

Small TCP/IP stacks for
micro controllers

By: Lucas van der Ploeg

Supervisors:

ir. Wout Klaren (3T)

Dr. ir. Pieter-Tjerk de Boer (Universiteit Twente)

2

1. Preface
My name is Lucas van der Ploeg and I am a student at the University of Twente. I am studying Telematics
and as part of this study, I had to do a 14-week Bachelor assignment. I decided to look for an assignment
outside the University and found a company called 3T BV about 100m from the main entrance of the
campus and another one called WMC a little further away. 3T had the most interesting assignment for me so
I decided go to 3T.

Because the University of Twente had recently switched to quartiles instead of trimesters, I had to do a 14-
week assignment in an 11-week period. Fortunately the holidays started right after that period so I could
continue my assignment during the first weeks of the holiday. As I was working at a company, I had to make
at least 40 hours a week, which is something many students are not used to. This did mean the assignment
would not take up much more than the 14 weeks required.

While I worked on my assignment, I spent a whole lot of time on finding out „simple‰ things like, how to
work with a micro controller and how to program in C/C++. When I finally could make the micro controller
say „Hello world‰ to me, getting it to open a TCP connection seemed like a piece of cake. I did learn a lot
from this and I think the things I learned are very useful. However, it would have been nice if I could have
spent more time on the actual assignment and less time on learning the basics of embedded systems
programming.

I want to thank my supervisors Wout Klaren and Pieter-Tjerk de Boer for all their good advice and the time
they spend helping me. I also want to thank my other roommates at 3T for making it a lot of fun being there.

3

2. Abstract
There are many small TCP/IP implementations available for micro controllers, both commercial and open
source. I compared these implementations by doing some research on the internet and by testing some of
them on a Motorola ColdFire processor.

It appeared LwIP was the most used open source implementation and most other open source
implementations were a bit limited or outdated. The many commercial implementations all promised roughly
the same, for about the same prise. However, most did not give very specific information online and did not
offer an option to test their implementation before buying it. Quadros Quadnet and ARC RTCS TCP/IP did
offer free demo versions but due to the limited time available, I could only intensively test Quadros.

To use the LwIP stack I needed to configure it to work without an operating system and I needed to write a
driver for the Ethernet controller. I created some test and debug applications to find out the best way of using
the LwIP stack. I found out that when you use the LwIP stack correctly it is stable and reliable.

I designed a few tests to compare and test the LwIP stack and the Quadros stack. I found out that getting
started with the Quadros stack was a lot less time consuming then getting started with the LwIP stack.
However, when running the tests the Quadros stack was not very stable and reliable. When you buy
Quadros, Quadnet could probably help you fix these problems.

When you have the knowledge and the time to configure an open source TCP/IP implementation, there is
no need to buy a commercial implementation, as I could not find any important limitations in LwIP. When
you need a working implementation fast you could use a commercial implementation like Quadros, however
you still need to spend some time getting acquainted with the implementation before you can actually use it.
Another possible advantage of a commercial stack like ARC RTCS TCP/IP is the tools you can use to
configure the stack. When you often create applications using a TCP/IP stack these tools can speed up
implementation.

4

3. Table of Contents

1. Preface 2

2. Abstract 3

3. Table of Contents 4

4. Introduction 7

4.1 The assignment 7

4.2 3T 7

4.3 Approach 7
4.3.1 Ease of use 7
4.3.2 Stability 7
4.3.3 Performance 7
4.3.4 Cost 8

5. Overview of available implementations 9

5.1 Open Source implementations 9
5.1.1 uIP 9
5.1.2 LwIP 9
5.1.3 uC/IP 9
5.1.4 tinytcp, wattcp and others 9
5.1.5 BSD 4.4 9

5.2 Commercial implementations 10
5.2.1 CMX-tcp/ip (or CMX-MicroNet for 8/16 bits) 10
5.2.2 NetX 10
5.2.3 NicheStack 10
5.2.4 ARC RTCS TCP/IP 10
5.2.5 RTXC Quadnet TCP/IP 10
5.2.6 TargetTCP 11
5.2.7 uC/TCP-IP 11

5.3 Selection 11

6. LwIP 12

6.1 About LwIP 12

6.2 Usage 12
6.2.1 Configuration 13

5

6.2.2 Initialisation 13
6.2.3 Timer 14
6.2.4 TCP 14

6.3 Network interface driver 19
6.3.1 MCF5282 Ethernet driver 19
6.3.2 Initialisation 20
6.3.3 Sending 21
6.3.4 Receiving 21

6.4 Configuration an Tuning 21
6.4.1 Disable parts 21
6.4.2 Buffer sizes 22

6.5 IO routines 23
6.5.1 Usage 23
6.5.2 Implementation 24
6.5.3 Conclusion 25

6.6 Testing applications 26
6.6.1 Echo server 26
6.6.2 Shell server 26
6.6.3 Proxy server 26
6.6.4 Test applications 26

7. Quadros 27

7.1 Test application 27

8. Test setup 28

8.1 Stability 28
8.1.1 Too many connections 28
8.1.2 Too much incoming traffic 28
8.1.3 Too much outgoing traffic 28
8.1.4 To much bidirectional traffic 28

8.2 Performance 28
8.2.1 Maximum speed 28
8.2.2 Load 28

8.3 Implementation 29
8.3.1 Test Client 29
8.3.2 Test servers 29

9. Test results 30

9.1 Stability 30

6

9.1.1 Too many connections 30
9.1.2 Too much incoming traffic 30
9.1.3 Too much outgoing traffic 30
9.1.4 Too much bidirectional traffic 31

9.2 Performance 31
9.2.1 Maximum transfer speed 31
9.2.2 Load with certain amounts of traffic. 33

10. TCP/IP with or without an operating system 35

10.1 Advantages of using an operating system 35

10.2 Disadvantages of using an operating system 35

11. Conclusion 36

11.1 Ease of use 36

11.2 Stability 36

11.3 Performance 36

11.4 Cost 36

11.5 Final note 37

12. Abbreviations 38

13. Appendix 39

13.1 TCP state diagram 39

13.2 Loss test 40
13.2.1 Incoming traffic 40
13.2.2 Outgoing traffic 43
13.2.3 Bidirectional traffic 46

13.3 Speed test results 49
13.3.1 Incoming traffic 49
13.3.2 Outgoing traffic 50
13.3.3 Bidirectional traffic 50

13.4 Load test results 51

13.5 LwIP memory usage 54

7

4. Introduction

4.1 The assignment
Small TCP/IP stacks for micro controllers.

There are micro controllers available with internal Flash ROM and RAM. When using a small tcp/ip stack
without an operating system or with a very limited operating system, it is possible to have internet capabilities
in embedded systems without the need for extra RAM and ROM chips. This reduces the hardware costs.

There are multiple open source and commercial implementations on the market. The assignment is to select
some of these implementations and use and test them in a simple application on a mcf5282 coldfire
processor using only the internal ROM and RAM. The goal is to find out the differences in performance and
capabilities of these implementations.

4.2 3T
3T BV is a research and development company that specialises in microelectronics and embedded systems.
3T has about 35 employees and its main office is located in Enschede, a second office is located in Best. The
company originated from an organisation called CME (Centrum for Micro Electronics). CME was founded in
1982 by the government to stimulate knowledge gathered by the three technical universities (Delft,
Eindhoven and Enschede) to get from the universities to small companies. In 1988, the CME division in
Enschede founded a company called Twente Technology Transfer BV. In 1994, it was reborn as 3T BV.

4.3 Approach
To get a first idea of the available TCP/IP stacks I did a lot of searching on the internet. I made an overview
of the most important available implementations. I selected an open source and a commercial
implementation to investigate further.

I wanted to compare the implementations at four different aspects.

4.3.1 Ease of use

How easy it is to use an implementation for the first time and create your application on it. Also how easy it
is to maintain you application and to make changes when you have already implemented your application
with it. To learn more about this I wrote an Ethernet driver for the LwIP stack to run on the ColdFire and I
wrote some test applications.

4.3.2 Stability

A very important factor is the stability of an implementation. You should be able to rely on a TCP/IP
implementation to run for years without needing a reset or any maintenance. No fatal errors should occur or
it should at least recover from those errors. As we donÊt have time to wait for a few years and look for error
we will have to stress test the stacks a little. I devised some tests for this purpose and ran them on the stacks.

4.3.3 Performance

A factor that could be important in some applications is the performance of a TCP/IP stack. How much
traffic can a stack handle and how much CPU time does the stack need with a certain amount of load. To
learn more about this I devised two tests.

8

4.3.4 Cost

The total cost of an implementation is mainly dependet on three factors. The purchase cost of the product.
The cost of the person-hours and possibly training needed to implement the application using the product.
And the cost of maintenance after the application is installed.

An open source is free to purchase but might still be more expensive than a commercial implementation
when getting your application to work is much more time consuming. Some commercial TCP/IP
implementations allow you to upload new applications using the TCP/IP stack. This makes is possible to
update your product dynamically after distribution. This could be a huge advantage.

9

5. Overview of available implementations

5.1 Open Source implementations

5.1.1 uIP

uIP is an implementation of the TCP/IP protocol stack intended for small 8-bit and 16-bit microcontrollers. It
is completely RFC1122 compliant but has some limitations. For instance, a retransmit is managed by the
stack, but the data that needs to be retransmitted is requested from the user application.

uIP can be used together with Contiki, a very small OS which supports dynamic application download and a
gui using VNC. The uIP stack uses less then 10kB ROM and 2kB RAM and Contiki can easily fit in 100kB
ROM and 10kB RAM. You can use it any way you want as long as you leave a copy of the copyright notice
in the source and/or documentation.

http://www.sics.se/~adam/uip/

5.1.2 LwIP

LwIP is a TCP/IP implementation designed for small code size and efficient memory usage. It is still widely
used, and implemented. And is designed to use with or without an operating system. lwIP uses around 40kB
of RAM and 30kB ROM and you can use it any way you want as long as you leave a copy of the copyright
notice in the source and/or documentation.

http://www.sics.se/~adam/lwip/

5.1.3 uC/IP

uC/IP is a TCP/IP stack developed for microcontrollers and embedded systems but is not often used. It
based on the BSD TCP/IP implementations and is still a bit large compared to other implementations. uC/IP
carries the BSD license so you can freely use it as long as you leave a copy of the copyright notice in the
source and/or documentation.

 http://ucip.sourceforge.net/

5.1.4 tinytcp, wattcp and others

There are a lot of (semi) Open Source TCP/IP stacks available for DOS, they are often very old and no
longer in use. They are not intended for use in embedded systems and sometimes have a paid licence for
commercial use.

http://www.unusualresearch.com/tinytcp/tinytcp.htm

http://www.wattcp.com

5.1.5 BSD 4.4

A lot of TCP/IP stacks are based on the BSD implementation. Because of its size it is not very useful for
embedded systems; however it might be useful as a reference.

10

5.2 Commercial implementations
All commercial TCP/IP implementations listed below, promise to be very efficient and robust. They all use a
zero copy mechanism to make efficient use of the resources.

5.2.1 CMX-tcp/ip (or CMX-MicroNet for 8/16 bits)

CMX-tcp/ip runs on CMX-RTX RTOS or without an RTOS. It supports many processors including the
ColdFire. A configuration tool is available and the stack uses about 20kB of ROM. CMX TCP/IP pricing
starts at $9,000 and is provided with full source code, no royalties on shipped products, and free technical
support and software updates. There is no demo or tryout version available for the ColdFire.

http://www.cmx.com/tcpip.htm

5.2.2 NetX

NetX is the TCP/IP stack of the ThreadX RTOS; it uses about 5 to 20 kB of code depending on
configuration. It is delivered with configuration tools and there are training courses available. A licence costs
around $5000 to use it for multiple applications but on only one processor type. The ColdFire is supported
but there is no demo version for the ColdFire on the website.

http://www.rtos.com/procNX-coldfire.asp

5.2.3 NicheStack

NicheStack and NicheLite are 2 TCP/IP implementations. NicheStack requires about 50kB ROM and RAM
and NicheLite only 12kB. Both come with a configuration and debug tool. You get the source code royalty
free, and 12 months support. No price information is given, but you can download a 1-hour demo. But I
could not create my own application on it so I could not test on it. The demo only shows a webpage.

http://www.iniche.com/nichestack.php

5.2.4 ARC RTCS TCP/IP

ARC has a TCP/IP stack and RTOS with an evaluation package, but they give no price and licence
information. They say itÊs small but not how small. It comes with a configuration and performance analysis
tools.

http://www.mqxembedded.com/products/rtcs/

5.2.5 RTXC Quadnet TCP/IP

The Quadnet TCP/IP stack runs on the Quadros TROS, it requires about 256kB ROM and 32kB RAM.
There are three versions available, a free special edition containing a preconfigured binary version with no
restrictions, the standard edition with a configurable binary, and a fully configurable professional edition
including all sources. The standard edition costs $17.500 per project, and the professional edition costs
$31.500 per project. The free edition does not seem to work properly.

http://www.quadros.com/products/communication-stacks/rtxc-quadnet/

11

5.2.6 TargetTCP

TargetTCP is the TCP/IP stack from TargetOS. It can also run without an RTOS and requires about 30kB of
ROM and 32kB of RAM. For $9800 you get a licence to use the source at a specified location for multiple
projects. There is no demo version on the website.

http://www.blunkmicro.com/tcp.htm

5.2.7 uC/TCP-IP

uC/TCP-IP runs on uC/OS-II, it uses about 100kB of ROM and 60kB of RAM, The tcp/ip stack is not
complete (ICMP incomplete, no IP fragmentation, no IP routing/forwarding) and you have to buy a licence
for every end product. There is no demo version available.

http://www.ucos-ii.com/products/tcp-ip/tcp-ip.html

5.3 Selection
LwIP is specially designed for micro controllers and not adapted from an implementations used for
workstations. It appears to be a complete TCP/IP stack without shortcuts and with all functionality of a large
stack. LwIP is also the only one with an active user community. Because of these three reasons I decided to
use LwIP as an open source TCP/IP protocol stack.

The decision for which commercial stack to test was a bit more difficult, there ware many implementations
available and they all promised roughly the same. Quadros Quadnet and ARC RTCS TCP/IP both offered a
free demo version that would run on the ColdFire evaluation board I could use so I wanted to test them both.
Unfortunately, I did not have enough time to try both so I only tested Quadros.

 Pro Con

uIP Free, very small Much left to user application

LwIP Free, complete, frequently used

uC/IP Free Large, not often used

Tinytcp, wattcp and others Free Not very usable

BSD 4.4 Free, stable Too big

CMX-tcp/ip ColdFire support, updates included No demo

NetX ColdFire support, tools & training available No demo

NicheStack ColdFire support, tools available Limited demo

ARC RTCS TCP/IP ColdFire support, tools available

RTXC Quadnet TCP/IP ColdFire support Unstable demo

TargetTCP ColdFire support No demo

uC/TCP-IP ColdFire support Incomplete, no demo

12

6. LwIP
There are multiple reasons why I decided to test and evaluate LwIP instead of other available TCP/IP
protocol stacks. LwIP is specially designed for micro controllers; other small TCP/IP implementations are
developed for DOS or derived from the BSD implementation and are less efficient on microcontrollers. It also
seemed that LwIP is the most referenced small TCP/IP stack, and the only one still being improved with an
active user forum.

I decided to test LwIP without an operating system. By running LwIP without an operating system, I expected
to get the highest performance from LwIP with the smallest system requirements. The performance would
not be influenced by operating system characteristics.

6.1 About LwIP
LwIP is short for Lightweight Internet Protocol, a small TCP/IP implementation designed for microcontrollers
with limited memory resources and processing power. Adam Dunkels originally developed LwIP at the
Computer and Networks Architectures (CNA) lab at the Swedish Institute of Computer Science (SICS).
Presently it is maintained by a group of 19 volunteers at Savannah, a website for distribution and
maintenance of Free Software that runs on free operating systems.

LwIP is a full-scale TCP/IP implementation with optimised code size and memory usage. It includes the
following protocols:

• Internet Protocol (IP), versions four and six, for worldwide addressing. It includes fragmentation and
reassembly, and forwarding over multiple interfaces.

• Internet Control Message Protocol (ICMP), versions four and six, for network state related messages.

• User Datagram Protocol (UDP), for simple data frame transmission.

• Transmission Control Protocol (TCP), including congestion control, RTT estimation and fast
recovery/fast retransmit for byte stream connections.

• Dynamic Host Configuration Protocol (DHCP), for automatic address assignment.

• Point to Point Protocol (PPP), for communication over serial lines.

• Serial Line Internet Protocol (SLIP), for communication over serial lines

• Address Resolution Protocol (ARP), for mapping between Ethernet and IP addresses.

All these protocols are optional and you can replace them by your own version or add your own protocols.
You can choose between to APIÊs to use the protocols. Using the raw call-back API you directly call the
functions from the TCP/IP stack, this ensures optimal performance. You can also use the optional Berkeley-
alike socket API. This API offers you some easy to use functions and handles the communication with the
TCP/IP stack for you. This is less efficient then the raw API but easier to use.

The LwIP stack also includes some memory management functionality and optionally some statistics are kept
for debugging and performance analysis to help with tuning.

There are multiple example applications, ports and network interface drivers available you can use directly or
as an example for your own driver, port and application.

6.2 Usage
To use LwIP you need to do some configuration, a network interface driver, and of course a working
environment. Your application needs to initialize the stack and regularly call some timer routines. In the
following paragraphs, I describe how to configure the stack, and what initialisation and timer functions your
application should call. I also describe how to use the raw TCP API and how to create a network interface
driver.

13

To get a working environment you need a compiler, some linker and hardware initialisation scripts and some
basic function like printf() for debugging. LwIP uses its own memory management so you donÊt need malloc()
and free() routines, but you might want an operating system for some thread control. Getting a working
environment can be very tricky even when you already have some examples from your hardware supplier.

6.2.1 Configuration

To use the LwIP stack first you need to define some settings in four header files and optionally create a
sys_arch.c for the OS emulation layer. The main configuration file is called lwipopts.h and changes the
default settings from opt.h. The other three header files are called cc.h, sys_arch.h and perf.h and contain
OS and environment depended options. For all files, there are multiple examples available in the CVS tree.

6.2.1.1 lwipopts.h

In this file you can enable or disable parts of the stack, you can set the buffer sizes, and you can enable
debugging. You can see a complete list of all options and their default settings in opt.h.

I tested the LwIP stack on the Motorola ColdFire, without an operating system, with only three extra parts of
the stack enabled. I defined NO_SYS so all the semaphore and mailbox functions have null definitions. This
can only be used when all LwIP functions are called in the same priority level so they do not interrupt each
other. I also enabled LWIP_DHCP for automatic IP configuration and LWIP_STATS_DISPLAY for
displaying a list of statistics on LwIP.

The size and number of all buffers I have chosen in this file are explained later on.

6.2.1.2 cc.h

This header file contains compiler and architecture dependent options like definitions integer sizes.

6.2.1.3 perf.h

In perf.h two functions are defined for performance measurement.

6.2.1.4 sys_arch.c and sys_arch.h

These two files define functions for the OS emulation layer. When you want to integrate LwIP with an
operating system there are a few functions you have to create. These functions are used by LwIP for
communicating with the operating system. Which functions you have to define is described in a document
found in the CVS directory called sys_arch.txt. In addition, multiple working examples are available.

6.2.2 Initialisation

Before you use functions from the LwIP stack you have to initialise all the parts in a specified order. And
when you use DHCP you have to wait for DHCP to resolve some IP settings.

The first function you have to call is stats_init() to zero all statistics. These statistics are very useful for
debugging and performance tuning but you could disable them in a production release.

If you use an operating system you should call sys_init() to initialise the OS emulation layer. This OS
emulation layer maps functions needed by LwIP to OS specific functions.

Next you have to initialise all memory buffers by calling mem_init() for the heap memory, memp_init() for a
predefined number of different structures and pbuf_init() for a pool of pbufÊs.

When this is done you can initialise the protocols by calling netif_init(), ip_init() and optionally udp_init() and
tcp_init().

Now the LwIP stack is completely initialised, but before you can start using the stack, you need to start calling
some functions at regular intervals as described below and you need to register and enable a network device.
This is done by calling netif_add() and netif_set_default(). When you have specified the IP address of the
interface, the net mask and the gateway IP address you can call, netif_set_up(). When you want DHCP to

14

configure the IP settings you call dhcp_start(). After enabling the interrupts you have to wait for netif_is_up()
to return true before you use the network device.

When all parts of LwIP are initialised, you can start to register TCP listeners and other services that use the
LwIP functionality. An example of the initialisation is found in main.c.

6.2.3 Timer

There are a number of functions in the LwIP stack that have to be called at certain intervals. All the functions
and there intervals are listed below and an example interrupt routine can be found in main.c in the
appendices. The intervals can are given in the header corresponding header files and can be tuned.

tcp_fasttmr() 250ms

tcp_slowtmr() 500ms

ip_reass_tmr() 500ms

dhcp_fine_tmr() 500ms

dhcp_coarse_tmr() 60000ms

etharp_tmr() 5000ms

6.2.4 TCP

In the CVS tree of LwIP rawapi.txt is found, this document describes how to use the raw callback functions of
LwIP. Because the information in the document is incomplete, outdated and does not give a clear example I
will explain how you can use a TCP connection with LwIP by giving an Âas short as possibleÊ example and
commenting on it. As you can see, you need a large amount of code to use the raw callback API. The
example consists of 2 parts that can be started by calling the functions hello_init() and hello_connect() at a
priority level higher or equal to that of the Ethernet controller.

In the first part, I open a listening TCP connection that accepts a connection. After accepting the connection,
it receives and confirms all incoming data, while trying to send a „hello world‰ message. The implementation
waits for the other side to close the connection and responds by also closing the connection. The
implementation keeps trying to send „hello world‰ and send a close from a poll function until it succeeds.

15

tcp_listen()

syn
syn, ack
ack

hello_accept()

data

tcp_output()
data
ack

NULL

hello_recv()

tcp_recved()
ack, windowsize -= len(data)

windowsize += len(data)

fin
hello_recv()

tcp_close()

ack

ack

fin

TCP frames to telnet client Example aplication part 1 LwIP

tcp_bind()
tcp_new()

hello_poll()

hello_init()

hello_poll()

In the second part of the example, I open a connection to a telnet server and start receiving and confirming
all incoming data with the same function as in the first part. Only this time I use a poll function that always
tries and keeps trying to close the connection until it succeeds.

6.2.4.1 Listen for incoming TCP connections

1. To open a listening TCP connection you first need to create a tcp_pcb (protocol control block) structure
using tcp_new(). In this structure, LwIP stores all information about a connection. If tcp_new() returns
NULL no room is available for a new TCP connection and you canÊt open a new listening TCP
connection.

2. When you succeeded in creating a new PCB you can try to bind it to a port and IP address using
tcp_bind(). When you want to bind the listening connection to all local IP addresses or you only have one
local IP address, you can use IP_ADDR_ANY as IP address. If the port is already in use tcp_bind() will

syn
syn, ack
ack

hello_connected()

fin

hello_recv()

tcp_close()

ack

ack
fin

TCP frames to telnet server Example aplication part 2 LwIP

tcp_connect()
tcp_new()

hello_close_poll()

hello_connect()

16

return ERR_USE and you canÊt open a listening connection at that port. Do not forget to cleanup the
pcb when this happens.

3. The next step is to tell LwIP to start listening. For the actual listening connection, LwIP uses a different
(smaller) pcb structure. This structure is allocated when you call tcp_listen(). If no space is available for a
new listening pcb tcp_listen() returns NULL, if the allocation succeeds LwIP clears the original pcb and
starts listening. When NULL is returned, you should clear the original pcb yourself.

4. The last step is to set some options in the pcb. You can give LwIP an argument, which is returned to you
each time LwIP calls one of your callback functions. Usually this is a pointer to a block of status
information you can use, but in our example, no status information is needed yet so we set it to NULL.
The second option you should set is the priority of incoming connections. Each connection has a priority
level, when all connections are in use, the connection that has a priority level equal to or lower than the
priority level of the incoming connection, and has been idle the longest, will be removed.
The last thing you need to do is to specify your accept function using tcp_accept().

err_t hello_init(void)
{
 struct tcp_pcb * pcb;
 struct tcp_pcb * lpcb;

1. if ((pcb = tcp_new()) == NULL)
 return ERR_MEM;

2. if (tcp_bind(pcb, IP_ADDR_ANY, 22) != ERR_OK)
 {
 tcp_abort(pcb);
 return ERR_USE;
 }

3. if ((lpcb = tcp_listen(pcb)) == NULL)
 {
 tcp_abort(pcb);
 return ERR_MEM;
 }

4. tcp_arg(lpcb, NULL);
 tcp_setprio(lpcb, TCP_PRIO_NORMAL);
 tcp_accept(lpcb, hello_accept);

 return ERR_OK;
}

6.2.4.2 Accept an incoming TCP connection (passive open)

1. When someone tries to connect to our listening TCP connection and room for a new pcb can be
allocated our previously specified accept function is called. In almost every case you need to allocate
some memory for status information and set the location as the argument LwIP gives you when calling
one of your functions. If you cannot, you can abort the connection by returning an ERR_MEM. In our
case, we reserve only one byte.

2. When you have decided to accept the connection, you should declare your callback functions. You
should at least declare an error and receive function. The error function is called when something goes
wrong and is used to inform you the connection is no longer available and you should free the memory
you were using for the connection. The receive function passes you the received data, or a NULL pointer
when a close is received.

3. Optionally you can specify a poll function that is called periodically and a sent function that informs you
when data you have sent has been confirmed. For this example, we are not interested in when data has
been confirmed so we do not specify a sent function. We specify a poll function to be called every two
TCP gross timer periods of half a second. If you want the connection not to be lost when to many other
connections occur you should set the priority to a higher level using tcp_setprio()

4. To finish the accept function we return ERR_OK.

err_t hello_accept(void *arg, struct tcp_pcb *pcb, err_t err)
{
 u8_t *state;

17

1. if ((state = mem_malloc(1)) == NULL)
 return ERR_MEM;
 *state = 0;
 tcp_arg(pcb, state);

2. tcp_err(pcb, hello_err);
 tcp_recv(pcb, hello_recv);

3. tcp_sent(pcb, NULL);
 tcp_poll(pcb, hello_poll, 2);

4. return ERR_OK;
}

6.2.4.3 Opening an outgoing tcp connection (active open)

1. To open an outgoing connection the first thing you usually want to do is reserve some memory, in our
example just 1 byte for status information.

2. When this succeeds we will try to reserve a new tcp_pcb for the connection using tcp_new(). If this fails
you should free the memory previously reserved and give up. You can also close another connection or
retry using tcp_alloc() with a higher priority.

3. Now you can set the options in the same way as explained above. Instead of the poll function from our
previous example, we let LwIP call a close function every five seconds.

4. Afterwards the pcb of the connection is ready and you can call tcp_connect(). If no room is available to
create a TCP syn segment (a segment to inform the other side you want to open a connection),
tcp_connect() returns ERR_MEM. In this case you can give up and clear the allocated memory and pcb
or you can keep trying.

5. If you specified a connected function when calling tcp_connect() your connected function is called when
the connection is established. If the connection fails, your error function is called. Currently, no error is
given to your connected function. In the connected function, you can for example send some data to the
other host. To keep this example simple, we try this only once.

err_t hello_connect(void)
{
 u8_t *state;
 err_t err;
 struct tcp_pcb *pcb;
 struct ip_addr ipaddr;
 IP4_ADDR(&ipaddr, 192,168,0,112);

1. if ((state = mem_malloc(1)) == NULL)
 return ERR_MEM;
 *state = 1;

2. if ((pcb = tcp_new()) == NULL)
 {
 mem_free(state);
 return ERR_MEM;
 }

3. tcp_arg(pcb, state);
 tcp_err(pcb, hello_err);
 tcp_recv(pcb, hello_recv);
 tcp_sent(pcb, NULL);
 tcp_poll(pcb, hello_poll_close, 10);

4. err = tcp_connect(pcb, &ipaddr, 22, hello_connected);
 if (err != ERR_OK)
 {
 mem_free(state);
 tcp_abort(pcb);
 }
 return err;
}

5. err_t hello_connected(void *arg, struct tcp_pcb *pcb, err_t err)
{
 tcp_write(pcb, helloworld, 12, 0)
 return ERR_OK;
}

18

6.2.4.4 Receiving data

1. When data or a FIN-flag (passive close) has arrived your previously defined receive function is called. If
the pbuf pointer is NULL, a FIN-flag is received. To cleanly close a connection, both sides have to
successfully send a FIN-flag. Therefore, if you have already sent a fin flag you can clean up. If you havenÊt
sent a FIN-flag yet you have to send it by calling tcp_close(). It is possible there is no room for a new tcp
segment containing the FIN-flag so you have to keep trying to call tcp_close() until LwIP is able to store
the FIN-flag. If you try closing only once the connection might stay in the close-wait state (see appendix
13.1 TCP state diagram)

2. If the pbuf pointer is set, the pbuf contains the received data. When you are done handling the data you
should clear the pbuf and afterwards tell LwIP how many bytes you have handled using tcp_recved(). This
enables LwIP to increase the receive window so new data can be send to us.

3. When you have successfully handled the received data you should return ERR_OK.

err_t hello_recv(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err)
{
 u8_t *state = (u8_t *)arg;
 u16_t len;

1. if (p == NULL)
 if (*state == 255) /* close send */
 hello_end(pcb, state);
 else /* close not yet send */
 *state |= 2;

2. else
 {
 len = p->tot_len;
 pbuf_free(p);
 tcp_recved(pcb, len);
 }

3. return ERR_OK;
}

6.2.4.5 Sending data

As the tcp_write() and tcp_close() functions might fail you have to keep trying until you succeed. You can use
the poll and sent functions for this purpose but you could also use a different thread or the background loop
for this purpose. You can use the status variables from the argument to remember what you wanted to send.

The last argument of tcp_write() can be set to 0 or 1, when set to 1 the data you wanted to sent is copied
and you can immediately reuse or clear the memory after the tcp_write() function returns successfully. When
set to 0, you can clear or reuse the memory when the data has been acknowledged indicated by sent call-
back.

LwIP can combine multiple small pieces of data queued by tcp_write() into one tcp packet. This is done by
waiting a while after a tcp_write() before actually sending. If you do want to send data immediately you can
call tcp_output() after the tcp_write().

const char *helloworld = "hello world\n";

err_t hello_poll(void *arg, struct tcp_pcb *pcb)
{
 u8_t *state = (u8_t *)arg;

 if ((*state & 1) == 0) /* hello world not yet send */
 if (tcp_write(pcb, helloworld, 12, 0) == ERR_OK)
 *state |= 1;

 if (*state == 3) /* close received and hello world send */
 if (tcp_close(pcb) == ERR_OK)
 hello_end(pcb, state);

 return ERR_OK;
}

19

6.2.4.6 Closing a tcp connection

There are three ways for a connection to close. You requested the close yourself, the other side requested the
close, or an error has occurred and the connection is aborted.

1. When a connection is aborted, LwIP clears the pcb and afterwards calls your error function. In your error
function, you should clear the memory you used and prevent your threads or background loop from
using the deleted pcb.

2. When the other side has sent you a close, you receive an empty data segment. You can still send some
final data and afterwards (in the example indicated by state=3) you have to call a tcp_close(). When you
succeeded in sending a close, you should cleanup. (see also the paragraph about receiving)

3. When you are the one to send the fin flag first, in our example done by defining a poll function to be
called after 5 seconds that calls a tcp_close(), you have to wait for the other side to send a fin flag back.
Meanwhile you can still receive data. When the fin flag arrives, you can cleanup.

4. To cleanup, you should free the memory you used for status information. The TCP connection could still
be in the CLOSING, of LAST_ACK state (see TCP state diagram) waiting for a last ack, This means
LwIP could still try to use one of the call-back functions, although our status memory has been cleared.
To prevent this you should set all call-back functions to NULL.

void hello_err(void *arg, err_t err)
{

1. mem_free(arg);
}

err_t hello_poll_close(void *arg, struct tcp_pcb *pcb)
{
 u8_t *state = (u8_t *)arg;

 if (tcp_close(pcb) == ERR_OK)

 {
 if ((*state & 2) == 2) /* close received */
2. hello_end(pcb, state);

 else /* close not yet received */
3. *state = 255;
 }

 return ERR_OK;
}

void hello_end(struct tcp_pcb *pcb, u8_t *state)
{

4. tcp_err(pcb, NULL);
 tcp_recv(pcb, NULL);
 tcp_sent(pcb, NULL);
 tcp_poll(pcb, NULL, 0);
 mem_free(state);
}

6.3 Network interface driver
To use lwip, you need one or more network interface drivers. There are a few examples available including a
PPP and SLIP for serial connections and a few Ethernet drivers. When you want to use an Ethernet
controller, there is an ARP implementation available you can use for your driver. For the PPP and SLIP
drivers you just need to define some in and output routines in „sio.h‰.

In this chapter, I describe the Ethernet driver I made for the Motorola ColdFire 5282 (MCF5282) Ethernet
controller and what could be done to improve it. As the documentation on the usage of LwIP is very limited, I
will also explain how you can implement a network interface driver for other devices.

6.3.1 MCF5282 Ethernet driver

For the Motorola ColdFire 5282 microprocessor, I have written a driver for the internal Ethernet controller.
The driver initializes the Ethernet controller and copies data between the lwip buffers and the Ethernet

20

controllerÊs buffers. It would be more efficient to merge the two different buffer types so the data does not
have to be copied. There was no time for me to implement this, but I will explain how this could be done.

6.3.1.1 Zero copy

LwIP uses buffers called pbuf and each frame is spread over a chain of one or more pbufÊs. The MCF5282
Ethernet controller uses a ring of buffer descriptors; each buffer descriptor points to a block of data and a
frame can be spread over multiple data blocks.

To send data without first copying it you just have to copy the data and length fields from each pbuf in the
pbuf chain to a consecutive buffer descriptor. You have to increment reference count of the pbuf with
pbuf_ref(), so the pbuf wonÊt be deleted until the Ethernet controller is done with it. When the Ethernet
controller informs you a frame has been sent you have to check how many buffer descriptors are cleared and
clear the corresponding pbufs (decrease the reference count) using pbuf_free().

To pass received data to the LwIP stack without copying it you can use a special pbuf type called
PBUF_REF. When a frame is received you can allocate a pbuf for each block of data described in a buffer
descriptor using pbuf_alloc() and chain the pbufs using pbuf_cat(). To know when the lwip stack and the user
are done with the frame you have to increase the reference count from the pbuf chain with pbuf_ref(). And
regularly check the reference count of the pbufÊs to see if the reference count has been decreased back to
one. When this is the case you are the only one using it and you can clear both the buffer descriptors and the
pbuf chain. You have to clear the first non-empty buffer descriptor to be used by the Ethernet controller and
make it point to the freed block of memory. This could be an other descriptor than originally used because
the first packet received is not always the first packet freed.

Another way to pass the received data to the LwIP stack without copying it is by using the pbufÊs from the
PBUF_POOL. The LwIP stack supports a pool with a predefined number of pbufÊs that have a predefined
length. You can use these pbufÊs by making all receive buffer descriptors point to a location within the data
segment of a pbuf from the pbuf pool. Because the data segments from the pbuf pool are not aligned to
sixteen bytes you have to align each buffer descriptor pointer within the data segment of the pbuf. This is not
very memory efficient as each buffer could lose fifteen bytes. You have to regularly check for freed pbufÊs in
the pool so you can reuse them.

6.3.1.2 DMA errors

From experience of 3T, I learned there seems to be a small problem in the ColdFire 5282 with DMA. When
data is written to a memory block from the processor and a DMA device simultaniously, data might get
corrupted. This results in a TCP checksum error on frames with no checksum error on the Ethernet frame.
This means you cannot ignore the TCP and IP checksums even if the lower layer can ensure only correct
frames will be delivered. A possible solution might be to use separate memory banks for DMA and CPU
writes.

6.3.1.3 Pointers misaligned

Another problem I encountered once is that the send buffer descriptor pointer of the driver and the Ethernet
controller somehow got misaligned. The result was the driver kept waiting for buffer x to be cleared, while
the Ethernet controller was waiting for buffer y to be filled. This could be easily remedied by checking if the
other buffers are also full, when the driver encounters a full buffer descriptor. If this is the case and the buffer
descriptor that should be emptied first is still in use, you should reset the driver and Ethernet controller.

It is not unthinkable other „impossible‰ events occur so it could build in some checks that result in a reset
when something goes terribly wrong.

6.3.2 Initialisation

In the network interface driver you have to implement an initialisation function that will be called from
netif_add(). In this function, you have to define a two-letter name describing the interface, the function that
should be called to send an IP packet, the MTU and some flags. You also should initialise your hardware.

21

If the device is an Ethernet controller you should also call etharp_init() and define a hardware (MAC) address
and the function to be called by the ARP protocol to send an Ethernet frame. You should also make sure a
etharp_tmr() is called every 4 seconds.

6.3.3 Sending

In the function you defined to sent IP packets, you should simply make sure the IP packet is sent to the
hardware. In case of an Ethernet device you should pass the packet to etharp_output(). This function will
create an Ethernet header in front of the IP packet and send the Ethernet frame to the output function you
defined for sending Ethernet frames. In this second output function, you send the frame to the hardware.

6.3.4 Receiving

When you have received an IP packet from your hardware, you should send it to the input function defined in
the netif structure. In case of an Ethernet device, you should first check the type field. When the Ethernet
frame contains an ARP packet you should send it to etharp_arp_input(), when the frame contains an IP
packet you should first call etharp_ip_input() and remove the Ethernet header using pbuf_header() before you
send it to the input function. It would also be wise but not strictly necessary to check the Ethernet checksum
and the Ethernet destination field and drop the broken or unwanted packets. In case of the MCF5282
Ethernet controller, this is done by the hardware.

6.4 Configuration an Tuning
There are a lot of options, you can configure in LwIP. There are a number of parts you might not need and
can disable and there are many buffer sizes you can change. For more information about the exact memory
usage of all parts of the LwIP stack on the ColdFire I have included an overview of all the memory used by
each part in appendix 13.5.

6.4.1 Disable parts

• The Berkeley-alike socket API is a very large part of the LwIP code (22%) and you need an operating
system to use it. The API also uses some extra memory for buffers and messages. Using the socket API
is a bit more common, easier and it might save some implementation time. However, when you have a
very limited amount of memory available you can do exactly the same without the socket API.

• When you are not using DHCP or any other UDP protocol you could leave out UDP, however this wonÊt
save a lot of code size (1.55Kb on the ColdFire)

• DHCP is disabled by default. DHCP enables the board to automatically connect to most networks. You
could also put the IP configuration in the implementation itself or ask the user to setup the IP
configuration manually every boot every boot.

• LwIP can keep some information about the number of packets sent, the number of errors and memory
usage. Disabling the stats will save 276 bytes of ram and 2.59Kb of code; it also saves the processor the
small trouble of counting.

• Using a zero copy network interface driver saves a lot of RAM, as you do not need extra buffers for the
network interface. It is also much more efficient because copying data is relatively CPU intensive.

• The checksum calculation is also cpu intensive and you could disable the checksum checking for
incoming packets. You have to make sure that broken packets are discarded by the lower layers so no
broken packets will arrive at your implementation.

22

module size (kB) percentage

Support 6.37 15.79%

IPv4 3.32 8.23%

TCP 11.47 28.43%

UDP 1.55 3.84%

DHCP 5.76 14.28%

ARP 2.84 7.04%

API 9.03 22.38%

total 40.34 100.00%

6.4.2 Buffer sizes

LwIP has three ways of allocating RAM. It is important to use values that do not contradict each other, for
example a maximum segment size larger then the output buffer size is not very useful and could even lead to
errors. The easiest way to know which values are most suited for your application is by testing it in the way
you think it would typically be used and looking at the memory statistics to see how much memory and
structures were used. You can set the values to a safe margin and if still memory errors occur you have to
make choices between what is more important.

6.4.2.1 mem

LwIP has its own memory heap, controlled by mem_alloc() and mem_free(), this heap is mainly used for
storing outgoing data and by the user application.

You could make sure the heap will never overflow by setting a high value for MEM_SIZE and low values for
the number of TCP connections (MEMP_NUM_TCP_PCB), the size of the TCP send buffer
(TCP_SND_BUF) and the number of TCP segments (TCP_SND_QUEUELEN). This will not make sure you
always have room to send data because the send buffer or maximum number of segments might still be
reached. This just prevents connections from not being able to send data, when other connections have used
all the available memory.

In most cases you can just set the memory size high enough to allow a few connections to have their send
buffers full while you could have some other connections open that are idle. A full memory heap is not a big
problem because LwIP will just return an error to your application and your application can try again later.

I have set the send buffer for the connections to 2048 bytes, and the memory heap to 16000 bytes. This
means the memory heap will take up 25% of the memory and about 7 connections can have their send
buffers full before the heap will overflow. Increasing the buffer size will speed up sending because more data
can be on its way at the same time, but it decreases the number of connections that can send at the same
time without the heap getting full.

6.4.2.2 memp

For structures like PCBÊs, segments and ROM pbuf descriptors, LwIP uses a predefined amount of structures
controlled by memp_alloc() and memp_Free().

The number of TCP listeners and UDP connections used is often known at compile time so you could set the
corresponding memp values to exactly the number you need. The number of TCP connections that will be
open at the same time is harder to predict. To help prevent connection failure when too many connections
are established or in the time_wait state (a closed connections that is not sure the other side has successfully
closed too), LwIP will automatically overwrite the oldest connection in time_wait state or another connection
with a priority lower or equal to the new one.

S u p p ort
1 6 %

IP v4
8 %

T C P
2 9 %U D P

4 %

D H C P
1 4 %

A R P
7 %

A P I
2 2 %

23

There are also a number of pbuf structures in the memp memory. They are used to point to read only blocks
of memory, so if you often send data directly from ROM you should allocate a lot of these pbuf structures,
when you will never send data from ROM you can set this number to zero.

6.4.2.3 pbuf

For incoming frames LwIP uses a pool of pbufÊs with a predefined length. They can be allocated and freed
with pbuf_alloc(,PBUF_POOL) and pbuf_free(). The number and size of these pbufs should accommodate a
number of receive windows. When these pbufs get full, data is lost and has to be retransmitted. You depend
on congestion algorithms to slow down the amount of traffic sent to you. So a small receive window
(TCP_WND) is advised, but a too small window will slow down the receiving speed.

In some cases, when you have your own buffer pool, or when you know the size of an incoming frame
beforehand, another type of pbufÊs is more suited for your network interface driver. In this case, you can just
disable the pbuf pool by setting PBUF_POOL_SIZE to 0.

6.5 IO routines
I found out that even a very simple program, like an echo server, using the raw API of LwIP, was very large
and complicated. This means creating your own applications using the raw API would take long and the
chance of making mistakes would be rather large.

The example applications were running completely on interrupt sources which means they are running in a
high priority level. It would be saver to run your application on a lower interrupt level so LwIP keeps running
when an application hangs or asks a lot of processing time.

It would also be nice to be able to use the same IO function, like printf(), used for the serial console, for TCP
an UDP connections.

Because of these three reasons, I decided to expand the IO routines from the serial console with routines to
handle TCP connections. And to implement a background loop where you can register you applications to
run in a low priority level. You can select a TCP or serial connection for each background application so the
IO routines are automatically mapped to the connection of your choice.

It would have been nice to use locking functions to send and receive; however, this would mean the complete
background loop locks. The only way to prevent this is by using different stacks for each application. This
would come very close to writing your own operating system and that is not what we wanted. Instead, I use
polling functions to check if data has arrived, or can be sent.

6.5.1 Usage

I have created a structure to describe a „connection‰, the same structure is used for a serial connection and a
TCP connection, and it could be used for an UDP connection. You can use a pointer to this structure to
select the connection you want to use (using io_select()). There are default pointers present for uart0, uart1
and uart2.

6.5.1.1 Main loop

For using the main loop you only need two functions, main_loop_add() and main_loop_del(). In
main_loop_add() you register your main loop function with a connection and an argument. It returns a
pointer to the structure describing the main loop function. The main loop functions will be called one after
another, to keep the loops cycling fast they have to do only a short piece of code at a single call of the
function. The main loop function can be removed with main_loop_del().

6.5.1.2 TCP

To open a listening TCP connection using the IO routines you call io_tcp_listen(), with the port number,
acknowledge and close functions, and optionally an argument that is given to the acknowledge function when
a connection is successfully opened. In your Acknowledge function, you need to return the argument for the
close function.

24

The example below does exactly the same as in the raw API example. It opens a listener to port 22, when a
client connects hello_ack() is called and „hello world‰ is send to the client. Also the hello_ack() function
registers a main loop to receive the incoming data and returns the main loop function pointer so the close
function knows what main loop function to remove. If no main loop could be registered the connection is
closed. In the main loop function, we check if data has arrived. If so, we receive and acknowledged the data.

void main()
{
 io_tcp_listen(22, NULL, hello_ack, NULL, hello_close);
}

void * hello_ack(void * arg, struct con *conn)
{
 struct ml *ml;
 printf("hello world\n");
 ml = main_loop_add(NULL, conn, hello_main);
 if (ml == NULL)
 io_tcp_close(conn);
 return ml;
}

void hello_main(void * arg)
{
 if (char_present())
 {
 in_buf();
 in_buf_ok();
 }
}

void hello_close(void * arg)
{
 main_loop_del(arg);
}

The other example used was to open a connection to a server, send a „hello world‰ and close the
connection. With the IO routines you can use io_tcp_add() to open a connection. This function will lock until
it succeeds or fails. This may take a few seconds depending on the number of retries you have configured.
You have to give an IP address and port number, but in our case, no argument or close function is needed as
we close the connection ourselves. With io_select() we switch to the just created connection and we send the
„hello world‰ and close the connection.

void main()
{
 struct con *old;
 struct con *new;
 struct ip_addr ip;

 IP4_ADDR(&ip, 192,168,0,112);
 new = io_tcp_add(&ip, 22, NULL, NULL, NULL);
 if (new != NULL)
 {
 old = io_select(new);
 printf("hello world\n");
 close();
 io_select(old);
 }
}

6.5.2 Implementation

6.5.2.1 Sending

LwIP can combine multiple small data segments into one TCP frame to decrease the number of packets that
need to be sent. For every call to tcp_output() a new segment is made and only a few segments can be
combined. Therefore, it would not be very efficient to send every byte to LwIP separately. This is why I
implemented a small output buffer in the IO routines that combine the bytes send to tcp_out_char() and send
them to LwIP when the buffer is full or when io_tcp_flush() is called. When you try to send a char, and we fail
to empty the buffer to the LwIP stack, we have a problem because we cannot send back a failure. This is why
I decided to wait for empty buffer space when we are in low priority and to throw the char away when we are
in high priority. More about this dilemma in the last paragraph of this chapter.

25

6.5.2.2 Receiving

When a data pbuf is received, the pointer is stored in the connections structure, if a pbuf pointer is already
stored in the structure the pbufÊs are concatenated. When the application calls in_char() a byte is removed
from the pbuf, acknowledged and returned. When in_buf() is called, the first pbuf is removed from the pbuf
chain and returned, but not yet acknowledged. You have to call in_buf_ok() re acknowledge and remove the
pbuf (a window update is send).

6.5.2.3 Closing

As explained in the raw API description, there are three ways to close a connection. By request of the
application, by request of the other side or after an error occurs. Because a remote close or an error can
come in while a main loop function is using the connection and we cannot remove a main loop function
while it is running we have to actually delete the main loop functions at the main loop.

When an error occurs the connection state is set to closed so from that moment no more data will be send. A
main loop function is registered to actually delete the connection and to call the connectionÊs close function
to free the memory (and main loop functions) used by the connection. When this is done, the main loop
function deletes itself and possibly some main loop closing functions that were interrupted by an error before
they could successfully close.

In the IO routines, no difference is made between the application and remote sides closing the connection.
This means no new data can be sent after the other side sends a close but the data that is already in the
buffers will be sent. A main loop function is registered to wait for the buffers to clear and to keep trying to
send a close until it succeeds, when the close is sent to LwIP the main loop function calls the close function
registered in the connection to free the memory (and main loop functions) used by the connection. When this
is done, the main loop function deletes itself.

6.5.2.4 Locking

When you are using a background loop instead of an operating system you should never use locking
functions because all background loop functions will have to wait for your lock. The io_tcp_add() function I
implemented will lock for only a few seconds (so the implementation will recover) but still it would be better to
use a call-back function for this purpose. A bigger problem is the out_char() function used by printf(). Printf()
doesnÊt return a failure or success flag so you can only choose to lock, or to lose the data, when no more
room is available. Both these solutions are not what you want so the only solution left is not to call printf()
when not enough room is available. You could check this in the IO routines before a main loop function is
called or before each printf() itself. If you make sure enough memory is available before you call the printf(),
and you donÊt fill the same memory from interrupt functions, you can safely use printf.

6.5.3 Conclusion

The IO routines I wrote make it a lot easier to handle more than one connection and more than one
application at a time. However, there are many additions you could make to improve the routines. I do not
think it would be wise to enhance the IO routines a whole lot because when you want a lot more than these
routines now do, it would be simpler and faster to use an existing operating system with the socket API.

In some cases, it would be more efficient to use the raw API without any enhancements. It could be your
application never uses more then one connection simultaneously. Also in some applications, the TCP event
can be handled very quickly. In these cases, there is no need for the extra code as there is no need to divide
the processing time.

26

6.6 Testing applications
To intensively test LwIP, I wrote multiple applications and tried some of the existing applications for LwIP. I
discovered that there are many things you can do wrong, and that is why I wrote an extensive explanation on
how to use LwIP. For instance, you have to know how exactly to close a connection and when to stop using
it. I also learned you have to use the right configuration and know not to send your data byte for byte.

I started testing LwIP using an http daemon and echo server that worked with the raw socket API. The
amount of code needed for these examples was large and the code was not very well commented. This is
why I decided to create my own IO routines and test it with some example applications.

6.6.1 Echo server

While creating the IO routines I used a very simple echo server as a test. It is just a routine that waits for
incoming connections, accepts the connections, and sends and receives data.

6.6.2 Shell server

While working with the LwIP stack I felt the need for some debug information on demand. This is why I
wrote a very simple shell to print all kinds of status information like connection stateÊs LwIP counters,
Ethernet controller counters, main loop functions, IP configuration and more. These functions can be used to
debug later applications.

6.6.3 Proxy server

As an easy way to test the stack with multiple connections and a lot of traffic, I created a proxy like
application. When you connect to this application, it opens a connection to the local proxy server and routes
all the data between the two connections. This meant I could setup my web browser to use the ColdFire as a
proxy server. While opening a website multiple connections are opened and closed and data is transferred in
both directions. With a lot of surfing preferably at pages with a lot of pictures I had a very simple way to
stress test the stack with all kind of events. After some debugging all data arrived correctly, no errors
occurred and after the connections were closed all memory was freed. Even when a lot of packets got lost,
the transfer rate slowed down but no errors occurred and eventually all data arrived correct and in the right
order.

Only one problem I did not fix and should be fixed when you really want to use this application. When both
the input and output buffers are full no new acknowledge can be received to clear the output buffers and
because no data can be sent, the input buffers are not cleared by the proxy application. This is why your
application should always acknowledge received data, or abort the connection, within a small time-span. If
not the memory can not be cleared and the stack has to wait for a few timeouts and (failing) retransmissions
before it wil abort the connection by itself. During this time no traffic is possible!

6.6.4 Test applications

I also wrote some test application to do some measurements. These applications are described in a later
chapter.

27

7. Quadros
Quadros offers a TCP/IP stack called „TRXC Quadnet‰. It includes an operating system and socket API.
They have a free version available that consists of a Binary image of over 200kB. The Binary image contains
a default application that can download user applications so you can upload your new applications over the
Ethernet connection. A small example application is available.

It soon became clear the implementation was not very stable and would stop working regularly without any
apparent reason. Even when running the default application Quadros would not run stable. There was
nothing in the documentation to explain this, but I do not think it is supposed to be this unstable. The binary
version I used was specially compiled for the hardware platform I was using and is included by the hardware
supplier. As the LwIP stack did not show any problems with the hardware except for the MII, I do not think it
could be a hardware problem. When you would actually buy a version of the Quadros TCP/IP stack support
is included and they would probably fix this problem. However, it does not vote well for them to supply a
faulty demo version.

7.1 Test application
Still I decided to test the stack more intensively and write my own test application. The example application
just started some binary services so no example was available on how to write your own application. With
some searching I found out I could use the Berkeley-alike socket API to implement my own application,
unfortunately some small parts I needed to use a select were left out so I had to implement them myself. I
discovered the implementation was not exactly the same as the Berkeley-alike socket API, but it would
probably work.

My implementation did work however often the connections did not close as expected and I often had to
reboot the system. I implemented one application that could switch between incoming, outgoing and
bidirectional traffic and could print the load to the serial terminal. To calculate the load I ran the same piece
of code as I used in the LwIP stack, in the null task of Quadros. And I initiated my own timer to time the
seconds.

28

8. Test setup
To get a better idea of the difference between the different TCP/IP stacks I have devised some tests. The first
thing I wanted to know is how stable a stack is. I also wanted to know how much data an implementation
could handle and how much processing time it would take. The creation of the test applications themselves
also tells a lot about the stacks.

8.1 Stability

8.1.1 Too many connections

The first and simplest test was just opening more connections than a stack could handle and closing them.
The stack should not give any errors and it should cleanup the connections correctly.

8.1.2 Too much incoming traffic

To check what would happen if the input buffers get full we have to send a lot of data to the stack. Because a
connection should have a window size smaller than the input buffers, I used multiple connections to fill up the
input buffers. I displayed the transfer speed for each connection during half a second for twenty-five seconds.
It would be nice if the connection speed would be divided evenly over the connections. The connections
should not fail and you should be able to close all connections afterwards, even when some buffers are still
full. This test also shows how an implementation handles packet loss because received packets that cannot be
stored will be discarded.

8.1.3 Too much outgoing traffic

I repeated the same test as described above with outgoing traffic. As the outgoing queue of a connection also
has a size smaller than the output buffers, (and probably smaller than the receive window of the other side)
again multiple connections are needed. No errors should occur and it would be preferred all connections
create an even amount of traffic.

8.1.4 To much bidirectional traffic

The last test to test the stability of a TCP/IP stack is to test a lot of traffic to an echo server. This tells us if
the stack can handle a lot of data without errors

8.2 Performance

8.2.1 Maximum speed

To get an indication of how much data a TCP/IP stack can handle I decided to test the maximum speed for,
incoming, outgoing and bidirectional traffic. I tested multiple times with an increasing amount of connections
to see what effect the number of connections has on the total amount of traffic a stack can handle.

8.2.2 Load

Something else that interested me was how much resources an implementation needs to handle a certain
amount of traffic. To do this I measured the number of times a piece of code could cycle, during one second,
on the ColdFire, with all interrupts disabled. I compared this value to the number of times the same piece of
code could cycle, during one second, in a background loop, while the stack is handling a certain amount of
traffic. I repeated the test with different amounts of traffic and with traffic in both directions separately and
simultaneously.

29

8.3 Implementation

8.3.1 Test Client

To test the stacks I needed a test application to run on a workstation to open multiple connections with a
specified amount of traffic. I could not find a suited test application so I decided to write one of my own. My
only experience in programming on a Windows workstation was in Java but in my experience, Java is not
very fast and not very stable. As the workstation I was working on was also a bit limited I was afraid, a Java
implementation would influence the test results. This is why I decided to write my test application on a Linux
workstation using C++.

I created a class to open a test connection with a specified amount of traffic. To limit the transfer speed I
took the sum of the sent and the received data, and divided this by the amount of time the test was running. I
waited for the actual speed to be lower than the wanted speed before sending or receiving another data
fragment. The TCP/IP stacks on the ColdFire would not immediately slow down sending when the test class
slows down the receiving, because the buffers have to be filled first. This is why the test had to wait a while
before taking measurements.

I made an option to enable or disable the outgoing traffic from the test connection class. By enabling the
outgoing traffic and connecting to a dummy server on the ColdFire I could test incoming traffic on the
ColdFire. By enabling outgoing traffic to an echo server on the ColdFire I could test bidirectional traffic. And
by disabling outgoing traffic and connecting to a traffic generating server on the ColdFire I could test with
outgoing traffic from the ColdFire.

I created a number of functions that make use of this test connection class to open multiple connections to
the ColdFire. One of these functions opens multiple connections and measures the total speed. Another
opened one connection and generated different amounts of traffic while requesting the load from a special
server on the ColdFire that returns the load when it receives a message. Another test function I created just
opened a lot of connections and tried to transfer a lot of data over all the connections. It showed the amount
of traffic it could generate for each connection during half a second.

8.3.2 Test servers

8.3.2.1 LwIP raw API

To run tests on the ColdFire I needed an echo server that sends all received data back to the client, a dummy
server that receives and ignores all incoming data and a traffic generating server that keeps trying to send as
much data as possible. When a number of Clients were connected to the traffic-generating server, I could not
connect another one because the already connected clients were using all output buffers. To remedy this I
toggled the sending of the data on and off when a byte was received so the test client could decide when the
test servers should start and stop sending.

Another test server I needed was a server that started the load test function in a background loop and returns
the last measured load to the client when a byte is received. This enabled the test client request the load from
the Coldfire.

8.3.2.2 LwIP low priority IO functions

I created the same three traffic-handling servers using my IO functions to test the difference between working
in low and high priority levels. The load test would not be very useful as it would run in the same priority level
as the IO functions and influence the results.

8.3.2.3 Quadros

As the free Quadros version is limited to only four TCP connections including the listening connections I
created only one test server that I could switch between sending, receiving and echoing mode with the serial
terminal. The load was also requested using the serial terminal.

30

9. Test results
Unfortunately, I could test the implementations only at 10Mbit half duplex due to problems with the MII bus
on the MCF5282 evaluation board I used. Running on 100Mbit full duplex would give very different results as
no frames would be lost on transfer and the Ethernet controller would be able to send Ethernet pause frames
to prevent buffer overruns. The higher number of errors and buffer overruns did however give more
interesting test results.

Because of the limited time available and the limitations and instability of Quadros I could not test Quadros as
intensively as LwIP.

9.1 Stability

9.1.1 Too many connections

LwIP can handle as many connections as you have defined. When LwIP has too many connections open to
open a new one, it can automatically abort an old connection. LwIP does this by first looking for a
connection in time-wait state (see appendix 13.1 TCP state diagram), if no such connection is available it will
abort the connection that has been idle the longest and that has a priority lower or equal to that of the new
connection. This makes sure you can always connect to a TCP listener with a high priority. I tested this by
opening to many connections with different priorities and LwIP reacted exactly as it was supposed to do.

In the free Quadros TCP/IP stack I could only test 3 connections simultaneously. When you tried to open a
fourth it just failed.

9.1.2 Too much incoming traffic

When the incoming buffers of a TCP/IP stack are full and a new segment arrives, the stack discards the new
data segment (congestion). The sending side does not know this so it waits for a timeout before it retries to
send this data. Meanwhile the data segments of other connections that did fit in the buffers will be
acknowledged and these connections will keep transferring data.

In the test results (see appendix 13.2.1.1), you can see that using the raw API of LwIP, about four or five
connections can keep transferring but the other connections are idle. Sometimes an idle connection gets
lucky and is able to start transferring after a timeout. As a result, one of the other connections will soon fail. It
would be preferred that when congestion occurs all receive windows are reduced so all connections will slow
down. However, the receive windows are already very small and have to be reduced to a value below the
maximum segment size. This would not be very efficient.

In appendix 13.2.1.2 you can see working with a background loop will give roughly the same result as the
raw API. The only difference is that the resulting speeds are a bit more random. This is due to the fact that
the window updates from the active connections are send from the background loop instead of immediately
after arrival as in the raw API version of the test program.

Unfortunately, I could test Quadros only with three connections (see appendix 13.2.1.3). This meant no
congestion occurred and nothing noticeable happened. The transfer rate was divided evenly.

9.1.3 Too much outgoing traffic

When the memory of LwIP is full or all TCP segment descriptors are in use, no new data can be send. When
testing LwIP using the raw API this resulted in only a few connections being able to send. When an
acknowledgement arrives a segment is cleared and the corresponding connection is notified so it can send
new data. This means connections that are already sending have a much higher chance at sending new data
than connections that have to wait for a polling event (see appendix 13.2.2.1). When using the low priority
IO functions the transfer rates are divided more evenly but the total transfer rate is lower (see appendix
13.2.2.2).

31

When running the same test on Quadros the transfer rates were extremely low (but stable). I have not found
any explanation for this (see appendix 13.2.2.3).

9.1.4 Too much bidirectional traffic

When the send buffers get full the raw API echo server I wrote for LwIP was not very efficient. Both the
receive buffers and the memory was full so no acknolages could arrive and no memory could be cleared. This
meant most of the time the connections were waiting for timeouts (see appendix 13.2.3.1).

In this case, the low priority IO functions (see appendix 13.2.3.2) were much more efficient.

Again the Quadros implementation (see appendix 13.2.3.3) was very slow. In addition, although I could only
open 3 connections the transfer rates became unstable.

9.2 Performance

9.2.1 Maximum transfer speed

To measure the maximum transfer speed I opened one to ten connections and measured the maximum
incoming, outgoing and bidirectional transfer speed. I compared the result from high priority raw API servers,
low priority IO function servers and Quadros server using the socket API. The complete result can be found
in the appendix and an overview is shown in the charts below.

9.2.1.1 Incoming trafic

When sending traffic to only one connection the transfer rate is clearly smaller than when you use multiple
connections. Because I configured the receive window to only 2048 bytes the transfer speed of one
connection using the LwIP stack was not optimal. The difference between one or more connections on the
Quadros stack was smaller, this could indicate the Quadros stack uses a bigger receive window.

Although the Quadros stack, claims to be zero copy, while my LwIP stack did copy the data from the
Ethernet controller to the stack, the LwIP stack appears to be faster using the raw API. Apparently, the
handling of the packets has more influence on the transfer speed than being zero copy or not.

In appendix 13.3.1 you can also see that when only using 4 or less connections the transfer rates remained
stable because the total size of the receive windows was smaller then the receive buffer. When sending traffic
over more connections data gets lost and the transfer speeds become a bit less stable. (Testing on full duplex
would probably have given a different result as the Ethernet controller could have sent a pause-frame and the
frames would be delayed instead of lost.)

Incoming traffic

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

number of connections

tr
an

sf
er

 s
pe

ed
 (k

B
/s

ec
)

LwIP, hi priority
LwIP, lo priority
Quadros, select

32

9.2.1.2 Outgoing traffic

When using only one connection for outgoing traffic again the maximum transfer speed was not optimal, the
LwIP stack had an output buffer of 2048 bytes so it could only have 2048 bytes of data in the output buffers
waiting to be acknowledged. This meant the stack had to wait for acknowledgements before sending more
data.

This time the difference between using the high and low priority servers was very small. The Quadros stack
hardly transferred any data. I do not know why the Quadros stack could not transfer the outgoing data any
faster. It could be an undocumented restriction of the demo version or a mistake in the Quadros stack. I
expect Quadnet could repair this problem rather quickly so the performance would be roughly the same as
that of LwIP.

In appendix 13.3.2 you can see a little difference between the raw API version test applications and the low
interrupt-priority main loop functions. The main loop divided the transfer speeds more evenly across the
different connections.

Outgoing traffic

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

number of connections

tr
an

sf
er

 s
pe

ed
 (k

B
/s

ec
)

LwIP, hi priority
LwIP, lo priority
Quadros, select

9.2.1.3 Bidirectional traffic

When testing with bidirectional traffic the results became very irregular, especially using the high priority raw
API on LwIP. Even when I repeated the test many times, the results stayed unpredictable so the only thing
you can tell from the actual values is that many packets got lost and a lot of timeouts occurred. (see appendix
13.3.3.1)

The low priority IO functions were a bit more efficient as they continuously tried to echo the received data
and not only on timeout, sent, and receive events. When one connection gets a sent event it cannot always
immediately send new data, as it may not have received data pending.

Again Quadros performance was very poor, hopefully Quadnet will fix this problem when you decide to buy
Quadros.

33

Bidirectional traffic

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

number of connections

tr
an

sf
er

 s
pe

ed
 (k

B
/s

ec
)

LwIP, hi priority
LwIP, lo priority
Quadros, select

9.2.2 Load with certain amounts of traffic.

The load is measured by counting the number of times the background loop cycles, divided by the number of
times the background cycles with LwIP disabled. An increasing amount of traffic is created and the actual
traffic rate is compared to the load. The measurement is done 5 times and the average is used. Some values
are ignored because they did not reach the target speed due to loss-timeouts. The actual values can be found
in appendix 13.4 and a chart is made from the averages and shown below.

I have tested the load only on LwIP using the raw API. The low priority IO functions would run in the same
priority level as the load counter so no meaningful measurement could be taken. I was not able to run an
accurate load test on the Quadros stack because it only worked well at very low speeds or full speed incoming
traffic.

As you can see, there is a linear correlation between the transfer speed and the load. When the transfer rate
reached a certain maximum speed, it stayed at that level. The output buffers were full and could not be
emptied until an acknowledgement arrives or the receive window was fully used and the test application could
not send any more data until a window update was sent.

• The load for incoming traffic will increase with 0.97% for every 10 kB/sec.

• The load for outgoing traffic will increase with 1.06% for every 10 kB/sec.

• The load for combined bidirectional traffic will increase with 1.15% for every 10kB/sec.

34

load

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

0 200 400 600 800 1000

traffic (kB/s)

lo
ad

 (%
) incoming

outgoing

bidirectional

One test ran I got a different result for the bidirectional traffic. Somehow, the buffers did not get full and the
transfer rate and load kept climbing until the load reached 100%. When this happened, the buffers did get full
and the transfer rate fell back to the same value the other tests would not cross. This proves that a small
difference in timing can have a huge effect; it might be the difference between packets colliding regularly or
never.

load

0,0

20,0

40,0

60,0

80,0

100,0

120,0

0 200 400 600 800 1000

traffic (kB/s)

lo
ad

 (%
) incoming

outgoing

bidirectional

35

10. TCP/IP with or without an operating system
For most of the small TCP/IP stacks I found, you could choose between running with or without an
operating system. To help with the choice of using an operating system I will list some advantages and
disadvantages.

10.1 Advantages of using an operating system
• When you run a TCP/IP stack without an operating system the stack would run completely in one

priority level. When the stack is overwhelmed with more data than it can handle, it will use all the
CPU time it can get. This means applications in the background loop will be overtaken completely.
When using an operating system you can easily prevent this.

• When using an operating system programming gets a little easier as you can use locking functions to
communicate with the TCP/IP stack. For instance, you could use a Berkeley-alike socket API. You
can also make use of the operating system to separate each connection in a different thread so you
do not have to worry about handling multiple connections simultaneously.

• Using an operating system makes your application easier to port to different systems. Most systems
use operating systems so most applications are written to be used with operating systems.

• When something goes wrong in the TCP/IP stack the operating system will keep running and might
be able to take action to recover.

10.2 Disadvantages of using an operating system
• You might not have enough ROM and RAM to run an operating system alongside your application,

or it will decrease the efficiency of your program by using memory that would otherwise be used by
the application.

• The operating system uses some CPU time, which reduces the amount of CPU time left for the
application.

• An operating system increases the complexity of a system which means more things can go wrong
and it is harder to find out where something went wrong.

• When using an operating system you have less control over the system, usually the operating system
can do exactly what you want but in some cases it can not. When you are not using an operating
system you can schedule the order of your functions any way you like, although it is a lot more work.

• When you want to integrate a TCP/IP stack with an existing application that does not use an
operating system it could be easier to keep working without an operating system.

36

11. Conclusion
There are many TCP/IP stacks you can choose from and for each stack, you can make many configuration
choices. I started with this document with four factors that play a role in choosing a TCP/IP stack. I will
explain what I have learned about the TCP/IP stacks for each of these factors.

11.1 Ease of use
When you have little experience in working with microcontrollers, a commercial TCP/IP stack would be
advisable. You could pay a company some money and in some cases, they will create a, ready to run, system
for your microcontroller. All you need to do is create your application in a way that is much like creating an
application for a workstation. For some commercial stacks, you will need to port it to the microcontroller of
your choice yourself.

When you do have a lot of experience with microcontrollers, it would not be very hard to start using an open
source implementation like LwIP. It will however take up some time to port the stack to your system, but you
do not have to wait for someone else to create your port.

11.2 Stability
From commercial TCP/IP stacks you would expect stability would not be a problem. As we have seen with
Quadros this is not always the case. You do get some support with commercial stacks so hopefully they will
fix these kinds of problems.

When you want to use an open source implementation, you should look for a stack that is often used and
intensively tested. LwIP is a good example of this. When errors do occur, you have to debug it yourself, or
wait for someone else to solve the problem.

11.3 Performance
In paragraphs 9.2.1.2 and 9.2.1.3 we saw a big difference in performance. But while testing the Quadros
stack, it did some times reach a speed close to that of LwIP, only never for long and not every time I tried. It
appears there is some kind of problem in the Quadros version I tested, this could probably be fixed rather
easily when you have access to the source code. When this problem is repaired, I expect little difference
between the Quadros and the LwIP stack.

In addition, as all commercial stacks promise to be zero copy and very fast, I do not expect a huge difference
between any of them. Tuning and configuration have more influence on the performance. Some commercial
stacks like ARC RTCS supply a performance tool to help you optimising your configuration. In LwIP you can
use a number of counters to optimise your configuration.

11.4 Cost
When you have little experience in embedded systems it could be cheaper to buy a commercial TCP/IP
stack. For some commercial stacks, you can buy one licence for multiple projects. You may decide to pay for
the support so you do not have to learn how to configure a TCP/IP stack yourself. Some commercial stacks
come with tools to help you configure the stack and speed up the process of creating new applications; this
can be useful when you create many simple applications.

When you do have experience with embedded systems or want to get some experience in embedded
systems, it is cheaper to use an open source TCP/IP stack like LwIP. There are no indications that LwIP has
any vulnerabilities or bugs, but you do have to be very careful not to make any mistakes in the way you use
the stack, you will have to have a deeper understanding of what happens within the stack to be able to create
stable system.

37

11.5 Final note
The choice for using an open source or a commercial implementation is very dependent on your experience
and the application. You have to choose between handling it yourself and letting others worry about the
details. The cheap way and the easy way. The risky solution and the less risky solution.

38

12. Abbreviations
ARP Address resolution protocol, a protocol used by Ethernet to map IP addresses on Ethernet addresses.

DMA Direct Memory Access, used by devices to communicate with memory without needing the processor

PPP Point to Point Protocol, used for internet over serial lines.

SLIP Serial Link Internet Protocol, used for internet over serial lines.

LwIP Lightweight Internet Protocol, a TCP/IP stack I tested.

TCP Transmission Control Protocol, for connection oriented byte stream connections over IP.

IP Internet Protocol, for worldwide addressing.

CPU Central Processing Unit, the main processor.

MAC Media Access control.

API Application Programming Interface, the interface between two pieces of code

PCB Protocol Control Block, a block of information about a connection.

RAM Random Access Memory, Memory that can read and written at any time.

ROM Read Only Memory, Memory that can only be read, and sometimes written with some limitations.

MII Media Independent Interface, interface between the physical interface and an Ethernet chip.

39

13. Appendix

13.1 TCP state diagram

CLOSED

SYN RECEIVED

LAST ACK

TIMED WAIT

CLOSING

FIN WAIT 2

FIN WAIT 1
CLOSE WAIT

ESTABLISHED

SYN SENT

LISTEN

CLOSED

LISTEN
create TCB

rcv SYN
snd SYN,ACK

rcv ACK
-

CONNECT
create TCB

snd SYN

rcv SYN,ACK
snd ACK

CLOSE
delete TCB

CLOSE
delete TCB

SEND
snd SYN

rcv SYN
snd ACK

passive
OPEN

active
OPEN

CLOSE
snd FIN

CLOSE
snd FIN

rcv FIN
snd ACK

CLOSE
snd FIN

rcv ACK
delete PCB

rcv FIN
snd ACK

active
CLOSE

rcv ACK
-

 passive
CLOSE

rcv ACK
-

rcv FIN
snd ACK

rcv FIN,ACK
snd ACK

timeout=2MSL
delete PCB

simultaneous open

simultaneous close

40

13.2 Loss test
To test how the implementations handle buffer overflows I opened a few connections and generated more
traffic than the implementation could handle. After starting the traffic, I waited a while for the transfer speeds
to stabilise and took 50 measurements of the transfer speeds for each connections and the total transfer
speed (all in kB/sec).

The transfer speeds for each connection is given in the first columns and the last column illustrates the total
transfer speed. The last two rows give the average transfer speeds from all measurements and the percentage
of measurements that indicated zero traffic.

13.2.1 Incoming traffic

13.2.1.1 LwIP high priority raw API
open 10 connections, check transfer rate every 500 ms 50 times.

 1 : 0 188 196 160 194 111 0 0 0 0 -> 851
 2 : 0 129 207 121 209 211 0 0 0 0 -> 880
 3 : 0 194 198 139 129 200 0 0 0 0 -> 860
 4 : 0 223 223 225 0 223 0 0 0 0 -> 896
 5 : 0 223 223 223 0 223 0 0 0 0 -> 894
 6 : 0 207 149 202 82 207 0 0 0 0 -> 849
 7 : 0 115 182 200 200 202 0 0 0 0 -> 900
 8 : 0 229 227 231 0 231 0 0 0 0 -> 919
 9 : 0 217 217 215 0 215 0 0 0 0 -> 866
 10 : 0 219 221 219 0 223 0 0 0 0 -> 884
 11 : 0 223 223 225 0 223 0 0 0 0 -> 896
 12 : 0 223 223 221 0 219 0 0 0 0 -> 888
 13 : 0 207 207 207 0 211 0 0 0 0 -> 835
 14 : 0 184 203 115 176 203 0 0 0 0 -> 884
 15 : 0 0 217 215 215 215 0 0 0 0 -> 864
 16 : 0 186 49 219 219 219 0 0 0 0 -> 894
 17 : 0 221 29 221 223 223 0 0 0 0 -> 919
 18 : 0 1 202 198 194 200 0 0 0 62 -> 859
 19 : 0 0 215 219 215 219 0 0 0 3 -> 874
 20 : 0 15 66 198 203 202 0 0 0 156 -> 843
 21 : 0 221 0 223 219 0 0 0 0 219 -> 884
 22 : 0 217 0 215 219 0 0 0 0 219 -> 872
 23 : 0 209 0 211 207 27 0 0 0 205 -> 862
 24 : 0 203 0 205 125 207 0 0 0 113 -> 857
 25 : 0 223 0 221 188 219 0 0 0 41 -> 894
 26 : 0 192 35 203 0 207 0 0 0 205 -> 845
 27 : 0 0 215 219 0 215 0 0 0 215 -> 866
 28 : 0 172 202 111 0 207 0 0 0 205 -> 900
 29 : 0 19 223 219 0 219 0 0 0 219 -> 902
 30 : 0 52 200 202 0 202 0 0 0 203 -> 861
 31 : 0 21 211 215 0 215 0 0 0 215 -> 880
 32 : 0 139 209 131 3 211 0 0 0 176 -> 872
 33 : 0 200 119 203 0 203 0 0 0 145 -> 872
 34 : 0 223 0 219 0 219 0 0 0 223 -> 886
 35 : 0 223 0 223 0 223 0 0 0 223 -> 894
 36 : 0 202 72 156 0 207 0 0 0 205 -> 845
 37 : 0 121 200 174 0 202 0 0 0 202 -> 900
 38 : 0 213 211 211 3 213 0 0 0 3 -> 859
 39 : 0 223 227 225 0 225 0 0 0 0 -> 902
 40 : 0 215 213 217 0 219 0 0 0 19 -> 886
 41 : 0 3 221 219 0 219 0 0 0 223 -> 888
 42 : 0 0 215 215 0 215 0 0 0 215 -> 863
 43 : 0 31 217 215 0 219 0 0 0 217 -> 902
 44 : 0 207 205 50 0 203 0 0 0 209 -> 878
 45 : 0 215 213 3 0 213 0 0 0 211 -> 859
 46 : 0 211 213 0 0 213 0 0 0 215 -> 855
 47 : 0 223 221 0 0 219 0 0 0 219 -> 884
 48 : 0 227 227 0 0 229 0 0 0 227 -> 912
 49 : 0 209 211 0 0 209 0 0 0 211 -> 843
 50 : 0 221 219 0 0 221 0 0 0 219 -> 882

total: 0 161 164 174 64 200 0 0 0 113 -> 877
idle : 100% 8% 14% 10% 62% 4% 100% 100% 100% 36% -> 53%

41

13.2.1.2 LwIP low priority IO functions
open 10 connections, check transferrate every 500 ms 50 times.

 1 : 280 256 7 19 3 0 0 0 0 0 -> 568
 2 : 160 313 23 309 25 0 0 0 0 0 -> 833
 3 : 60 305 129 302 13 0 0 0 0 0 -> 812
 4 : 249 158 266 96 70 0 0 0 0 0 -> 841
 5 : 290 229 166 25 109 0 0 0 0 0 -> 821
 6 : 176 276 182 168 1 0 0 0 0 0 -> 806
 7 : 3 37 392 213 196 0 0 0 0 0 -> 843
 8 : 52 217 147 156 256 0 0 0 0 0 -> 831
 9 : 139 319 0 166 84 0 0 0 0 0 -> 710
 10 : 205 221 178 180 0 0 0 0 0 0 -> 786
 11 : 309 215 80 223 0 0 0 0 0 0 -> 829
 12 : 205 311 68 109 111 0 0 0 0 0 -> 808
 13 : 123 296 143 133 141 0 0 0 0 0 -> 837
 14 : 309 15 282 82 145 0 0 0 0 0 -> 835
 15 : 176 88 254 233 76 0 0 0 0 0 -> 829
 16 : 156 178 160 170 168 0 0 0 0 0 -> 835
 17 : 123 156 105 188 254 0 0 0 0 0 -> 829
 18 : 151 258 170 125 31 5 90 0 0 0 -> 833
 19 : 196 194 103 31 5 137 186 0 0 0 -> 855
 20 : 333 149 23 158 3 29 131 0 0 0 -> 829
 21 : 200 47 135 180 9 25 243 0 0 0 -> 841
 22 : 264 133 90 0 268 41 50 0 0 0 -> 849
 23 : 49 366 307 47 13 17 11 0 0 0 -> 813
 24 : 50 292 13 23 123 92 156 0 0 0 -> 753
 25 : 35 152 1 149 129 225 121 0 0 0 -> 815
 26 : 100 313 0 253 37 125 0 0 0 0 -> 829
 27 : 60 52 0 358 233 0 135 0 0 0 -> 841
 28 : 49 202 170 7 47 296 50 0 0 0 -> 823
 29 : 317 27 198 3 3 145 123 0 0 0 -> 819
 30 : 241 119 137 7 62 94 54 0 0 0 -> 717
 31 : 0 172 0 3 225 74 239 0 0 0 -> 715
 32 : 133 109 45 109 0 254 176 0 0 0 -> 829
 33 : 35 292 113 5 23 221 121 0 0 0 -> 813
 34 : 239 149 35 7 0 166 239 0 0 0 -> 837
 35 : 49 300 0 156 0 278 25 0 0 0 -> 810
 36 : 0 190 160 249 0 227 0 0 0 0 -> 827
 37 : 0 50 0 147 103 237 270 0 0 0 -> 810
 38 : 74 105 127 7 117 315 68 0 0 0 -> 817
 39 : 241 76 121 50 92 147 82 0 0 0 -> 811
 40 : 307 180 5 7 5 158 39 0 0 0 -> 706
 41 : 156 417 102 3 84 52 5 0 0 0 -> 823
 42 : 19 52 133 145 176 3 176 0 0 101 -> 809
 43 : 205 7 162 109 245 0 35 0 0 37 -> 804
 44 : 256 78 123 88 45 121 90 0 0 9 -> 813
 45 : 3 200 107 15 9 280 5 0 0 184 -> 808
 46 : 0 182 200 100 0 133 154 0 0 39 -> 810
 47 : 0 221 62 0 0 84 329 0 0 47 -> 745
 48 : 3 219 7 164 9 49 9 0 0 343 -> 808
 49 : 0 211 1 13 215 56 176 0 0 19 -> 696
 50 : 0 135 0 0 50 152 111 0 0 372 -> 823

total: 136 185 109 110 80 85 74 0 0 23 -> 804
idle : 14% 0% 14% 6% 16% 38% 38% 100% 100% 82% -> 40%

42

13.2.1.3 Quadros, socket API
open 3 connections, check transferrate every 500 ms 50 times.

 1 : 284 284 282 -> 851
 2 : 282 282 282 -> 847
 3 : 172 172 172 -> 517
 4 : 282 282 284 -> 849
 5 : 284 284 282 -> 851
 6 : 282 282 282 -> 847
 7 : 286 284 284 -> 855
 8 : 284 284 286 -> 855
 9 : 284 284 284 -> 853
 10 : 280 282 282 -> 845
 11 : 288 284 284 -> 857
 12 : 284 286 286 -> 857
 13 : 280 282 282 -> 845
 14 : 284 284 284 -> 853
 15 : 286 282 282 -> 851
 16 : 282 286 282 -> 851
 17 : 284 282 286 -> 853
 18 : 282 284 282 -> 849
 19 : 284 282 284 -> 851
 20 : 284 282 282 -> 849
 21 : 282 286 284 -> 853
 22 : 284 284 284 -> 853
 23 : 286 284 284 -> 855
 24 : 282 284 286 -> 853
 25 : 284 284 284 -> 853
 26 : 286 284 284 -> 855
 27 : 284 282 282 -> 849
 28 : 282 286 284 -> 853
 29 : 282 282 282 -> 847
 30 : 284 284 284 -> 853
 31 : 280 278 278 -> 837
 32 : 284 286 286 -> 857
 33 : 288 286 288 -> 863
 34 : 282 282 282 -> 847
 35 : 282 282 282 -> 847
 36 : 286 284 284 -> 855
 37 : 282 286 284 -> 853
 38 : 282 282 284 -> 849
 39 : 288 286 284 -> 859
 40 : 286 286 288 -> 861
 41 : 280 282 278 -> 841
 42 : 282 282 286 -> 851
 43 : 284 284 282 -> 851
 44 : 282 282 282 -> 847
 45 : 282 282 284 -> 849
 46 : 286 284 282 -> 853
 47 : 284 284 286 -> 855
 48 : 282 284 282 -> 849
 49 : 286 282 284 -> 853
 50 : 280 282 282 -> 845

total: 281 281 281 -> 844
idle : 0% 0% 0% -> 0%

43

13.2.2 Outgoing traffic

13.2.2.1 LwIP high priority raw API
open 10 connections, check transferrate every 500 ms 50 times.

 1 : 0 0 0 327 0 327 325 0 0 0 -> 980
 2 : 0 0 0 325 0 325 325 0 0 0 -> 976
 3 : 0 7 0 398 0 398 158 0 0 0 -> 963
 4 : 0 0 0 472 0 474 0 0 0 0 -> 947
 5 : 0 0 0 468 13 466 0 0 0 0 -> 949
 6 : 0 264 0 211 0 209 266 7 0 0 -> 961
 7 : 0 478 0 0 0 0 476 0 0 0 -> 955
 8 : 0 460 0 0 31 0 462 0 0 0 -> 955
 9 : 0 184 7 419 0 5 186 11 0 0 -> 815
 10 : 0 0 0 708 0 0 0 0 0 0 -> 708
 11 : 0 0 0 553 323 0 0 0 0 0 -> 876
 12 : 0 27 3 151 149 198 203 203 0 0 -> 937
 13 : 0 0 0 0 0 325 327 329 0 0 -> 982
 14 : 0 0 0 0 0 5 474 472 0 0 -> 953
 15 : 0 9 329 0 27 0 125 455 0 0 -> 947
 16 : 0 0 388 0 0 272 0 302 0 0 -> 963
 17 : 0 0 468 13 0 470 0 0 0 0 -> 953
 18 : 0 9 468 0 5 468 0 0 0 0 -> 953
 19 : 0 0 466 0 0 464 0 15 0 0 -> 947
 20 : 0 0 88 35 0 462 378 0 0 0 -> 965
 21 : 0 276 0 0 272 345 74 0 0 0 -> 968
 22 : 0 388 0 0 390 66 0 115 0 0 -> 961
 23 : 0 453 31 9 453 0 0 0 0 0 -> 947
 24 : 23 464 0 0 466 0 0 0 0 0 -> 955
 25 : 0 39 0 0 451 417 27 11 0 0 -> 947
 26 : 0 0 3 5 474 474 0 0 0 0 -> 959
 27 : 315 0 0 0 333 329 0 0 0 0 -> 978
 28 : 3 0 3 3 458 462 19 0 0 0 -> 953
 29 : 0 0 3 3 470 468 0 0 0 0 -> 947
 30 : 0 0 0 0 470 468 13 0 0 0 -> 953
 31 : 13 0 15 15 455 445 5 0 0 0 -> 951
 32 : 33 0 435 433 37 0 0 0 0 0 -> 939
 33 : 0 7 437 435 0 0 7 7 0 0 -> 896
 34 : 52 0 0 0 56 0 0 0 0 0 -> 109
 35 : 470 0 0 0 470 11 0 0 0 0 -> 953
 36 : 406 5 11 0 406 0 56 62 0 0 -> 949
 37 : 0 0 0 15 0 0 470 466 0 0 -> 953
 38 : 0 0 0 0 0 60 443 447 0 0 -> 951
 39 : 88 3 84 0 0 272 264 264 0 0 -> 978
 40 : 370 0 374 103 100 0 0 0 0 0 -> 949
 41 : 0 0 0 478 480 0 0 0 0 0 -> 959
 42 : 0 3 0 458 353 11 5 113 0 0 -> 947
 43 : 119 0 121 354 0 0 0 351 0 0 -> 947
 44 : 480 0 480 0 0 0 0 0 0 0 -> 961
 45 : 341 178 339 0 19 19 3 0 0 0 -> 902
 46 : 0 608 0 33 0 0 0 147 0 0 -> 788
 47 : 0 478 0 0 0 0 0 478 0 0 -> 957
 48 : 7 300 158 0 27 158 3 298 0 0 -> 955
 49 : 0 0 415 131 0 415 0 0 0 0 -> 963
 50 : 0 0 327 325 0 325 0 0 0 0 -> 978

total: 54 93 109 137 144 192 102 91 0 0 -> 925
idle : 72% 58% 52% 46% 48% 36% 50% 60% 100% 100% -> 62%

44

13.2.2.2 LwIP low priority IO functions.
open 10 connections, check transferrate every 500 ms 50 times.

 1 : 0 0 25 0 0 0 25 0 43 41 -> 135
 2 : 0 0 23 0 0 0 23 0 23 23 -> 94
 3 : 7 0 94 0 96 0 86 98 17 107 -> 508
 4 : 0 0 154 0 154 0 158 217 0 182 -> 868
 5 : 0 1 149 1 160 3 178 211 0 192 -> 900
 6 : 90 0 162 0 156 0 170 96 11 186 -> 874
 7 : 166 0 196 0 182 0 164 0 0 145 -> 855
 8 : 152 0 186 0 80 119 182 0 0 149 -> 870
 9 : 76 7 66 49 0 113 72 45 5 117 -> 555
 10 : 0 0 0 25 0 25 0 25 0 25 -> 101
 11 : 0 0 0 45 47 54 0 64 0 45 -> 256
 12 : 5 11 0 35 45 64 5 17 47 0 -> 233
 13 : 0 0 47 43 74 78 0 0 0 0 -> 243
 14 : 0 0 105 133 158 164 0 0 0 113 -> 676
 15 : 9 5 115 21 184 113 117 145 5 147 -> 866
 16 : 0 0 141 0 156 0 174 221 0 168 -> 862
 17 : 0 0 131 0 147 0 168 217 0 188 -> 853
 18 : 9 43 43 0 43 13 37 56 11 88 -> 347
 19 : 0 43 0 51 0 0 0 49 0 47 -> 190
 20 : 0 25 0 25 0 0 0 25 0 25 -> 101
 21 : 5 121 0 107 194 203 0 7 5 129 -> 776
 22 : 0 170 3 176 23 176 176 0 0 170 -> 898
 23 : 0 182 0 154 0 174 207 0 0 170 -> 890
 24 : 58 74 0 43 0 60 25 0 13 58 -> 335
 25 : 23 21 66 0 0 62 0 66 0 66 -> 307
 26 : 0 0 25 0 0 25 0 25 0 25 -> 101
 27 : 0 0 49 56 5 49 23 3 60 3 -> 252
 28 : 164 15 160 209 0 182 0 0 154 0 -> 888
 29 : 172 0 170 217 5 176 5 0 137 0 -> 886
 30 : 135 5 141 3 149 205 215 5 0 5 -> 868
 31 : 98 98 1 0 258 264 1 5 0 76 -> 806
 32 : 147 166 0 0 213 205 0 0 17 131 -> 882
 33 : 96 111 0 13 190 205 5 17 1 70 -> 713
 34 : 127 164 19 198 5 182 0 166 0 0 -> 864
 35 : 0 90 131 152 0 225 0 227 29 0 -> 857
 36 : 0 86 233 253 9 0 23 94 100 21 -> 821
 37 : 33 147 0 154 0 0 125 168 86 180 -> 896
 38 : 113 258 0 262 0 0 0 98 0 107 -> 841
 39 : 105 235 35 219 33 7 0 94 5 100 -> 837
 40 : 172 7 200 0 184 0 0 154 0 158 -> 878
 41 : 200 0 192 0 170 0 35 152 0 154 -> 906
 42 : 186 45 156 45 0 3 113 152 13 133 -> 851
 43 : 0 166 0 160 0 0 164 186 0 186 -> 864
 44 : 0 176 0 131 45 0 147 196 0 186 -> 882
 45 : 0 166 0 0 158 54 125 192 9 180 -> 888
 46 : 3 162 33 0 174 168 0 182 0 174 -> 900
 47 : 0 168 0 54 160 158 0 172 0 190 -> 906
 48 : 0 176 0 88 41 149 5 158 60 196 -> 876
 49 : 7 170 84 0 0 107 0 164 105 229 -> 870
 50 : 0 166 178 0 68 186 0 158 0 158 -> 917

total: 47 69 70 62 75 79 59 86 19 105 -> 677
idle : 48% 34% 34% 40% 34% 34% 40% 24% 54% 12% -> 35%

45

13.2.2.3 Quadros, socket API
open 3 connections, check transferrate every 500 ms 50 times.

 1 : 17 17 17 -> 52
 2 : 7 9 7 -> 25
 3 : 7 7 9 -> 25
 4 : 9 7 7 -> 25
 5 : 7 7 7 -> 23
 6 : 7 9 7 -> 25
 7 : 7 7 9 -> 25
 8 : 9 7 7 -> 25
 9 : 7 7 7 -> 23
 10 : 7 9 7 -> 25
 11 : 7 7 9 -> 25
 12 : 9 7 7 -> 25
 13 : 7 7 7 -> 23
 14 : 7 9 7 -> 25
 15 : 7 7 9 -> 25
 16 : 9 7 7 -> 25
 17 : 7 7 7 -> 23
 18 : 7 9 7 -> 25
 19 : 7 7 9 -> 25
 20 : 9 7 7 -> 25
 21 : 7 7 7 -> 23
 22 : 7 9 7 -> 25
 23 : 7 7 9 -> 25
 24 : 9 7 7 -> 25
 25 : 7 7 7 -> 23
 26 : 7 9 7 -> 25
 27 : 7 7 9 -> 25
 28 : 9 7 7 -> 25
 29 : 7 7 7 -> 23
 30 : 7 9 7 -> 25
 31 : 7 7 9 -> 25
 32 : 9 7 7 -> 25
 33 : 7 7 7 -> 23
 34 : 7 9 7 -> 25
 35 : 7 7 9 -> 25
 36 : 9 7 7 -> 25
 37 : 7 7 7 -> 23
 38 : 7 9 7 -> 25
 39 : 7 7 9 -> 25
 40 : 9 7 7 -> 25
 41 : 7 7 7 -> 23
 42 : 7 9 7 -> 25
 43 : 7 7 9 -> 25
 44 : 9 7 7 -> 25
 45 : 7 7 7 -> 23
 46 : 7 9 7 -> 25
 47 : 7 7 9 -> 25
 48 : 9 7 7 -> 25
 49 : 7 7 7 -> 23
 50 : 7 9 7 -> 25

total: 8 8 8 -> 25
idle : 0% 0% 0% -> 0%

46

13.2.3 Bidirectional traffic

13.2.3.1 LwIP high priority raw API
open 10 connections, check transferrate every 500 ms 50 times.

 1 : 11 0 0 0 0 0 0 3 0 0 -> 15
 2 : 0 0 0 0 0 0 24 0 0 0 -> 24
 3 : 0 0 0 0 0 0 50 0 0 0 -> 50
 4 : 0 0 0 0 0 0 50 0 0 0 -> 50
 5 : 0 0 11 7 0 0 69 0 0 0 -> 89
 6 : 0 3 0 0 125 129 0 0 0 0 -> 258
 7 : 0 0 0 0 0 0 0 0 3 3 -> 7
 8 : 0 0 0 0 0 0 0 0 0 0 -> 0
 9 : 0 0 0 0 0 0 0 0 0 0 -> 0
 10 : 0 0 0 0 0 0 0 0 0 0 -> 0
 11 : 0 0 0 0 0 0 0 0 0 0 -> 0
 12 : 0 0 0 0 0 0 0 0 0 0 -> 0
 13 : 0 0 0 0 0 0 0 0 0 0 -> 0
 14 : 0 0 0 0 0 0 0 0 0 0 -> 0
 15 : 0 3 0 0 0 0 0 0 0 0 -> 3
 16 : 0 0 0 0 0 0 0 0 0 0 -> 0
 17 : 0 0 0 0 0 0 0 0 0 0 -> 0
 18 : 0 183 0 0 0 0 0 0 14 21 -> 219
 19 : 0 0 0 0 0 0 0 0 0 1 -> 1
 20 : 0 0 0 0 0 0 0 0 0 0 -> 0
 21 : 0 1 0 0 0 0 0 0 0 0 -> 1
 22 : 0 0 0 0 0 0 0 0 5 0 -> 5
 23 : 0 0 0 0 0 0 0 658 0 0 -> 658
 24 : 0 0 0 0 0 0 0 733 0 0 -> 733
 25 : 0 64 0 0 0 0 0 670 20 16 -> 771
 26 : 0 0 0 0 0 0 0 710 40 0 -> 752
 27 : 3 0 0 0 0 1 0 298 45 324 -> 673
 28 : 0 0 0 0 0 35 0 32 2 0 -> 69
 29 : 0 128 0 0 0 0 0 163 11 0 -> 302
 30 : 0 15 0 0 3 0 0 118 1 0 -> 140
 31 : 0 290 0 0 419 1 0 0 0 0 -> 711
 32 : 0 271 0 0 275 11 0 0 2 0 -> 561
 33 : 0 5 0 0 0 0 0 3 0 0 -> 9
 34 : 47 0 0 0 0 0 0 0 0 0 -> 47
 35 : 50 0 0 0 0 0 1 0 43 0 -> 96
 36 : 23 301 0 0 0 391 0 3 31 0 -> 751
 37 : 0 1 0 0 0 496 0 0 499 0 -> 997
 38 : 0 4 0 0 0 376 0 3 381 0 -> 767
 39 : 6 114 0 0 0 3 0 3 13 0 -> 142
 40 : 0 0 0 0 0 0 0 0 0 0 -> 0
 41 : 0 0 0 0 0 0 0 0 0 0 -> 0
 42 : 0 0 0 0 0 3 0 0 0 0 -> 3
 43 : 0 0 0 0 0 0 0 0 0 0 -> 0
 44 : 0 0 0 0 0 0 0 0 0 0 -> 0
 45 : 0 36 0 0 0 0 0 0 0 0 -> 36
 46 : 262 57 1 0 0 0 0 0 16 0 -> 338
 47 : 0 0 1 0 0 0 0 0 0 0 -> 1
 48 : 0 4 0 0 0 0 0 0 0 0 -> 4
 49 : 131 11 159 0 0 0 0 0 1 0 -> 305
 50 : 486 13 485 0 0 0 0 0 1 0 -> 987

total: 20 30 13 0 16 29 3 68 22 7 -> 211
idle : 80% 60% 90% 98% 92% 80% 90% 74% 64% 90% -> 81%

47

13.2.3.2 LwIP low priority IO functions
open 10 connections, check transferrate every 500 ms 50 times.

 1 : 125 19 110 108 11 54 62 198 43 7 -> 742
 2 : 78 117 213 80 17 0 27 104 61 90 -> 791
 3 : 233 33 41 9 88 121 107 34 29 106 -> 808
 4 : 65 196 96 129 15 88 5 117 66 72 -> 853
 5 : 29 9 174 202 33 9 7 56 29 174 -> 727
 6 : 15 25 78 11 56 0 17 247 100 253 -> 806
 7 : 62 123 24 94 140 0 5 119 39 182 -> 792
 8 : 31 33 113 0 274 33 0 27 131 158 -> 804
 9 : 243 121 9 0 1 256 0 23 111 41 -> 810
 10 : 29 0 118 41 0 112 92 102 115 224 -> 835
 11 : 21 37 82 243 0 23 103 115 43 151 -> 821
 12 : 54 25 0 64 115 96 168 27 92 176 -> 821
 13 : 123 0 131 7 113 151 111 5 113 68 -> 827
 14 : 154 194 0 31 70 29 113 94 25 125 -> 839
 15 : 33 66 117 113 0 17 231 178 5 7 -> 772
 16 : 152 23 127 160 0 11 268 58 29 3 -> 837
 17 : 80 25 178 62 0 0 64 149 160 105 -> 827
 18 : 31 66 115 41 0 0 290 39 147 43 -> 774
 19 : 81 192 18 172 0 39 100 62 96 83 -> 846
 20 : 64 213 70 0 0 39 76 0 152 213 -> 831
 21 : 215 125 11 207 43 47 47 0 50 47 -> 796
 22 : 103 233 5 94 49 64 0 98 188 0 -> 837
 23 : 152 115 137 168 29 113 0 131 0 0 -> 849
 24 : 68 152 50 113 52 70 49 56 125 92 -> 833
 25 : 233 35 15 25 213 29 203 27 0 35 -> 819
 26 : 131 37 0 11 229 0 188 0 217 0 -> 815
 27 : 149 100 0 39 49 333 1 0 58 3 -> 735
 28 : 200 109 0 117 5 119 0 17 243 0 -> 813
 29 : 117 202 0 100 90 101 0 62 154 0 -> 829
 30 : 202 56 0 74 70 200 3 52 162 5 -> 829
 31 : 268 29 0 249 0 52 0 105 103 0 -> 810
 32 : 115 37 0 88 0 176 0 282 11 101 -> 813
 33 : 119 182 0 103 7 107 0 253 52 1 -> 829
 34 : 198 207 0 1 0 0 0 207 203 0 -> 819
 35 : 243 154 0 7 0 0 0 130 263 43 -> 843
 36 : 215 209 0 0 0 31 0 209 88 76 -> 831
 37 : 153 121 0 19 144 196 0 86 88 13 -> 823
 38 : 181 149 0 0 291 0 0 39 0 162 -> 823
 39 : 62 127 0 0 70 29 0 86 273 80 -> 730
 40 : 27 141 0 0 199 86 0 115 47 190 -> 807
 41 : 7 282 0 0 17 39 0 127 43 282 -> 799
 42 : 29 188 0 0 46 80 78 43 192 194 -> 853
 43 : 90 200 0 0 62 123 25 180 70 66 -> 819
 44 : 249 145 0 50 305 0 15 0 0 28 -> 794
 45 : 13 72 0 286 105 0 98 0 50 176 -> 804
 46 : 98 51 0 17 110 0 266 0 184 78 -> 807
 47 : 241 82 0 68 86 0 176 0 154 0 -> 810
 48 : 43 121 0 221 268 0 52 0 96 0 -> 804
 49 : 7 54 0 239 130 0 125 0 254 0 -> 814
 50 : 164 209 0 141 0 0 84 0 227 0 -> 827

total: 116 109 40 80 72 61 65 81 104 79 -> 812
idle : 0% 4% 54% 20% 28% 32% 34% 22% 8% 20% -> 22%

48

13.2.3.3 Quadros, socket API
open 3 connections, check transferrate every 500 ms 50 times.

 1 : 40 42 18 -> 100
 2 : 19 19 7 -> 45
 3 : 28 32 6 -> 67
 4 : 22 19 2 -> 44
 5 : 15 15 7 -> 38
 6 : 26 30 2 -> 60
 7 : 22 17 13 -> 53
 8 : 19 19 10 -> 48
 9 : 13 13 10 -> 36
 10 : 11 17 5 -> 34
 11 : 11 11 11 -> 34
 12 : 11 9 11 -> 32
 13 : 28 26 4 -> 60
 14 : 11 11 5 -> 28
 15 : 26 24 2 -> 54
 16 : 11 15 7 -> 33
 17 : 28 28 6 -> 63
 18 : 15 17 8 -> 40
 19 : 19 17 9 -> 45
 20 : 5 7 5 -> 19
 21 : 28 26 10 -> 66
 22 : 9 7 7 -> 24
 23 : 22 26 0 -> 50
 24 : 15 11 8 -> 34
 25 : 30 28 5 -> 64
 26 : 20 22 11 -> 55
 27 : 22 20 10 -> 54
 28 : 5 11 9 -> 26
 29 : 22 22 6 -> 52
 30 : 26 20 11 -> 59
 31 : 15 19 13 -> 47
 32 : 19 15 11 -> 45
 33 : 3 7 5 -> 17
 34 : 20 22 4 -> 48
 35 : 19 13 7 -> 39
 36 : 26 28 0 -> 56
 37 : 20 24 13 -> 59
 38 : 15 15 17 -> 47
 39 : 11 9 3 -> 24
 40 : 19 17 4 -> 41
 41 : 19 19 9 -> 47
 42 : 13 19 10 -> 43
 43 : 22 17 18 -> 58
 44 : 5 7 6 -> 19
 45 : 17 15 2 -> 35
 46 : 19 21 11 -> 51
 47 : 9 11 5 -> 26
 48 : 15 15 2 -> 33
 49 : 24 23 13 -> 61
 50 : 19 22 8 -> 50

total: 18 18 8 -> 45
idle : 0% 0% 0% -> 0%

49

13.3 Speed test results
Open 1 to 10 connections and check transfer rate during 5 times 5 seconds.

1. The first column gives the number of connections.

2. The second column gives the average total speed.

3. The third column gives the maximum total speed during 5 seconds.

4. The fourth column gives the percentage of times no traffic occurred on a connection during 5
seconds.

5. The last columns give the average speed per connection.

All speeds are again in kB/sec

13.3.1 Incoming traffic

13.3.1.1 LwIP on high priority test applications
 1 : 785 786 0% 785
 2 : 945 947 0% 472 472
 3 : 956 959 0% 318 318 318
 4 : 881 885 0% 220 220 220 220
 5 : 882 887 8% 200 204 87 211 178
 6 : 881 885 13% 180 197 206 150 126 19
 7 : 881 886 5% 77 184 44 156 141 186 90
 8 : 874 883 0% 77 145 136 164 83 70 77 119
 9 : 873 878 11% 86 59 148 134 133 5 55 127 122
 10 : 871 874 20% 102 112 136 135 118 133 58 38 35 0

13.3.1.2 LwIP on low priority test applications
 1 : 566 604 0% 566
 2 : 833 839 0% 424 409
 3 : 832 838 0% 255 282 294
 4 : 835 837 0% 227 150 225 233
 5 : 827 829 0% 180 182 130 164 169
 6 : 826 829 20% 234 230 20 146 0 194
 7 : 827 833 0% 103 136 158 111 102 58 157
 8 : 811 823 7% 134 163 127 119 58 70 94 43
 9 : 816 829 0% 96 112 88 86 67 112 108 79 64
 10 : 817 832 22% 104 141 74 93 81 49 0 65 94 112

13.3.1.3 Quadros with test applications using select
 incoming traffic
 1 : 706 737 0% 706
 2 : 854 858 0% 427 427
 3 : 343 855 20% 114 114 114

50

13.3.2 Outgoing traffic

13.3.2.1 LwIP on high priority test applications
 1 : 703 703 0% 703
 2 : 951 952 0% 475 475
 3 : 947 972 0% 345 243 358
 4 : 943 970 0% 354 181 304 102
 5 : 907 961 0% 243 131 166 175 191
 6 : 815 929 0% 114 189 185 132 117 75
 7 : 919 937 0% 129 106 115 171 142 90 163
 8 : 932 950 0% 150 165 119 139 112 86 84 73
 9 : 876 962 11% 121 61 101 170 124 62 106 126 0
 10 : 904 955 26% 110 107 30 110 115 94 195 121 0 18

13.3.2.2 LwIP on low priority test applications
 1 : 703 703 0% 703
 2 : 917 926 0% 472 444
 3 : 931 972 0% 296 303 331
 4 : 947 969 0% 211 231 306 198
 5 : 953 969 0% 105 237 263 131 214
 6 : 926 968 0% 151 143 252 140 81 156
 7 : 893 961 2% 111 175 62 115 192 118 117
 8 : 936 953 0% 122 135 82 171 139 70 113 101
 9 : 866 936 0% 60 97 79 53 109 88 114 97 166
 10 : 657 834 0% 92 54 83 55 48 55 55 75 60 75

13.3.2.3 Quadros with test applications using select
 1 : 24 24 0% 24
 2 : 15 16 0% 7 7
 3 : 24 25 0% 8 8 8

13.3.3 Bidirectional traffic

13.3.3.1 LwIP on high priority test applications
 1 : 724 725 0% 724
 2 : 911 941 0% 480 430
 3 : 760 886 0% 263 199 298
 4 : 774 820 0% 265 91 239 178
 5 : 714 775 12% 81 297 42 116 176
 6 : 257 610 60% 36 101 22 49 30 16
 7 : 503 706 17% 125 122 0 0 69 60 125
 8 : 97 459 75% 0 0 0 5 4 3 83 0
 9 : 180 448 60% 55 0 0 0 0 69 53 0 0
 10 : 108 514 84% 5 0 0 0 0 0 103 0 0 0

13.3.3.2 LwIP on low priority test applications
 1 : 886 896 0% 886
 2 : 848 867 40% 812 36
 3 : 843 867 53% 21 19 802
 4 : 861 885 55% 6 42 55 756
 5 : 811 836 32% 59 365 174 85 125
 6 : 848 933 43% 141 4 68 47 510 75
 7 : 817 829 0% 133 123 123 117 116 90 114
 8 : 806 825 0% 105 113 98 74 110 101 82 120
 9 : 817 823 8% 80 14 80 104 67 130 141 81 114
 10 : 804 820 12% 5 133 85 73 105 3 100 137 78 81

13.3.3.3 Quadros with test applications using select
 1 : 59 65 0% 59
 2 : 60 81 0% 30 30
 3 : 52 73 0% 19 21 10

51

13.4 Load test results
Open 1 connection, generate an increasing amount of traffic and measure the load (percentage of processing
time spend on the TCP/IP stack). To get an accurate result for the target speed the measurement was
repeated 5 times and the average was taken over the test results that came close to the target speed.

13.4.1.1 Incoming traffic
Target Test 1 Test 2 Test 3 Test 4 Test 5 Average
Speed Load Speed Load Speed Load Speed Load Speed Load Speed Load Speed
kB/s ‰ kB/s ‰ kB/s ‰ kB/s ‰ kB/s ‰ kB/s % kB/s

0 5 0 5 0 6 0 5 0 5 0 0,5 0
10 13 10 15 10 13 10 15 10 15 10 1,4 10
20 25 20 25 20 23 20 25 20 25 20 2,5 20
30 34 30 34 30 34 30 35 30 34 30 3,4 30
40 44 40 44 40 44 40 44 40 44 40 4,4 40
50 52 50 54 50 54 50 54 50 56 50 5,4 50
60 63 60 63 60 63 60 63 60 63 60 6,3 60
70 73 70 73 70 71 70 73 70 73 70 7,3 70
80 83 80 81 80 81 80 81 80 83 80 8,2 80
90 91 90 90 90 91 90 90 90 95 90 9,1 90

100 100 100 100 100 100 100 102 100 103 100 10,1 100
110 112 110 112 110 110 110 108 110 112 110 11,1 110
120 120 120 120 120 122 120 120 120 120 119 12,0 120
130 129 130 130 129 130 130 130 129 130 129 13,0 129
140 139 140 141 139 141 140 139 140 139 140 14,0 140
150 149 150 149 150 149 150 147 150 147 149 14,8 150
160 158 160 158 159 159 160 158 160 159 160 15,8 160
170 170 170 168 170 170 169 170 169 166 169 16,9 169
180 178 180 178 180 178 180 180 179 178 180 17,8 180
190 190 190 187 190 188 190 187 190 187 190 18,8 190
200 197 200 197 200 198 200 198 199 198 200 19,8 200
210 205 209 207 209 207 210 207 210 207 210 20,7 210
220 215 219 217 219 217 219 217 219 215 219 21,6 219
230 226 229 227 228 227 229 226 229 226 229 22,6 229
240 236 239 238 239 236 239 238 239 236 239 23,7 239
250 248 249 246 249 248 249 246 249 244 249 24,6 249
260 256 259 256 259 256 259 256 259 256 259 25,6 259
270 266 269 266 269 266 268 265 269 265 269 26,6 269
280 277 278 275 279 275 279 275 279 275 279 27,5 279
290 283 289 283 289 285 289 285 289 285 289 28,4 289
300 295 299 294 299 295 299 294 298 295 299 29,5 299
310 302 308 304 309 306 308 304 309 304 308 30,4 308
320 312 318 312 318 314 318 312 318 312 318 31,2 318
330 326 328 323 329 321 328 321 329 324 328 32,3 328
340 333 338 333 338 333 338 331 338 334 338 33,3 338
350 341 348 343 348 343 348 341 348 341 348 34,2 348
360 353 358 353 358 353 358 353 358 353 358 35,3 358
370 362 368 363 368 362 368 360 368 362 368 36,2 368
380 372 378 372 378 372 378 370 378 373 378 37,2 378
390 380 388 382 388 380 388 382 388 382 388 38,1 388
400 390 398 389 398 390 398 389 398 392 398 39,0 398
410 401 408 399 408 401 408 402 408 401 408 40,1 408
420 409 418 411 418 413 418 413 418 409 418 41,1 418
430 421 428 419 428 418 428 419 427 421 428 42,0 428
440 430 438 431 438 430 438 428 438 430 438 43,0 438
450 438 448 438 448 440 448 440 448 440 448 43,9 448
460 448 458 448 458 448 458 448 458 447 457 44,8 458
470 458 468 458 468 458 467 457 468 458 468 45,8 468
480 467 478 470 478 469 479 469 479 469 477 46,9 478
490 479 488 479 489 479 488 477 488 477 489 47,8 488
500 486 499 489 497 489 500 482 498 491 498 48,7 498
510 492 509 499 509 498 506 494 508 496 498 49,5 509
520 504 517 511 519 504 518 509 520 508 518 50,7 518
530 515 527 516 528 515 529 515 528 515 527 51,5 528
540 521 537 523 539 525 537 528 537 526 537 52,5 537
550 535 549 533 550 537 548 538 549 535 548 53,6 549
560 547 557 545 560 543 559 545 559 545 559 54,5 559
570 554 567 555 569 552 568 559 568 554 567 55,5 568
580 562 579 564 580 564 580 567 579 565 580 56,4 580
590 576 589 572 589 576 590 571 589 572 590 57,3 589
600 584 600 582 599 586 598 584 597 586 599 58,4 599
610 594 607 596 608 593 609 596 609 594 607 59,5 608
620 601 620 605 619 608 618 603 620 603 618 60,4 619
630 615 627 615 629 615 629 613 630 615 629 61,5 629
640 627 639 623 639 628 640 628 637 623 639 62,6 639
650 637 649 635 649 633 646 633 650 633 649 63,4 649
660 644 656 642 660 639 660 645 656 644 659 64,3 658
670 654 670 649 668 650 670 656 669 650 669 65,2 669
680 667 678 666 676 661 679 662 676 664 679 66,4 678
690 669 689 669 689 673 689 673 688 673 689 67,1 689
700 684 699 683 699 683 699 686 697 679 696 68,3 698
710 691 710 691 709 691 710 691 709 690 710 69,1 710
720 703 719 707 718 705 718 701 718 703 719 70,4 718
730 707 727 703 728 708 726 707 730 710 730 70,7 728
740 720 738 724 740 730 738 720 739 718 738 72,2 739
750 739 747 730 750 730 748 732 749 724 745 73,1 748
760 742 759 741 759 741 757 739 759 741 759 74,1 759
770 744 769 751 769 751 770 751 768 754 769 75,0 769
780 761 779 764 778 758 777 759 776 759 779 76,0 778
790 766 786 766 785 766 784 764 784 764 784 76,6 786
800 766 784 764 785 766 782 766 783 764 783 76,5 783
810 766 786 766 784 764 786 766 779 763 708 76,6 784
820 764 785 764 784 766 784 766 783 766 783 76,5 784
830 764 784 764 784 764 785 766 785 766 786 76,5 785
840 764 786 764 786 766 783 764 786 766 786 76,5 785
850 764 786 764 786 766 786 766 786 766 783 76,5 785
860 766 786 766 786 768 784 766 786 764 785 76,6 785
870 766 786 766 786 766 786 764 786 764 785 76,5 786
880 766 786 766 785 763 783 763 784 763 782 76,4 784
890 759 780 766 786 761 784 764 783 766 785 76,3 784
900 764 785 764 785 766 784 766 785 764 785 76,5 785
910 764 782 761 780 761 782 764 784 764 784 76,3 782
920 761 781 763 784 764 784 763 784 764 785 76,3 784
930 764 785 764 784 766 785 766 786 766 786 76,5 785
940 766 786 766 786 768 786 766 786 766 786 76,6 786
950 763 785 764 786 764 786 764 786 766 786 76,4 786
960 764 786 766 786 764 786 764 786 764 786 76,4 786
970 766 786 764 785 764 786 766 786 766 786 76,5 786
980 766 785 766 786 766 786 766 786 764 786 76,6 786
990 764 786 766 786 766 786 766 786 766 786 76,6 786

1000 764 786 766 786 766 786 766 786 764 786 76,5 786

52

Outgoing traffic
Target Test 1 Test 2 Test 3 Test 4 Test 5 Average
Speed Load Speed Load Speed Load Speed Load Speed Load Speed Load Speed
kB/s ‰ kB/s ‰ kB/s ‰ kB/s ‰ kB/s ‰ kB/s % kB/s

0 5 0 5 0 5 0 6 0 5 0 0,5 0
10 13 10 12 10 12 10 17 10 18 10 1,4 10
20 32 20 30 20 32 20 30 20 30 20 3,1 20
30 42 30 42 30 40 30 40 30 40 30 4,1 30
40 51 40 51 40 51 40 49 40 52 40 5,1 40
50 63 50 61 50 61 50 63 50 61 50 6,2 50
60 73 60 71 60 69 60 71 60 73 60 7,1 60
70 81 70 83 70 83 70 81 70 81 70 8,2 70
80 91 80 93 80 91 80 93 80 93 80 9,2 80
90 100 90 102 90 105 90 105 90 103 90 10,3 90

100 115 100 113 100 113 100 113 100 115 100 11,4 100
110 125 110 122 110 124 110 124 110 125 110 12,4 110
120 136 120 136 120 134 120 136 120 136 120 13,6 120
130 146 130 147 130 147 130 147 130 147 130 14,7 130
140 156 140 158 140 156 140 156 140 154 140 15,6 140
150 166 150 168 150 166 150 166 150 168 150 16,7 150
160 178 160 178 160 178 160 176 160 178 160 17,8 160
170 187 170 187 170 188 170 188 170 188 170 18,8 170
180 198 180 198 180 198 179 198 180 197 179 19,8 180
190 209 190 209 190 209 190 207 190 209 190 20,9 190
200 219 200 219 200 219 200 219 200 219 200 21,9 200
210 229 209 227 209 231 210 229 210 227 210 22,9 210
220 239 220 239 220 238 220 239 220 238 220 23,9 220
230 249 229 249 230 249 229 251 229 251 229 25,0 229
240 261 240 260 240 261 240 261 240 260 240 26,1 240
250 270 249 273 250 272 250 273 250 273 250 27,2 250
260 283 260 282 260 283 260 283 260 283 260 28,3 260
270 294 270 294 270 295 270 294 270 292 270 29,4 270
280 302 280 304 280 302 279 304 280 304 280 30,3 280
290 314 289 316 290 314 290 314 290 314 289 31,4 290
300 321 299 324 300 328 299 324 299 324 299 32,4 299
310 333 310 334 309 334 309 333 310 336 309 33,4 309
320 345 320 346 319 348 320 345 320 345 320 34,6 320
330 358 329 356 330 355 330 355 329 356 330 35,6 330
340 365 339 368 340 367 339 365 340 367 339 36,6 339
350 377 350 377 349 377 349 377 349 377 349 37,7 349
360 389 359 387 360 390 359 385 360 387 359 38,8 359
370 397 369 397 369 397 369 399 369 399 370 39,8 369
380 409 380 409 379 407 379 409 379 409 317 40,9 379
390 219 364 421 390 419 390 419 390 419 390 42,0 390
400 430 400 430 399 430 399 431 400 433 400 43,1 400
410 441 410 441 409 441 409 441 410 441 410 44,1 410
420 453 419 450 419 453 420 452 419 452 419 45,2 419
430 462 429 462 429 464 429 464 430 462 429 46,3 429
440 475 439 472 439 472 440 472 440 472 439 47,3 439
450 484 450 484 450 484 450 484 450 484 450 48,4 450
460 496 460 494 459 494 459 494 460 494 460 49,4 460
470 504 469 504 469 504 469 506 469 504 469 50,4 469
480 515 479 516 479 518 479 515 479 516 480 51,6 479
490 525 489 528 490 528 489 528 489 526 488 52,7 489
500 537 499 537 499 535 499 537 499 535 499 53,6 499
510 547 510 549 510 547 509 550 509 543 509 54,7 509
520 555 519 555 520 559 519 557 519 557 519 55,7 519
530 571 528 567 529 567 529 567 529 567 529 56,8 529
540 576 539 579 538 577 538 579 539 577 539 57,8 539
550 588 548 591 550 588 549 591 549 589 549 58,9 549
560 601 559 598 559 599 559 599 560 601 560 60,0 559
570 608 569 610 569 611 568 610 568 610 568 61,0 568
580 622 578 618 579 620 578 622 579 622 579 62,1 579
590 630 588 630 588 628 589 630 589 632 589 63,0 589
600 640 598 642 599 640 599 640 599 644 599 64,1 599
610 647 609 647 608 650 608 645 606 650 606 64,8 608
620 647 606 649 607 647 606 649 606 647 606 64,8 606
630 649 606 650 606 649 606 647 606 645 606 64,8 606
640 645 606 647 606 649 606 647 606 645 606 64,7 606
650 649 606 647 606 647 607 647 606 647 607 64,7 606
660 645 606 647 606 647 606 645 607 649 606 64,7 606
670 645 606 649 606 645 606 649 606 647 606 64,7 606
680 649 606 649 606 647 606 645 606 39 198 64,8 606
690 647 606 647 606 649 606 649 607 647 606 64,8 606
700 647 606 647 606 647 606 647 607 649 606 64,7 606
710 647 607 649 606 650 606 647 606 649 606 64,8 606
720 649 606 649 606 645 606 649 606 649 606 64,8 606
730 647 606 649 606 649 606 649 606 516 499 64,9 606
740 647 611 647 606 644 606 649 606 647 606 64,7 607
750 647 606 649 606 649 606 647 606 647 606 64,8 606
760 649 606 649 606 647 606 647 606 647 606 64,8 606
770 647 606 649 606 647 606 649 606 645 606 64,7 606
780 645 606 645 606 647 607 649 606 649 606 64,7 606
790 645 606 645 606 649 606 650 606 649 606 64,8 606
800 649 606 647 606 645 606 649 606 647 606 64,7 606
810 647 606 649 606 647 607 644 606 647 606 64,7 606
820 649 606 650 606 647 606 647 606 645 606 64,8 606
830 649 606 647 606 647 606 650 606 647 606 64,8 606
840 647 606 649 606 650 606 645 606 647 606 64,8 606
850 647 606 647 606 647 606 647 607 649 606 64,7 606
860 647 606 647 606 649 606 649 606 649 606 64,8 606
870 645 606 649 606 649 606 649 606 649 606 64,8 606
880 650 606 649 606 647 606 649 607 649 606 64,9 606
890 647 606 649 606 645 606 649 607 647 606 64,7 606
900 645 607 647 606 647 606 649 607 647 606 64,7 606
910 649 606 647 606 645 606 649 606 647 606 64,7 606
920 645 606 647 606 649 606 649 606 647 607 64,7 606
930 649 606 649 606 649 606 647 606 647 606 64,8 606
940 650 606 647 606 649 606 650 606 650 606 64,9 606
950 649 606 647 606 647 606 647 606 649 606 64,8 606
960 650 606 647 607 649 606 647 606 649 606 64,8 606
970 647 606 649 606 649 606 647 606 645 606 64,7 606
980 645 606 649 606 649 606 644 605 650 606 64,7 606
990 649 606 647 606 649 607 645 606 647 607 64,7 606

1000 647 606 645 606 647 606 647 607 647 606 64,7 606

53

13.4.1.2 Bidirectional speed
Target Test 1 Test 2 Test 3 Test 4 Test 5 Average
Speed Load Speed Load Speed Load Speed Load Speed Load Speed Load Speed
kB/s ‰ kB/s ‰ kB/s ‰ kB/s ‰ kB/s ‰ kB/s % kB/s

0 6 0 5 0 6 0 5 0 5 0 0,5 0
10 18 10 18 11 17 11 17 11 17 11 1,7 11
20 30 21 30 21 30 21 30 21 30 21 3,0 21
30 44 31 42 31 44 31 44 31 44 31 4,4 31
40 56 41 56 41 56 41 56 41 56 41 5,6 41
50 68 51 68 51 66 51 68 51 68 51 6,8 51
60 78 60 78 60 80 60 78 60 80 60 7,9 60
70 88 70 90 70 90 70 90 70 90 70 9,0 70
80 100 80 102 80 100 80 102 80 100 80 10,1 80
90 112 90 112 90 113 90 113 90 113 90 11,3 90

100 125 100 124 100 125 100 125 100 125 100 12,5 100
110 137 110 136 110 136 110 136 110 137 110 13,6 110
120 147 120 149 120 149 120 147 120 149 120 14,8 120
130 161 130 159 130 158 130 159 130 159 130 15,9 130
140 173 140 171 140 173 140 173 140 171 140 17,2 140
150 185 150 183 150 185 150 185 150 183 150 18,4 150
160 192 160 195 160 193 160 193 160 195 160 19,4 160
170 207 170 207 170 207 170 207 170 205 170 20,7 170
180 219 180 219 180 217 180 219 180 217 179 21,8 180
190 229 189 227 189 229 189 232 189 231 189 23,0 189
200 243 199 244 199 243 199 244 199 243 199 24,3 199
210 255 209 253 209 255 209 255 209 253 209 25,4 209
220 263 219 266 219 265 219 266 219 266 219 26,5 219
230 278 229 277 229 277 229 277 230 278 229 27,7 229
240 289 240 287 240 289 240 289 239 289 239 28,9 240
250 300 249 302 249 299 249 300 249 299 249 30,0 249
260 311 260 311 259 311 260 311 259 312 259 31,1 259
270 324 269 323 269 323 269 314 269 314 269 32,0 269
280 326 279 326 279 324 279 326 279 326 279 32,6 279
290 338 289 334 289 336 289 334 289 336 289 33,6 289
300 346 299 348 299 346 299 348 299 346 299 34,7 299
310 360 309 360 309 360 309 358 309 358 309 35,9 309
320 372 319 372 320 372 319 372 319 370 319 37,2 319
330 382 329 382 329 379 329 382 329 384 329 38,2 329
340 394 339 394 339 394 339 392 339 394 339 39,4 339
350 406 348 406 348 406 349 402 348 404 348 40,5 348
360 416 358 419 358 416 359 419 359 418 358 41,8 358
370 430 368 428 368 428 369 428 368 426 368 42,8 368
380 440 378 440 378 441 378 441 378 440 378 44,0 378
390 450 388 452 388 452 388 452 388 452 388 45,2 388
400 462 398 462 398 464 398 462 398 464 398 46,3 398
410 475 408 474 408 475 408 474 408 474 408 47,4 408
420 487 418 486 418 486 418 487 418 484 418 48,6 418
430 496 428 496 428 498 428 498 428 498 428 49,7 428
440 508 438 508 438 509 437 508 438 508 438 50,8 438
450 520 447 518 447 520 448 521 448 520 447 52,0 447
460 532 457 532 458 532 458 530 457 530 457 53,1 457
470 538 467 542 467 542 467 542 467 543 468 54,1 467
480 555 477 554 477 555 477 555 478 554 477 55,5 477
490 565 487 565 488 564 487 565 488 564 487 56,5 487
500 579 497 577 498 577 497 576 497 577 497 57,7 497
510 589 507 588 506 589 506 589 508 589 506 58,9 507
520 601 516 601 517 601 517 599 517 601 518 60,1 517
530 611 526 613 527 611 527 613 526 613 526 61,2 526
540 625 538 623 537 627 537 623 537 623 536 62,4 537
550 632 546 635 548 633 547 633 547 633 547 63,3 547
560 645 556 647 557 645 557 647 557 645 557 64,6 557
570 657 567 657 567 657 567 657 567 657 568 65,7 567
580 669 577 669 576 669 577 673 576 671 577 67,0 577
590 683 586 681 587 681 586 681 587 681 587 68,1 587
600 693 597 693 596 693 596 691 596 693 597 69,3 596
610 681 595 681 590 683 591 681 592 676 590 68,2 592
620 679 590 683 590 679 589 679 590 681 590 68,0 590
630 683 590 676 587 676 589 681 591 679 588 67,9 589
640 681 589 674 589 681 590 678 588 676 589 67,8 589
650 679 590 678 589 683 591 679 589 681 591 68,0 590
660 681 591 678 589 679 591 678 589 683 591 68,0 590
670 679 591 678 589 676 589 679 591 676 587 67,8 589
680 679 590 679 591 681 592 678 590 679 591 67,9 591
690 681 591 679 590 674 587 679 591 679 589 67,8 590
700 686 591 679 588 679 591 678 589 681 592 68,1 590
710 683 591 678 590 679 589 678 589 679 591 67,9 590
720 678 588 679 589 678 591 676 590 679 589 67,8 589
730 674 586 676 588 678 590 684 594 679 589 67,8 589
740 674 590 681 591 676 589 678 589 681 591 67,8 590
750 681 589 679 591 679 592 678 589 674 590 67,8 590
760 681 592 686 591 679 591 678 589 676 588 68,0 590
770 678 589 679 591 679 589 681 588 681 592 68,0 590
780 681 587 683 592 673 588 679 591 679 591 67,9 590
790 678 589 678 589 679 586 676 588 683 592 67,9 589
800 678 588 681 590 674 589 681 589 681 590 67,9 589
810 676 589 683 593 679 588 679 592 678 589 67,9 590
820 678 591 686 592 684 592 681 590 679 588 68,2 591
830 681 591 674 587 681 591 683 591 684 591 68,1 590
840 678 590 678 588 679 589 679 590 679 591 67,9 590
850 679 589 679 589 679 589 681 592 679 588 67,9 589
860 679 588 681 590 679 592 681 586 678 589 68,0 589
870 683 592 676 588 678 590 679 590 679 590 67,9 590
880 678 589 678 591 678 588 679 590 679 588 67,8 589
890 678 590 678 588 679 590 676 587 679 590 67,8 589
900 679 591 679 590 681 590 678 590 681 590 68,0 590
910 678 588 681 591 679 591 681 589 681 590 68,0 590
920 681 591 674 589 684 591 676 590 679 590 67,9 590
930 681 590 681 588 679 592 678 590 679 590 68,0 590
940 679 591 678 590 679 589 683 593 679 591 68,0 591
950 683 590 676 588 683 592 681 590 678 588 68,0 590
960 681 590 678 590 678 589 674 590 676 589 67,7 590
970 678 590 679 590 681 589 679 591 679 589 67,9 590
980 678 589 681 592 678 588 676 588 681 590 67,9 589
990 676 592 678 589 678 589 678 589 679 589 67,8 590

1000 678 591 679 590 678 588 678 590 683 590 67,9 590

54

13.5 LwIP memory usage
Code size and RAM and ROM usage when compiled for the ColdFire. All values are in bytes.

• text is the as ambler code

• rodata are the variables that resides in ROM and are read only

• data are the variables that can be written and have an initial value witch means they reside in both ROM
and RAM and are copied from ROM to RAM at startup.

• bss are the variables without an initial value, they reside only in RAM

• common are global variables used by multiple source files.

 text rodata data bss common total ROM Total RAM

src/core/ipv4/icmp.o 632 0 0 0 0 632 0

src/core/ipv4/ip_addr.o 110 8 0 0 0 118 0

src/core/ipv4/ip_frag.o 1656 8 0 7376 0 1664 7376

src/core/ipv4/ip.o 1002 0 0 0 0 1002 0

src/core/inet.o 1280 0 0 16 0 1280 16

src/core/mem.o 966 0 0 16017 0 966 16017

src/core/memp.o 458 44 0 5204 0 502 5204

src/core/netif.o 622 0 0 10 0 622 10

src/core/stats.o 818 407 0 0 1 1225 1

src/core/pbuf.o 1768 0 0 13063 0 1768 13063

src/core/raw.o 606 0 0 4 0 606 4

src/core/tcp_in.o 5536 0 0 44 4 5536 48

src/core/tcp_out.o 2540 0 0 0 0 2540 0

src/core/tcp.o 3668 13 6 1 20 3687 27

src/core/udp.o 1588 0 0 8 0 1588 8

src/core/dhcp.o 5902 0 4 0 0 5906 4

src/netif/etharp.o 2906 6 0 200 0 2912 200

src/api/api_msg.o 2674 0 44 0 0 2718 44

src/api/sockets.o 3806 0 44 6 0 3850 50

src/api/tcpip.o 206 0 0 9 0 206 9

src/api/api_lib.o 2560 0 0 0 0 2560 0

 41304 486 98 41958 25 41888 42081

src/support/io.o 4318 373 116 1 0 4807 117

src/support/printf.o 1854 0 0 0 0 1854 0

src/netif/ethernetif.o 2078 231 0 0 12244 2309 12244

