| P | P |-=——] P |+t
t=——-+ | E | D | A+ + I E | D| I E | D| | E [=1 R1 |
I P P I PP I PP | P | ==t
e +
| | |
| | |
| | Fm————— +
| | | FDP |
| to————= + | | === |
PR CAT 1) T P — + | |
| === | to——— +
| | P3-2
- +
PE-1 v
< b3
1*;1 & Internet

Figure 12. Placement of the policy model components in the network nodes [RFC 2753] .

Figure 12 shows the path between the sender (S1) and the receiver (R1). All nodes (routers) in the
picture support RSVP and reside in Administrative Domains identified with abbreviation “AD”.

Page 21 of 102

In Figure 12 there are different nodes are exemplified in respect to policy awareness. Consider
AD-1 with the nodes: A, B and C and AD-2 with a node D. The nodes A and C have co-located
PEP and LDP (Local PDP). This LDP can only produce a partial policy decision (see [18]),
therefore the PEPs of these nodes in AD-1 will query a centralized PDP (at PS-1, i.e. Policy
Server 1) for afina policy decision. The Node B of AD-1 does not have any PEP, it is not aware
of policies therefore does not support a policy control. The node D at AD-2 has co-located PEP
and PDP. Because this PDP produces a fina policy decision, the PEP does not query an external
PDP for apolicy decision.

I mplementation of a policy model for a network node

IETF's policy model discussed in [18] is a generic policy model, without defining an
implementation details. Figure 13 illustrates a Policy Implementation Model proposed in [27].

—
[]

Policy
Store

Policy ™
Server |

F

Policy [™Local Policy ™ Lacal

Client p4— Server jg—]’}‘”C?r'
Store

4

Local Policy Module

4

¥

Source Packet Forwarding Enging

Router

Figure 13. Policy Implementation Model [27] .

Figure 13 illustrates the implementation scenario of the policy model that resides in the router and
controls the packet forwarding through this router. In this model, the Packet Forwarding Engine
acts as a PEP, Policy Server acts as a (remote) PDP, and Loca Policy Server acts as a Local
PDP. The Policy Client is an intermediate component that forwards requests for a policy decision
to the Policy Servers and forwards policy decisions to the Packet Forwarding Engine.

Although, the proposed model conforms to the policy model defined in [18], it also defines new
architectural elements and concepts. IETF's policy model [18] does not explicitly define other
components besides PEP and PDP (see also Figure 12). The Policy Implementation Model
illustrated in Figure 13 introduces two new functional elements. a Local Policy Store and a
remote Policy Store. The policies in the Loca Policy Store are retrieved by the Local Policy
Server, and the policies in the distributed Policy Store® are retrieved by the (remote) Policy
Server.

Implementation of a policy model for a multi domain scenario

Zhuang et a. [13] applied the generic policy model for the multi domain, multi technology
scenario, Figure 14. Their work is on the cooperation (integration) of UMTS and WLAN
environments using policies for QoS management. The authors use the concepts defined in the
policy model of [18], namely PDP and PEP. Their Policy Decision Function (PDF) is a PDP and
Policy Enforcement Function (PEF) is a PEP (Figure 14). Their policy decision is on enabling
handoff of a mobile host from one network interface (e.g. WLAN) in one policy domain to

% Inour research, we use the term “Policy Repository”, instead of a“Policy Store”.

Page 22 of 102

3.5

another interface (e.g. UMTS) in another policy domain. One of their examples illustrates the
integration of two policy domains under one PDP, called Master PDF (MPDF, Figure 14). The
MPDF isafina policy decision making point for the policy decisions involving the integration of
two domains. It is situated on the higher level of hierarchy. The MPDF is also responsible to
resolve policy conflictsif any. If there is insufficient information for a policy decision or if there
is a policy conflict to be resolved, the PDF can retrieve additional policies from the Policy
Repository.

Palicy
Repository

Figure 14. WLAN and UMTS policy domains integrated under the same operator

Summary

In this chapter based on literature study we have discussed the concepts and models of policy-
based systems used in the policy research community. Having investigated the structure of a
policy model and how the policy model can be applied, we have proposed a generic policy model
(Section 3.4.). In the following chapters, based on this policy model we design the APPLE system
and policies for the APPLE system to validate the model that we have proposed.

Page 23 of 102

4.1

THE APPLE SYSTEM POLICIES

The APPLE system is designed as a controlling entity for the CORD system. The APPLE system
uses policies to control the behavior of a mobile host in the environment discussed in Chapter 2.
In this chapter we discuss the requirements to the APPLE system, the structure of the APPLE
policies and their specifications.

This chapter is organized as follows. Section 4.1 discussed the requirements to the APPLE
system. Section 4.2 describes the high level behavior of the mobile host. Section 4.3 introduces
the policies of the APPLE system. Section 4.4 presents the approach that we used in this research
to specify these policies. Section 4.5 presents conclusions of the chapter.

Requirements

Asit isdiscussed in Section 2.1, an open issue in the CORD system, is that it does not include a
(flexible) mechanism that enables mobile hosts to automatically invoke discovery of available
aggregators, to select the best aggregator, and then to switch to that aggregator. Such a
mechanism is important, because the complexity of the infrastructure (in terms of aggregators and
networks operators) should be shielded off from the user to improve user-friendliness. The CORD
system puts the responsibility to discover alternatives and to switch between aggregators with the
mobile host; thereby putting control close to the user but in a user friendly manner. Therefore in
designing a flexible control mechanism for the CORD system, our main design choice is to be
inline with this choice and centralize our control at the mobile host.

The overall goal of the APPLE system is to enable seamless handoffs between aggregators, asit is
shown in the scenario with the roaming user in Figure 2. To be able to control the CORD system
flexibly, the APPLE system must meet the following requirements:

1. Respond adequately to resource monitoring events that might require a handoff.

2. Initiate the moment of discovery.

3. Automatically select the best aggregator or network, based on the user preferences.
4. Initiate the moment for handoff in away conforming to the user preferences.

Based on these requirements we design the policies and the architectural components of the
APPLE system. The design of the APPLE system architectural components will be discussed in
Chapter 5.

This chapter describes the design of the policies, but first we discuss a high level behavior of the
mobile host controlled by the APPLE policies.

Page 24 of 102

4.2 Policy-controlled Host Behavior

Figure 15 shows the high-level behaviour of a mobile host in the form of an FSM. Figure 15 also
shows the embedding of the APPLE policiesin the states of the FSM.

configurations_received / evaluate_policies

user_selects_channel / evaluate_policies
[policy _decision==discovery] / initiate _discovery

Discovery

[policy _decision !=discovery]

[policy _decision==discovery] / initiate_discovery \ .
collection_timeout

[policy _decision !=discovery]
[policy _decision!=handoff] [policy _decision ==handoff] / initiate_handoff

event / evaluate_policies

]] \/ handoff_complete f
Monitoring Handoff .

A N

Figure 15. High level behavior of the mobile host

The FSM has 5 states: an initial state, a monitoring state, a discovery state, a handoff state and a
final state.

Initial state

IntheInitial state, the user selects a channel and requests to connect to this channel. By receipt of
this event, the APPLE system evaluates its policies, to determine if the mobile host should
discover the aggregators offering this channel. We call these policies discovery policies. If the
policy decision is discovery then the mobile host initiates discovery: by running the discovery
protocol to discover what configurations of the channel are available at the aggregators, i.e. sends
queries to available aggregators (see Figure 3). By sending queries the mobile host sets the timer
to collect responses from the aggregators and moves from initial state to discovery state. We call
the time set to collecting responses a collection time.

It the policy decision is not discovery, then the mobile hogt, i.e. the FSM movesto the final state.

Discovery

In this state the mobile host collects the responses from the aggregators that contain the
configuration descriptions of the selected channel (see Figure 3). By receipt of a configuration list
from an aggregator, the APPLE system evaluates its policies, to determine if the mobile host
should handoff to another aggregator (i.e. move the FSM to the handoff state). We call these
policies handoff policies. During the policy evaluation process, each configuration in the list is
processed and the best configuration that matches the user preferences (i.e. price, quality) and
available resources (e.g. interface status) will be selected. the APPLE system produces a policy
decision indicating to which configuration of the channel the mobile host should handoff.

When collection time expires, the mobile host moves to the next state. Depending on the policy
decision the next state can be handoff or monitoring. the APPLE system produces a policy

Page 25 of 102

decision to handoff, if there is a better configuration available than the current one (in terms of
price or quality). But if the current configuration is still the best available one, the APPLE system
produces a policy decision not to handoff. As a result, the mobile host moves to the monitoring
state, without executing any handoff.

Handoff

In this state the mobile host initiates handoff (see Figure 4) to switch from the current
configuration to a newly selected configuration. The behavior of the mobile host in handoff state
is controlled by the handoff policies. We discuss thisin Section 4.2.3 with examples of the
handoff policies.

When handoff is complete (at application level) the mobile host moves to the monitoring stete.
Monitoring

In this state the mobile host waits for events from its environment. This environment is dynamic,
for instance due to the user’s movements and changing set of available aggregators and networks.
When an event (for example, packet loss increases on the network interface etc.) occurs, the
APPLE system evaluatesits policies, to determine if the mobile host should initiate discovery (i.e.
move the FSM to the discovery state). We call these policies discovery policies. If the policy
decision is discovery, the mobile host runs the discovery protocol and sets the collection time to
the value indicated in the policy decision. By doing so, the mobile host moves to the discovery
state. If the policy decision is not discovery, then the mobile host stays in the monitoring state.

Final state
In this state the mobile host does not serve the user.
We can observe that the behaviour of the mobile host is controlled by discovery and handoff

policies. These policies govern the state transitions of the FSM. In the next section we discuss
discovery and handoff policies.

Page 26 of 102

4.3

43.1

4.3.2

Policy classes of the APPLE system

In general, Policy classes can be designed and tailored according to the system’s tasks and goals
of the system’s designer. In our research we want to control the behaviour of the mobile host, to
control the invocation of discovery and handoff protocols by the CORD system. We define the
following policy classes for the APPLE system: discovery policies (rules describing when to
invoke the discovery protocol) and handoff policies (rules describing when and how to invoke the
handoff protocol). Due to the introducing policies to control the behaviour of the mobile host, the
discovery of alternatives and handoff to the best aggregator become policy driven.

Discovery policy

Changes in the environment where the mobile host operates, may create the necessity to discover
alternative configurations to handoff, for example, when the current configuration is no longer
available. The behavior of the mobile host in such a situation is controlled by discovery policies.
An example of a high level discovery policy can be as follows:

| f
new network appears in the vicinity of the user
whil e user is watching a channel

t hen
di scover alternative configurations of this channel

Discovery policy is a rule that controls the behavior of the mobile host when it encounters a
change in remote or local resources, in user preferences; enters a hotspot, roams within the
hotspot and leaves the hotspot. It comprises the rules when to scan for an aternative
aggregator/configuration. Discovery policy can be reactive, starts to react when the current
configuration starts to degrade, or proactive, reacts when the system anticipates that current
configuration might begin to degrade in the near future. Discovery policy is akind of “hunting”
policy that defines when to start hunting for an alternative aggregator/configuration.

Another example of discovery policy can be defined for controlling the behavior of the mobile
host when user preferences are changed.

If
user preferences are changed
whil e user is watching a channel

t hen
| oad new set of policies and
di scover alternative configurations of this channel
that match new user preferences.

Handoff policy

Handoff policy defines when the mobile host should execute handoff from one configuration to
another. Handoff policy also controls the behavior of the mobile host during handoff. This
control is needed because handoff execution may affect the quality of the received stream during
handoff. An example of a high level handoff policy can be written as follows:

| f
a better alternative of the current channel is discovered

t hen
handoff to this alternative in a user transparent nmanner

Thus, the handoff policy is arule that defines when (i.e. if better alternative is available) and how

(i.e. transparently to the user) to execute handoff. The way of handoff execution can be defined by
user preferences. For example, if the user prefers “high viewing smoothness’” during handoffs the

Page 27 of 102

433

handoff can be executed, by means of connecting to a new aggregator first and then disconnecting
from the old aggregator. This way the mobile host will be handed off more smoothly.

Another example condition for Handoff policy might be the situation, when the mobile user
moves with high speed, e.g. faster than 300 m/s, in this case WLAN networks with small
coverage area, can be excluded from the selection, because it does not have sense to handoff to
the network that will be passed in severa seconds.

Besides discovery and handoff policies, we can write policy examples for other policy classes, for
instance refreshing policies. A refreshing policy is a rule that defines setting a refresh frequency
value for querying aggregators about the status of their configuration lists. The refresh frequency
determines how quickly the mobile host detects that a configuration of an aggregator is no longer
available, or when new configurations are available.

In this research we focus only on discovery and handoff policies.

Goals and examples of the APPL E system policies

As discussed in Section 3.2, policies have goals and they constrain the behavior of the system so
that it becomes aligned with the goal of the policies. The APPLE system policies also have goals.
The example goals for the APPLE system policies can be smoothness, price, quality level or
power consumption etc.

In this research we consider “viewing smoothness’ as a goal of al APPLE policies. This god
serves for provision of a desired smoothness, while the user is watching the channel. This goal has
high, moderate and low values. If the discovery policy has a goa high viewing smoothness, this
goal is achieved by timely invocation of the discovery protocol (i.e. when packet loss has already
reached a certain threshold), see the following example:

Example discovery policy (1):

/* policy_type=di scovery, |eaving hotspot
* policy_goal =hi gh_vi ewi ng_snoot hness
*
/
if (packet_loss >= 20 & & receiving_interface == “802.11")

/* discover alternatives to handoff */
i nvoke_di scovery_protocol ();

The goal of the discovery policy (1) is to provide high smoothness of the video or audio, so the
user will not notice glitches while he roams. This goal is achieved, for example, by monitoring the
packet loss ratio and the signal strength on the network interface. When the user moves towards
the edge of the network coverage, the signal strength drops continuously and the packet loss
increases due to the increasing distance between the mobile host and the base station. To provide
high viewing smoothness, the system should make early preparations to timely handoff. This is
indicated in the if statement of the example discovery policy: if the packet lossis equal or exceeds
20 %, then the policy forces the mobile host to discover new configurations for a possible
handoff.

The discovery policy with a goal moderate viewing smoothness is written as follows:
Example discovery policy (2):
/* policy_type=di scovery, |eaving hotspot

* pol i cy_goal =noder at e_vi ewi ng_snoot hness

*/
if (packet_loss >= 80 && receiving_interface == “802.11")

Page 28 of 102

/* discover alternatives to handoff */
i nvoke_di scovery_protocol ();

Being controlled by the discovery policy (2) the mobile host behaves in a reactive manner, i.e. the
mobile host starts to prepare to discovery and handoff when the user is very close to the edge of
the network coverage, which might be indicated by the packet loss ratio over 80 %. The user
might experience glitches and jitter when he roams out from one network to another.

Handoff policies control the behavior of the mobile host in the handoff state. We have two
strategies to execute handoff: break-before-make and make-before-break. We consider these two
strategies, because in some cases when the available bandwidth in the network allows, then during
the handoff state the mobile host can receive the channel from two aggregators at the same time,
and smoothly handoff from one to another. This provides more chances for higher viewing
smoothness during handoff. We used these two strategies to compose handoff policies for the
APPLE system. If the handoff policy has agoa high viewing smoothness, this goal is achieved by
first connecting to the selected configuration and then disconnecting from the current
configuration, see the following example:

Example handoff policy (1):

/* policy_type=handof f
* pol i cy_goal =hi gh_vi ewi ng_snoot hness
*/
if (configuration_list_received &&
find_ better_alternative (configuration_list,
current_configuration))

/* First connect, then disconnect */

{

connect (new_ configuration);
di sconnect (ol d_configuration);

}

To provide high smoothness, the handoff policy (1) forces the mobile host first to connect to the
selected configuration and then to disconnect from the old configuration, so that the viewing
smoothness during the handoff will be higher.

Figure 16 illustrates how the handoff policy controls the behavior (i.e. the handoff execution) of
the mobile host in the handoff state.

[policy_decision==handoff] / initiate_handoff (make-before-break)

(Connecting to selected configuratiorD

T
connected

:

[Disconnecting from old configuration)

handoff_complete

Figure 16. Make-before-break strategy during the handoff state.

Page 29 of 102

434

The following example is the handoff policy with a goal moderate viewing smoothness:
Example handoff policy (2):

/* policy_type=handof f
* policy_goal = noderate_vi ewi ng_snoot hness
*/
if (configuration_list_received &k
find_ better_alternative (configuration_|list,
current _configuration))

/* First disconnect, then connect */

{

di sconnect (current _configuration);
connect (new_ configuration);

Being controlled by the handoff policy (2), the mobile host will take a break-before-make strategy
by first disconnecting from the current configuration and then connecting to the selected
configuration. This strategy will provide fewer chances for smooth handoff, which is inline with
the goa of the policy — moderate viewing_smoothness..

We have composed different examples of policies that might be used by the APPLE system.
Appendix B illustrates more examples of discovery and handoff policies.

Conclusion

Introducing policies makes the mobile host flexible. The discovery and handoff policies force the
mobile host to automatically find a better alternative (if available) and to switch to this
aternative. For example, at point B in Figure 1 mobile host discovers a better alternative of the
channel version at stream-it.com aggregator and switches to this aggregator through WLAN
interface. At point C, when the current aggregator becomes out of reach the mobile host switches
back to media-forward.nl aggregator through UMTS interface. So, the discovery and handoff
policies of the APPLE system provide a flexible control of the mobile host’ s behavior in the
environment illustrated in Figure 1 by facilitating the switching between aggregators.

Page 30 of 102

4.4

441

Specifying the APPL E system policies

In the previous section we introduced discovery and handoff policies for the APPLE system. We
used the programming language (C) to write these policies. The power of the policies is in their
downloadability and modifiability at run time [25]. Therefore, if policies are specified in a
programming language, they will be hard coded policies, so that it will not be possible to modify
them at run time. We decided to specify the APPLE policies in a specification language. Our
contribution is not to develop a policy specification language, but to use existing means to specify
simple obligation policies of the mobile host. In Chapter 3 we have discussed a number of policy
specification approaches from in the literature: Ponder, IRML and XML. In our work we did not
choose the Ponder policy specification language, because it is an advanced language. It has many
features, which we do not need for the APPLE system (i.e. transfer of control, conflict detection
and resolution, extensibility etc.). Besides, our implementation is in C programming language,
while Ponder parser creates Java policy objects [44,38]. Ponder provides a complete deployment
model with a Ponder compiler that compiles policies into Java classes. These classes are
represented at runtime by Java objects. We also did not choose IRML language to specify the
APPLE policies, because the tags that are defined in this language are not suitable for our work
(see Section 3.3). We chose eXtensible Markup Language (XML) to specify the APPLE policies.

XML isalanguage for flexibly describing data. As its name suggests, it is extensible according to
user needs, having an unlimited vocabulary to define new tags. XML is aso attractive for its
independence of operating systems and programming languages, it can operate in totally
heterogeneous platforms. XML is a good solution for structured data description, storage,
retrieval, transformation into other formats and exchanging data between heterogeneous
distributed systems. XML based approach has become popular for policy specification [45-48].
This is because a structured specification such as XML is convenient for policy analysis and
policy distribution across domains or networks.

Besides above mentioned advantages of using XML, our motivation to choose XML to specify
policies for the APPLE system is also derived from the followings:

1. XML syntax is easy to understand;

2. We need a text based declarative language, to specify simple obligation policies for the
mobile host;

3. We need to define variables tailored for our policies— XML gives freedom for defining
tags,

4. We cannot run heavy processes; because the APPLE system runs on the mobile device,

hence the runtime parsing of the policies should be light-weight;

5. XML parsers are widely available;

According to these statements XML seems to be a proper solution for us. In the next section we
discuss how we specify our policies.

XML syntax for policy specification

Based on the observations on policy specification approaches, hints from the structure of PCIM
classes defined in [31] and requirements what do the APPLE system policies need to express, we
have defined the following tags for specifying the APPLE system policies. Table 2 illustrates the
names of the tags and their meaning in our specification:

Tags Specifies

policies aroot element of the XML file, that contains all

policies defined for the system

Page 31 of 102

goal agoal of apolicy

smoothness aviewing smoothness of the channel while roaming
and handoff.
Values: high, moderate or low

condition acondition part of apolicy

action an action of apolicy

receiving_interface

aname of the receiving interface

packet_loss

a packet loss value reported by the EM

signal_strength

the value of a signal strength on the network interface
of the mobile host

operator

an operator, such as“>", “=" etc. that belongs to the
condition statement

new_network_available

aroaming into a new network

interface_down

roaming out of the network

collection_time

the time interval assigned for collecting the responses
from aggregators

discover_alternatives

the invocation of discovery protocol

configuration_list

the receipt of a configuration list from PEP

better alternative

the availability of a better alternative to a current
configuration

connect_order

avariable indicating the handoff order. Values:
FIRST - connect first, disconnect second
SECOND - connect second, disconnect first

user_preferences

achange in user preferences

user_selects channel

a selection of achannel by the user and a request to
connect to this channel

velocity

the velocity of the mobile user

Table 2. Tags defined to specify the APPLE policiesin XML format.

Page 32 of 102

Examples of policies specified in XML areincluded in the Appendix D.

4.4.2 Examplesof policiesin XML

Using the tags defined in Section 4.4.1 we designed the structure of the APPLE policiesin XML
SPY. Wewrote an XML Schema document that illustrates the structure of the policies of the
APPLE system. Each policy contains an action, a condition and agoal. The APPLE policies are
grouped according to their goals. In this research we used viewing_smoothness asa goal, which is
specified by <smoothness> tag.

The XML Schema for the policy specification in XML SPY tool is shown in Figures 17.

Eile Edit Project XML DTDJSchema Schema design X35L Document Editor Convert Table Wiew

Browser Tools Window Help -8 X

= condition
~action

< >

policy_repository, xsd |

*ML Spy v4.1 U Registered to Malohat (Telematica Instituat) (c)19958-2001 Alkoy ML

Figure 17. Graphical representation of the XML schema for the APPLE policies.
Figure 17 shows illustrates the structure of discovery and handoff policies and how there are

organized within a root element policies. Figures 18 and 19 illustrate the structure of the
discovery policy and the handoff policy.

Page 33 of 102

@Eile Edit Project XML DTDJSchema Schema design 5L Document Editor Convert Table View

Browser Tools Window Help iy

packet_loss walue (%)

|
|
|
|
EPDIicy =] = on the receiving I
|
|
|
|

interface

time Far waiting Far
respanses Fran
aggregakars

< X

B8 policy_repositary.xsd ‘

=ML Spy w41 U Regiskered to Malohat (Telematica Inskituot) {c)1995-2001 £ [3]

Figure 18. The structure of the exampl e discovery palicy.

@D XML Spy - [F:Atwaio_ongoingbanl_filesi11septipolicy. repository. xsd] [Z|[E|rz|
O = = & &

Ec:lJnﬁgun:ltilJn_Iist

boolean
indicating receipt of a
configuration list

Ehetter_i:llternati\.-'e

better alkernative to
the current
configuration

|
|

handoff execution

boolean |

3 | =

@ policy _repository, xsd

ML Spy w4,1 1) Registered to Malohat {Telematica Instituut) {c)1998-2001 & LM

Figure 19. The structure of the example handoff policy

Page 34 of 102

Figure 20 shows an example of the discovery policy of the APPLE system in XML format, that
conforms the XML Schema shown in Figure 18.

<?xm version="1.0" encodi ng="UTF-8"?>
<policies xmns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenmalLocati on="pol i cy_repository. xsd">
<goal >
<snoot hness>H GH
<Pol i cy>DI SCOVERY
<condi ti on>
<recei ving_interface>W.AN</receiving_interface>
<packet _| 0ss>20
<oper at or >GRATER_THAN</ oper at or >
</ packet _| oss>
</ condi ti on>
<action>
<col I ection_ti me>SHORT</ col | ection_ti me>
<di scover _al ternatives/>
</ action>
</ Policy>
</ snoot hness>
<snoot hness>MODERATE
<Pol i cy>DI SCOVERY
<condi ti on>
<recei ving_interface>W.AN</recei ving_i nterface>
<packet _| 0ss>50
<oper at or >GRATER_THAN</ oper at or >
</ packet _| oss>
</ condi ti on>
<action>
<col | ection_ti me>DEFAULT</ col | ection_ti me>
<di scover _al ternatives/>
</ action>
</ Policy>
</ snoot hness>
</ goal >
</ policies>

Figure 20. Discovery policy markup with XML.

Figure 21 shows an example of the handoff policy of the APPLE system in XML format, that
conforms the XML Schema shown in Figure 19.

<?xm version="1.0" encodi ng="UTF-8"?>
<policies xmns:xsi="http://wwmw.w3. org/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenmalLocati on="pol i cy_repository. xsd">
<goal >
<snoot hness>H GH
<Pol i cy>HANDOFF
<condi ti on>
<configuration_list/>
<better_alternativel>
</ condi ti on>
<action>
<connect _or der >CONNECT_FI RST</ connect _or der >
</ action>
</ Pol i cy>
</ snmoot hness>
<snoot hness>MODERATE
<Pol i cy>HANDOFF
<condi ti on>
<configuration_list/>
<better_alternativel/>
</ condi ti on>
<action>
<connect _or der >DI SCONNECT_FI RST</ connect _or der >
</ action>
</ Policy>
</ smoot hness>
</ goal >
</ policies>

Figure 21. Handoff policy markup with XML

Page 35 of 102

4.5

Conclusion

In this section we discussed policies designed for the APPLE system. We explained our
specification approach.
The APPLE policies have the following features:

1 The APPLE system policies are application level policies. The actions of the policies are
enforced at the application level, because the actions of the APPLE system policies are invocation
of the application level CORD protocol (see Figure 3, 4).

2. The APPLE system policies explicitly specify a goal, i.e. viewing smoothness. The
policies with this goal control the behavior of the mobile host to achieve desired smoothness
while user is watching the multimedia channel. Other example goals might be price of the service,
quality level of the multimedia stream or power consumption of the mobile host etc.

3. The APPLE system policies are downloadabl e, because we specify our policiesin atext-
based markup language, i.e. XML, rather than a programming language. Therefore, it is possible
to flexibly change the policies in runtime, which will result in flexible changing of control over
the behavior of the mobile host. However, parsing XML policies remains as a future work.

4, Conditions and actions of one policy can be reused by another policy, e.g. policies can
have the same goal, condition or action [see also 14, 16], athough the observable behavior of the
system defined by these policies are different. For example, the discovery policies 1 and 2
exemplified in Section 4.2.3 have different conditions but the same action. The handoff policies 1
and 2 in Section 4.2.3 have the same conditions but different actions. See more examples in
Appendix B.

5. The APPLE system policies control the behavior of a mobile host. In our environment
not only a mobile host but also an aggregator and a network operator can have their own policies.
For example, an aggregator policy might be as following:

| f
user roans into a foreign network,
t hen

allow only silver and bronze quality |evel configurations.
The concrete policy derived from the above policy is as follows:

[* policy_class = restriction
* permtting a certain configuration at foreign network
* policy_goal =restriction
*/
i f(foreign_network_flag)

/* Disable certain configuration */
di sabl e(gol d_confi guration);

This policy is an example of an aggregator’s Obligation policy. The goal of this policy is to
restrict the set of configurations of a channel when the user roams into a foreign network. This
policy can aso be derived from service level agreements between aggregators. However, the
policies of aggregators and service level agreements between them are beyond the scope of this
thesis.

Page 36 of 102

5.1

THE APPLE SYSTEM ARCHITECTURE

In this chapter we describe the architectural design of the APPLE system, which applies the
concepts and model discussed in Chapter 3 and the requirements analyzed from the environment
discussed in Chapter 2.

This chapter is structured as follows:

Section 5.1 discusses the architectural components of the APPLE system and the CORD system.
Section 5.2 discusses the behavior of the mobile host in several scenarios.

Section 5.3 discusses the related work. Section 5.4 concludes the Chapter.

Components

Based on the generic policy model (Figure 9) and the requirements stated in Section 4.1, we
designed an architecture of the Policy based System for the environment described in Chapter 2.
The system consists of the CORD system and the APPLE system, Figure 22.

Mobile AL g
user ’\i‘

User
Interface

user
prefererces

Pdicy ecison | Policy _
Enforcement £ Dedson . | En,\\/lllorr?ir;ronrent
Paint ajlab)le Point evel

onfigurations
request¢ ¢ policies

Palicy
Repository

—
a
(e

WPV RON®

APPLE

Figure 22. Architecture of the Policy-based System

Page 37 of 102

511

5.12

The system components are:

1. User Interface (Ul), belongs to the APPLE system.

2. Policy Decision Point (PDP), belongs partly to the APPLE system.

3. Policy Repository (PR), belongs to the APPLE system.

4, Policy Enforcement Point (PEP), belongs to the CORD system.

5. Environment Monitor (EM), belongs to the CORD system (although one may also view the
monitoring component as a part of a controlling entity).

In the following sections we describe each component in detail.

Policy Repository

The Policy Repository (PR) is a storage for the APPLE policies. It contains two classes of
policies, i.e. discovery and handoff policies.

Policy retrieval

Policies are retrieved (polled) from the PR at runtime by the PDP (Figure 22, policies). Retrieval
of proper policies from the PR can be complex, e.g. based on severa criteria and circumstances.
In this research we simplify the retrieval of the policies, using for a query only one type (i.e.
representing the policy goal) and one parameter (i.e. representing viewing smoothness). The
APPLE policies have a goal viewing_smoothness (see Section 4.3.3) with three different values:
high, moderate, low. We also introduced a viewing smoothness as one of the user preferences, to
make the matching straightforward. A query structure is the following:

Query : <type, paraneter, value>.

For example, if the user has selected high viewing smoothness as his preference, then all
discovery and handoff policies in the PR with this goa will be retrieved from the PR using the

query:
Query : <goal, view ng_snoot hness, high>.

L ocation

In our research, we locate the PR locally in the mobile host. As an aternative, we may aso
distribute the PR or place the whole PR remotely. In this case, the remotely located PR can be
shared by different mobile hosts of a user or by different mobile hosts of different users, but
administrated by one manager. A drawback of this approach is that we would need a protocol to
download policies from the PR into the PDP. For simplicity, our PR is located in the mobile host.

In the case that the policies in the PR have been modified, the PR may notify (i.e. notification
model) this to the PDP and the “policy download” policy may decide to retrieve updated policies.
In this work, we only discuss this option conceptually but we don’t implement this interaction.

User Interface

The User Interface (Ul) is a part of the APPLE system. We designed the Ul only for illustration
purposes to demonstrate the effect of user preferences on the behavior of the mobile host. User
preferences provided through the Ul (Figure 22, user preferences) determine the mobile host’s
behavior, in particular the PDP. For instance the user preferences are used in the selection of the
best configuration of a channel.

Figure 23 shows an example of the Ul. We introduces several parameters, that user can provide to

the APPLE system as his preferences: (maximum target) price, (maximum target) quality level,
adaptation and viewing smoothness.

Page 38 of 102

513

- Maximum Target QUALITY Level -
~- hronze

o Silver
% gold
-ADAPTATION-
% yes
~r ho
- Viewing SMOOTHHNESS -
e o
wr medium
4 high
- Mazimum Target PRI CE -

centimin

Set

L

Figure 23. Example User Interface.

Maximum Target Quality Level denotes the quality levels of a channel version, which can be
chosen by the user. One may view this parameter as a subscription level. Adaptation in the Ul
denotes a permission of the user to the mobile host to switch to alower quality level version of a
channel. For example in case of limited network capabilities or unavailability of a desired quality
level of versions of a channel, a*“gold” user might receive a channel version which belongs to the
silver quality level, if he alows adaptation (Figure 23). Viewing smoothness denotes perceptual
viewing smoothness of the channel version, e.g. indicated by the number of glitches or till
images on the screen while user is watching a channel. Asit is discussed earlier, this parameter is
used to match proper policies from the PR. Maximum Target Price denotes the maximum price,
that a user iswilling to pay for the service.

We modeled the interactions between the PDP and the Ul as a notification model. The Ul notifies
the PDP when the user has changed his preferences.

Environment Monitor

In our policy-based system, the Environment Monitor (EM) is responsible for monitoring
available resources in the dynamic environment in which the mobile host operates. The EM is a
part of the CORD system, although one may also consider this component as part of the APPLE
system. In our architecture, the EM is a component that is responsible to detect the environment
changes (notification model). The EM sends an event to the PDP (Figure 22, event) when for
exampleit detects that the network has become unreachable (i.e. interface is down) or when anew
network has become available.

Components

The EM might contain the components asillustrated in Figure 24:

Page 39 of 102

Environment Monitor

Mobility
Manager RTCP
.
. Battery
Bandwidth Power
Manager Manager
Capability Playout
Manager Buffer

Figure 24. Components of the Environment Monitor
The components of the EM constantly monitor the environment, for example:
1. Mobility Manager (MM), keepstrack of the status of the interfaces of the mobile host. For
example, it can report to the PDP on events such as the assignment of a new IP address or the

active interface is down.

2. Real Time Control Protocol (RTCP) entity reports on packet losses of an established
connection;

3. Bandwidth Manager reports on the available bandwidth (e.g. kbps) on the network interface.

4, Battery Power Manager reports on the remaining battery power of the mobile host.

5. Capability Manager stores the information on capabilities of the mobile host, such as
available codecs in the mobile host, computational intensity and battery power needed

for a certain codec, screen size of the mobile host etc.

6. Playout Buffer provides the dynamic information on the actual buffer size of the mobile
host for playout of a stream.

In this thesis, we use a Mobility Manager (MM) [49] and an RTCP entity as monitoring and
eventing componentsin the EM. Other components of the EM remain as a possible future work.

The structure of an event from the EM is as follows:

<event _type, paraneter, value, interface_nane>.

L ocation

In our work, the EM is a local component, i.e. the MM and the RTCP entity are located in the
mobile host, because they monitor the local resource on the mobile host, such as packet losses and
signal strength on the network interface. As an aternative design choice, the EM can aso be
distributed. It can be for example a centralized Bandwidth Broker (see also [42]) that monitors the
overall load on the network, which can be queried by the mobile hosts (polling) on the available
bandwidth of the network at a certain moment.

Page 40 of 102

5.1.4 Policy Decision Point
In our policy-based system the PDP belongs to the APPLE system.
The PDP is a place where the APPLE policies, which are relevant for control reside and
evaluated. The PDP “downloads’ from the PR all APPLE policies with the goal matching the user

preferences (i.e. viewing smoothness), see also the query structure in Section 5.1.1. Therefore, the
PDP has several active discovery and handoff policies.

In addition to the APPLE policies, the PDP also uses inputs (Figure 22) from the Ul (i.e. user
preferences), the EM (i.e. events) and the PEP (i.e. available configurations) to come to policy
decision.

The events of the APPLE system are:

1. Signal strength on the receiving interface (trigger: the MM of the EM).

2. New network is detected, i.e. roaming into a new network (trigger: the MM of the EM).

3. The current network is not reachable, i.e. interface is down (trigger: the MM of the EM).

4. Packet losses in the received stream (trigger: the RTCP entity of the EM).

5. User has changed his preferences (trigger: the Ul).

6. The configuration list is received from an aggregator (trigger: the PEP).

Example 1:

Consider the first event in the above list: the MM of the EM sends an event containing the signal
strength. This event has the following values (cf. event structure in Section 5.1.3):

<roam ng_out, signal _strength, poor, w an>.
This event triggers the evaluation of the discovery policy:

if (signal_strength <= poor && receiving_interface == w an)
initiate_discovery();

If fired, the PDP enforces to the PEP to the discovery of aggregators via available networks.
Example 2:

Consider the second event in the above list. When a user roams into a new network, the MM of
the EM sends an event with the following values:

<roami ng_in, interface_status, up, W an>.
This event will trigger the policy evaluation and the following discovery policy will fire:

if (interface_status == up && receiving_interface == w an)
initiate_discovery();

The decision of the PDP (i.e. invoke the discovery protocol) will be executed at the PEP.

L ocation

In our research, we locate the PDP locally in the mobile host. As an aternative, we may also
place the PDP remotely in a central node, which can be responsible for policy decisions for
several mobile hosts of a user or a company. A drawback of putting the PDP remotely is that we
would need a protocol to retrieve a policy decision, while it is not efficient to rely on the wireless
environment. Y et another alternative is to put the PDP at an aggregator side. But as far as a policy
decision involves processing of the configurations of a channel offered by different aggregators,

Page 41 of 102

5.1.5

the privacy rules of an aggregator might not allow exposing its offers to other aggregators.
Therefore, we consider the best place to locate the PDP is the mobile host, which conforms our
general aim to put control close to the user.

Policy Enforcement Point

In our policy-based system PEP is a part of the CORD system. As an enforcement of the policy
decisions made by the PDP (Figure 22, decision), the PEP runs discovery and handoff protocols
of the CORD system that is discussed in Section 2.2 (Figures 2 and 3).

Types of handoff
PEP executes the following types of handoff using the protocol explained in Section 2.2:

1. The best configuration of a channel might belong to the same aggregator; in this case the
so-caled handoff will be from one configuration of a channel to another configuration of this
channel at the same aggregator and using the same network interface.

2. The best configuration of a channel might belong to another aggregator that is available
through the same network interface, in this case the handoff will be from one configuration of a
channel at one aggregator to another configuration of this channel at another aggregator.

3. The best configuration of a channel might belong to another aggregator that is available
through another network interface, in this case the handoff will be from one configuration of a
channel at one aggregator through one network interface to another configuration of a channel at
another aggregator through another network interface. In this case, the application level handoff
results in a network level handoff, because the mobile host needs to be handed off from one
network interface to another network interface.

4, The best configuration of a channel might belong to the same aggregator that is however
available through another network interface, in this case the handoff will be from one
configuration of a channel at the aggregator to another configuration of this channel at the same
aggregator through another network interface. In this case, the application level handoff resultsin
a network level handoff, because the mobile host needs to be handed off from one network
interface to another network interface.

For the interactions between the PDP and the PEP, we designed and implemented both a polling
model and a notification model. For example, when user has changed his preferences, this event is
sent to the PDP. Based on this event, the PDP evaluates the policies and makes a policy decision
to invoke the discovery protocol. The PDP then pushes this decision to the PEP. This case
exemplifies a notification model.

Consider another example; the PEP receives a configuration list from an aggregator. The PEP
sends this configuration list to the PDP. The receipt of the configuration list triggers a policy
evaluation in the PDP, which selects the best configuration and produces a policy decision. This
policy decision is returned to the PEP for enforcement. This case exemplifies a polling model.

L ocation

The PEP sits in the mobile host, because it is a component that executes handoff and discovery.

Page 42 of 102

5.2

521

522

Behavior

In this section we discuss the behavior of the components discussed in the previous section using
scenarios. We describe the following scenarios:

Scenario 1. User provides his preferences,
Scenario 2. User selects a channel to watch,
Scenario 3. User roamsinto a new network.
Scenario 4. User roams out of the network.

These scenarios are derived from Figures 1 and 2 of Chapter 2.

Scenario 1. User provides his preferences

Policy
Dedsion
Point

User

Pali
o Interface

Repository

event user prefeences
(high viewing smoot hness)

policy decision:
retrieve policies withjgoal
(hich viewing amoottiness)

policies with goal:
(high viewing smoothness)

Y

Figure 25. Behavior of the mobile host when user preferences are provided

Figure 25 shows the behavior of the mobile host when user Bob changes or provides his
preferences regarding viewing smoothness (Figure 23). In this scenario, al policies with a goal
matching the value of the viewing smoothness are retrieved from the PR by the PDP. From that
moment the PDP uses these newly retrieved policies for future policy evaluations. The newly
retrieved policies will be active until they are replaced by other policies.

Scenario 2: User selects a channd to watch

Figure 26 shows the behavior of the system after the above-mentioned policies are downloaded
and the user Bob selects a channel to watch (Figures 1 and 2, point A). Once Bob has selected a
channel, the PDP makes a policy decision to discover available aggregators. The PEP executes the
policy decision by invoking the discovery protocol. At point A only media-forward.nl is available
and therefore the PEP collects only one list of configurations. The PEP sends to the PDP the
received list of configurations. The PDP again evaluates the APPLE policies. During the
evaluation it processes the list of configurations to determine the best one. When the best
configuration is determined, a handoff policy fires and the PDP produces a policy decision to
handoff to the best configuration in the list. This policy decision again enforced by the PEP and
the mobile host gets connected to the media-forward.nl aggregator to receive the selected version
of the channel. The media-forward.nl aggregator is available through the UMTS interface
(Figures1and 2).

Page 43 of 102

Policy Palicy
Enforcement Deds on | t)s?r
Point Point nterface

media-forward.nl
CONFIG REQUEST event channel selected
— TS
CONFIG RESPONSE policy decision:
—T initizediscovery
available
configuraions
CONNECT REQUEST .
— CONNECT RESPONSE B policy decision:
i initiete handoff
mediaforwardnl streams

Figure 26. Behavior of the mobile host when user selects a channel.

5.2.3 Scenario 3: User roamsinto a new network

Figure 27 shows the behavior of the mobile host, when Bob is at point B of Figures 1 and 2.

Palicy Policy ,
Enforcement Dedsion Envi rohment
Paint Point Monitor

media-forward.nl stream-it.com |
CONFIG REQUEST) - - |
CONFIG REQUEST | <€— v, policy decision: event

CONFIG RESPONSE -, initiate discover new network available

CONFIG RESPONSE > e .

available
configuraions

CONNECT REQUEST policy decision:

CONNECT RESPONSE initiate handoff
DISCONNECT REQUEST > mETedemeT CEms

< TSCONNECT RESPONSE | - —=rece
dream-it.com sreams

Figure 27. Behavior of the mobile host at entering the hotspot

At point B the mobile host enters the hotspot, where it can reach two aggregators. The mobility
manager of the EM informs the PDP that new network has become available. The PDP evaluates
the APPLE policies. The discovery policy with the condition if(new_network _available) fires and
the PDP produces a policy decision to initiate discovery. The policy decision is pushed to the
PEP, which invoke the discovery protocol. This time the PEP collects two list of configurations
from tow aggregators. Each time it receives the configuration list from the aggregator it sends the
list to the PDP. The PDP evauate the APPLE policies, processes the list of the configuration and
determines the best configuration. When the PDP receives the second configuration list, it
determines the best configuration of the channel among two lists of configurations offered by two

Page 44 of 102

aggregators. In this scenario at point B, the best configuration of the channel is offered by stream-
it.com aggregator. Therefore the policy decision is to handoff to this aggregator. Once the
collection time expires, the policy decision is sent to the PEP, which executes handoff to stream-
it.com that is available through the WLAN interface of the mobile host.

Note that, the handoff is carried out using a make-before-break strategy (see Figure 16). Because

in this scenario, the PDP uses a handoff policy with the goal high viewing smoothness (see
Section 4.3.3).

5.2.4 Scenario 4: User roams out of the network

Figure 28 shows the behavior of the mobile host, when Bob is moving towards the point C of
Figures 1 and 2.

Palicy

Enforoement T, Envi rohment
" Paint Point Monitor
media-forward.nl stream-it.com |
CONFIG REQUEST : . é{
| CONFIGREQUEST ["‘___‘::‘\ policy decision: packet 1055>=20%

CONFIG RESPONSE

CONFIG RESPONSE

initiatediscove:

->
>

available
configuraions

policy decision:

CONNECT REQUEST initiat e hancbff

CONNECT RESPONSE |‘ dream-it.com streams

DISCONNECT REQUEST

e
DISCONNECT RESPONSE

—

media-forwardnl streams

¥ Y

Figure 28. Behavior of the mobile host at leaving the hotspot

Due to the roaming of Bob towards the edge of the WLAN network (e.g. point C), the packet
losses on the WLAN interface are continuously increasing. The mobility manager of the EM
periodically informs the PDP about the packet losses of the connection by sending an event to the
PDP. The PDP at receiving of the event evaluates the APPLE policies. At some moment, the
packet loss exceeds 20 %, which results in firing of a discovery policy in the PDP. The PDP
produces a policy decision to discover aternative configurations of the channel version. The rest
of the behavior of the mobile host in this scenario is the same with its behavior in the scenario 3,
except that the PEP executes handoff from stream-it.com to media-forward.nl and switches back
to its UMTS interface. Due to the early activation of the discovery policy with the goal high
viewing smoothness (e.g. packet loss>= 20%) the mobile host is handed off to another
configuration more smoothly and in time (i.e. before loosing the connection to stream-it.com).

Because the user allowed the adaptation to lower quality level of the channel version, the PDP
might select silver version of the channel instead of gold, if the latter is not available among
discovered alternatives.

The behavior of the mobile host at point D in Figure 2 is similar the behavior at point B.

In this section we covered the behavior of the mobile host in the environment illustrated in
Figures 1 and 2.

Page 45 of 102

5.3

Related wor k

The APPLE system is an application level policy-based handoff control system designed for the
CORD system. It controls switching between aggregators in a user transparent manner and selects
the best configuration of a channel according to the user preferences and network capabilities. In
this section we discuss several papers, related to our work, in particular:

policy-based and non policy-based handoffs, policy-based QoS provisioning, automatic selection
of a network/service in heterogeneous environment.

Stemm et al. [50] discuss vertical handoffs in wireless overlay networks, where handoffs are
realized only according to the strength of beacon signals. The handoff in our work is policy-based
and is triggered at the application layer: the mobile host executes handoff from one configuration
of a channel to another configuration of the same channel. In our work, the policy decision to
handoff is made not only according to the capability parameters of resources (e.g. signal strength
on the network interface), but also taking into account user preferences, available networks and

aggregators.

Wang et al. [17] discuss policy-based handoffs in heterogeneous wireless networks at network
level. Their policies are based on the user preferences (i.e. price, quality or power consumption)
which determine which network is the best for the user. Because they focus on choosing the best
network, we consider their policies as network level policies.

The work of G. Lee et a. and D. Clark et a. [20,21] is on the automatic service selection while
the user roams between different networks. The service selection is not policy based but is carried
out by means of prediction functions using multilayer neural networks, user preferences, available
network resources and identities of running applicationsin the mobile host.

Policies are also used for controlling QoS. For example Lutfiyya et al. [16] addresses the problem
of QoS reguirements for multimedia applications like telemedicine, telelearning, e-commerce etc.
to be able to co-exist with the traditional applications for data processing and transactions. They
use policies to meet QoS requirements by reallocating memory resources between simultaneously
running applications.

Murray et a. [19] use policies to guarantee QoS by controlling the access to a network. Using
policies, they select the best (i.e. less loaded) network for a mobile host. Their policies provide a
kind of intelligent access to a network. In addition, their policies force a mobile host to handoff to
another network, when current network reaches a congested state. Therefore the control in their
work is placed in the infrastructure, rather than close to the mobile host.

What makes our work different?

The following aspects that we consider in our research make our work different among the
discussed related work.

1. We use well-defined, well-structured policies that contain goals, conditions and actions.
Our policies are application level policies, because our policies invoke an application level
discovery protocol and initiate application level handoffs.

2. Our policy-based system handle the environment with multiple content and connectivity
providers (which is not the case in [46,48]), supportability in non mobile-1P environments (which
isnot the casein [17]), user-centric approach (which is not the case in [19]) taking care of the user
preferencesin price and quality level of achannel version, and smooth handoffs during roaming.

3. Input information for making a decision, in our work is: @ mobile host's status, b)
interface status, c) user preferences as well as the d) configurations of a channel offered by the
aggregators. This also makes our work different and original among discussed related work.

4, Our overal goa of using policies, is to enable the user to seamlessly roam within the

overlay networks, so that his mobile host can maintain service continuity in a way conforming
user preferencesin price, perceptua quality level, viewing smoothness etc.

Page 46 of 102

5.4

Conclusion

In this Chapter we presented a high level design of our policy-based system that consists of the
APPLE system and the CORD system. The APPLE system is a policy-based handoff control
system designed for the CORD system (see Section 2.4). The APPLE is based on the generic
policy model (see Section 3.4). We have shown how the APPLE and the CORD systems relate by
means of the scenariosin Section 5.2. In the next chapter we explain the implementation details of
the APPLE system based on the high level design.

Page 47 of 102

IMPLEMENTATION

In this chapter we explain the implementation of the APPLE system. The goal of this chapter isto
demonstrate the concepts of policiesand the policy model we have proposed in Chapter 3.

This chapter is structured as follows: Section 6.1 discusses the software organization of the
APPLE system. Section 6.2 explains the testbed environment in which we tested the APPLE
system integrated with the CORD system. This section also gives the results and screenshots
obtained from the testbed.

Softwar e or ganization
The prototype of the APPLE system was developed in C programming language. The code runs
on a Linux Redhat laptop. The laptop runs the client side of the CORD system and the APPLE

System as one process.

Figure 29 provides an overview of the implementation components of the APPLE system.

APPLE CORD
user N
preferences.txt parserl
Il PDP
User preferences
structure
Controller
Jy S Mobility
o \\ | | Manager
Configuration = Policy e
Selector Evaluator > “& L
RTCP
. X l
L] v
policy
o structures CORD protocol
T OsIP EM
policies.xml » parser2
PEP

E a request/response interaction

notification interaction
» read/write interaction

Figure 29. Implementation organization

Page 48 of 102

6.1.1

The APPLE system components

The APPLE system has the following building blocks, which conceptually correspond to the high
level view of the system architecture in Chapter 5:

1. User Interface (Ul) components are:

- user_preferences.txt, atext file that stores user’s default preferences (see Section 6.2.1).

- asimple user interface, which isimplemented in Tcl/Tk (see Figure 23) to modify the user
preferences while user is watching the channel.

2. Policy Repository (PR) component:

- policiesxml,afilethat stores the APPLE system policiesin XML format (see Figures 19, 21).

Our policy implementation approach is to specify policies in XML format, then to parse these

policiesinto policy structures using the parser2 (see Figure 29).

3. Poalicy Decision Point (PDP) components are;

parserl, to parse user_preferences.txt file into user preferences structure;

parser2, to parse policiesxml file into the list of policy structures.

Policy Evaluator, to evaluate policies and produce a policy decision;
Configuration Selector, to assist policy evaluation, to select the best configuration;

Parserl

User_preferences.txt fileis parsed into a memory structure shown in Figure 30.

struct user_preferences{

int quality; /* Quality level of the configuration,
possi bl e val ues: BRONZE, SILVER, GOLD. */
i nt adapt ati on; /* Adaptation to other quality |level when
the target quality level is not avail able,
possi bl e val ues: no, yes. */
i nt snoot hness; /* View ng snoot hness during roam ng and swi tchi ng
fromone configuration to another,
possi bl e val ues: H GH, MODERATE, LOW */
int price; /* Maxi num val ue for the price the user is
willing to pay for the service,
for exanple, 10 cents per ninute. */

Figure 30. User preferences structure stored in the memory
The user preferences structure is used for selection of the best configuration of a channel version
and for retrieving policies (see Section 5.1.1).
Parser2
The policies.xml file is parsed into the representation of policiesin memory. The requirements for
aparser are;

- it hasto run on Linux, because the APPLE system runs on Linux Redhat laptop;
- it hasto be writtenin C.

Page 49 of 102

We used Expat parser because it fulfils the above mentioned requirements. In addition, it uses
SAX [51] libraries, which mean that it is fast and uses |ess memory resources.

The parsed policies.xml file will have a memory representation in the following structure (Figure
31):

/'l policy

struct policy{
char *goal ; /* goal of the policy */
i nt goal _val ue;
char *policy_class;
struct condition *condition;
struct action *action;

/1 condition of a policy

struct condition{
int configuration_|list;
int better_alternative;
int signal _strength;
int new network_flag;
int receiving_interface;
i nt user_preferences;

b

/1 action of a policy

struct action{
int collection_tineg;
int discover_alternatives,;
char *connect_order;
char *deci si on_type;

Figure 31. A policy structure

When the parser reads each policy from the XML file, it parses into the policy struct. Each
policy struct contains the goal, the value of the goal, condition struct and action struct
(see Figure 31). After parsing, the pol i cy struct isaddedtothelist of policies. Thelength
of the list depends on the number of policies specified in the XML document.

Due to the time limitations, arun time parsing part of the implementation is not integrated into the
testbed. This work remains as a future work. The APPLE system integrated into the testbed uses
policies precompiled (preparsed) as policy structs.

Palicy evaluator
In our implementation we have two policy lists:

- thelistl contains all policies preparsed from the polices.xml file, thislist represents an
in-memory policy repository;

- the list2 contains only active policies, i.e. the policies selected according to the user
preferences (i.e. viewing smoothness, see Figure 25) from the in-memory policy
repository.

In the policy evaluation process, the policy evaluator uses only the active policiesin the list2. The
list2 can be updated at run time for example when the user changes his preferences.

Our approach isto evaluate the policies only when the policy evaluator receives an event from the
controller [38,52,57]. The following events are reported by the mobility manager of the EM or the
user interface to the controller:

- anetwork interfaceis up,

- anetwork interface is down,
- thelist of configurations of a channel at aggregatorsis received

Page 50 of 102

- change in user preferences,

The controller requests a policy decision from the policy evaluator, when it receives such events.
Figure 32 illustrates the event structure, which is sent by the controller in the request to the policy
evaluator (Figure 29, see also Section 5.1.3):

struct event{
int type; /* event type, possible values are: */
/* 1. RAOMIN - roaming into a new network */
/* 2. ROAM QUT - packet |oss increases, signal strength decreases */
/* 3. CONFI GURATIONS - configuration list is received froman aggregator */
/* 4. USER_PREFERENCES - user preferences have been changed */

int packet_| oss; /* packet |osses of an established connection */

int signal _strength; /* signal strength on the network interface */

int new network_available; /* detecting a new network, a new | P address assignment */
int receiving_interface; /* the active network interface */

struct sdp_t *sdp; /* configurations of a channel in sdp format */

char *aggregator_id; /* the name of an aggregator that offers configurations */
char *aggregator_intf; /* interface through which this aggregator is reachable */

Figure 32. The event structure.

When the policy evaluator receives a request for a policy decision from the controller, it uses the
values from the event (Figure 32) received in thisrequest and evaluates the policies, i.e. evaluates
the conditions of the policiesin the active list of policies.

When the condition of a certain policy is evaluated true then the policy fires and the policy

evaluator produces a policy decision. Figure 33 illustrates the policy decision structure produced
by the policy evaluator:

struct policy_decision{

char *deci si on; /* policy decision type */
/* possi bl e val ues: discovery, handoff */
int collection_tine; /* time to collect responses from aggregators */
int connect; /* handof f execution: nmke-before-break */
i nt disconnect; /* handof f execution: break-before-nmke */

list_t *configurations; /* list of configurations of a channel */

b
Figure 33. The decision structure.

If for example, a discovery policy fires, the decision will contain the policy decision type (i.e.
discovery) and the value for the collection time. If a handoff policy fires, then the decision will
contain the policy decision type (i.e. handoff) and the list of configurations of a channel that are
selected according to the user preferences and network capabilities. The policy decision struct is
returned to the controller, which enforces the decision on the CORD protocol entity (Figure 29).

Configuration selector

The configuration selector is responsible for selecting the best configuration that matches user
preferences, and checks whether the bitrate required by a configuration can be supported by the
potential capacity of the available network (e.g. 802.11 potential capacity is 11Mbs). The
configuration selector processes each configuration and produces a list of configurations, where
the best configuration comes first in this list. The policy evaluator includes this list of
configurationsinto the policy decision.

Page 51 of 102

6.1.2

6.2

Controller
The controller component is an integration place of the APPLE system components into the
CORD system components. The controller isimplemented as an eventing finite state machine by

C. Hesselman. The controller schedules all activities in the mobile host, it also forwards events to
the PDP and enforces policy decisions on the PEP.

The CORD system components

In accordance with the high level view of the system architecture discussed in Chapter 5 and
Figure 22, we identified the following building blocks of the CORD system in our software
organization:;

1. Policy Enforcement Point (PEP) components

PEP contains the CORD protocol entity that runs on top of SIP. This PEP also contains a part of
the controller that runs the CORD protocol.

2. Environment Monitor (EM)
The EM contains the mobility manager and the RTCP entity, the other entities of Figure 30 are
not relevant in our demo scenario and are not implemented yet.

For more details on the CORD system of Hesselman et al. refer to [2-4].

Testbed

We integrated the APPLE system into the CORD testbed. Figure 34 shows its main hardware and
software components.

plug / unplug
aggregator ethernet mobile
server % client
- handoff < /
stream-it.com SIP/SD P }
(ethernet) server side CORD F
Il SIP/SD P client side CORD
media-for ward. nl [server side CORD
(802.11) 1
VIC
RTP

Figure 34. Testbed

Page 52 of 102

6.2.1

Hardware

The main hardware components of the testbed are a Toshiba laptop, an 802.11 base station and a
server machine. The laptop is equipped with an Orinoco 802.11b Gold card and an Ethernet card.
The laptop runs Redhat Linux.

The 802.11 base station and the Ethernet LAN form two separate subnets representing two
separate network operators. The 802.11 base station is located in an indoor office environment.
The network environment is thus similar to that of the example of Figure 1, except that it consists
of aWLAN and awired LAN. The WLAN simulates the UMTS network and the LAN simulates
the 802.11 network of Figure 1.

Software

The CORD protocol software isimplemented in C on top of open SIP [5], which also includes an
SDP parser.

The server runs two processes that execute the server-side software of the CORD protocol (see
Figure 36). One process represents an aggregator media-forward.nl another process represents an
aggregator stream-it.com (Figure 1). The aggregator processes authenticate a user with a Free
Radius [53] server (not shown in Figure 34) through a simple request-response interaction.

The server aso runs the server part of VIC to simulate streaming servers at the aggregators (see
Figure 36). The server part of VIC has an extension that enables the aggregator processes to
configure the framerate, quality and bitrate (kbps) of VIC according to the selected configuration
details. Aggregator processes aso inform a target 1P address to which VIC should stream the
content.

The laptop runs the client side of the CORD protocol (see Figure 37). The protocol software is
configured such that it communicates with aggregator streant-it.com through the laptop’ s Ethernet
interface and with aggregator media-forward.nl through the 802.11 interface.

The laptop hosts a second process that runs the mobility manager [49] that is developed in the
4G+ project [57]. The mobility manager keeps track of the state of the laptop’s network interfaces
(e.g. which interfaces currently have link-layer connectivity, the signal strength of the 802.11
networks and so on). The mobility manager serves requests (e.g. for the current signal strength)
from the client-side protocol software and can also sends events to it (e.g. signaling that a new
network has become available or that the current network has become unavailable). The protocol
software uses some of these events as atrigger to run the protocol (Figures 2 and 3).

The third process on the laptop is the client part of VIC (see Figure 37). We extended the VIC
software so that it can receive a stream through a specific network interface. This enables the
mobile host to perform a handoff from one to another network to receive the stream. The server

part of VIC transfers multimedia content to the client part of VIC using RTP packets [54], see
Figure 34.

Roaming scenario

We tested the prototype for the scenario discussed in Figure 2 of Chapter 2, Figure 35:

Page 53 of 102

The quality of the 'Il't;? \S/tlrdg;]?:qlp
g
video is getting better! is great!
Mytermlnal must have ’

found aWLAN

I’'m arriving to my
office. My terminal will
automatically switch to
the gold quality
level

Figure 35. Roaming user scenario on testbed.

We refer to the Section 2.1 for adetailed discussion.
First we start the server side software asit is shown in Figure 36:

mediaplayer VIC server part

%lll@leia’l'ﬁclmlﬁt‘ﬁi ' S fmasarsiz | g
i 220 :

Sl Ale i x|

Trangfiission

1
i Raleconlml/ 47F3 125Kbis ary
mi
= [’I | 128 kbps ig policu/media—
|| S | 8fes L5031 cannot open
X11 Grahher controls _PATH
- % v RY_PATH=. : /usr /Lt
& iz policu/nedia—
hentor
VI —fa %
/nedia-
- i
® - -
A ~ 00 jped WLl e I e
nedia—
Ney: [1l 2 Signal,, | | ~ nvdck 4 h261 d |
v >
Options. .. fel3 7y .
B T WO /media—
Malohat Kamilova i “ ==
kamilovaz195.169.17.56/1) Qualit ,i . . J
18 F/5 124Kb/s {0%) ot N = Pili=lolzle
Lol e d = =
1 mute | W color |infe... ul
dio Decoder, sip_s3
LAl susrel Options... cmd_s4
| ust/loc
/
Extemal trean-y
VIC ¥2.8ucl1 15 Meun | Help | Quit e trean-u
Drening video decodert [Ffmees] FEmpes 's libavoodes. code il b s o T
Selected video codect [Ffsve3] vhniffnpeg (FFupeg Sorens| | nName: Malohat Kamilova Oliegielrean:y
udio: no sound Note: List | Exit |
Starting plagback. ., e y A 1 ——
WDec: vo config request - 480 x 260 {preferred cspi Plar! 2 Key: - O Hicogstroany
WDec: using Planar 1¥12 as output csp fno 0)
Mouie-Aspect is undefired - no prescaling applied,
/0 [x11] 480~260 => 480x2EQ Planar V12 Glokel gt Sl ke 3
o

aggregator aggregator
media-forward.nl streamyou.com

Figure 36. Server side software running at the aggregator server.

Figure 36 shows running processes at the server side: VIC server part, media player and two
aggregator processes.

Page 54 of 102

After that we run the client. Figure 37 shows (left side) the user interface through which the user
reguests to connect to a selected channel (e.g. CNN video) and a VIC client part (right side)
where the user is going to watch the selected channel.

We start our scenario at point A of the Figure 35. In our implementation, the default user
preferences are:

maximum target quality level GOLD

adaptation yes

viewing smoothness HIGH

maximum target price 30 cents per minute

Point A.

Bob selects a CNN video channel though the user interface and waits for the connection, Figure
37.

Waiting for video...

b d sip onnect regue -

«callee string> [CHN video
Invoke | Dismiss | m VIC v2.8ucH. 15 Menul Helpl Quillh

Figure 37. User selects a channel to watch at point A.

At this point there is only one aggregator: media-forward.nl available through the WLAN
network. Bob gets the bronze configuration of the channel. (Gold subscriber Bob accepts a lower
quality configuration- bronze), Figure 38. The left side of Figure 38 shows the status messages.
messages about the status of the connection, as if we are peaking into the inside of the APPLE
system to know what is going on there, what policy decisions are made and what are the current
configuration details. The right side of the Figure 37 shows the video that is being streamed.

fad Information AT AI

Status messages

Policy Decisicon: ¢ © N W E ¢ T to:

aggregator MEDIA- FORWARD . NL
interface WLAK
configuration price 25 cent/minute

configuration guality BRONZE

wwwww

.{u] |Decoder..‘| Size... I Meodes... I Dismiss

Figure 38. User is connected at point A.
Point B.
Bob roams into a hotspot at point B. We simulate this scenario by plugging the Ethernet cable

into the laptop. At point B, two aggregators are available: media-forward.nl through the WLAN
network and stream-you.com aggregator through the Ethernet.

Page 55 of 102

% Malohat Kamilova

= » Mbiayer:

ld Information -8%

Status messages

ROAM INTO & haw network
Policy Decision & B R Ry e W
Policy Decision: H A N D O F F To:
aggragator STREAM- YOU . CCOM
interface Erhernat

configuration price 27 cent/minute
configuration quality COLD

y &
v

A | |Decnder..‘ | Size...

kkkkk

I Modes. .. | Dismiss

Figure 39. Handoff to a better alternative at point B.
The mobile host of Bob automatically discovers and switches to the stream-you.com aggregator,
because it offers a better configuration of the same channel, in terms of the quality. Now Bob gets
the gold configuration of this channel, which provides higher quality, in terms of the framerates
and hitrates, Figure 39.
Point C.

Bob roams out of the hotspot. We simulate this scenario by unplugging the Ethernet cable from
the laptop. At this point aggregator stream-you.com becomes unreachable.

Status mesaages

ROAM OUT of cha SCUurrant nacwerlk
FOlicy Da&Sision: D I E C OV ER ¥ - ..
Policy Dacision: M A N D O F F ta:
Aggragator MEDIA- FORWARD . NL
intarfacs WLAN

configuration prica 25 caent/minuta
SONEAGUraAtion quality BRONZE

-iD.ecnde;.‘.I Size... I Modes... I Dismisj
Figure 40. Handoff to available alternative at point C.

Bob’s mobile host executes a handoff to aggregator media-forward.nl and gets bronze
configuration of the channel (lower quality), Figure 40.

Point C-D.
Bob changes his preferences at while he is receiving a channel through the user interface.

For example, he prefersto receive the channel in better quality and changes the price to 60
cents/m to receive a gold quality configuration of the channel, Figure 41.

Page 56 of 102

[User_Preferences - 0%

- Mazimum Target QUALITY Level -
~ bronze

~s Ssilver

gold
-ADAPTATION-

4 vyes

~ ho

- Viewing SMOOTHHNESS -
o low

~ medium

4 high

- Maximum Target PRI CE -

centimin

et

Figure 41. User changes his preferences.

The mobile host discovers and performs a handoff to the gold configuration of the current
channel, which is selected according to Bob’s new preferences, Figure 42.

hd Information,

Status messages

% Malohat Kamilova

User Preferences are modifisd.

Policy Decicion: D I 8 € OV E R ¥

Policy Decision: H A W D © F F ta:

aggregaror MEDIA - FORWARD . NL
interface WLAL
configuration price 55 oent/minute
configuration quality GOLD

wwwww

v

| Decoder.., I Size..,

I Modes... I Dismiss I

Figure 42. Handoff to the gold quality level..

The quality of the channel isimproved from bronze to gold, but the price of the channel versionis
higher. This is pure application level handoff because the mobile host is handed off between
different configurations of the same channel at the same aggregator, without handing of to

another network.

Point D.

Bob arrives to his office and roams into another hotspot. We simulate this scenario by plugging
the Ethernet cable back into its slot on the laptop. At this point again there are two aggregators
available: media-forward.nl through the WLAN network and stream-you.com aggregator through

the Ethernet network.

Page 57 of 102

% Malohat Kamilova - X

Status messages

wwwww
ROAM INTC a new

Policy Decision: D I S

Policy Decizion: H A N

aggregator

interface

configuration price

configuration guality

kkkkk

network

@ ey S at Rl i
B et g e
STREAM- YOU. CIOM
Etharnat

27 cent/minute
@oLD

M
]

|Decoder...| Size ., IModes..‘l Dismiss I

Figure 43. Handoff to a better alternative at point D.

Bob’s mobile host again discovers better aternative of the channel (in terms of price and quality),
which is available now through the office network. It performs handoff to stresm-you.com
aggregator that provides the gold quality level of the same channel for a cheaper price, Figure 43.

Page 58 of 102

7.1

CONCLUSIONS

In this Chapter we review the contribution of this thesis, our conclusions and discuss the points
for further investigation. This chapter is structured as follows. Section 7.1 presents our
conclusions. It also summarizes the main contribution of this thesis. Section 7.2 identifies some
future work.

Conclusions and observations

This research was motivated by the necessity for a flexible control mechanism for the CORD
system to control discovery and handoff initiation.

The literature “promotes’ policy based systems to be flexible. Therefore, in designing a flexible
system we followed a policy-based approach. Our approach to design the flexible control
mechanism for the CORD system included:

1. A literature survey into policies and policy-based systems, automatic service
selection, policy based handoffs in heterogeneous environments and policy-based QoS
provisioning.

2. The design of a set of simple policiesto control the CORD system

3. The design of the architecture of the policy based system, which builds on the
existing CORD system.

4. The implementation of a prototype of the control system.

5. The integration of the control mechanism with the CORD system and testing it
on the testbed.

In this research, we propose and application level handoff control system, the APPLE system, to
control the existing CORD system. The APPLE system, using policies, ensures service continuity
and adaptation. In particular, it enables a mobile host to automatically select the best one among
aternative aggregators, offering the same service with different quality or price through different
wireless networks.

In the design of the APPLE system, we have applied a policy-based control model, which is
inspired by the IETF policy framework. The APPLE system is a controlling entity for the CORD
protocol entity.

The main contribution of this research is the design and implementation the APPLE system for
the CORD system that tackles the following challenges:

1. It automatically triggers the CORD protocol based on the policy evaluation,
2. It selects the best aggregator among discovered ones in accordance with the user
preferences and network capabilities.

Another contribution of this thesisis a poster paper [56], which was published in the proceedings

of 13" Mobile and Wireless Summit, held in Lyon, France, on 26-29" of June 2004, see
Appendix E.

Page 59 of 102

7.2

Conclustions:

- This prototype implementation demonstrates the flexibility of policy based control,
which means that our approach on policy-based control is apromising solution.

- The APPLE system fulfils the requirements as a control mechanism for the CORD
system.

- Using policies we can control the behavior of the mobile host in aflexible way.

- Thisis a pilot research that suggests future investigation in many directions (see Section
7.2).

- Although the IETF's policy model is mainly used for management purposes at network
level, our work suggests that the IETF model can be applied at the application level for
control purposes.

Futurework

This research was our pilot research in the area of application level handoffs using policies. The
scope of this research was limited to the policies that control the discovery and handoff behavior
of mobile hosts. We can however extend our initial investigationsin many directions.

1. New policies for the mobile host.
There are several new policies we have in mind for the APPLE system to extend the behavior of

the mobile host, but due to time limitations we did not implement them. These policies can be
considered as a future work:

policies based on the packet losses reported by RTCP entity

policies to download new policies when the policy repository is updated
policies based on the time and date events, such as rush hour, weekend etc.
policies based on the event on the remaining battery power on the mobile host.
policies based on the velocity of the mobile user.

2. Distribution of the components

In this research we placed all components of the policy-based system on the mobile host.
To reduce the complexity of the mobile hosts, the components of the policy-based system can also
be distributed. We could for instance use:

- a remote PDP, to provide policy decision from a centralized PDP, which would
facilitate the conflict resolution and consistent policy decisions to be enforced in
different nodes.

- a remote policy repository, for instance to maintain a consistency of the policies in
several user devices.

- a remote environment monitor, for instance to check the load and stability inside a
network.

The challenges in a more distributed setting includes the design of the protocols to communicate

with the remote components of the policy-based system. The wireless link might introduce
problems, such as higher delays, higher loss rate and a lower degree of security.

Page 60 of 102

3. A notification protocol

Policy repository

f < BE

mobile user

Figure 44. Remote policy repository.

If we use a centralized policy repository, it is possible to modify the policies by an administrator
or the user, so that all devices that belong to this administrative domain (e.g. company) or the user
can be configured with policies in a consistent manner, Figure 44. An interesting issue in this
case isto design a notification model of interactions between the PDP (e.g. notification protocol)
and the remote policy repository, so that when the policy repository is updated a notification
should be sent to the PDP. This notification can be a simple notification message to the PDP
telling that the policy repository is updated or by sending (pushing) new policies right away to
the PDP.

4., Policy specification language and a parser

In this research the parser implementation is not linked to the policy evaluator. The integration of
the parser to the APPLE system remains a future work. It is recommended to investigate more in
the policy specification approaches and to find out maybe a better way to specify policies rather
thanin XML.

5. Context — based policies

It is aso an interesting issue to download the policies according to the context, for example
current network conditions (e.g. available bandwidth), location of the user, time of the day, type
of the channel (e.g. news, entertainment etc.). The context-based policies might have in their
conditions a context information such as the type of a channel the user has selected. The policy
goal might be high viewing smoothness if the channel for example, is an important for the user
news channel or a football game. The policy goal might be moderate, if the channel for example
isamusic channel.

6. Policies of aggregators (and network operators).

In this research was only considered policies that control the behavior of mobile hosts. The
system can be extended also with the aggregator and operator policies.

7. Conflict detection and resolution

Downloading new policies into the mobile host might create policy conflicts. Policies of
aggregators, operators and mobile hosts might conflict as well, when they run concurrently. It isa

challenge to design and develop a mechanism to detect these conflicts before the enforcement of
the policy action, or even at parsing the downloaded policies.

8. Policy prioritization

Page 61 of 102

When the mobile hosts and the aggregators have their own policies, it would be interesting to
explore the behavior of the mobile host that is now controlled not only by its own policies but also
by the policies of the aggregators. An interesting issue is how to prioritize the enforcement of the
policiesin the mobile host to facilitate the control of the mobile host.

9. The impact of policies on network performance and stability.

The network performance and stability might be affected by the policies used by the mobile hosts,
for example the policies with the goa high viewing smoothness will force the mobile hosts to
behave proactively. This behavior results in increasing the load in the network by triggered
discovery and handoff in an early stages of the packet losses etc. It would be interesting to test the
network performance for different policies, e.g. with different goals.

Page 62 of 102

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

[10]

[11]

[12]

[13]

[14]

[19]

M. Haardt and W. Mohr, “The Complete Solution for Third-Generation Wireless
Communications: Two Modes on Air, One Winning Strategy”, |EEE Personal Communications,
December 2000

C. Hessdlman, H. Eertink, |. Widya and E. Huizer, “A Mobility-aware Broadcasting
Infrastructure for a Wireless Internet with Hotspots’, Proceedings of the First ACM International
Workshop on Wireless Mobile Applications and Services on WLAN Hotspots (WMASH'03),
San Diego, USA, September 2003

C. Hesselman, H. Eertink, 1. Widya and E. Huizer, "Delivering Live Multimedia Streams to
Mobile Hosts in a Wireless Internet with Multiple Content Aggregators’, to appear in Mobile
Networks and Applications Journal (MONET), special issue on Wireless Mobile Applications
and Services on WLAN Hotspots, Summer 2005

C. Hesselman, |. Widya, H. Eertink and E. Huizer, “A Comprehensive Framework for
Broadcasting Multimedia Content in the Future Mobile Internet”, Proceedings of the 2nd |IEEE
Workshop on Applications and Services in Wireless Networks (ASWN’02), Paris, France, July
2002

H. Schulzrinne, “Dynamic Host Configuration Protocol (DHCP-for-1Pv4) Option for Session
Initiation Protocol (SIP) Servers’, RFC 3361, August 2002

M. Handley, V. Jacobson, “ SDP: Session Description Protocol”, RFC 2327, April 1998

L. Kleinrock, “An Internet Vision: the Invisible Global Instrastructure”, AdHoc Networks
Journal, Vol. 1, No. 1, pp. 3-11, July 2003

M. Cox and R. Davidson, “Concepts, Activities and Issues of Policy-based Communications
Management”, BT Technology Journal, Volume 17, Issue 3, July 1999, Pages 155 - 169

A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh, M.
Carlson, J. Perry and S. Waldbusser, “Terminology for Policy-Based Management”, RFC 3198.
November 2001

S. Calo and M. Sloman, “Policy-Based Management of Networks and
Services’, Journal of Network and Systems Management, Vol.11, No.3, September 2003, pp.
249-252.

W. Zhuang, Y.S. Gan, K.J. Loh and K.C.Chua, Policy-based QoS management architecture in an
integrated UMTS and WLAN environment. |EEE Communications Magazine, November 2003.

N. Damianou, A. Bandara, M. Sloman and E. Lupu, “A Survey of Policy Specification
Approaches’, Department of Computing, Imperial College of Science Technology and Medicine,
London, April 2002.

J. Moffet and M. Sloman. Policy Hierarchies for Distributed Systems Management. IEEE JSAC
11(9 Specia Issue on Network Management): 1404-14, December 1993.

Page 63 of 102

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[29]

[26]

[27]
(28]

[29]

(30]

(31]

[32]

(33]

H. Lutfiyya, G. Molenkamp, M. Katchabaw and M. Bauer, “Issues on managing soft QoS
requirements in distributed systems using a policy-based framework”. http://www-
2.cs.cmu.edu/~bumba/filing_cabinet/papers/lutfiyya-policy.pdf

HWang, R. Katz, JGiese, “Policy-Enabled Handoffs Across Heterogeneous Wireless
Networks’, 2™ |EEE Workshop on Mobile Computing and Applications (WMCSA 1999), New
Orleans, USA, Feb. 1999.

R.Yavatkar, D. Pendarakis and R. Guerin, “A Framework for Policy-based Admission Control”,
RFC 2753, January 2000

K. Murray, R. Mathur, D. Pesch, Intelligent Access and Mobility Management in Heterogeneous
Wireless Networks using Policy, Adaptive Wireless Systems Group, Department of Electronic
Engineering, Cork Institute of Technology, Ireland.

D.D. Clark, J. Wroslawski, “The Personal Router whitepaper”. MIT Technical Report, 2000.

G. Lee, P. Faratin, S, Bauer and J. Wrodawski, “Automatic Service Selection in Dynamic
Wireless Network Environments’, a poster presentation at M obiCom (co-located with First ACM
International Workshop WMASH’03), San Diego, USA, September 2003

D. Xu, K. Nahrstedt, “Supporting Multimedia Service Polymorphism in Dynamic and
Heterogeneous Environments®, Technical Report UIUCDCS-R-2000-2159, University of Illinois
at Urbana-Champaign, USA, October 2000

T. Plagemann, V. Goebel, L. Mathy, N. Race, and M. Zink, “Towards Scalable and Affordable
Content Distribution Services’, Proc. 7th International Conference on Telecommunications
(ConTEL 2003), Zagreb, Croatia, June 2003

J. Chennikara, W. Chen, A. Dutta, O. Altintas, “Application-Layer Multicast for Maobile Usersin
Diverse Networks’, IEEE Globecom 2002, Taipei, Taiwan, November 2002

M. Cox and R. Davison, “Concepts, Activities and Issues of Policy-based Communications
Management”, BT Technology Journal, Volume 17, Issue 3, July 1999, Pages 155 - 169

H. Lytfiyya, F. Garcia and J. Moffett, , “Policy 2003: Workshop on Policies for Distributed
Systems and Networks’, Journal of Network and Systems Management, Vol.11, No.3, September
2003, pp. 373-376.

INTAP, Survey on Policy-Based Networking, Final Report.

I. Liabotis, O. Prnjat, L. Sacks, Policy-based Resource Management for Application Level Active
Networks, University College London, England.

N. Dulay, E. Lupu, M. Sloman and N. Damianou, “A Policy Deployment Model for the Ponder
Language”. Proceedings IM 2001: 2001 | EEE/IFIP International Symposium on Integrated
Network Management, Seattle, USA, May 2001, pp. 529-544.

JM. Bradshaw, “Making Agents Acceptable To People’”, CEEMAS 2003, Lecture Notes in
Computer Science, vol. 2691/2003.

B. Moore, E. Ellesson et al, Policy Core Information Model — Version 1 Specification, Network
Working Group - RFC3060, 2001.

P. Linington, Z. Milosevic, K. Raymond “Policies in Communities: Extending the ODP
Enterprise Viewpoint”. http://www.dstc.edu.au/Research/Projects/Elemental/resources/edoc98-

policypaper.pdf

ISO/IEC IS 10746-2. International Standard 10746- 2, ITU-T Recommendation X.902: Open
Distributed Processing - Reference Model - Part 2: Foundations, January 1995.

Page 64 of 102

(34]

[39]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

N. Dulay, “Policy-based Management: the Holy Grail”, presentation at Policy 2004 workshop,
New Y ork, June 2004.

A. Beck and M. Hofmann, “IRML: A Rule Specification Language for Intermediary Services’,
Lucent Technologies, Internet-draft, February 2001.

N. Damianou, N. Dalay, E. Lupu and M. Sloman. Ponder: A language for specifying security and
management policies for distributed systems: The language specification (version 2.1). Technical
Report Imperial College Research Report DOC 2000/01, Imperial College of Science,
Technology and Medicine, London, England, April 2000.

L. Lymberopoulos, E. Lupu and M. Sloman, “An adaptive Policy Based Framework for Network
Services Management”, Journa of networks and Systems management, Special Issue on Policy
Based Management of Networks and Services.

R. Montanari, E. Lupu and C. Stefanelli, “Policy-Based Dynamic Reconfiguration of Mobile-
Code Applications’, Computer, magazine published by IEEE Computer Society, 2004, pp.73-80.

A. Meissner, S. B. Musunoori, L. Wolf, “MGMS/GML- Towards a new Policy Specification
Framework for Multicast Group Integrity”, 2004 |EEE Proc. 2004 Symposium on Applications
and the Internet (SAINT 2004), Tokyo, Japan, 26-30 January 2004, pp. 233-239.

D.Durham, J. Boyle, R. Cohen, S. Herzog , R. Rgjan and A. Sastry, RFC 2748, COPS, January
2000.

O. Akoz, M. Zeren, “Security Considerations in Mobile IP Networks using Stateful Packet
Filtering Firewalls’, Proceedings of the 13th IST Mobile & Wireless Communications Summit,
Lyon, France, June 2004, pp 218-222.

N. N&fisi, L. Wang, H. Aghvami, R. Ferrus, A. Gelonch, J. Perez, O. Sallent, R. Agusti,
“Extending QoS Policy-based mechanismsto B3G Mobile Access Networks, Proceedings of the
13th IST Mabile & Wireless Communications Summit, Lyon, France, June 2004, pp 518-522.

W. Boehm and P. Braun, “Policy based Architecture for the UMTS Multimedia Domain”,
Proceedings of the Second IEEE international Symposium on Network Computing and
Applications (NCA’03), 2003.

G. Tonti, JM. Bradshaw, R. Jeffers, R. Montanari, N. Suri and A. Uszok, Semantic Web
Languages for Policy Representation and Reasoning: A Comparison of KaoS, Rei and Ponder.
2nd International Semantic Web Conference (_1SWC2003), October 20-23, 2003, Sanibel Island,
Florida, USA.

DMTF Specification for the Representation of Common Information Model (CIM) in XML,
version 2.0, 1999.

N. Blefari Melazzi, G. Ceneri, G. Cortese, N. Davies, N. Dellas, A. Friday, J. Hamard, E.
Koutsoloukas, C. Niedermeier, C. Noda, J. Papanis, C. Petrioli, E. Rukzio, O. Storz, J. Urban
“The Simpilcity Project: easing the burden of using complex and heterogeneous ICT devices and
services’ Proceedings of the 13th IST Mobile & Wireless Communications Summit, Lyon,
France, June 2004, pp. 746-753.

N. Alonistioti, Z. Boufidis, A. Kaloxylos, M. Dillinger “Integrated Mangement Plane for Policy-
based End-to-End reconfiguration Services’, Proceedings of the 13th IST Mobile & Wireless
Communications Summit, Lyon, France, June 2004, pp. 132-136.

France Telecom, Demonstration at The 13th IST Mobile & Wireless Communications Summit,
Lyon, France, June 2004.

Page 65 of 102

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

A. Peddemors, H. Zandbelt, and M. Bargh, "A Mechanism for Host Mobility Management
supporting Application Awareness" , In Proceedings of the Second International Conference on
Mobile Systems, Applications, and Services (MobiSys04), June 2004.

M. Stemm and R. H.Katz, Vertical Handoff in Wireless Overlay Networks.

http://sax.sourceforge.net/ About SAX.

P. Martinez, M. Brunner, J. Quittek, F. Strauss, J. Schoenwaelder, S. Mertens and T. Klie, “Using
the Script MIB for Policy-based Configuration Management”.

C. Rigney, A. Rubens, W. Simpson and S. Willens, RFC 2138 Remote Authentication Dial In
User Service (RADIUS), April 1997

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-
Time Applications’, RFC 1889, January 1996

CW. Ng, P. Y. Tan and H. Cheng, “Quality of Service Extension to IRML", Panasonic
Singapore Labs, Internet-draft, July 2001.

M.l. Kamilova, C. Hesselman, |. Widya and E. Huizer, "A Policy-based System for Handoffs
between Intermediary Content Providers in the Wireless Internet” (poster paper), Proceedings of
the 13th IST Mobile & Wireless Communications Summit, Lyon, France, June 2004, pp. 813-
817.

http://www.freeband.nl/kennisimpul s/proj ecten/4gplus/ENindex.html

P. Vidales, R. Chakravorty, C. Policroniades, “PROTON: A Policy-based Solution for Future 4G
devices'.

F. Cadeiraand E. Monteiro, “A policy-based approach to firewall management”.

M. Kangaduoma, “Policy Specification Languages’, draft, Helsinki University of Technology,
1999.

Page 66 of 102

Appendix A

APPLE
CORD
DiffServ
DMTE
GGSN
GPRS
IETF
IntServ
IP

ISP
OoOMG
QoS
RSVP
SDP
SIP
SLA
TV
UML
UMTS
WLAN

Abbreviations

APPlication Level Policy-based Handoff Control System
Continuous Channel Reception System for Mobile Devices
Differentiated Service

Desktop Management Task Force

Gateway GPRS support node

General Packet Radio Service

Internet Engineering Task Force

Integrated Service

Internet Protocol

Internet Service Provider

Object Management Group

Quiality of Service

Resource ReSerVation Protocol

Session Description Protocol

Session I nitiation Protocol

Service Level Agreement

Television

Unified Modeling Language

Universal Mobile Telecommunications System
WirelessLAN

Page 67 of 102

Appendix B Examplesof policies

Policy Class Discovery

POLICY 1
/* policy_class = discovery, |eaving hotspot
* policy_goal = high_view ng_snoot hness
*
/
if (packet_l oss >= 20% && receiving_interface == “802.11") ({

/* Invoke discovery */
pep. set _col l ection_tine(short);
pep. i nvoke_di scovery_protocol ();

}
POLI CY 2
/* policy_class = discovery, |eaving hotspot
* policy_goal = nopderate_view ng_snoot hness
*
/
if (packet_l oss >= 50% && receiving_interface == “802.11") {

/* 1Invoke di scovery */
pep. set _collection_tine(default);
pep. i nvoke_di scovery_protocol ();

}
PCLI CY 3
/* policy_class = discovery, |eaving hotspot
* policy_goal = |ow_ view ng_snoot hness
*
/
if (packet_l oss >= 80% && receiving_interface == “802.11") ({

/* Invoke discovery */
pep. set_collection_tinme(default);
pep. i nvoke_di scovery_protocol ();

Page 68 of 102

This is a discovery palicy telling the system how to behave if the user roams out of the network
coverage through which he is receiving the channel.

In order to provide seamless roaming, the mobile host should handoff to another configuration
that is available through another network. The policies 1-3 are discovery rules, defining when to
initiate discovery of aternatives to possible handoff in order to achieve the goa of the policy.
Depending on the goal the condition part of the policies 1, 2 and 3 slightly differ.

These policies are based on the packet loss percentage on the receiving network interface. These
policies force the mobile host to query available configurations from the aggregators when the
packet |oss value exceeds 20% (high viewing smoothness), 50 % (moderate viewing smoothness)
and 80 % (low viewing smoothness).

The conditions of these policies define proactive (POLICY 1) or reactive (POLICY 2 and
POLICY 3) behaviour of the system based on the packet loss value.

POLI CY 4

/* policy_class =discovery, |eaving hotspot
* policy_goal = high_vi ewi ng_snoot hness
*/

if (signal_strength== MEDI UM && receiving_interface == “802.11") {
/* 1Invoke di scovery */

pep. set _col |l ection_tine(short);
pep. i nvoke_di scovery_protocol ();

POLI CY 6

/* policy_class =discovery, |eaving hotspot
* policy_goal = high_vi ewi ng_snoot hness
*/

if (signal_strength== MEDI UM && receiving_interface == “UMIS") {
/* Invoke discovery */

pep. set _col l ection_tine(short);
pep. i nvoke_di scovery_protocol ();

POLICY 5

/* policy_class =discovery, |eaving hotspot
* policy_goal = noderate/l ow vi ew ng_snoot hness
*/

if (signal_strength== LOWN&& receiving_interface == “802.11") {
/* Invoke di scovery */

pep. set _collection_tine(default);
pep. i nvoke_di scovery_protocol ();

POLI CY 7

/* policy_class =discovery, |eaving hotspot
* policy_goal = noderat e/l ow vi ewi ng_snoot hness
*/

Page 69 of 102

if (signal_strength== LON&& receiving_interface == “UMIS") {

/* Invoke di scovery */
pep. set _collection_tine(default);
pep. i nvoke_di scovery_protocol ();

POLICIES 4 - 7 have the same semantics as POLICIES 1 - 3, but the conditions of these policies
are based on the value of the signal strength on the receiving network interface.

These policies tell the system when to discover aternative configurations based on the signa
strength on the receiving interface.

POLICY 4 and POLICY 5 are used when the receiving interface is 802.11.
POLICY 6 and POLICY 7 are used when the receiving interfaceisUMTS,

Policy Class Discovery

POLI CY

/* policy_class =discovery
* policy_goal = high_vi ewi ng_snoot hness
*/

if (user_preference_changed) {
/* Invoke discovery */

pep. set _col l ection_tine(short);
pep. i nvoke_di scovery_protocol ();

Policy Class Handoff

POLI CY 8

/* policy_class =handoff, handoff execution
* policy_goal = high_vi ewi ng_snoot hness
*/

if (configuration_list &
better_alternative(configuration_list, current_configuration)) {

/* First connect, then disconnect */
pep. connect _t o(new_configuration);
pep. di sconnect _fron(ol d_configuration);

POLI CY 9

/* policy_class =handoff, handoff execution

* policy_goal = noderat e/l ow vi ewi ng_snoot hness
*/

if (configuration_list &
better_alternative (configuration_list, current_configuration)) {

Page 70 of 102

/* First disconnect, then connect */
pep. di sconnect _fron(ol d_configuration);
pep. connect _to(new_ configuration);

These policies define the rules for an execution of handoff, if newly selected configuration is
better than the current configuration..

POLICY 8 has a goa “high viewing smoothness’. To achieve this goal, the policy action defines
the rules to execute handoff: first connect to a selected aggregator, then disconnect from the old
aggregator, providing smooth handoff from one stream to another stream.

POLICY 9 defines the rule for executing handoff to provide moderate viewing smoothness. To
accomplish this the policy action tells first to disconnect from the current aggregator and then to
connect to the new aggregator. This might result in some data loss and service degradation during
the handoff, but still inline with the goal of the policy, which is “moderate / low viewing
smoothness’.

POLI CY 10

/* policy_class =handoff, handoff execution

* policy_goal = cheapest service as nuch as possible
*/

if (configuration_list &%
better_alternative (configuration_list, current_configuration)) {

/* First disconnect, then connect */
pep. di sconnect _from(ol d_configuration);
pep. connect _to(new_ configuration);

This policy defines the rule for an execution of handoff, if the user wants always to be connected
to the cheapest service.

Obviously, that first disconnecting and then connecting to the service provider will cost less
amount of money for the user, rather then other way around. Because in the latter case, the
mobile host will receive streams of the same channel on two interfaces simultaneously for some
time, which might be costly for the user.

Policy Class Handoff

POLI CY 11

/* policy_class =handoff, high speed roam ng
* policy_goal = high_vi ewi ng_snoot hness
*/

if (user_speed>=100 && handoff_flag && receiving_interface == “UMIS")

/* Don’t handoff to WLAN i nterface */
pep. di sabl e_handof f (w an) ;

Page 71 of 102

POLI CY 12

/* policy_class =handoff, high speed roaning

* policy_goal = high_vi ewi ng_snoot hness
*/

if (user_speed>=100 && handoff_flag && receiving_interface == 802.11")
{

/* Don’t handoff to WLAN interface */
pep. handof f _to(unts);
pep. di sabl e_handof f (w an) ;

These policies define the rules to avoid continuous frequent handoffs from one to another network

(i.e. WLAN with a small coverage) in the situation when the user moves with high speed within
overlay networks.

POLICY 11 and POLICY 12 disable handoff to WLAN networks, so that the system stays
connected to the global available (e.g. UMTS) network at that time. This policy is designed to

prevent a“ping-pong” effect during the roaming. Disabling unnecessary handoffs will keep the
viewing smoothness stable during user movements.

POLI CY 13

/* policy_class =handoff, entering hotspot

* policy_goal = cheapest service as nmuch as possible
*/

if (foreign_network_fl ag)

/* Disable handoff to foreign network */
pep. di sabl e_handof f (f or ei gn_net wor k) ;

This policy is used when the user does not want to use his mobile device in the foreign network,
because the foreign network might be expensive for the user. Therefore this policy has agoal
“cheapest service”. This policy disables handoff to aforeign network.

Policy Class Discovery

POLI CY 14
/* policy_class = discovery, entering hotspot
* policy_goal = cheapest service as nmuch as possible
*/

if (new_| P_address_assignnment) ({
// assignnent of |IP address to WLAN interface

/* 1Invoke di scovery */
pep. set _col | ection_tine(short);
pep. i nvoke_di scovery_protocol ();

Page 72 of 102

POLI CY 15

/* policy_class = discovery, entering hotspot
* policy_goal = highest quality |evel
*/

if (new_l P_address_assignment) ({
/lassignnent of IP address to WLAN interace

/* Invoke di scovery */
pep. set _collection_time(default);
pep. i nvoke_di scovery_protocol ();

}

These policies define the behavior of the system, when a new |IP address is assigned to one of
mobile host’ s interfaces.

Assigning a new |P address indicates that the mobile host has roamed into a new network that
might offer better configuration of the same channel that user receives at that moment.

As aresult, discovery protocol isinvoked to inquire available configurations from all aggregators
in the mobile host vicinity through al interfaces, including the interface with newly assigned IP
address. Thus, the mobile host takes advantage of the user mobility to discover “better” versions
of the channel for the user.

Page 73 of 102

Appendix C Fragmentsfrom the implementation code

Some functions of the configuration selector

/~k
* validates the configuration against user preferences and the bitrate
* that can be supported on the interface
*/
voi d
val idate_config(int price, int quality, int framerate, int bitrate, sdp_attribute_t
*att_rtpmap, sdp_attribute_t *att_fntp){

/'l check whether the interface can support the configuration
i f(intrfeis->bandw dth>bitrate){

/1 if the user allows the switching to another quality |evel
i f (user_pref->adaptation==1){

/1 check the quality in user preferences
if (price<=user_pref->price & define_qgty(quality,
framerate) <=user _pref->quality){

/1 add to the valid |ist
add_to_validlist(sdp_one, valid_nedia(), uac_one);

/1 if the user does not allow the switching to another quality |evel
}else {

if (price<=user_pref->price & define_qty(quality,
framerate)==user_pref->quality){
count _c++;

/1 add to the valid |ist
add_to_validlist(sdp_one, valid _nedia(), uac_one);

}

/ *

* defines the quality level according to the quality and franerate fromthe sdp file.
*

*/

i nt
define_qty(int quality, int framerate){
int g_level;
i f((franerate<=30 && franerate>=21) && (quality>=71 && quality<=100))
g_l evel = GOLD;
i f((franerate<=20 && franerate>=11) && (quality>=31 && quality<=70))
g_l evel = SILVER;
if((framerate<=10 && franerate>=0) && (quality>=1 && quality<=30))
g_l evel = BRONZE;
return g_|l evel;
}
/**

* final ordering of selected configurations

Page 74 of 102

*/
list_t
*order _configurations(){
/'l conpare configurations and order them according quality
struct tuples* t;
best _tupl e=(struct tuples*)malloc(sizeof(struct tuples));

for(i=0; i<list_size(ordered_configuration_list); i++){
for(j=0; j<list_size(ordered_configuration_list)-1; j++){
first=(struct tuples*)list_get(ordered_configuration_list,j);
second=(struct tuples*)list_get(ordered_configuration_list,j+1);

aggr =first->uac;
aggr 2=second- >uac;
config=first->sdp;
confi g2=second- >sdp;

/1 get nedia lists fromconfigrations
ne=confi g- >m nedi as;
nR=confi g2- >m nedi as;

/1 get the nedia structs fromthe nedia lists
nedi a_struct =(struct sdp_nedia_t*)list_get(mOo);
nedi a_struct 2=(struct sdp_nedia_t*)I|ist_get(n2,0);

/1 get the attribute lists fromthe nmedia structs
attr=medi a_struct->a_attributes;
attr2=nedi a_struct2->a_attributes;

retrieve_data(attr, attr2); /] retreives nedia attributes data

/1 get the quality |evel
pl=define_qgty(conpare_qgtyl, conpare_fr1l);
p2=define_qty(conpare_qty2, conpare_fr2);

/'l conparison part
i f(pl<p2){// conpare the quality
swap=*first;
*first=*second;
*second=swap;
telse if (pl==p2){// if quality is the sane
i f (conpare_brl<conpare_br2){// conpare the bitrate
swap=*first;
*first=*second;
*second=swap;
telse if (conpare_bril==conpare_br2){
/] if bitrate is the equal
i f (conpare_prl>conpare_pr2){ // conpare the price
swap=*first;
*first=*second;
*second=swap;

}
}
}
}
}
return ordered_configuration_|ist;
}
/*
* conpares current configuration with the new configuration
*/
i nt

find_better_alternative(list_t *all_configurations, struct tuples

*current _configuration){
/1 conpare configurations and order to find better one this function sets the
/'l variable better_alternative that is used for the handoff policy evaluation

int found=0;

second=(struct tuples*)list_get(all_configurations,0);
first=current_configuration;

aggr =first->uac;

config=first->sdp;

aggr 2=second- >uac;

confi g2=second- >sdp;

Page 75 of 102

/1 get nedia lists fromconfigurations
ne=confi g- >m nedi as;
nR=confi g2- >m nedi as;

/1 get the nedia structs fromthe nedia lists
nedi a_struct=(struct sdp_nedia_t*)list_get(mO0);
nedi a_struct 2=(struct sdp_nedia_t*)!list_get(n2,0);

/1 get the attribute lists fromthe nmedia structs
attr=medi a_struct->a_attributes

attr2=nedi a_struct2->a_attributes

retrieve_data(attr, attr2); /] retrieves nedia attribute

/'l get the quality level of the configuration
pl=define_qty(conpare_qtyl, conpare_frl)
p2=define_qty(conpare_qty2, conpare_fr2)

i f(pl<p2){// conpare quality
found=1;
telse if (pl==p2){
i f(conpare_brl<conpare_br2){// conpare bitrate
found=1;
}else if (conpare_brl==conpare_br2){
i f (conpare_prl>conpare_pr2){ // conpare price
f ound=1;
}

}

}

i f(found==0) printf("\n\n better alternative is NOT FOUND\n");
else printf("\n\n better alternative is FOUND\n");

return found;

Some functions of the policy evaluator

initializes the POLI CY EVALUATOR
creates the policy list
| oads proper policies
reads user preferences
/
voi d
policy_evaluator_init(){

L I

ordered_configuration_list=(list_t *)malloc(sizeof(list_t));
list_init(ordered_configuration_list);

/1 call the user unterface to read preferences
read_user _preferences();

/1 call the policy repository to create the list of policies
create_policies();

/'l create a list for storing active policies
active_policies=(list_t *)malloc(sizeof(list_t));
list_init(active_policies);

/1 load policies to active policies |ist
| oad_pol i ci es(user _pref - >snpot hness) ;

/1 allocate nmenory for a decision structure
deci si on=(struct decision *)malloc(sizeof(struct decision));

printf("\nPOLI CY EVALUATOR is initialized successful.");

Page 76 of 102

/~k
* |oads the policies with the goal matching to the user preferences
*/
voi d
| oad_policies(int snoothness){

int z;
struct policy *tenp_policy;

/'l clean the list before |oading the policies

whi I e(list_size(active_policies)!=0){
list_renmove(active_policies, 0);

}

for (z=0; z<list_size(policies); z++){
temp_policy= (struct policy *)list_get(policies, z);
i f(strcnmp(tenp_policy->goal, "SMOOTHNESS")==0) {
i f(tenp_policy->goal val ue == snpot hness){
|'ist_add(active_policies, tenp_policy, -1);

}
}
printf("\n Policy Repository contains %l policies.\n", list_size(policies));
printf("\n Policy List contains %l active policies\n",|ist_size(active_policies));
print_policies(active_policies);
}
/*

* this is the interface between the CONTROLLER and Policy eval uator
* to be called by CONTORLLER
* returns the policy decision
*
/

struct
deci si on *eval uate_policies(struct event *ev){
int y;
struct policy *tenp;
struct condition *tenp_c;
struct action *tenp_a;

/'l read the event structure
event _i ncom ng=ev- >t ype

i f (event _i ncom ng==ROAM I N) {
real _network_i nterface=ev->receiving_interface

/'l traverse the list for discovery policies
for(y=0; y<list_size(active_policies); y++){
temp= (struct policy *)list_get(active_policies, y);
tenp_c=tenp->condi ti on
t enmp_a=t enp- >acti on
i f(strcnp(tenp->policy_class, "D SCOVERY")==0) {
i f(tenp_c->new_network_flag==1) {
i f(tenp_c->receiving_interface == real _network_interface){
/'l set the collection tinme and the policy decision type
deci si on->d_col |l ection_ti me=tenp_a->collection_tine
deci si on->pol i cy_deci si on=t enp_a- >deci si on_t ype

}
}
i f (event _i ncom ng==ROAM QOUT) {

real _network_i nterface=ev->receiving_interface
real _si gnal _strengt h=ev->si gnal _strengt h;

/'l traverse the list for discovery policies
for(y=0; y<list_size(active_policies); y++){

temp= (struct policy *)list_get(active_policies, y);

t emp_c=t enp- >condi ti on
t enmp_a=t enp- >acti on

Page 77 of 102

i f(strcnmp(tenp->policy_class, "D SCOVERY")==0) {

}

if(tenp_c->receiving_interface == real _network_i nterface){
i f(tenp_c->signal _strength == real _signal _strength){
/'l set the collection tinme and the policy decision type
deci sion->d_col l ection_time=tenp_a->col |l ection_tine;
deci si on->pol i cy_deci si on=t enp_a- >deci si on_t ype
}
}

el se if (event_incom ng==CONFlI GURATI ONS) {

/'l allocate nmenory for an aggregator structure
aggreg = (struct aggregator *)malloc(sizeof (struct aggregator));

aggr eg- >aggr egat or _nane=ev- >aggr egator _i d
aggr eg- >aggr egat or _i nt erf ace=ev- >aggregator_intf;
config_received=1;

/1 call get_configurations function and get the processed |ist

ordered_configuration_|ist=get_configuration(aggreg, ev->sdp);

if(list_size(ordered_configuration_list)!=0){
display_list(ordered_configuration_list);

i f(start_up==0)

el se

better_alternative=1

better_alternative= find_better_alternative
(ordered_configuration_list, current_configuration);

/'l traverse the list for handoff policies
for(y=0; y<list_size(active_policies); y++){

}

tenp= (struct policy *)list_get(active_policies, y);
tenp_c=tenp->condi tion
t enmp_a=t enp- >acti on

i f(strcnp(tenp->policy_class, "HANDOFF")==0){
i f(config_received & better_alternative){
i f(strcnp(tenp_a->connect _order, "CONNECT_FI RST")==0) {
/'l set the decision type
/1 configuration |ist and handoff strategy
deci si on->pol i cy_deci si on=t enp_a- >deci si on_t ype
deci si on->d_configuration_list=
ordered_configuration_list;
deci si on- >connect =F| RST;
deci si on- >di sconnect =SECOND;
}else if(strcnp(tenp_a->connect_order,
" CONNECT_SECOND") ==0) {
deci si on- >pol i cy_deci si on=t enp_a- >deci si on_type
deci si on->d_configuration_list=
ordered_configuration_list;
deci si on- >connect =SECOND;
deci si on- >di sconnect =Fl RST;
}el se{}

else if(list_size(ordered_configuration_list)==0){

11

if the list is enpty

deci si on- >pol i cy_deci si on=" DI SCONNECT";

telse {}
telse { }
return decision;

Page 78 of 102

Some hard coded policies of the policy evaluator used in the prototype

/

*

* initialize a policy structure

*/

struct policy *init_policy(){

}
/

*

struct policy *new policy;

/1l allocate menory for policy, condition and action structures
new_pol i cy=(struct policy *)nmalloc(sizeof(struct policy));
a_condi tion=(struct condition *)malloc(sizeof(struct condition));
an_action=(struct action *)mall oc(sizeof(struct action));

// assign initial values to the policy struct
new_pol i cy->goal =NULL;

new_pol i cy- >goal _val ue=-1,

new_pol i cy->pol i cy_cl ass=NULL;

a_condi tion->configuration_|ist=-1,
a_condition->better_alternative=-1;
a_condi ti on->new_networ k_f | ag=-1;
a_condition->receiving_interface=-1;
a_condi tion->signal _strength=-1;

an_action->col |l ection_tine=-1;
an_acti on->connect _or der =NULL;
an_acti on->di scover _al ternatives=-1;
an_act i on->deci si on_t ype=NULL;

//add condition and action structs to the new policy struct
new_pol i cy->condi ti on=a_condi ti on;
new_pol i cy->acti on=an_acti on;

return new_policy;

* creates a policy list containing of the policies of the APPLE system

*/

void create_policies(){

policies=(list_t *)malloc(sizeof (list_t));
list_init(policies);

/1 POLICIES ON ROAM NG | NTO A NEW NETWORK

// R R R S R S S R R R R R R R R R R R

/'l DI SCOVERY policy | ROAMIN |

// R R S R S R R S S R R R R S R R R R R

/1l initialize a nmenory block for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy- >goal _val ue=H GH;
a_policy->policy_class="D SCOVERY";

a_condi tion->new_networ k_f | ag=1;
a_condition->receiving_interface=ETH;

an_action->col | ection_ti me=SHORT;
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

list_add(policies, a_policy, -1);

// R R R R R S R R R R R R R R

/I 2 DI SCOVERY policy | ROAMIN |

[] xRk kR sk ok ke kK ok ok ok ok kK K ok ok ok kR K ok ok Rk kK ok ok ok ok kR ok kK

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

Page 79 of 102

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy->goal _val ue=MODERATE;
a_pol icy->policy_cl ass="Dl SCOVERY";

a_condi ti on->new _network_fl ag=1;
a_condition->receiving_interface=ETH,

an_action->col | ecti on_ti me=DEFAULT;
an_acti on->di scover_al ternatives=1;
an_act i on- >deci si on_t ype="Dl SCOVERY";

|'ist_add(policies, a_policy, -1);

[] xRk Rk sk ok ke ko ok ok ok ok kK K ok ok kR K ok ok Rk kK ok ok ok kK Rk kK

/13 DI SCOVERY policy | ROAM IN |

// R R R S R S S R S S S R S R S S R R R

// initialize a menory block for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy->goal _val ue=LOW
a_pol icy->policy_cl ass="Dl SCOVERY";

a_condi ti on->new _network_fl ag=1;
a_condition->receiving_interface=ETH,

an_action->col |l ection_ti ne=LONG
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="Dl SCOVERY";

|'ist_add(policies, a_policy, -1);

[] xRk ok kK ok ke kK ok ok ok ok kK K ok ok kR K ok ok Rk kK ok ok ok kK Rk ok kK

Il 4 DI SCOVERY policy | ROAM IN |

// R R SR S R S S S S S S S R S S S S R R R

// initialize a menory block for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy- >goal _val ue=H GH;
a_pol icy->policy_cl ass="Dl SCOVERY";

a_condi ti on->new_network_fl ag=1;
a_condi tion->receiving_interface=WAN

an_acti on->col | ecti on_ti me=SHORT;
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

|'ist_add(policies, a_policy, -1);

[] xRk ok sk ok ko kK ok ok ok kK K ok ok ok kK ok ok Rk kK ok ok ok kK Rk kK

/15 DI SCOVERY policy | ROAM IN |

// R R R R R S S R S R R R R R R R R

/1l initialize a nmenory block for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy- >goal _val ue=MODERATE;
a_policy->policy_cl ass="Dl SCOVERY";

a_condi ti on->new_network_fl ag=1;
a_condi tion->receiving_interface=WAN

an_action->col | ecti on_ti me=DEFAULT;
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

|'ist_add(policies, a_policy, -1);

Page 80 of 102

// R R R R R R S R S R R R R R R R R R R R

/1 6 DI SCOVERY policy | ROAM IN |

[] xRk sk ok ke kK ok ok ok ok kK K ok ok kR K ok ok Rk sk K ok ok ok Kk Rk kK

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy->goal _val ue=LOW
a_policy->policy_cl ass="Dl SCOVERY";

a_condi ti on->new _network_fl ag=1;
a_condi tion->receiving_interface=W.AN,

an_action->col |l ection_ti ne=LONG
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="Dl SCOVERY";

|'ist_add(policies, a_policy, -1);

/1 POLICIES ON SI GNAL STRENGTH

// EE R R R R R R S S S R S R S S S R R R R

/' 7 DI SCOVERY policy | ROAMOUT |

[] xRk sk ok ke kK ok ok ok ok Kk K ok ok ok kK ok ok Rk kK ok ok ok kK ok ok ok kK

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy->goal _val ue=H GH;
a_policy->policy_class="D SCOVERY";

a_condi ti on- >si gnal _st r engt h=MODERATE;
a_condi tion->receiving_interface=WAN

an_action->col | ecti on_ti me=DEFAULT;
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

|'ist_add(policies, a_policy, -1);

// R R R S R R S S R S R R S R R R R

/1 8 DI SCOVERY policy | ROAM OQUT |

[] xRk ok ok kK ok ok ok ok kK K ok ok kR K ok ok Rk kK ok ok ok Kk Rk ok kK

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy->goal _val ue=H GH;
a_policy->policy_class="D SCOVERY";

a_condi tion->si gnal _strengt h=LOW
a_condi tion->receiving_interface=WAN,

an_acti on->col | ecti on_ti me=SHORT;
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="Dl SCOVERY";

|'ist_add(policies, a_policy, -1);

// R R R S R R S S R R S R R R R R R

/19 DI SCOVERY policy | ROAM OQUT |

[] xRk kR sk ok ok sk kK ok ok ok Kk K ok ok ok kK ok ok ok kK ok ok ok kK Rk ok kK

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy->goal _val ue=MODERATE;

Page 81 of 102

a_policy->policy_class="D SCOVERY";

a_condi ti on- >si gnal _st r engt h=MODERATE;
a_condi tion->receiving_interface=WAN

an_action->col | ecti on_ti me=DEFAULT;
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

list_add(policies, a_policy, -1);

// EE R R R S R S S S R S S S S S R S S R R R R R

// 10 DI SCOVERY policy | ROAMOUT |

[] xRk Rk sk ok ke kK ok ok ok kK kK ok ok kR K ok ok Rk kK ok ok ok Kk Rk kK

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy->goal _val ue=MODERATE;
a_policy->policy_class="D SCOVERY";

a_condi tion->si gnal _strengt h=LOW
a_condi tion->receiving_interface=WAN

an_action->col | ecti on_ti me=DEFAULT;
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

list_add(policies, a_policy, -1);

// EE R R R S R S S R S S S R S S S S R R R R R

// 11 DI SCOVERY policy | ROAMOUT |

[] xRk kR sk ok ke kK ok ok ok ok kK ok K ok ok kR K ok ok ok kK ok ok ok kK Rk kK

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy->goal _val ue=LOW
a_policy->policy_class="D SCOVERY";

a_condi tion->si gnal _st r engt h=MODERATE;
a_condi tion->receiving_interface=W.AN

an_action->col | ection_ti ne=LONG
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";
list_add(policies, a_policy, -1);

// R R R S R S S R S S R S R R S S R R R R

// 12 DI SCOVERY policy | ROAMOUT |

[] xRk kR sk ok ke ke kK ok ok ok kK K ok ok ok kK ok ok ok kK ok ok ok Kk Rk kK

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;

a_pol i cy->goal _val ue=LOW
a_policy->policy_class="D SCOVERY";

a_condi tion->si gnal _strengt h=LOW
a_condi tion->receiving_interface=W.AN,

an_action->col | ection_ti ne=LONG
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

|'ist_add(policies, a_policy, -1);

// R R R R R S S R R R R R R R R R R R R R

Page 82 of 102

// 13 DI SCOVERY policy | ROAMOUT |

// R R R R R R S R S R R R R R R R R R R R

/1l initialize a nmenory block for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy- >goal _val ue=H GH;
a_policy->policy_class="D SCOVERY";

a_condi ti on- >si gnal _st r engt h=MODERATE;
a_condition->receiving_interface=ETH;

an_action->col | ecti on_ti me=SHORT;
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

list_add(policies, a_policy, -1);

// R R R S R R S S R S R S S R R R R R R

// 14 DI SCOVERY policy | ROAMOUT |

[] xRk kR ok ok ko kK ok ok ok ok kK K ok ok ok kK ok ok Rk kK ok ok ok Kk Rk kK

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy->goal _val ue=H GH;
a_policy->policy_class="D SCOVERY";

a_condi tion->si gnal _strengt h=LOW
a_condition->receiving_interface=ETH;

an_acti on->col | ecti on_ti me=SHORT;
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

list_add(policies, a_policy, -1);

// EE R R R S R S R S S S S R R S R R R R R

// 15 DI SCOVERY policy | ROAMOUT |

[] xRk Rk sk ok sk kK ok ok ok ok kK kK ok ok ok kK ok ok ok kK ok ok ok kK Rk kK

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy- >goal _val ue=MODERATE;
a_policy->policy_class="D SCOVERY";

a_condi tion- >si gnal _st r engt h=MODERATE;
a_condition->receiving_interface=ETH;

an_action->col | ecti on_ti me=DEFAULT;
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

list_add(policies, a_policy, -1);

// R R R R S S R S S R R R R

// 16 DI SCOVERY policy | ROAMOUT |

[] xRk kR sk ok ke kK ok ok ok ok kK K ok ok ok kK ok ok ok sk ok ok ok ok kK Rk kK

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;

a_pol i cy->goal _val ue=MODERATE;
a_policy->policy_class="D SCOVERY";

a_condi tion->si gnal _strengt h=LOW
a_condition->receiving_interface=ETH;

Page 83 of 102

an_action->col | ection_ti me=DEFAULT;
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

list_add(policies, a_policy, -1);

[] xRk kK sk ok ke kK ok ok ok ok Kk K ok ok ok kR K ok ok ok sk K ok ok ok Kk Rk kK

// 17 DI SCOVERY policy | ROAMOUT |

// EE R R R S R S S S R S S S R S S S R R R R

/1l initialize a menory block for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy- >goal _val ue=LOW
a_policy->policy_class="D SCOVERY";

a_condi ti on- >si gnal _st r engt h=MODERATE;
a_condition->receiving_interface=ETH;

an_action->col |l ection_ti me=LONG
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

list_add(policies, a_policy, -1);

[] xRk Rk sk ok sk kK ok ok ok ok kK kK ok ok kK K ok ok Rk kK ok ok ok Kk Rk kK

// 18 DI SCOVERY policy | ROAMOUT |

// EE R R R S R S R S S S R S S S S S R R

// initialize a menory block for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;
a_pol i cy->goal _val ue=LOW
a_policy->policy_class="D SCOVERY";

a_condi tion->si gnal _strengt h=LOW
a_condition->receiving_interface=ETH;

an_action->col |l ection_ti me=LONG
an_acti on->di scover _al ternatives=1;
an_act i on- >deci si on_t ype="DlI SCOVERY";

list_add(policies, a_policy, -1);

/1 POLICI ES ON CONFI GURATI ON LI ST AND BETTER ALTERNATI VE

[] KFRK KKk kokkk Rk kkok kR ARk kok kR Ak kkok kR Rk ok ok kR Rk kk ok ok ko k ok

/1 19 HANDOFF policy | CONFI GURATI ONS |

// R R R R R R S S S S S S R R S R R R R

/1l initialize a nmenory block for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;

a_pol i cy- >goal _val ue=H GH;

a_policy->policy_cl ass="HANDOFF";

a_condition->configuration_list=1;
a_condition->better_alternative=1;

an_acti on- >connect _or der =" CONNECT_FI RST";
an_acti on->deci si on_t ype="HANDOFF";

|'ist_add(policies, a_policy, -1);

[] KFRK KKKk kok ok ok Rk kkok kR ARk kok kR Ak kkok kR Rk kk ok kR Rk k ok ok ok ko k ok

/I 200 HANDOFF policy | CONFIGURATIONS |

[] K FR KR KKk kok ok ok Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok ok ko k ok

Page 84 of 102

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;

a_pol i cy->goal _val ue=MODERATE;

a_pol i cy->policy_cl ass="HANDOFF";

a_condition->configuration_list=1;
a_condition->better_alternative=1;

an_acti on- >connect _or der =" CONNECT_SECOND";
an_act i on- >deci si on_t ype="HANDOFF";

list_add(policies, a_policy, -1);

// R R R S S R S S S S S S S R R S S R R R R R

1121 HANDOFF policy | CONFI GURATI ONS |

[] KFR KKK kkok ok ok Rk kkok kR Rk kkok kR Rk kkok kR Rk k ok ok kR Rk k ok ok kK k ok

/1 initialize a menory bl ock for a new policy
a_policy=init_policy();

a_pol i cy- >goal =" SMOOTHNESS" ;

a_pol i cy->goal _val ue=LOW

a_pol i cy->policy_cl ass="HANDOFF";

a_condition->configuration_list=1;
a_condition->better_alternative=1;

an_acti on- >connect _or der =" CONNECT_SECOND";
an_act i on- >deci si on_t ype="HANDOFF";

|'ist_add(policies, a_policy, -1);

Page 85 of 102

AppendixD XML Schemafor policy repository

policy repository.xsd to specify the structur e of the discovery and handoff policies

<?xm version="1.0" encodi ng="UTF-8"?>
<I-- edited with XM_ Spy v4.1 U (http://ww. xm spy.conm) by Ml ohat
-->

(Tel ematica Instituut)

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema" el enment For nDef aul t ="qual i fi ed"

attri but eFor nDef aul t =" unqual i fi ed">
<xs: el ement name="policies">
<xs:annotati on>
<xs:docunent ati on/ >
</ xs:annot ati on>
<xs: conpl exType>
<XS: sequence>
<xs: el ement nane="goal ">
<xs: conpl exType>
<xs:sequence>

<xs: el ement nanme="snoot hness" nmaxCOccur s="unbounded" >

<xs: conpl exType m xed="true">
<xs:sequence>
<xs: el ement nane="Policy">
<xs: conpl exType m xed="true">

<xs: conpl exContent m xed="true">
<xs:extension base="Di scovery_Policy"/>

</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nanme="Policy">
<xs: conpl exType m xed="true">

<xs: conpl exContent m xed="true">
<xs: extensi on base="Handof f_Policy"/>

</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >

</ xs: sequence>

</ xs: conpl exType>
</ xs: el emrent >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el emrent >
<xs: conpl exType nanme="Handof f _Policy" m xed="true">
<Xs:sequence>
<xs: el ement nanme="condi ti on">
<xs: conpl exType m xed="true">
<XS: sequence>
<xs: el ement name="configuration_list">
<xs:annot ati on>

<xs: docunent ati on>

bool ean indicating receipt of a configuration Iist

</ xs: docunent ati on>
</ xs:annot ati on>
<xs: conpl exType m xed="true"/>
</ xs: el enent >
<xs:el ement name="better_alternative">
<xs:annot ati on>
<xs: docunent ati on>

bool ean better alternative to the current configuration

</ xs: docunent ati on>
</ xs:annot ati on>
<xs: conpl exType m xed="true"/>
</ xs: el enent >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nane="action">
<xs: conpl exType m xed="true">
<Xs:sequence>
<xs: el enent nanme="connect order">

Page 86 of 102

<xs:annot ati on>
<xs: docunent ati on>handof f executi on sequence</xs: docunent ati on>
</ xs:annot ati on>
<xs: conpl exType m xed="true"/>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nanme="Di scovery_Policy" m xed="true">
<Xs:sequence>
<xs: el ement name="condition">
<xs: conpl exType m xed="true">
<Xs: sequence>
<xs: el ement nanme="receiving_interface">
<xs:annot ati on>
<xs: docunentati on>802. 11 or UMIS</xs:docunentati on>
</ xs: annot ati on>
<xs: conpl exType m xed="true"/>
</ xs: el ement >
<xs: el ement name="packet_| oss">
<xs:annot ati on>
<xs: docunent ati on>
packet | oss value (% on the receiving interface
</ xs: docunent ati on>
</ xs:annot ati on>
<xs: conpl exType m xed="true">
<Xs:sequence>
<xs:el ement name="operator">
<xs: conpl exType m xed="true"/>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="action">
<xs: conpl exType m xed="true">
<Xs: sequence>
<xs: el ement nanme="col |l ection_tine">
<xs:annot ati on>
<xs: docunent ati on>
time for waiting for responses from aggregators
</ xs: docunent ati on>
</ xs:annot ati on>
<xs: conpl exType m xed="true"/>
</ xs: el ement >
<xs: el enent nanme="di scover_al ternatives">
<xs:annot ati on>
<xs: docunent ati on>
i nvocation of discovery protocol by PEP
</ xs: docunent ati on>
</ xs:annot ati on>
<xs:conpl exType m xed="true"/>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el emrent >
</ xs: sequence>
</ xs: conpl exType>
</ xs: schema>

Page 87 of 102

Appendix E Publication

During this research we have published a poster paper at the IST 13-Mobile and Wireless Summit, that
was held in Lyon, France, 26-30 June 2004.

A Policy-based System for Handoffs between Intermediary Content Providersin
the Wireless I nternet

Malohat Ibrohimovna Kamilova®?, Cristian Hesselman*?, Ing Widya?, and Erik Huizer?
Telematica Ingtituut, P.O. Box 589, 7500 AN, Enschede, The Netherlands
E-mail: malohat.kamilova@telin.nl, cristian.hesselman@telin.nl
2 University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands

E-mail: i.widya@utwente.nl, e.huizer@utwente.nl

ABSTRACT

We consider the distribution of real-time multimedia content (e.g., radio or TV broadcasts) through
multiple aggregators. An aggregator is an intermediary content provider that operates a pool of proxy
servers to aggregate content from sources and forward it to mobile hosts. Aggregators package content into
channels (e.g., CNN or ABC) and offer them in various versions (e.g., using different encodings) that
differ in quality or price. Mobile hosts receive channels via the wireless Internet, which consists of
multiple types of wireless networks (e.g. 802.11 and UMTS). At specific locations, mobile hosts can
connect to multiple networks simultaneously (e.g., in a hotspot) and can thus potentially receive different
aternative versions of a channel from different aggregators through different interfaces. In this paper, we
propose a control system that enables mobile hosts to automatically deal with these (changing) alternatives
in a manner transparent to the mobile user. The system’s novelty lies in the use of application-level
policies. They for instance define when to look for a ‘better’ version of a channel (e.g., if packet loss
increases to a certain threshold) and what constitutes ‘best’ based on the user’s preferences. The policies
thus define when and how to adapt the reception of a channel to changes in available resources or user’'s
preferences.

[.INTRODUCTION

In the near future, the fringes of the Internet will consist of different types of wired and wireless networks
that are operated by different administrative authorities [1]. As aresult, mobile hosts will generally be able
to receive service from multiple networks of different operators, for instance when they roam into a
hotspot [2, 3].

At the application-level, the same real-time multimedia content (e.g., radio or TV broadcasts) can be
streamed through multiple proxy servers, with mobile hosts handing off from one server to another as a
result of mobility (e.g., because different proxy servers serve different networks) [4-7]. This idea can be
extended to the distribution of channels through multiple aggregators [8, 2, 3]. An aggregator is an
intermediary content provider that operates a pool of proxy servers to aggregate content from sources and
forward it to mobile hosts [2, 3]. Aggregators package content into channels (e.g., CNN or ABC) and offer
them in various versions (e.g., using different encodings) that differ in quality or price. As aresult, mobile
hosts can potentially receive different versions of a channel from different aggregators, possibly through
different network interfaces (e.g., in a hotspot).

A research challenge is to develop a control system, which enables mobile hosts to automatically deal with
such a (changing) set of alternatives in a manner invisible to the user [9]. We are designing such a control
system based on policies (i.e. “if-condition-then-action” rules). Policies are rules that can be used by a
controlling entity to constrain the behavior of a controlled entity in a way that the behavior of the
controlled entity becomes aligned to the goal of the policy [10]. Policies are commonly used in network
management, for instance to configure an RSV P router [11]. The advantage of policies is that they can be
maintained in a central repository and then rolled out, which enables policy-controlled entities (e.g.,
routers) to be reconfigured with new policies (i.e., behavior) in aflexible manner.

Page 88 of 102

The novelty of our control system is that it uses well-defined application-level policies. This means that
the actions of the policy are enforced at the application-level. An application-level policy could for
instance read: if the number of lost packets of a channel increases to a certain threshold (the condition),
then invoke an application-level protocol (the action) to look for another aggregator that can offer the
channel, possibly on another interface. Other application-level policies define when to handoff to another
aggregator, and what constitutes the ‘best’ version of a channel based on the predefined user preferences.
Using these policies, the system can adapt the reception of a channel to the capabilities of the Internet
environment in the vicinity of the mobile host (e.g., in terms of available bandwidth), to the available
resources of the mobile host (e.g., available battery power), and so on.

Known policy-based systems for Internet service control typically use network level policies rather than
application-level policies and focus on determining which network (operator) provides the best service
[12-15]. Wang et al. [12] however do not use well-defined policies like we do (i.e. rules with goals).
Murray et a. [15] discuss the selection of a best network for a mobile host according to the current load on
the networks. The selection in their system is controlled by policy decision logic that sits in the
infrastructure, while ours only sits on mobile hosts. Clark et al. [13] and Lee et al. [14] take a different
approach to determine the best service, which uses algorithms rather than policies.

The rest of this paper is organized into four sections. In Section 11, we describe the environment for which
our policy-based control system is designed. In Section Ill, we present the system’s architecture.
Thereafter, we discuss some of the policies that our system uses in Section IV. Finaly, Section V
summarizes the state of our research and explains our future work.

II.ENVIRONMENT

We consider an environment that consists of application-level service providers that deliver rea-time
multimedia content (e.g., radio or TV broadcasts) to mobile hosts in the form of channels (e.g., CNN Radio
or BBC Television). We distinguish two types of providers: content sources and content aggregators [8, 2-
3]. A content source is the origin of one or more channels and transmits them in a mobile agnostic manner
(e.g., unaware of the changing IP addresses of mobile hosts). A content aggregator, on the other hand, is
specifically designed to serve mobile hosts. It receives channels from sources and forwards them to mobile
hosts in a mobile and wireless aware manner (e.g., it forwards channels in a way suitable for the limited
capahilities of mobile hosts). The proxy-like distribution scheme via aggregators increases scalability in
the absence of IP multicast [16], which is important when channels need to be distributed to a potentially
large number of receivers. Sources and aggregators primarily process and forward application-level data
units, typically in the form of RTP packets[17].

Figure 1 shows an example in which source cnn.com® distributes audio channel CNN Radio via
aggregators stream-it.com and multimedia-forward.nl. User Bob receives CNN Radio either from
multimedia-forward.nl through the UMTS network of network operator connect-you.nl, or from stream-
it.com through the 802.11 network of hotspot.nl. The solid line between stream-it.com and hotspot.nl
indicates that stream-it.com is only available through the 802.11 network. Similarly, media-forward.nl is
only available through the UM TS network.

An aggregator can deliver its channels in different versions (cf., [4, 18]). This enables it to deal with
different user requirements (e.g., pertaining to cost or quality) and to serve different types of hosts that
connect to the Internet through different types of wireless links. We refer to the description of a channel
version as a configuration (e.g., using SDP [19]). Each aggregator supports its own set of configurations of
a channel. For example, stream-it.com could support various high-quality configurations of CNN Radio
(e.g., in‘studio’ quality), while media-forward.nl could only support medium-quality configurations of the
same channel (e.g., in ‘FM radio’ quality). Mobile hosts can thus receive the same channel from different
aggregators at different configurations, possibly through different interfaces (e.g., at point A in Figure 1).

8 The domain names in this paper are for illustrative purposes only.

Page 89 of 102

connect-you.nl
stream-it.com UMTS NO

=

cnn.com

media-forward.nl

CNN Radio (audio), between A and B, and beyond C
CNN Radio (audio), between B and C
agreement ——
RF coverage of network operator (NO) -
Content Source [0
Content Aggregator []
begin receipt @
CA/NO/network change during receipt o
movement \/>»

Figure 1. Streaming via multiple alter native aggr egator s

An application-level protocol [2, 3] enables mobile hosts to request which versions of a channel are
available from the aggregators it can reach. A mobile host invokes the protocol when it is looking for a
‘better’ configuration of the channel it is receiving, for example when it movesinto a subnet (an aggregator
with a better configuration may appear) or moves out of one (aggregators may disappear, which may result
in a new best aggregator). The assignment of a (new) IP address to one of the host’s network interfaces
(e.g., to Bob’'s 802.11 interface at point C), and the loss of packets or a decreasing signal strength (e.g., of
the 802.11 network at point B) could signal these two events, respectively.

Figure 2 shows Bob’s mobile host querying media-forward.nl and stream-it.com at point C of Figure 1 to
check which configurations of CNN Radio they support.

Bob's stream-it.com media-forward.nl
mobile host (local aggregator) (global aggregator)

event —> CONFIG REQUEST

CONFIG REQUEST

CONFIG RESPONSE CONFIG RESPONSE

DISCONNECT REQUEST

DISCONNECT RESPONSE

CONNECT REQUEST

CONNECT RESPONSE

audio streams [

Figure 2. Typical protocol interactionsfor discovery and handoff.

Bob’s host sends a configurations request to stream-it.com via its 802.11 interface (hotspot.nl), and a
request to media-forward.nl through its UMTS interface (connect-you). Analyzing the responses of the
aggregators, the host decides that stream-it.com provides a better version of CNN Radio than media
forward.nl. It therefore hands off to stream-it.com by sending a disconnect request to media-forward.nl and
a connect request to stream-it.com (or the other way around). As a result, Bob’s mobile host now receives
the ‘better’ version of CNN Radio from stream-it.com via hotspot.nl’s 802.11 network. The protocol’s
behavior is similar at points A and B, except that stream-it.com becomes unavailable around point B. We
have implemented the protocol of Figure 2 using SDP [19] and SIP [20].

Aswe will seein Section |1, the selection of the best aggregator and the trigger for querying aggregators
is policy-driven. Examples of other occasions at which the mobile host could consult aggregators are when
the host’s battery power drops, when the available bandwidth on one of the host’s network interfaces
drops, when the user changes his preferences and so forth.

1. ARCHITECTURE
We use policies (i.e., “if-condition-then-action” rules) to flexibly define the behavior of mobile hosts

roaming in the environment of Section Il. We adopt the policy framework of the IETF [11, 21], which
uses the concepts of a Policy Decision Point (PDP) and a Policy Enforcement Point (PEP).

A. Components

Page 90 of 102

Figure 3 shows the high-level architecture of our control system. It consists of a PDP, a PEP, a policy
repository, aresource manager, and a set of user preferences. In our current design, the PEP, the PDP and
the resource manager are located on the mobile host.

. i
Mobile AT
user
preferences

Y

decision
PEP <—EDP

A resource
information

policies

Resource
Manager

Figure 3. Architectur e of the policy-based system.

A PDP represents a controlling entity that applies policies to control the behavior of a controlled entity
(the PEP). In our control system, the PDP persistently monitors the state of the available resources and of
the user’s preferences and uses this information to evaluate the policies’ conditions. If the circumstances
are such that the “if” condition of a policy becomes true, then the PDP decides to enforce the actions
defined in the “then” part of the policy. For example, if the if condition of a policy says “packet loss >=
20%", and the action reads “invoke protocol” (to discover new configurations, see Figure 2), then the PDP
will enforce the discovery action if the number of lost packets of a channel exceeds 20% in a certain time
interval. Our PDP is also responsible for selecting the best configuration according to the user preferences
and the current available resources.

A PEP represents the controlled entity upon which policy decisions are being enforced (by the PDP),
yielding a constrained behavior of the PEP. A PEP therefore receives directives from a PDP. In our
system, the application-level protocol of Figure 2 embodies the PEP because it executes policy decisions
such as “invoke protocol” or “handoff smoothly” (also see Section V).

A Policy Repository contains (inactive) policies written in a policy specification language such as IRML
[22]. A policy repository alows policies to be flexibly downloaded into a PDP, possibly at run-time.
Another advantage is that policies become platform independent. In our system, the repository for instance
contains discovery policies (they define when to invoke the protocol of Figure 2) and handoff policies
(they determine how to execute a handoff). We will elaborate on these and additional policy classes in
Section IV.

In our system, each policy has a goal (e.g., “high viewing smoothness’), which is part of the specification
of a policy. To retrieve the appropriate policies, the PDP matches the preferences (i.e., goals) of the user
with the goals of the policies in the repository. The PDP and the PEP together realize the goal of a policy
the PDP retrieves.

We expect that the policy repository will typically reside in the fixed Internet, thus enabling a user to
consistently apply the same policiesto all of his devices.

A PDP can generally use external information sources to come to its decisions [11]. The external
information source in our architecture is the Resource Manager. It is responsible for monitoring available
resources, such as availability of networks, available bandwidth, signal strengths of networks, packet loss
of a channel, and available aggregators and configurations. The PDP accesses this information by
reguesting it or by listening to events from the Resource Manager (e.g., appearance of an IP address of an
interface).

B. Behavior

Figure 3 aso shows the interaction between the components of the policy-based system. PDP receives user
preferences from the user (arrow labeled “preferences’). On analysis of the new user preferences PDP may
decide to retrieve new or additional policies from the Policy Repository (arrow “policies’), that match with
the new goals of the user. PDP may consult the Resource Manager (arrow “resource information”) for the
available resources. Having all necessary information PDP for example makes a selection of the best

Page 91 of 102

configuration, which isinline with the preferences of the user in price and quality level. Finally, PDP sends
it's decision to PEP (arrow “decision”).

Figure 4 shows the system’s behavior when the user moves towards and comes close to the point B, the
figure 1. The Resource Manager informs the PDP by sending an event that, for example a packet loss is
continuoudly increasing.

PDP Resource PEP
Manager
- event
e request
available 2
__ resources
3 .
decision -
|
Y Y \

Figure 4. Example of system’sbehavior by receiving an event from Resour ce M anager

By receipt of the event the PDP evaluates the condition of the discovery policy (1), if the condition is true,
PDP reguests new information from the Resource Manager on available resources at that moment (2) and
makes a new selection of the best configuration (3). Once the selection is made, the decision is sent to
PEP, which executes a handoff (4) connecting the mobile host to the selected aggregator (in this case
media-forward.nl, see figure 1) using the selected configuration.

IV.EXAMPLESOF POLICIES

The entire system goes through three phases (see Figure 2): a discovery phase to send out config requests
and collect the responses, a selection phase to determine which aggregator provides the ‘best’
configuration, and a handoff phase to handoff to a ‘better’ aggregator (if any).

We distinguish policies for each of the above phases. Discovery policies define when to invoke the
protocol of Figure 2; selection policies define which aggregator provides the ‘best’ configuration of a
channel based on the user’ s preferences; and handoff policies determine how to execute a handoff.

In this section, we discuss a few examples of discovery and handoff policies. We use “viewing
smoothness’ as a goal. In our system, when the user chooses high viewing smoothness as his preference,
the system provides seamless roaming by means of early handoffs. If the user chooses moderate/low
smoothness, then system allows some data loss and glitches during the handoffs.

To explain the effects of the policies, we consider the situation in which user Bob (see Figure 1) is at point
B while receiving CNN Radio from stream-it.com through its 802.11 interface. We assume that the user
has expressed high smoothness of viewing video. According to this, the policies with the corresponding
goa have been downloaded into (i.e. activated on) the PDP. These policies could for instance look like
this:

/* policy_type=di scovery, exiting hotspot
* policy_goal =hi gh_vi ew ng_snpot hness
*/
i f (packet_loss >= 20% &&
receiving_interface == “802.11") {
/* Invoke di scovery */
run_protocol (); }

/* policy_type=handof f
* policy_goal =hi gh_vi ew ng_snpot hness
*/

i f (handoff_flag &&

Page 92 of 102

receiving_interface == “802.11")) {
/* First connect, then disconnect */
connect _t o(new_aggregator);
di sconnect _from(ol d_aggregator); }

The discovery policy uses the degradation of the streams that the mobile host receives as an indication that
the mobile host is moving out of the hotspot [23]. It provides high viewing smoothness because it causes
the PDP to react proactively on packet loss: if the PDP detects that it has lost 20% of the packets it
received on the host’s 802.11 interface during a certain period, then it will decide to enforce the discovery
policy by ordering the PEP to run the protocol (cf. Figure 2). If the user would have selected low viewing
smoothness, then the PDP would have downloaded another discovery policy, for instance one that behaves
in a more reactive manner (e.g., using a packet loss threshold of 80%). The discovery policy could aso
have used the monotonic decrease of signal strength instead of increasing packet loss.

The handoff policy realizes high viewing smoothness by first connecting to a new aggregator on the
overlay network (e.g., media-forward.nl on the UMTS network), and then disconnecting from the old
aggregator (stream-it.com on the 802.11 network). A handoff policy that provides low smoothness could
for instance do this the other way around.

The policy examples also show that policies with common goals can be combined to a more complex one
(thus aso be decomposed in more elementary ones). Policies may furthermore depend on another, in the
sense that they are not commutative during processing. Independent policies may be processed in any
order without influencing the result. These research issues are, however, beyond the focus of this paper
[20].

V.SUMMARY AND FUTURE WORK

We have presented the design of a control system, which uses policies to automatically deal with different
networks, aggregators, and channel configurations. The system takes the preferences of the user into
account, thus allowing for automatic adaptation without user involvement.

We are currently implementing a prototype of the system in which the PDP, the PEP, the policy repository,
and the user preferences are co-located on the mobile host. Next step is to design and implement the
policy-based system for a distributed scenario, where the PDP and the policy repository are located on
remote machines and the PEP is located on the mobile host. The motivation to put the PDP remotely is to
reduce the complexity at the mobile host, since some mobile devices are very small and have limited
capabilities. Furthermore, we plan to describe policies in a policy specification language (e.g., in XML
[24, 25]) and to test our policy-based system in stationary and roaming scenarios.

REFERENCES

[1] M. Haardt and W. Mohr, “The Complete Solution for Third-Generation Wireless Communications:
Two Modes on Air, One Winning Strategy”, IEEE Personal Communications, December 2000.

[2] C. Hessedlman, H. Eertink, I. Widya, E. Huizer, “A Mobility-aware Broadcasting Infrastructure for a
Wireless Internet with Hotspots’, Proceedings of the First ACM International Workshop on Wireless
Mobile Applications and Services on WLAN Hotspots (WMASH’03), San Diego, USA, Sept. 2003

[3] C. Hesselman, H. Eertink, l. Widya, and E. Huizer,
"Delivering Live Multimedia Streams to Mobile Hosts in a Wireless Internet with Multiple Content
Aggregators’, to appear in Mobile Networks and Applications Journal (MONET), special issue on
Wireless Maobile Applications and Services on WLAN Hotspots, Summer 2005.

[4] D. Xu, K. Nahrstedt, “Supporting Multimedia Service Polymorphism in Dynamic and Heterogeneous
Environments’, Technical Report UIUCDCS-R-2000-2159, University of Illinois at Urbana-
Champaign, USA, October 2000.

[5] H-Y.Hseh, K-H. Kim, Y. Zhu, R. Sivakumar, “A Receiver-Centric Transport Protocol for Mobile
Hosts with Heterogeneous Wireless Interfaces’, Proc. MobiCom 2003, San Diego, USA, September
2003.

[6] A. Dutta, H. Schulzrinne, S. Das, A. McAuley, W. Chen, and O. Altintas, “MarconiNet supporting
Streaming Media over Localized Wireless Multicast”, M-Commerce 2002 Workshop, Atlanta, USA,
2002.

[71 S. Roy, B. Shen, V. Sundaram and R. Kumar, “Application Level Hand-off Support for Mobile
Media Transcoding Sessions’, NOSSDAV’ 02, Miami Beach, Florida, May 2002.

Page 93 of 102

[8 C.Hesselman, I. Widya, H. Eertink, and E. Huizer, “A Comprehensive Framework for Broadcasting
Multimedia Content in the Future Mobile Internet”, Proceedings of the 2nd IEEE Workshop on
Applications and Servicesin Wireless Networks (ASWN’ 02), Paris, France, July 2002,

[9] L. Kleinrock, “An Internet Vision: the Invisible Global Instrastructure”, AdHoc Networks Journal,
Vol. 1, No. 1, July 2003, pp. 3-11.

[10] M. Cox and R. Davison, “Concepts, Activities and Issues of Policy-based Communications
Management”, BT Technology Journal, Volume 17, Issue 3, July 1999, pp. 155-169.

[11] R.Yavatkar, D. Pendarakis and R. Guerin, “A Framework for Policy-based Admission Control”, RFC
2753, January 2000.

[12] H.Wang, R. Katz, J.Giese, “Policy-Enabled Handoffs Across Heterogeneous Wireless Networks”, 2™
IEEE Workshop on Mobile Computing and Applications (WMCSA 1999), New Orleans, USA,
February 1999.

[13] D.D. Clark, J. Wrodlawski, “The Personal Router whitepaper”, MIT Technical Report, March 2001.

[14] G. Lee, P. Faratin, S. Bauer, J. Wrodawski, “Automatic Service Selection in Dynamic Wireless
Network Environments’, a poster presentation at MobiCom (co-located with First ACM International
Workshop WMASH’03), San Diego, USA, 2003.

[15] K. Murray, R. Mathur, D. Pesch, “Intelligent Access and Mobility Management in Heterogeneous
Wireless Networks using Policy”, Adaptive Wireless Systems Group, Department of Electronic
Engineering, Cork Institute of Technology, Ireland.

[16] J. Chennikara, W. Chen, A. Dutta, O. Altintas, “Application-Layer Multicast for Mobile Users in
Diverse Networks’, IEEE Globecom 2002, Taipei, Taiwan, November 2002.

[17] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-Time
Applications’, RFC 1889, January 1996.

[18] T. Plagemann, V. Goebel, L. Mathy, N. Race, and M. Zink, “Towards Scalable and Affordable
Content Distribution Services’, Proc. 7th International Conference on Telecommunications (ConTEL
2003), Zagreb, Croatia, June 2003.

[19] M. Handley, V. Jacobson, “SDP: Session Description Protocol”, RFC 2327, April 1998.

[20] H. Schulzrinne, “Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option for Session
Initiation Protocol (SIP) Servers’, RFC 3361, 2002.

[21] A. Westerinen et a, “Terminology for Policy-Based Management”, RFC 3198. November 2001.

[22] W. Ng et d, “Quality of Service Extension to IRML”, Panasonic Singapore Labs, Internet-draft, July
2001.

[23] C. Hesselman, H. Eertink, and A. Peddemors, “Multimedia QoS Adaptation for Inter-tech Roaming”,
Proceedings of the 6th IEEE Symposium on Computers and Communications (ISCC 01),
Hammamet, Tunisia, July 2001.

[24] 1. Liabotis, O. Prnjat, L. Sacks, “Policy-based Resource Management for Application Level Active
Networks’, University College London, England, UK

[25] N. Damianou, A. Bandara, M. Sloman, E. Lupu, “A Survey of Policy Specification Approaches’,
Department of Computing, Imperial College of Science Technology and Medicine, London, 2002.

Page 94 of 102

