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Abstract
The broadcast nature of wireless computer networks causes these networks to be insecure. Therefore 
data in such networks needs to be protected to prevent it can be read and modified by an attacker. Data 
protection in such networks is accomplished by establishing a secret (henceforth called a key) between 
the trusted devices. The key represents the secure association between the trusted devices and is used 
for encrypting the original data into a ciphertext to ensure only the trusted devices with this key can 
retrieve the original data. 

This report analyzes and describes a protocol, the PAN Formation protocol (PFP), and its 
implementation for establishing a key over an insecure communication channel, and analyzes its 
security aspects as well. Furthermore, the report describes two contributions for the problems we 
found in the protocol.

● One problem with the protocol's application is that it could not easily be started and this is 
solved by implementing a user-interface for the protocol. 

● A second problem of the protocol is the scalability of the user-interactions. A solution for this 
problem is an extension of the protocol, called Transitive PFP (TPFP), where devices can 
automatically establish keys based on the secure association they already have with other 
devices.

The result of this research is that with further development of the PFP and TPFP,
secure associations in ad-hoc networks can be created easily by the user. Still there is a number of diffi-
culties to overcome regarding to the PFP implementation and the TPFP implementation has to be fur-
ther developed.
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1 Introduction
This Chapter presents background information, thesis structure and the project achievements.

The structure of the Chapter is as follows:

 Section 1.1 gives background information about the MAGNET project and how the PFP is 
related to MAGNET. Additionally background information about the security of 
communication data is given.

 Section 1.2, gives the structure of the report and the project's accomplishments.

1.1 Background
MAGNET stands for My personal Adaptive Global NET and is a world wide Research and 
Development project focused on Mobile and Wireless Systems. MAGNET Project has various research 
partners from different countries. The partners are a mix of Universities, Research Institutes, Industrial 
Partners and SME's (Small and Medium Enterprise). WMC is one of these partners.

In the MAGNET Project research is done on user-centric networks and examples of such networks are 
Personal Networks (PN) or Personal Area Networks (PAN) [NH-ADPN]. The goal of MAGNET is to 
introduce new technologies in such networks to improve the quality of life for the user. The need for 
user's mobility contributes that many communication links in these networks are wireless. More 
information on MAGNET and these user-centric networks can be found at [MAGNET] and at 
[MD2.1.2].

1.1.1 Security of communication data
Security in wireless communication is more of an issue than in wired technology. Data is transmitted 
using a radio and all devices in range of the transmitting device are able to receive this data and there-
fore wireless networks are more vulnerable to attacks. A secure communication channel has to be creat-
ed for sending and receiving sensitive data in a wireless network. A secure communication channel is a 
communication channel where original data is encrypted with a shared key, such that devices with this 
same key are the only ones who can retrieve the original data from this channel. Devices wanting to use 
a secure communication channel, must first establish a shared key and this key represents the secure as-
sociation between them. MAGNET has developed a network protocol, called PFP, for establishing such 
a key, which will be described in Section 1.1.2.

There are different concepts on how secure associations in networks can be created. One concept is that 
all the devices in a network have one common key, the group key. A second concept is that every pair 
of devices has a secure association with each other and therefore each of these pairs has to establish a 
key (henceforth called a pairwise key). In the pairwise key concept much overhead is spent on key dis-
tribution, but an advantage of pairwise secure associations is that a mutual secure association can be re-
voked without losing secure connections to other devices. This document is focused on a protocol for 
pairwise key establishment and will not discuss the group key establishment.
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In terms of how long a key is valid, there are different types of keys. A long-term key can be used for a 
long period of time and is not normally used for encryption of normal communication data. Instead, the 
derived or exchanged sub keys from the long-term key are used to send such data. These keys are peri-
odically refreshed, which limits confidentiality lost due to compromise of one session key. For exam-
ple, if an attacker is somehow able to acquire a sub key, the attacker can only use it for some period of 
time, and still does not learn much about the long-term key. This document focuses on the establish-
ment of such a long-term, pairwise key. 

1.1.2 Imprinting
Imprinting, often called pairing, is the procedure for initiating a secure association between two de-
vices. This secure association is created by establishing a new key, where both devices are successfully 
authenticated. Authentication is the process of proving to an entity that he is the entity who he claims to 
be and vice versa. Manual imprinting is a special kind of imprinting, where the user is involved for au-
thentication of the two devices. The PAN Formation Protocol (PFP), which is the main focus of this 
document, is a manual imprinting protocol for two devices in a PAN or a PN.

The PFP is a protocol for securely establishing a shared pairwise key between two devices over an in-
secure channel. Although the PFP has been developed in MAGNET, it could also be used in other net-
works than PNs or PANs. The protocol's name gives a wrong interpretation of what it does and sug-
gests that the protocol is used to form a network, therefore we only use its abbreviation, PFP.

PFP must be a secure network protocol for establishing a key and for secure networks protocols three 
criteria must be met:

 Authentication: Verifying that the originator of data or message really is the identity, who it 
claims to be.

 Confidentiality: The assurance that sensitive data is not disclosed to unauthorized identities.
 Integrity: Protection against modification of data.

1.2 Project achievements and thesis structure
This report analyzes the PFP and its security aspects and describes my two contributions to the PFP in 
MAGNET as well.

Before we can analyze the PFP and its security expects, we have to understand some computer security 
concepts. Chapter 2 is focused on some of these concepts, which may aid in understanding the PFP. 
This Chapter also discusses Diffie-Hellman key exchange, on which the PFP is based.

In Chapter 3 we analyze the PFP by looking at the protocol's message exchange, analyze if this mes-
sage exchange is secure enough and describe how this new pairwise key is generated. Also we pay 
some attention to the source code of the PFP implementation, which has been developed in the MAG-
NET project. This Chapter also describes, how this application can be installed on the Nokia 770 and 
which problems we had in the process.
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This thesis brings two contributions to the PFP and the first contribution is a graphical user-interface 
for the PFP application, which simplifies the user-interaction to start the key-exchange for the user. The 
PFP application has to be started from the command line interface (CLI) and lot of command line op-
tions have to be provided. This especially is a problem when we run the PFP application on the Nokia 
770. The development and the implementation of a  Graphical User Interface (GUI) to the PFP is de-
scribed in Chapter 4. 

The second contribution is a specification of an extension for the PFP. A problem with the current PFP 
is that user-interaction is required for each key exchange between a pair of devices. In MAGNET this 
extension, called Transitive PFP (TPFP) imprinting, has been introduced for solving this scalability 
problem of user-interactions by using existing secure associations to establish a key between pairs. 
Chapter 5 proposes a specification for this TPFP imprinting procedure. Finally Chapter 6 gives the con-
clusion of this project.
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2 Computer security concepts and algorithms
As already been mentioned in the introduction security is important, because PFP is a security 
mechanism for establishing keys. Secure connections can be created using encryption and decryption 
techniques on the communication data in such a way that it is unreadable for attackers. A number of 
general security concepts will be explained in this Chapter and will aid in the understanding of the PFP, 
which will be discussed in Chapter 3. More information about cryptography and network security can 
be found in [FS-PC, MI-TSS]. 

2.1 Encryption and decryption
Encryption is done by using an algorithm and a key for changing the original data, known as the 
plaintext, into the ciphertext. A ciphertext is unreadable without special knowledge. Most of the 
encryption techniques use a special value, a key. The key determines the ciphertext; a different key 
gives a different ciphertext and it is computationally difficult to calculate the plaintext if only the 
ciphertext is known.

Decryption is the reverse process of encryption and changes the ciphertext into the original plaintext. 
Most of the decryption algorithms can only decrypt the ciphertext into the plaintext if a certain value, 
the key, is known. Without the right key, the ciphertext can not be decrypted into the original plaintext. 
Two main encryption types exist: symmetric and asymmetric encryption. Both types will be discussed 
in the next sections.

2.1.1 Symmetric encryption
The basic concept of symmetric encryption is that the symmetric algorithm uses the same key for 
encryption and decryption.  An application for symmetric encryption is the encryption of 
communication data with a key, K, between two entities, for example Alice and Bob. Alice and Bob 
have already acquired somehow the same key, K. When Alice encrypts the plaintext into the resulting 
ciphertext with the key K, Bob can decrypt the ciphertext with the same key K. This principle can also 
be used for securely sending data over an insecure communication channel. Other persons not having 
the key K, are not able to  decrypt the ciphertext retrieved from the communication channel into the 
original plaintext.
Below we give some properties of symmetric encryption in formulas:

E(KA, M) = M', encrypts the plaintext M, into the resulting ciphertext, M'.
D(KB, P) = P', decrypts the ciphertext, P into P'.

D(KA,E(KB, plaintext))=plaintext   if KA= KB

E(KA, M) is the encryption function with the following parameters: the key, KA and the plaintext, M. 
The result of function E will be the ciphertext, M'. 
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D(KB, P) is the decryption function with the following parameters: the key, KA and the ciphertext, P. 
The result of function D will be P'. The decryption function will only return the original plaintext if the 
keys are the same (KA=KB).

There are a number of different symmetric encryption algorithms: two popular and well-known 
encryption algorithms are Advanced Encryption Standard (AES) and Blowfish. AES supports 
128/192/256 bits key sizes. Blowfish has variable key length with the maximum length of 448 bits. 

2.1.2 Asymmetric encryption
An asymmetric encryption is an algorithm, which uses one key for encryption and an other key for 
decryption and vice versa. Each party generates one pair of keys: one key, the private key, is only 
known by the owner. The second key, the public key, is public and everybody is allowed to know this 
key. The pair of keys are generated in such a manner that, if the plaintext is encrypted with the private 
key, it can only be decrypted with the public key and vice versa. 

Some examples of an asymmetric encryption algorithm are ElGamal and RSA (Rivest, Shamir and 
Addleman). ElGamal and RSA are based on the discrete logarithms problem and these keys must have 
a relative large key length to be secure enough. A 1024 bits key is usually recommended as minimum 
key length. More information can be found in [MI-TSS]. Another kind of  asymmetric cryptographic 
algorithm is one based on elliptic curves. The advantage of elliptic curves algorithm is for the keys to 
be much smaller. Additionally this algorithm is less computationally expensive than cryptographic 
algorithms based on discrete logarithm problems. It is claimed that a 160-bit public key based on 
elliptic curves scheme is as secure as a 1024-bit public key based on the RSA scheme. 

2.1.3 Comparing Symmetric and Asymmetric Encryption
Both types of encryption are widely used, because both have different properties. In some applications 
one encryption type has advantages over the other. The main advantage of symmetric encryption is that 
it is faster. The advantage of asymmetric encryption is that it can be used for solving different types of 
security problems, such as key exchange, authentication, certificates, etc. We give a short overview of 
both encryption types below. 

The advantages of using symmetric key encryption are:
 Encryption algorithms with symmetric keys are faster, because most of them typically require 

smaller keys and are less computationally expensive than asymmetric key algorithms.

 A key can be shared among two or more parties. Every party who has acquired this key, can 
decrypt and encrypt messages with the same key. When a party has encrypted a message with a 
certain key, an other party, who has acquired this same key, will be able to decrypt the 
ciphertext into the original plaintext.

The advantages of using asymmetric key encryption are:
 Asymmetric key encryption can perform different functions. For example, confidentiality: if 

you only want a certain party to read a message, or authentication: if you want everybody to be 
able to decipher the message and to ensure that they know it is coming from you.

Page 9/45



Experimental Analysis of a secure PFP
Martijn Baars, Bachelor Thesis Telematics

 Asymmetric key encryption can be used for digital signatures or certificates. 

 A digital signature is additional data added to a message, so the receiver can validate that 
the data is coming from the originator and not coming from another person. The digital 
signature has been encrypted with the originator's private key and the receiver can validate 
the message by decrypting it with the originator's public key. A message containing 
identification data and a digital signature is a certificate. More information about digital 
signatures and certificates can be found in Chapter 3.7 till Chapter 3.12 of [MI-TSS].

 Asymmetric key encryption is often used for key exchange [FS-PC, MI-TSS]. One party can 
send key exchange parameters by encrypting it with the other's party public key. The message 
can only be decrypted by the other party, who has this private key.  The problem with 
symmetric encryption is that it is necessary to have a key to securely exchange key parameters. 
An example of a key exchange protocol is Diffie-Hellman.

The PFP is based on the Diffie-Hellman key exchange. In order to better understand the PFP, it is 
useful to understand the Diffie-Hellman key exchange. In the next section a short explanation of the 
Diffie-Hellman key exchange is given.

2.2 Diffie-Hellman key Exchange
Diffie-Hellman is a cryptographic key exchange protocol allowing two devices to exchange a secret 
key over an insecure channel. Diffie-Hellman is based on the discrete logarithm problem, where a de-
vice  uses the public key of the other node and its own private key to create a new shared key. After the 
key exchange, these devices can establish a new secure communication channel using this new key. 
Each public and private key is a unique pair of keys, therefore the newly generated key will also be 
unique.

A detailed description of this key exchange will be given below in detail, describing the sequence 
shown in Figure 1:

If device A and B, wishes to establish a new symmetric key, the following must be accomplished:
1. p is a large prime and is predefined. 
2. g is also predefined and is  2=<g=<p-2.
3. A and B both use the same value for p and g.
4. p and g are chosen such that:

 for every i, 1 < i < p-1 there must power j such that i = gj mod p
5. A chooses a random number a, which A must keep secret and this number is A's private key.

 A's public key is: PA=ga mod p
6. B chooses a random number b, which B must keep secret and this number is B's private key

 B's public key is: PB=gb mod p
7. A sends to B its public key.

 A -> B: PA
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8. B now knows the A's public key. Therefore B can calculate the new symmetric key between A 
and B. Calculation of the new key can be done as follows:
 PB=gb mod p
 (PA)b mod p = ( g a mod p ) b mod p = (ga)b mod p = KBA

9. B sends to A its public key.
 B -> A: PB

10. A now knows the B's public key. Therefore A can calculate the new symmetric key between B 
and A. Calculation of the new key can be done as follows:
 PB=gb mod p
 (PA)b mod p = ( g b mod p ) a mod p = (gb ) a mod p = KAB 

To prove, that the keys generated on A and B are the same:
(gb ) a mod p = gba mod p =(ga)b mod p = KAB = KBA 

An advantage of Diffie-Hellman is that it can establish a shared key over an insecure channel. Both 
parties have established the same pairwise key (KAB = KBA)  with the other's public key and its own pri-
vate key. The protocol is confidential in the sense that the private key can not be known by others.

A known weakness in the Diffie-Hellman Key exchange is that authentication is not provided. A and B 
do not have any guarantee that they are communicating together. An intruder may pretend that he is B 
and can lure A into key exchange. This kind of attack is known as middle person attack, or man in the 
middle attack. The PFP which will be discussed later, is designed to solve the vulnerability of mid-
dleperson attack by using a out of band channel for authentication. 
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2.3 One-way functions
One-way functions are functions where it is easy to compute the result of such function, but 
computationally infeasible to calculate the parameters if only the result is known. One-way functions 
are often used in security protocols as well as in other applications. A hash function is an one-way 
function and its properties are discussed in this report, because it is used in the PFP. An other kind of 
one-way function is a MAC function and can be used for the authenticity and integrity of  a message.

2.3.1 Hash functions
A hash function is a function that accepts data of arbitrary length, called the pre-image and generates a 
fixed-size output, called the hash value [MI-TSS]. Reconstruction of the piece of data from the hash 
value should be computationally unfeasible. The hash value will not reveal any usable information 
about the piece of data that being hashed. 

The one-way hash function H(M) computes a fixed-length hash value, h from message, M of arbitrary 
length, as follows:

h=H(M)

A one-way hash function has the following properties:
 for a any value of M, it is relatively easy to compute the hash value, h
 for any value of h, it computationally unfeasible to compute M.
 for a message M it is very difficult to find an other message M' that has the same hash value 

such
h(M)=h(M')

Some examples of well-known popular hash-function are MD5, SHA-1 and SHA-256 with a length of 
128, 160 and 256 bits, respectively. SHA-1 and SHA-256 will be used in this report.

2.3.2 Message Authentication Codes (MACs)
A message authentication code (MAC) is a short piece of information used for authenticating a mes-
sage. A MAC algorithm accepts as input an arbitrary-length message and a secret key and outputs a 
mac value. A MAC function is comparable to a hash-function, but can protect the integrity of a piece of 
data and its authenticity as well.

The mac function MAC(K,M) computes the mac value from a message M of arbitrary length and with 
as key K, as follows:

MAC (K, M )=mac

A MAC function has the following properties:
● for a any value of M and K, it is relatively easy to compute the mac value.
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 for any given K, it computationally unfeasible to compute a new pair (M',K) such that
MAC (K ,M ) = mac = MAC (K ,M')

For example, when two parties have pre-established a key, K and want to be certain that message is 
coming from each other, they calculate the encrypted mac value and append this to a message. The re-
ceiving party can also calculate the mac and if the received mac is the same as the calculate mac, they 
are certain that it is coming from each other.

Example of a MAC function is HMAC and DAA. The HMAC function used in the PFP application is a 
160-bits MAC function and uses SHA-1 for calculation the mac value. 
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3 PFP key exchange protocol
The PFP is a protocol to establish a pairwise key or when they have already pre-established a key, this 
protocol should able to validate if this key is still the same on both sides. A pairwise key is a key that is 
only known to one pair of devices. For each secure association between two devices, a different key is 
used and therefore a new key has to be established by each pair. The PFP is based on the Diffie-Hell-
mann key exchange to securely establish key parameters. Afterwards, both devices use these parame-
ters to generate the new pairwise key, which we shall call the Permanent Key. This Chapter describes 
and analyzes the PFP and its implementation.

3.1 PFP Design
The PFP has been developed in the MAGNET Project. In the process of designing this protocol, it was 
decided it should contain the following features:

1. Pairwise keys. Exchange of keys between a pair of devices, so that each pair of devices has a 
mutual secure association in the personal network. When a device has been compromised, the 
user is able to revoke all secure association between this device. All devices except the compro-
mised device still have their secure associations to other devices and these secure connections 
are not lost.

2. Long keys. The keys should be of sufficient length to derive session keys or keys that can be 
used in lower level layer communication.

3. Easy Authentication. Minimal user-interaction to establish a secure association. For example, 
no long keys should be entered by the user.

The general working of PFP is briefly described below and will be described in more detail in 
the rest of this chapter:

1. Diffie-Hellman key exchange is used to securely establish a temporary key over an insecure 
channel. (see Section 2.2)

2. An out of band channel is used for authentication of the initial messages.
3. The temporary key is used to establish a new secure temporary connection. 
4. The devices use this secure connection to establish key parameters.
5. Afterwards both devices will be able to generate a new permanent key. 

3.2 Proximity Authentication Channel (PAC)
The PFP is based on Diffie-Hellman key exchange for establishing and generating a new key. The 
problem with Diffie-Hellman is that messages are not authenticated. The solution in PFP is to use a 
Proximity Authentication Channel (PAC). The PAC is an out of band communication channel between 
two devices. The two devices can authenticate message from each other by means of the received data 
on this authentication channel. The PAC is a temporary communication channel and is only used for 
authentication purposes. An example of a PAC is the user. The user can act as a channel and can re-
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trieve information displayed on one device and enters this into an other device. Other examples of 
PACs are infrared, serial cables, etc.

In the PFP the user will act as the PAC and the PFP uses the PAC as follows:
 One device sends a random number, a code to the PAC. The device displays the code on the 

screen. 
 The user reads this code and will enter the code into the other device. The PFP will use this 

code to sign the messages by appending an encrypted HMAC to these messages. The other de-
vice can check the signed messages and with its calculated signed message. 

3.3 PFP Key generation
The PFP has is its own method of generating a new pairwise key. We assume that device A and device 
B wish to establish a new permanent key. A short description of this generation process:

A pairwise key is generated as follows:
PKAB = SHA_256 (E(TKAB, NA | NB) ),  when NA <= NB or
PKAB= SHA_256 (E(TKAB, NB | NA) ),  when NB < NA 

TKAB = gab mod p = KAB = KAB                              (see Section 2.2, Diffie-Hellman)

The identifier for the permanent key is generated as follows:
PKIDAB=SHA_256 (NA , NB)32  when NA<=NB or
PKIDAB=SHA_256 (NB , NA)32 when NB<NA

 PKAB is the permanent pairwise key between A and B. TKAB is the temporary key established 
using  the Diffie-Hellman based key exchange. More information about Diffie-Hellman key ex-
change can be found in the previous section 3.2. The permanent key, PKAB , is generated of the 
temporary key and the two nonces1 of the two devices. 

 NA and NB  are nonces and randomly chosen by A and B. The nonces, NA and NB, are the vari-
ables used to generate the permanent key and are securely exchanged between the two devices. 
The secrecy of the nonces must be maintained as much as possible. To ensure that the perma-
nent key is the same on both sides, NA and NB have to be swapped in the key generation process, 
if NA is larger than NB.  The nonces are also used in the validation process.

 PKIDAB is the identifier for the permanent pairwise key between A and B. The advantage of the 
PKID is that this identifier can be published. The PKID is used to distinguish different perma-
nent keys from each other without publishing the permanent key. When two devices have dif-
ferent permanent keys, they are able to detect this situation, because they also have different 
PKIDs. 

1 The word nonce means number used once. A nonce is a variable that is used once in authentication or in key exchange 
protocols. The nonce differs each time and each authentication and key exchange procedure is therefore unique. For an 
attacker it is difficult to generate a corresponding unique reply for the procedure. In the PFP the word nonce is wrongly 
chosen, because in the validation procedure the same nonce is used and therefore the nonce is used more than once. In 
this document we have not changed the word nonce, because it might be confusing, when we are referring to other 
MAGNET documentation.
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Below we give the sizes of the different parameters used to generate the permanent key:
 p,  prime used for key exchange. p is the oakley prime group 2 and is 1536 bits long.
 g, the constant. In the PFP the value 2 is used.
 a,b, the private keys of A and B. The private keys are 256-bit primes.
 ga mod p, gb mod p, the public keys of A and B and are 1536 bits long.
 NA and NB are the nonce of A and B and are 256 bits long.
 PKAB, the permanent key between A and B and is 256 bits long.

3.4 PFP Message sequence
This section describes the message sequence of the PFP. Two devices, A and B, wish to establish a 
pairwise key: where A is the client and B is the server. The server listens for incoming connections and 
the client connects to the server. After the connection is established they initialize a secure association 
with each other. Initially, both PFP parties are started in authentication mode (AUTH mode). After they 
have determined that they have not exchange keys yet, they enter into key exchange mode.

An explanation about the notation used to describe the PFP, can be found in Appendix A.

In MAGNET a new identifier, the Magnet_ID, has been introduced to differentiate devices. The rea-
sons for introducing a new identifier are:

 No network interface addresses are needed to distinguish devices from each other. Addresses 
can change and a device can have multiple IP addresses or physical addresses, therefore a 
unique identifier to differentiate devices is more suitable.

 PFP uses the Magnet_ID for distinguishing different devices and therefore it could be used on 
different protocol layers levels. For example, a new PFP application can be implemented to op-
erate on top of the link layer.

The Magnet_ID is calculated as follows:
PA=ga mod p, the public key of A
IDA=SHA1(PA) , Magnet_ID of A

3.4.1 PFP Key Exchange
The message sequence of the key-exchange scenario is displayed in the next diagram (Figure 2). The 
second section in Figure 2 is the part of message sequence where the actual key exchange is performed. 
The message sequence scenario, which is described in the following sections, assumes that device A 
and device B have not yet exchanged a permanent key and want to establish a new one. 

1. The client, A,  connects to server, B, and B sends its Magnet_ID to A with the message 
Req_ID()

B -> A:   Req_ID( SHA-1( gbmod p ) )
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2. A receives the message Req_ID and searches the Magnet_ID in the local database whether A 
can find the identity of B or not. Subsequently the following two situations can occur:
 A finds the B's identity and returns the corresponding PKID and Magnet_ID to B. This key 

validation scenario is discussed in Section 3.4.2 later on.
 A does not find B's identity and returns an EAP_FAILURE message to B. This key scenario 

will be explained here. As A cannot find B's identity and corresponding key,  A must enter 
into key exchange mode to establish a new key with B. Subsequently A sends a new gener-
ated code, K, to the PAC. In the case when the PAC is the user, it would display K to the 
user and it is followed by entering K into device B.
A -> B: EAP_FAILURE()
A -> PAC: K

3. B receives the EAP_FAILURE() message, which triggers B to enter also into key exchange 
mode. B then receives K from the PAC. In our case K will be displayed on A and the user must 
enter the code into device B.

4. B starts the key exchange by sending an empty Req_ID() message to A.
B -> A: Req_ID()

5. A receives this request message and returns the Resp_PFPBegin message containing its public 
key, PA = ga mod p.

A -> B: Resp_PFPBEGIN(ga mod p)
6. B receives the message Resp_PFPBegin and retrieves A's public key. B calculates the new tem-

porary key, TKAB = (ga)b mod p, according to Diffie-Hellman. 
B then returns the Req_PFPExchange message. which contains the following:
 The public key of B, PB = gb

 mod p.
 HMAC of the B's public key encrypted with the key (code), K.
 The TKAB encrypted ciphertext contains B's nonce and the HMAC of B's public key. 

B -> A: Req_PFP_Exchange (gb mod p | HMAC(K,gb mod p)
 | E(gab mod p, NB | HMAC(K,gb mod p) )

The reason for sending unencrypted a second HMAC in the message is that A can easily au-
thenticate B's public key without decrypting the message. More information about how the 
HMACs are used for authentication will be discussed later in Section 3.4.3.
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7. A receives the Req_PFPExchange message, retrieves the B's public key (PB) from this message 
and calculates the temporary Diffie-Hellman key, TKAB. A then decrypts the message with 
TKAB. Subsequently A checks the two HMACs in the message against the local HMAC. On suc-
cess A knows that authentication of B has been done successfully and retrieves B's nonce, NB. A 
now can generate its nonce NA and sends NA and NB encrypted in the message Resp_PFP_Ex-
change.

A -> B: Resp_PFP_Exchange ( E(gab mod p, NA | NB) )
8. B receives the message Resp_PFPExchange and decrypts the message with the key TKAB and 

retrieves the nonces NA and NB. B checks if B's nonce in the message is the same as the nonce 
locally stored. The new permanent key, PKAB, can now be generated by B, because it has all the 
parameters needed to generate this new key.
B returns the last message Success_PFPEnd, which contains the encrypted NA.

B -> A: Succes_PFPEnd(E(gab mod p, NA) )
9. A receives the message Succes_PFPEnd and retrieves the nonce of A, NA. A checks this nonce 

with the local nonce and generates the new permanent key,  PKAB.

Finally A and B have both generated the same permanent key, PKAB. Subsequently the permanent key 
identifier of A and B, PKIDAB is generated, followed by storing these parameters and corresponding 
Magnet_ID into the local databases.
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3.4.2 PFP Key Validation
The scenario given below describes the PPF validation scenario, where the pre-established permanent 
key between A and B has to be validated in order to be certain that the key is still valid. The key valida-
tion is accomplished by sending the devices' nonces to each other. If both devices are able to decrypt 
the messages with the pre-established permanent key and are able to confirm each others' nonces, they 
are certain that they have the correct key parameters and therefore will have the correct permanent key. 
This scenario is illustrated in Figure 3 and the the second section in this Figure is the key validation 
process:

1. A connects to B and B will send its Magnet_ID to A with the message Req_ID()
B -> A:   Req_ID( SHA-1( gbmod p ) )

2. A receives the message Req_ID and seaches the Magnet_ID in local database, whether A can 
find B's identity. A does find the identity of  B and returns the PKIDAB of the mutual key be-
tween A and B, and the corresponding Magnet_ID.

A -> B:  Resp_ID(PKIDAB |  SHA-1(ga mod p) )
3. B receives the Resp_ID message. B also searches the database, whether it can find the A's Mag-

net_ID. B does find a corresponding match and will send in an encrypted manner a random val-
ue and its nonce, NB, to A.

B -> A:  Req_Retrieve_PKID (PKIDAB | E(PKAB, NB | Random) )

The reason for appending a random value in the message is that the ciphertext will differ for 
each validation process. It will be more difficult for an attacker to generate a corresponding re-
sponse message if the ciphertext differs each time.

4. A receives the message Req_Retrieve_PKID, decrypts the message and retrieves B's nonce and 
the random value. A then returns an encrypted Resp_Retrieve_PKID message containing  A's 
nonce, B's nonce and the same random value generated by B.

A -> B: Rsp_Retrieve_PKID (PKIDAB | E(PKAB, NB | NA | Random) )
5. B receives the message Rsp_Retrieve_PKID and decrypt it. B will retrieve A's  nonce, B's 

nonce and the random value. B checks if the retrieved B's nonce and random value is the same 
as the local value. Subsequently B generates the new permanent key and checks if it is the same 
as the current permanent key. When successful, it sends  encrypted the message Succes_Re-
trieveEnd, which contains the A's nonce, NA and the random value.

A -> B: Success_RetrieveEnd(PKIDAB | E(PKAB, NA | Random) )
6. A receives the message Success_RetrieveEnd, decrypts the message and retrieves A's nonce. 

Subsequently A checks the nonce of the message with the nonce stored local.

If A and B have validated the nonces on both sides, they are certain that they have the right key.
The PKID is sent in all the encrypted messages. Nodes can check their PKID with the one in the mes-
sage and detect which key is used for encryption. Besides the receiving node can validate if they have 
the right key.
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3.4.3 Analyzing the PFP scenarios
In this section we give an analytic description of how the middle-person vulnerability is prevented in 
the PFP. The first part of the key exchange scenario of the PFP is comparable to the Diffie-Hellman 
key exchange, because both devices publish their public key to each other and use the discrete 
logarithm problem for calculating the new established Diffie-Hellman key.

In order to reduce the risk of a middle-person attack, these public keys have to be authenticated. First 
we discuss how B's public key is authenticated below:

 B sends its public key,  gb mod p, an additional HMAC(K, gb mod p) in the 
Req_PFP_Exchange message. As K was sent previously to the PAC and is only known to A 
and B, the HMAC prevents that the attacker modifies the B's public key. A calculates the 
HMAC with the local K and validates the local HMAC with the one from the received message. 
If they are not the same, the received public key is not from B.

A's public key is indirectly authenticated and the authenticity of A's public key is not accomplished by 
appending a HMAC field. A's public key is sent in the Resp_PFPBegin message, but it is authenticated 
after the Req_PFP_Exchange message. The Req_PFP_Exchange message also contains the ciphertext, 
E(gab mod p, NB | HMAC(K,gb mod p), which has been encrypted with the key, gab mod p (TKAB). A can 
generate a new temporary key according to Diffie-Hellman, because A has already authenticated B's 
public key. A knows that B has established the correct A's public key,  if A is able to decrypt the 
Req_PFP_Exchange message, retrieve the HMAC(K, gb mod p) value and this HMAC(K, gb mod p) 
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from the message is the same as the calculated HMAC(K, gb mod p). If the HMACs are the same our 
indirect conclusions is that B has received the correct public key of A. The next diagram illustrates how 
we come to this conclusion.

HMACs 
on A are 

the 
same

->

A has 
successfully 

decrypted the 
ciphertext

->

B has used the 
right key for 
encryption of 
the ciphertext

->

B has successfully 
generated the right 

tempory key from A's 
public key and B's private 

key

->

B has 
received the 
right public 
key of A.

Confidentiality of the nonces is provided by encrypting these values with the Diffie-Hellman key. As 
nonces are confidential and are confirmed by the devices, the authenticity and integrity of these nonces 
are assured. The authenticity and integrity of the public keys are assured by the appended HMAC val-
ues in the protocol messages. All the sensitive values in the key-exchange scenario as well as in the 
validation scenario are protected by encryption. All the three criteria (confidentiality, authencity and in-
tegrity) for a secure protocol are met in the PFP, so we would consider it secure.

3.5 PFP Implementation
The message sequence of the PFP has been described in Section 3.4. This Section is more focused on 
the implementation of the PFP. The exact byte notation of message sequence, which is used in the 
implementation, can be found in [MAGNET-D433]. 

3.5.1 Operating Environment
The PFP application is written for the Linux Operating System and has been 'tested' on the INTEL i386 
and ARM architectures. The PFP application can operate on top of the TCP layer, but it has mainly 
been developed for the Bluetooth Protocol stack. The application uses the connection-oriented L2CAP 
layer of the Bluetooth Protocol stack for communication. More information about the Bluetooth stack 
can be found in [BLUEZ].

It was decided in MAGNET that the PFP application should be executable on the Nokia 770 device. 
Figure 4 shows a picture of the Nokia 770. This small digital device is equipped with Bluetooth and 
802.11 b/g wireless technology and is also provided with a small Linux distribution based on the Linux 
distribution Debian [DEBIAN].

In order to compile and execute the PFP application the following libraries are needed:

 BlueZ library, a library that implements the Bluetooth Wireless specification and can be used in 
Linux to establish communication with other Bluetooth devices.

 OpenSSL Library [OPENSSL], an open source library for implementing Secure Sockets 
Layers. This library also contains a general purpose cryptography library. The following 
functions of this cryptography library are used in the current PFP implementation:
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 Encryption and decryption functions.

 All kinds of one-way functions, such as SHA-1, SHA-256 and HMAC.

 Diffie Hellman related functions for calculating the Diffie-Hellman keys.

 SQLite library [SQLITE], a small library that contains a small SQL database engine. When this 
engine is used, the databases are stored in a single file on the filesystem. A new SQLite 
database is created to store the permanent keys of the imprinted devices.

 GTK+ library [GTK], [GDK], a library for creating graphical user interfaces. The PFP 
application can be executed without the need of this library. The library is used in the PFP 
implementation to generate dialogs. Two dialogs are generated in the PFP application: a dialog 
to show the code, K to the user and another dialog for entering the code, K. In case the library is 
not used, the standard console input and output will be used.

3.5.2 PFP Network Configuration
In order to get the PFP implementation working with Bluetooth, the main bluetooth configuration file 
of the Bluetooth Host Controller Interface Daemon (hcid) must be adapted. More information about 
hcid and the configuration can be found in the hcid and hcid.conf man page in Linux. We will 
describe how this configuration file is adapted below:

In the BlueZ protocol stack we must disable security, because we use the PFP for exchanging 
keys with other devices. Security on the physical layer for a bluetooth device is disabled as 
follows in the /etc/bluetooth/hcid.conf     file:
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# Authentication and Encryption
auth disable;
encrypt disable;
# Security Manager mode
security none;

In order to 'unhide' and to show this device for other devices, we must enable scanning and the 
same configuration file must be adapted as follows:

# Inquiring and Page scan
iscan enable;
pscan enable;

The command hciconfig can also be used, to enable scanning and/or to disable security. Only 
the settings are not restored, when restarting the computer. In case of the Nokia 770, this con-
figuration file should be changed, because the device will disable the bluetooth network inter-
face when it is in standby mode and when returning from standby mode it enables the bluetooth 
network interface and use the configuration file for the settings.

3.5.3 Compiling
Detailed information about compilation can be found at [LPROG]. This Section describes how we can 
compile the PFP source files and build the executables. The following must be done:

 First we must enter the directory, where the source files are stored.

 To build the executables:
$ make

 To install the executables on your system:
$ make install

Compiling of executables could not be done on the Nokia 770, because the device is small and  does 
not have compiling tools installed. Therefore compiling must be done on another computer, which may 
have a different computer architecture and this is called cross-compiling.

Compilation for the Nokia 770 is more complex because:
 The Nokia 770 has an ARM processor, which is a different computer architecture than most 

other personal computers, therefore the executables are not compatible.

 The Nokia 770 is a small device and the user interface is more limited compared to other 
computers. Compilation of the source files on Nokia 770 requires a lot of user interaction.

 The Nokia 770 have not compiling tools installed.

A solution for this problem is compiling the source code on an other system, the host system, which 
can also compile source files for another computer architecture. This kind of compilation is called 
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cross-compiling. After the compilation the executables can be copied to the device and the Nokia 770 
can execute the program.

For the Nokia 770 there are two tools available, which aid in compiling the executables for the Nokia 
770:

 Scratchbox, which is a cross-compilation toolkit for the ARM processor. This toolkit enables you 
to compile and to emulate programs for the Nokia 770, which has an ARM processor, on the host 
system.

 Maemo, which is a development platform for creating applications for the Nokia 770. A Maemo 
package can be added to the Scratchbox, such that the host-system has the same environment as on 
the Nokia 770.

Of course the implementation should also be capable to run on devices that do not have the Hildon 
library. Then it could be compiled without the Hildon library and uses the GTK+ library as 
replacement.

3.5.4 Executing PFP on the Nokia 770
In the MAGNET documentation [MD4.3.3], a detailed description on can be found on how to start the 
PFP application on a normal computer. How to run the PFP application on the Nokia 770 is more 
complex and therefore it will be briefly discussed below:

 Install Scratchbox and Maemo on the host system. 

 Install the sqlite3 package for the Nokia 770 on the host-system, or compile and install the 
SQLITE 3 library in your scratchbox environment on your host-system.

 Compile the PFP application for the ARM processor in the Scratchbox environment.

 On the Nokia:

Download and install the following packages from the Maemo website:

 sqlite3

 xterm

 dropbear

 maemopad

 Copy the PFP application with executables to the Nokia 770 flashcard.

 On the Nokia 770:

 Start xterm

 Login as root with default password 'rootme':
$ dbclient root@localhost
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Edit /etc/bluetooth/hcid.conf with Maemopad or with an other editor to disable securi-
ty and to enable scanning

(See Section 3.5.2)

Copy the PFP application into a directory:
$ cp -R /media/mmc1/pfp/* /<somedir>/
$ cd /<somedir>

First initialize the PFP application and reset the imprinting database:
$ ./pfp_init <configpath> <devicename>

After initialization we could run the PFP server or the PFP client:
The Server:
Register the PFP application as service:

$ ./magnet_sdp -p 1111 “Magnet PFP Imprinting”

Start the PFP server:
$ ./pfp -B –path <configpath>

Afterwards, unregister the PFP service:
$ unmagnet_sdp

OR

The Client:
Run the PFP application as client
$ pfp -b <mac address> --path <configpath>

3.5.5 Analyzing the PFP implementation
Each function in the implementation is sufficiently commented and it is not difficult to understand the 
basic structure of the implementation. However it is recommended to examine the PFP message se-
quence before looking at the code. The PFP-application reports a lot of debug information on the 
screen. Still there are minor changes made by the author and therefore this debug information is need-
ed.

The implementation of the PFP is mainly developed for bluetooth and unlike the IP version it can regis-
ter the PFP service for service discovery using the Service Discovery Protocol (SDP). After registering 
the service devices are able to find the PFP service.

The protocol message syntax of the PFP implementation is based on the Extensible Authentication 
Protocol (EAP) [RFC 3748], which is an authentication framework supporting multiple authentication 
methods. The PFP is not 100% compatible with this framework, because the last EAP_Success 
message is sent with additional data. More information about the exact protocol syntax can be found in 
MAGNET delivery and in the implementation.
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How messages are encrypted with the Diffie-Hellman key is not exactly specified in the message 
sequence in Section 3.4.1. The Diffie-Hellman key length is quite large (1536 bits), because the 
discrete logarithm problem is used for encryption. In order to guarantee the same security as normal 
symmetric encryption, it is required to use the complete Diffie-Hellman key length for encryption.

The PFP implementation uses the AES-128-CBC algorithm for encryption and therefore only keys of 
128-bits are supported. In the implementation only the first 128-bits of the 1536 bits Diffie-Hellman 
key length is derived and used for data encryption. 

Although I have no proof that a subset of the Diffie-Hellman is not secure enough, I believe (and also 
the author of PFP agrees) that the complete 1536 bits should be used to increase overall security 
because of the following points:

 The first 128 bits of the Diffie-Hellman key may not be random enough. For an attacker it may 
be easier to find patterns in the Diffie-Hellman keys.

 It could be that possible keys are easier to filter out, given that the attacker knows the public 
keys on both sides. 

An implementation problem of using the whole key for encryption, is that many well-known symmetric 
encryptions do not support such large key length, therefore a conversion to a much smaller symmetric 
key should be made. For example, a hash such as SHA-256 or SHA-1, could be used for this type of 
conversion and the author of the PFP application is making these changes into the PFP implementation.

3.5.6 Known problems in the implementation
The are some problems executing the PFP protocol: 

 The PFP implementation uses the OPENSSL library, which supports the SHA-256 hash 
function. Older libraries than version 0.9.8a have not implemented the SHA-256 function. In 
order to get older versions working, the SHA-1 function must be used to generate the permanent 
key. To use the SHA-1 function instead of the SHA-256 the following line must be 
uncommented in the file pfp.h

#define NOSHA256 1
Moreover, all other devices have to use the SHA-1 function instead of the SHA-256 for 
compatibility reasons. The Nokia 770 only has version 0.9.7 of the OPENSSL library, therefore 
to get it working with other devices, the SHA-1 function must be used on all the devices.

 Some new compilers compile source files with stack protection. As the PFP implementation is 
still in development and in debugging phase, the application detects in some situations at run 
time a buffer overflow. Of course these buffer overflow bugs have to be fixed. To compile 
without stack protection the following flag has to be added to the compiler options:

-fno-stack-protector
 A dialog might not be shown for entering or for displaying the code to the user. Instead the 

standard console input and output will then be used. One of the following situations causes this 
problem:
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 The PFP application starts another program for showing the dialogs and cannot find this 
executable. To solve this problem, check if the executables server-pfp/server-pfp and client-
fp/client-pfp are in the right directory and check if the executables in the functions 
server_pac and client_pac of the file eap_pfp.c refers to the right directory. 

function server_pac:
strcpy(command, "<path to server-pfp>/server-pfp ");
function client_pac: 

   strcpy(command, "<path to client-pfp>/client-pfp ");
 To display the dialogs, a xserver must be running and we must set the DISPLAY variable to 

the xserver. For the PFP it makes no sense to run it elsewhere, so the DISPLAY variable 
will be set to the first xserver on the localhost:

export DISPLAY=:0
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4 The implementation of a GUI for the PFP
The  PFP application can only be started from the command line, which is not very user friendly, so a 
simple graphical user-interface is needed. The Nokia 770 also has a limited user-interface: it only has a 
few buttons and a touchscreen, so starting the PFP from the command line interface (CLI) is not very 
practical, especially when a lot of command line options have to be provided. A new Graphical User 
Interface (GUI) therefore simplifies the process of discovering devices in the neighborhood and the 
start of the PFP application for exchanging keys between devices. This chapter describes the 
development of this GUI.

4.1 Requirements
Because the user interface for the PFP is not that complex, there is only a short list of requirements for 
the user-interface.

 The user interface should be very simple, so that within a few clicks we can complete the 
process of imprinting.

 The user interface should be executable on the Nokia 770 and also on personal computers with 
Linux.

 The user interface should be able to scan for Bluetooth devices in the neighborhood.

 The user interface should be able to start the PFP server.

 The user interface should be able to start the PFP client connecting to a PFP server application.

 The user interface should be able to reset the imprinting database.

4.2 Operating Environment
This section will describe the operating environment needed to start and compile the PFP application.

As the PFP implementation is written for Linux, the new GUI should also be written for Linux. The 
implementation of the user-interface must also be compatible with the Nokia 770 environment, which 
has a different computer architecture than most computers.

The new GUI implementation makes use of the GTK+ library, which is a library for creating user-
interfaces and which is supported on most Linux Distributions and also on the Nokia 770. Additionally, 
a special graphical user interface library for the Nokia 770, the Hildon library, is supported by this new 
implementation.

This Hildon library [HILDON] adds the look and feel of the Nokia 770 desktop environment to the 
applications that uses the GTK+ library for the user-interface. Applications written for the GTK+ 
library can easily be adapted to support Hildon. The Hildon library is only supported on the Nokia 770 
devices, but there is a development environment available, which can emulate the Nokia 770 device 
and supports this Hildon library.
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The GUI also uses the Bluez Library and its BlueZ utilities for scanning devices in the neighborhood 
and for configuring the bluetooth adapter.

4.3 Scratchbox and Maemo
With this cross-compiling toolkit and development platform, it is easy to compile and test your 
application on different computer architectures. Detailed information on how to setup the Scratchbox 
and Maemo can be found at the Maemo website [MAEMO]. 

To run the application and let it display on the emulated Nokia screen on the X server:

Login into the scratchbox environment:
$ /scratchbox/login

Select the right target, in our case the target for the intel processor:
[sbox-SDK_ARMEL: ~] > sbox-config -st SDK_I386
[sbox-SDK_I386: ~] >

Start the Screen for the emulated Nokia and, create a scriptname for example: start-xephyr.sh
#!/bin/sh
$target=”SDK_I386”
prefix=/scratchbox/users/{$LOGNAME}/targets/{$target}/usr
export LD_LIBRARYPATH=${prefix}/lib;
exec ${prefix}/bin/Xephyr :2 -host-cursor -screen 800x480x16 -dpi 96 -ac

Start the script in the 'normal' environment:
     $ scripts/start-xephyr.sh

Set DISPLAY variable to the emulated Nokia screen and start the desktop environment:
$ export DISPLAY=:2
$ /scratchbox/login af-sb-init.sh start

Now applications can be started on the display with the look and feel of the the Desktop environment 
of the Nokia 770:

[sbox-SDK_I386: ] > run-stand-alone ./pfp-gui
A snapshot of the screen on the host computer is shown in Figure 5 and a picture of the Nokia 770 run-
ning the GUI is shown in Figure 6.
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4.4 Starting the GUI
In order to run the GUI on a personal computer with Linux as operating system, the command pfp-gui 
can be started:

$ ./pfp-gui
In order to get the GUI working on the Nokia 770:

 The PFP executables have to be copied to the Nokia 770.

 The PFP application is not available in the menu of the Nokia's desktop environment, and so a 
command line is needed to start the application.

 The configuration files of the hcid have to be adapted, so the device is enabled for scanning. 
(See Section 3.5.2, PFP Network Configuration)

A solution for these points would be to make a package for the Nokia, which adds the GUI application 
to the menu and sets up the configuration files for the blue adapter.

4.5 The Implementation
The user-interface can execute different commands: 

 Scanning for devices, which is started by the button Refresh List, will scan for bluetooth 
devices in the Neighborhood using the program hcitool.

An example output of the command hcitool scan is given below:
$ hcitool scan
Scanning ...

        00:14:A4:D4:84:56       connor-0
        00:12:D1:8E:7A:22       WMC_IT1

        00:12:D1:8E:74:6E       WMC_IT2
$
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Figure 6: The developed GUI application on the 
Nokia 770

Figure 5: The developed GUI application in the 
MAEMO environment of the host-system.
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 Start Listening for PFP imprinting performed by the button "Start Listening", will register the 
PFP service and start the PFP server with the following programs:

$ magnet_sdp -p 1111 “Magnet PFP Imprinting”
$ pfp -B –path <configpath>
$ unmagnet_sdp

 Stops Listening, this will kill the child process, which executes the PFP program for listening 
the PFP imprinting.

 Connect to another device to start imprinting will be performed if the user double clicks on an 
item of the list of devices. The following program with arguments will be executed:
$ pfp -b <mac address> --path <configpath>

 Initializing the PFP protocol and resetting the imprinting database will be performed by the but-
ton Reset and the following program will be executed:
$ ./pfp_init <configpath> <devicename>

4.6 Overview of the implementation
The implementation basically consists of three parts:

 GUI: This part creates the user-interface and  has functions for displaying and showing dialog 
windows. Furthermore it has functions to disable/enable different items in the user-interface, to 
create a list of imprinting devices and to add/remove items to the list.

 Events: This contains the functions, which are called when an event occurs. For example when 
a button is clicked or when an item on the list is clicked.

 Commands: This contains all the executable actions. For example, it contains functions for 
starting another process, for starting PFP imprinting and for scanning devices.

If an event occurs, it will execute the corresponding assigned callback function. Execution of this call-
back function must be handled quickly and should not block for too long, otherwise the thread can not 
react to other events. In the GUI implemenation, the blocking thread problem is solved by creating a 
new thread handling this event. The older thread will end the callback function and can react to other 
events. 

4.7 Analyzing the GUI Implementation
The GUI implementation performs its task well, however it is only able to scan bluetooth devices. As 
only the link-layer has the functionality to discover link connections, scanning devices using IP-layer is 
difficult and has to be researched. The UCL layer designed in MAGNET may solve this problem, but 
how this can be fit into PFP and the PFP-GUI  still has to be researched [MD4.3.3] (see also problem 
described in Section 3.5.5) 
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5 Transitive PFP Imprinting
This Chapter describes an extension for the PFP for minimizing the number of user-interactions which 
is necessary to establish keys among pairs of devices. This extension is called Transitive PFP imprint-
ing (TPFP). We give a description and specification of the TPFP  in this Chapter.

The PFP requires the user to authenticate with the PAC each time, when a pair of devices in a network 
wishes to exchange keys. In our case the PAC will be the user and each imprinting procedure the user 
has to enter a code into one of the devices. When a network consists of N devices, a total of
N⋅N−1/2 pairwise keys have to be established and the user is bothered each time. For example if 

we only have 8 devices in our network, the user must interact 8*7/2=28 times with his devices to estab-
lish a full secure network.

A solution for this user-authentication problem is to exchange keys via intermediate device with which 
both devices have already established a secure association. The intermediate device has not the role of 
a central device, but acts transitively and forwards the key exchange between the two parties wanting to 
imprint. This kind of imprinting has been introduced in MAGNET as transitive imprinting. Any speci-
fication about transitive imprinting procedure has not been realized and therefore this Chapter specifies 
a transitive imprinting protocol based on the existing PFP.

Figure 7 illustrates the general concept of transitive imprinting. We give a more description about this 
transitive imprinting procedure below:

Assuming that devices A and B wishes to establish a pairwise key and already having a secure 
association  with common device T. T acts as an intermediate device for establishing keys between A 
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Figure 7: Transitive imprinting, where two devices,  
A and B are able to establish a secure association  
with each other via an intermediate device, T.
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and B 1. T  establishes a secure connection with A  and B, therefore A and B have a mutual secure 
indirect connection and can exchange key parameters indirectly via T. 

After the exchange of the nonces and the public keys, a new key can be generated in the same manner 
as in the PFP application (Section 3.3). User-interaction for authentication is not needed anymore, 
because the end-devices A and B are able to authenticate with T. The devices are able to detect if a 
received encrypted message is not coming from T or if it is modified.

5.1 Transitive Imprinting in the PN
Transitive imprinting could theoretically be used in any type of network. This Section describes how 
the transitive imprinting fits into the initialization of a personal network (PN). In the rest of the Chapter 
we will use the word node if we mean a device, which is part of a secure network or wants to be part of 
this secure network.

The first secure association of a node in the PN must always be established by manual imprinting, 
because the node have not a trust relationship with any node yet and therefore authentication can only 
be provided by the user. After the manual imprinting, the node transitive imprints with all the possible 
nodes and in the end it registers itself into the PN.

1 Of course A and C, or B and C can also establish a key with intermediate device T

Page 33/45

Figure 8: Overview of imprinting a new node A with 
nodes in the PN.
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Figure 8 gives an overview of the PN initialization:

Assuming that node B has already registered itself into the personal network and therefore has 
already secure associations with other nodes in the PN. The user wishes to manual imprint node 
A with node B and subsequently A can registered itself via B into the PN:

1. Discovery of devices: 
A discovers nodes that are in range and these nodes are potential partners for manual 
imprinting. In our case, A discovers that B is suitable for imprinting and displays B's address to 
the user. This first discovery procedure is accomplished by using the PFP GUI described in 
Chapter 4.

2. Manual PFP imprinting:
The user starts the manual imprinting procedure on the both nodes: he starts the PFP server on 
B and he connects the PFP client, A, to B. After this PFP imprinting procedure, A and B have 
established a pairwise key.

3. Transitive PFP imprinting with nodes in PN:
After the imprinting via intermediate node B, A can transitive imprint with all the other nodes in 
the PN, but first A has to discover B's imprinted nodes. The message sequence about the 
discovery can be found in Section 5.2. After this discovery, A establishes secure associations 
with these imprinted nodes and will continue to discover imprinted node and transitive imprint 
with them  until A has trust relationships with all the possible nodes.

4. Initialization in the PN:
After the establishment of secure connections,  A is able to register itself into personal network. 
How this is exactly been accomplished is not in the scope of this report and therefore it will not 
be discussed.

5.2 Example of Transitive Imprinting
An example network illustrating the transitive imprinting is given in Figure 10. A represents a node, 
registering itself into the personal network. Other nodes already have secure connection with some of 
the other nodes.  

The following assumptions are made, when discussing the example of Figure 10:

 All the nodes can communicate to the other nodes in this example network. How 
communication is accomplished, is not important for this discussion.

 The pair of nodes with a solid arrow between them, are the pairs having a secure association.

 The dotted arrows between A and other nodes are the secure associations, which are created in 
this example.

Figure 10 illustrates the sequence of transitive imprinting with all the other nodes in this network:

1. First node A manual imprints with node B and then A asks B, which nodes B already has a 
secure association with. The example network tells us that B has a trust relationship with C and 

Page 34/45



Experimental Analysis of a secure PFP
Martijn Baars, Bachelor Thesis Telematics

A. A secure association between A and B already exists and therefore B will only reply the 
result: C.

2. A has learned the existence of secure association between B and C and therefore A is able to 
transitive imprint with C via B. After the imprinting with C, A continues discovering the 
imprinted nodes and learns from C that A can transitive imprint with D and E.

3. A knows that C already has imprinted with node D and therefore it can transitive imprinting 
with D via C. 

4. A also knows that C has already imprinted with node E and therefore it can transitive imprint 
with E via C.  

Finally A has secure associations with all the possible nodes. The message sequence in the discovery of 
imprinted nodes is described in the next section. 
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Figure 10: An example of network, where some nodes 
have secure associations with other nodes and where  
the sequence of imprinting with node A is illustrated.

Figure 9: The imprinting and discovery se-
quence of node A in the example network il-
lustrated in Figure 10
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5.3 Discovery of transitive and imprinted nodes
In the process of transitive imprinting with other nodes, the initiator must be informed which nodes 
already have a secure association with this intermediate node. The procedure of this kind of discovery 
is described in this section and the message sequence of such discovery is illustrated in Figure 11.

Node A is the initiator and T is the intermediate node and these nodes have a secure association with 
each other. The message sequence of the discovery of imprinted nodes is described below:

First A scans the for nodes and retrieves a list of all the devices in the neighborhood and their 
corresponding addresses.

1. A must determine, which nodes are capable of transitive imprinting. A knows that T has the 
transitive imprinting service enabled and sends the message Req_TransIDS to node T. 

A -> T:  Req_TransIDS (PKIDAT | E(PKAT, ADDRESSES) | HMAC(PKAT, PKIDAT |  
ADDRESSES))
This message is encrypted with the pairwise key between A and T, PKAT. The message contains 
the addresses with which A wishes to establish a secure association. These addresses 
corresponds to the nodes in the neighborhood. The type of addresses can be indicated by the 
message field ADDR_TYPE. 

Page 36/45

Figure 11: Message sequence for the discovery of imprinted 
nodes.



Experimental Analysis of a secure PFP
Martijn Baars, Bachelor Thesis Telematics

2. When T retrieves the message Req_TransIDS, T decrypts the message and retrieves the 
addresses from the message. Subsequently T searches these addresses in the local database, 
whether it has already imprinted with these addresses or not. The result is the addresses / 
Magnet_ID pairs of the nodes, where T has imprinted with. 

In case there is an empty address field in the message and the field TOTALADDR is zero, T 
will reply with all the imprinted addresses and corresponding Magnet_ID pairs. 

Subsequently T returns the encrypted message Rsp_TransIDS. This message contains the 
address and Magnet_ID pairs retrieved by the local database.

T -> A:  RSP_TransIDS (PKIDAT | E(PKAT, RETIDS)  | HMAC(PKAT ,PKIDAT | RETIDS) )
3. A receives the message RSP_TransIDS, decrypts the message and retrieves the address / 

Magnet_ID pairs. A has now learned which nodes can do imprinting via intermediate node T.

Assurance of the authenticity of the messages is achieved by appending a HMAC. The 
receiving node discards the message if the retrieved HMAC is not the same as the calculated 
HMAC.

Advantages of discovery procedure described above is that:
 The client, A is responsible for giving the addresses to T and T only returns these addresses and 

corresponding MAGNET_IDs. 

 This discovery procedure is also used to map addresses to Magnet_IDs. Received addresses 
and corresponding Magnet_IDs are stored into A's local database such that A can do mapping 
between addresses and Magnet_IDs.

A disadvantage of this discovery procedure is that:
 When A wishes to transitive imprinting with for example node Z. A is not certain, which node 

can act as intermediate node with Z and therefore Z has to 'ask' the all imprinting nodes until it 
finds such intermediate node.

5.4 Message Sequence of transitive PFP imprinting
This section describes, the message sequence of the proposed PFP transitive imprinting procedure. The 
following assumptions have been made:

 Node A and Node B are the nodes wanting to establish a secure association.

 Node T is the intermediate node with which A and B have already imprinted.

 The pair AT and the pair BT already have a secure assocation with each other 

 B and T, have the service for transitive imprinting enabled.

 A, is a client that supports transitive imprinting.

Figure 12 illustrates the message sequence of transitive PFP imprinting and this message exchange is 
described below:
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1. A, the TPFP client, connects to node T and than T sends an empty Req_TransBegin message to 
A and the TPFP procedure is started.
T -> A: Req_TransBegin()

2. A receives the empty Req_TransBegin message from T, generates a new nonce, Na and  returns 
the message Resp_TransBegin. This message is encrypted with the key PKAT and contains the 
values: NA , the source and the destination Magnet_Ids (IDA and IDB) and A's public key (ga mod 
p).

T -> A: Resp_TransBegin( PKIDAT | E(PKAT, IDA | IDB | NA  ) |  g
a mod p | HMAC( PKAT  , ga 

mod p) )
3. T receives, decrypts the message and retrieves the IDs.

4. T checks if it has already imprinted with B and if so it maps the IDB into B's address and 
connects to the B's corresponding address. Subsequently B sends a empty Req_TransBegin 
message to T.

B -> T: Req_TransBegin()

5. T forwards the unencrypted message Resp_TransBegin from A and encrypts it with the key of 
T and B, PKTB.

T -> B: Resp_TransBegin( PKIDTB | E(PKTB, IDA | IDB | NA  ) |  g
a mod p | HMAC( PKBT  , ga 

mod p) )
6. B receives the message Resp_TransBegin from T and retrieves the values from the message. 

Subsequently B generates a new nonce, NB, and can now calculate the temporary key between 
A and B, TKAB, according to Diffie-Hellman. Afterwards B generates a new permanent key 
from the nonces and the temporary key. (see Section 3.3, PFP key generation)

7. B replies the message Req_Transcont to T and this message contains B's nonce and also the B's 
public key. Subsequently A's nonce is added to the message for confirmation. Then the message 
is sendt by B and is forwarded by T in the same manner as the Resp_Transbegin message.

B -> T: Req_TransCont( PKIDTB | E(PKTB , IDB | IDA | NA | NB ) |  gb mod p | HMAC( PKBT  , gb 

mod p) )
T -> A: Req_TransCont( PKIDTA | E(PKTA , IDB | IDA | NA | NB ) |  gb mod p | HMAC( PKAT  , gb 

mod p) )
8. When A receives this Req_Transcont message, A can generate the temporary key TKAB and 

subsequently generates the permanent key PKAB in the same manner as B did. (see Section 3.3, 
key generation)

9. For confirmation of B's nonce, A indirectly sends via T the message Resp_TransCont and 
encrypts the nonce with the new generated permanent key, PKAB. 

A -> T: Resp_TransCont( PKIDAT  | E(PKAT,IDA | IDB) | E(PKAB, NB ) )
T -> B: Resp_TransCont( PKIDBT | E(PKBT,IDA | IDB) | E(PKAB, NB ) )

10. B receives the message and decrypts it with his newly generated permanent key, PKAB and 
checks if the receive nonce as the same as the B's nonce, which has been sent. Finally, B 
indirectly sends a EAP_Success message to A and the key-exchange is successfully ended.

Page 38/45



Experimental Analysis of a secure PFP
Martijn Baars, Bachelor Thesis Telematics

B -> T: EAP_Success()
T -> A: EAP_Success()
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Figure 12: The message sequence of the transitive PFP
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5.5 The PFP Implementation
There are three parties involved in the imprinting procedure and therefore also the TPFP application 
should also be capable to act as three separate instances: The TPFP client,  the TPFP service as 
intermediate node and the TPFP service as imprinting node.

Although the implementation is far from completed, a beginning of the TPFP application has been 
developed:

 Mapping Magnet ID's to address. In PFP and TPFP nodes are identified by an Magnet_ID and 
mapping to physical and / or IP-address is required for connecting to other devices (see Section 
3.4). Mapping is accomplished by adding an extra database, which contains all the Magnet_IDS 
and corresponding addresses. Furthermore the database contains entries of the transitive node 
and their discovered imprinted nodes.

 State diagram and events. Each separate instance has its own state-diagram and for each 
instance an implementation of its corresponding state-machine has been implemented. The 
state-machine changes from states when certain events occur. Each message has its own 
corresponding event and a number of additional events exist for error handling.

 The basic structure of implementation. The basic structure of the application has been 
implemented: several files already containing some basic functionality. For example: functions 
for initialization and making a blue tooth connection, functions for generating keys. A number 
of these functions are copied from the original PFP and adapted to fit in the TPFP context.

5.5.1 Further Work
Although some basic framework for the TPFP exists, much of the transitive imprinting has to be 
developed. The following points still have to be implemented before the TPFP is operational:

 Functions that handles received messages. Each distinguish message is handled by different 
function.

 Functions that sends a specific messages. Each type of message is differently created and sent 
and most of these messages must be encrypted.

 An implementation that discovers transitive node and their imprinted nodes, and adds these 
entries into the mapping database. In the current implementation we have not implemented any 
functionality yet for discovering the imprinted nodes.

 Testing the TPFP application.

5.5.2 Analyzing the TPFP
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In the TPFP the three criteria for a secure protocol are provided by the same security mechanisms ap-
plied in the PFP. Therefore we will not discuss these three criteria in detail. However the HMACs of 
the public keys are now encrypted with the pairwise key of the imprinted node and intermediate node. 
The three devices involved in the transitive imprinting procedure do not need a PAC for authentication 
and the user is not involved anymore.
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6 Conclusion
This thesis describes the PFP and two contributions developed and / or specified in this bachelor as-
signment. The first contribution is a GUI for the PFP and the second contributions is a specification of 
an extension for the PFP, called TPFP. 

Security
One of the thesis's objectives was to analyze the security aspects of the PFP. Three criteria for a secure 
protocol should be met: confidentiality, authentication and integrity. After analyzing the PFP message 
exchange, we conclude that the PFP provides enough security mechanism for ensuring each of these 
three criteria in the protocol. Also in the TPFP specification, we have also carefully applied these secu-
rity mechanism to limit vulnerability for attacks.

Implementation
Although the PFP application operates well and can be used to exchange keys successfully, still it can-
not be deployed on large scale. The reason is that the source code needs carefully analyzed against se-
curity flaws by several security experts to prevent the vulnerability of the implementation as much as 
possible. 
The PFP and PFP-GUI operates well on the bluetooth protocol stack and the PFP is also capable to op-
erate on top of the IP layer. However there are a number of problems, when we want to scan devices in 
the neighborhood on IP layer communication and solutions for these problems have to be researched.
A basic framework for the TPFP implementation already exists, but most of the functionality has to be 
implemented. Furthermore we would recommend to implement TPFP using both the L2CAP bluetooth 
and TCP sockets. As the PFP uses both sockets and these sockets are comparable, not much of the 
TPFP implementation has to be adapted to have both functionalities.

Scalability
Scalability of the user-interactions for key-establishment in the PFP is a problem. The TPFP specified 
in this thesis solves the scalability problem by using a trusted intermediate device for imprinting, so 
that no user-interaction is required.  User-interaction is only needed for the first imprinting and after-
wards devices can imprint by using the TPFP service. The combination of PFP, GUI and TPFP simpli-
fies the process of imprinting between several pairs of devices.
However much overhead is spent on key establishment when using pairwise keys, because the exis-
tence of many pairs of devices. However further research have to be done on how we can limit over-
head for key establishment. A solution is to establish keys on demand and only a minimum of keys are 
established. However minimum pairwise secure associations limits the connectivity to other devices.
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8 List of Abbreviations
AES Advanced Encryption Standard
CLI Command Line Interface
GUI Graphical User Interface
DH Diffie-Hellman
EAP Extensible Authentication Protocol
GTK The GIMP Toolkit
HMAC The Keyed-Hash Message Authentication Code
IP Internet Protocol
MAC Message Authentication Code
MD5 Message Digest Algorithm 5
NFS Network File System
RFC Request for Comments
RSA Rivest, Shamir, Adleman
PAC Proximity Authentication Channel
PAN Personal Area Network
PN Personal Network
PFP Personal Area Network Formation Protocol
SDP Service Discovery Protocol 
SHA Secure Hash Algorithm
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
TK Temporary Key
TPFP Transitive PFP
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9 Appendix A: Notation Message Sequence

Notation: Description:
p a very large prime
g g is 2=<g=<p-2

Where the following properties must hold, such that:
for every i, 1<i<=p-1 there must be a power j, that i=gj mod p holds.

a The private key of device A.
ga

 mod p The public key of device A.
gab

 mod p:
or
TKAB

The Diffie Hellman shared key between devices A and B.

SHA1() 160 bits hash function
SHA1(ga mod p) 
or
IDA

Magnet_ID, which is used to identify the devices

SHA256() a 256-bits hash function.
SHA256()32 The first 32 bits of the 256-bits one-way hash function.
NA: Number used once, random value generated by A. When A and another 

device B, this value is used to generate a permanent key between A and 
B. 

PKAB Permanent key between A and B, is generated of NA ,NB  and gab
 mod p.

PKAB=SHA_256 (E(gab mod p , NA | NB) when NA<=NB or
PKAB=SHA_256 (E(gab mod p , NB | NA) when NB<NA 

PKIDAB The identifier for the permanent key. It is used to identify the permanent 
key without publishing the key itself. 
The PKID is generated from NA NB, where NA and NB are used to gener-
ate the permanent key.
PKIDAB=SHA_256 (NA , NB)32  when NA<=NB or
PKIDAB=SHA_256 (NB , NA)32 when NB<=NA

M1 | M2 | M3 Conjunction of the messages M1, M2, M3. 
E(K,M1|M2|M3) Messages M1,M2,M3 encrypted with key K.
HMAC(M,K) a hashed MAC encryption of message, M with key, K
AnyMessage(M1) Message AnyMessage with data M1 
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