

Small TCP/IP stacks for micro controllers

By: Lucas van der Ploeg

Supervisors:

ir. Wout Klaren (3T)

Dr. ir. Pieter-Tjerk de Boer (Universiteit Twente)

1. Preface

My name is Lucas van der Ploeg and I am a student at the University of Twente. I am studying Telematics and as part of this study, I had to do a 14-week Bachelor assignment. I decided to look for an assignment outside the University and found a company called 3T BV about 100m from the main entrance of the campus and another one called WMC a little further away. 3T had the most interesting assignment for me so I decided go to 3T.

Because the University of Twente had recently switched to quartiles instead of trimesters, I had to do a 14week assignment in an 11-week period. Fortunately the holidays started right after that period so I could continue my assignment during the first weeks of the holiday. As I was working at a company, I had to make at least 40 hours a week, which is something many students are not used to. This did mean the assignment would not take up much more than the 14 weeks required.

While I worked on my assignment, I spent a whole lot of time on finding out "simple" things like, how to work with a micro controller and how to program in C/C^{++} . When I finally could make the micro controller say "Hello world" to me, getting it to open a TCP connection seemed like a piece of cake. I did learn a lot from this and I think the things I learned are very useful. However, it would have been nice if I could have spent more time on the actual assignment and less time on learning the basics of embedded systems programming.

I want to thank my supervisors Wout Klaren and Pieter-Tjerk de Boer for all their good advice and the time they spend helping me. I also want to thank my other roommates at 3T for making it a lot of fun being there.

2. Abstract

There are many small TCP/IP implementations available for micro controllers, both commercial and open source. I compared these implementations by doing some research on the internet and by testing some of them on a Motorola ColdFire processor.

It appeared LwIP was the most used open source implementation and most other open source implementations were a bit limited or outdated. The many commercial implementations all promised roughly the same, for about the same prise. However, most did not give very specific information online and did not offer an option to test their implementation before buying it. Quadros Quadnet and ARC RTCS TCP/IP did offer free demo versions but due to the limited time available, I could only intensively test Quadros.

To use the LwIP stack I needed to configure it to work without an operating system and I needed to write a driver for the Ethernet controller. I created some test and debug applications to find out the best way of using the LwIP stack. I found out that when you use the LwIP stack correctly it is stable and reliable.

I designed a few tests to compare and test the LwIP stack and the Quadros stack. I found out that getting started with the Quadros stack was a lot less time consuming then getting started with the LwIP stack. However, when running the tests the Quadros stack was not very stable and reliable. When you buy Quadros, Quadnet could probably help you fix these problems.

When you have the knowledge and the time to configure an open source TCP/IP implementation, there is no need to buy a commercial implementation, as I could not find any important limitations in LwIP. When you need a working implementation fast you could use a commercial implementation like Quadros, however you still need to spend some time getting acquainted with the implementation before you can actually use it. Another possible advantage of a commercial stack like ARC RTCS TCP/IP is the tools you can use to configure the stack. When you often create applications using a TCP/IP stack these tools can speed up implementation.

3. Table of Contents

1.	Pref	ace		2
2.	Abs	tract		3
3.	Tab	le of C	Contents	4
4.	Intro	oductio	on	7
	4.1	The a	assignment	7
	4.2	3T		7
	4.3	Appro	oach	7
		4.3.1	Ease of use	7
		4.3.2	Stability	7
		4.3.3		7
		4.3.4	Cost	8
5.	Ove	rview	of available implementations	9
	5.1	Open Source implementations		9
		5.1.1	ulP	9
		5.1.2	LwIP	9
		5.1.3	uC/IP	9
		5.1.4	tinytcp, wattcp and others	9
		5.1.5	BSD 4.4	9
	5.2	Comn	mercial implementations	10
		5.2.1	CMX-tcp/ip (or CMX-MicroNet for 8/16 bits)	10
		5.2.2	NetX	10
		5.2.3	NicheStack	10
		5.2.4	ARC RTCS TCP/IP	10
		5.2.5	RTXC Quadnet TCP/IP	10
		5.2.6	TargetTCP	11
		5.2.7	uC/TCP-IP	11
	5.3	Selec	ction	11
6.	Lwll	2		12
	6.1	About	it LwIP	12
	6.2	Usage	e	12
		6.2.1	Configuration	13
			4	

		6.2.2	Initialisation	13
		6.2.3	Timer	14
		6.2.4	ТСР	14
	6.3	Netwo	ork interface driver	19
		6.3.1	MCF5282 Ethernet driver	19
		6.3.2	Initialisation	20
		6.3.3	Sending	21
		6.3.4	Receiving	21
	6.4	Config	guration an Tuning	21
		6.4.1	Disable parts	21
		6.4.2	Buffer sizes	22
	6.5	IO rou	tines	23
		6.5.1	Usage	23
		6.5.2	Implementation	24
		6.5.3	Conclusion	25
	6.6	Testin	g applications	26
		6.6.1	Echo server	26
		6.6.2	Shell server	26
		6.6.3	Proxy server	26
		6.6.4	Test applications	26
7.	Qua	dros		27
	7.1		nullection	27
	7.1	Test a	pplication	21
8.	. Test setup			
	8.1	Stability		28
		8.1.1	Too many connections	28
		8.1.2	Too much incoming traffic	28
		8.1.3	Too much outgoing traffic	28
		8.1.4	To much bidirectional traffic	28
	8.2	Perfor	mance	28
		8.2.1	Maximum speed	28
		8.2.2	Load	28
	8.3	Impler	mentation	29
		8.3.1	Test Client	29
		8.3.2	Test servers	29
0	Tee		-	20
9.	. Test results			30
	9.1	Stabili	tv	30

		9.1.1 Too many connections	30
		9.1.2 Too much incoming traffic	30
		9.1.3 Too much outgoing traffic	30
		9.1.4 Too much bidirectional traffic	31
	9.2	Performance	31
		9.2.1 Maximum transfer speed	31
		9.2.2 Load with certain amounts of traffic.	33
10.	TCP	/IP with or without an operating system	35
	10.1	Advantages of using an operating system	35
	10.2	Disadvantages of using an operating system	35
11.	Con	clusion	36
	11.1	Ease of use	36
	11.2	Stability	36
	11.3	Performance	36
	11.4	Cost	36
	11.5	Final note	37
12.	Abbi	reviations	38
13.	Арре	endix	39
	13.1	TCP state diagram	39
	13.2	Loss test	40
		13.2.1 Incoming traffic	40
		13.2.2 Outgoing traffic	43
		13.2.3 Bidirectional traffic	46
	13.3	Speed test results	49
		13.3.1 Incoming traffic	49
		13.3.2 Outgoing traffic	50
		13.3.3 Bidirectional traffic	50
	13.4	Load test results	51
	13.5	LwIP memory usage	54

4. Introduction

4.1 The assignment

Small TCP/IP stacks for micro controllers.

There are micro controllers available with internal Flash ROM and RAM. When using a small tcp/ip stack without an operating system or with a very limited operating system, it is possible to have internet capabilities in embedded systems without the need for extra RAM and ROM chips. This reduces the hardware costs.

There are multiple open source and commercial implementations on the market. The assignment is to select some of these implementations and use and test them in a simple application on a mcf5282 coldfire processor using only the internal ROM and RAM. The goal is to find out the differences in performance and capabilities of these implementations.

4.2 3T

3T BV is a research and development company that specialises in microelectronics and embedded systems. 3T has about 35 employees and its main office is located in Enschede, a second office is located in Best. The company originated from an organisation called CME (Centrum for Micro Electronics). CME was founded in 1982 by the government to stimulate knowledge gathered by the three technical universities (Delft, Eindhoven and Enschede) to get from the universities to small companies. In 1988, the CME division in Enschede founded a company called Twente Technology Transfer BV. In 1994, it was reborn as 3T BV.

4.3 Approach

To get a first idea of the available TCP/IP stacks I did a lot of searching on the internet. I made an overview of the most important available implementations. I selected an open source and a commercial implementation to investigate further.

I wanted to compare the implementations at four different aspects.

4.3.1 Ease of use

How easy it is to use an implementation for the first time and create your application on it. Also how easy it is to maintain you application and to make changes when you have already implemented your application with it. To learn more about this I wrote an Ethernet driver for the LwIP stack to run on the ColdFire and I wrote some test applications.

4.3.2 Stability

A very important factor is the stability of an implementation. You should be able to rely on a TCP/IP implementation to run for years without needing a reset or any maintenance. No fatal errors should occur or it should at least recover from those errors. As we don't have time to wait for a few years and look for error we will have to stress test the stacks a little. I devised some tests for this purpose and ran them on the stacks.

4.3.3 Performance

A factor that could be important in some applications is the performance of a TCP/IP stack. How much traffic can a stack handle and how much CPU time does the stack need with a certain amount of load. To learn more about this I devised two tests.

4.3.4 Cost

The total cost of an implementation is mainly dependent on three factors. The purchase cost of the product. The cost of the person-hours and possibly training needed to implement the application using the product. And the cost of maintenance after the application is installed.

An open source is free to purchase but might still be more expensive than a commercial implementation when getting your application to work is much more time consuming. Some commercial TCP/IP implementations allow you to upload new applications using the TCP/IP stack. This makes is possible to update your product dynamically after distribution. This could be a huge advantage.

5. Overview of available implementations

5.1 Open Source implementations

5.1.1 uIP

ulP is an implementation of the TCP/IP protocol stack intended for small 8-bit and 16-bit microcontrollers. It is completely RFC1122 compliant but has some limitations. For instance, a retransmit is managed by the stack, but the data that needs to be retransmitted is requested from the user application.

uIP can be used together with Contiki, a very small OS which supports dynamic application download and a gui using VNC. The uIP stack uses less then 10kB ROM and 2kB RAM and Contiki can easily fit in 100kB ROM and 10kB RAM. You can use it any way you want as long as you leave a copy of the copyright notice in the source and/or documentation.

http://www.sics.se/~adam/uip/

5.1.2 LwIP

LwIP is a TCP/IP implementation designed for small code size and efficient memory usage. It is still widely used, and implemented. And is designed to use with or without an operating system. lwIP uses around 40kB of RAM and 30kB ROM and you can use it any way you want as long as you leave a copy of the copyright notice in the source and/or documentation.

http://www.sics.se/~adam/lwip/

5.1.3 uC/IP

uC/IP is a TCP/IP stack developed for microcontrollers and embedded systems but is not often used. It based on the BSD TCP/IP implementations and is still a bit large compared to other implementations. uC/IP carries the BSD license so you can freely use it as long as you leave a copy of the copyright notice in the source and/or documentation.

http://ucip.sourceforge.net/

5.1.4 tinytcp, wattcp and others

There are a lot of (semi) Open Source TCP/IP stacks available for DOS, they are often very old and no longer in use. They are not intended for use in embedded systems and sometimes have a paid licence for commercial use.

http://www.unusualresearch.com/tinytcp/tinytcp.htm

http://www.wattcp.com

5.1.5 BSD 4.4

A lot of TCP/IP stacks are based on the BSD implementation. Because of its size it is not very useful for embedded systems; however it might be useful as a reference.

5.2 Commercial implementations

All commercial TCP/IP implementations listed below, promise to be very efficient and robust. They all use a zero copy mechanism to make efficient use of the resources.

5.2.1 CMX-tcp/ip (or CMX-MicroNet for 8/16 bits)

CMX-tcp/ip runs on CMX-RTX RTOS or without an RTOS. It supports many processors including the ColdFire. A configuration tool is available and the stack uses about 20kB of ROM. CMX TCP/IP pricing starts at \$9,000 and is provided with full source code, no royalties on shipped products, and free technical support and software updates. There is no demo or tryout version available for the ColdFire.

http://www.cmx.com/tcpip.htm

5.2.2 NetX

NetX is the TCP/IP stack of the ThreadX RTOS; it uses about 5 to 20 kB of code depending on configuration. It is delivered with configuration tools and there are training courses available. A licence costs around \$5000 to use it for multiple applications but on only one processor type. The ColdFire is supported but there is no demo version for the ColdFire on the website.

http://www.rtos.com/procNX-coldfire.asp

5.2.3 NicheStack

NicheStack and NicheLite are 2 TCP/IP implementations. NicheStack requires about 50kB ROM and RAM and NicheLite only 12kB. Both come with a configuration and debug tool. You get the source code royalty free, and 12 months support. No price information is given, but you can download a 1-hour demo. But I could not create my own application on it so I could not test on it. The demo only shows a webpage.

http://www.iniche.com/nichestack.php

5.2.4 ARC RTCS TCP/IP

ARC has a TCP/IP stack and RTOS with an evaluation package, but they give no price and licence information. They say it's small but not how small. It comes with a configuration and performance analysis tools.

http://www.mqxembedded.com/products/rtcs/

5.2.5 RTXC Quadnet TCP/IP

The Quadnet TCP/IP stack runs on the Quadros TROS, it requires about 256kB ROM and 32kB RAM. There are three versions available, a free special edition containing a preconfigured binary version with no restrictions, the standard edition with a configurable binary, and a fully configurable professional edition including all sources. The standard edition costs \$17.500 per project, and the professional edition costs \$31.500 per project. The free edition does not seem to work properly.

http://www.quadros.com/products/communication-stacks/rtxc-quadnet/

5.2.6 TargetTCP

TargetTCP is the TCP/IP stack from TargetOS. It can also run without an RTOS and requires about 30kB of ROM and 32kB of RAM. For \$9800 you get a licence to use the source at a specified location for multiple projects. There is no demo version on the website.

http://www.blunkmicro.com/tcp.htm

5.2.7 uC/TCP-IP

uC/TCP-IP runs on uC/OS-II, it uses about 100kB of ROM and 60kB of RAM, The tcp/ip stack is not complete (ICMP incomplete, no IP fragmentation, no IP routing/forwarding) and you have to buy a licence for every end product. There is no demo version available.

http://www.ucos-ii.com/products/tcp-ip/tcp-ip.html

5.3 Selection

LwIP is specially designed for micro controllers and not adapted from an implementations used for workstations. It appears to be a complete TCP/IP stack without shortcuts and with all functionality of a large stack. LwIP is also the only one with an active user community. Because of these three reasons I decided to use LwIP as an open source TCP/IP protocol stack.

The decision for which commercial stack to test was a bit more difficult, there ware many implementations available and they all promised roughly the same. Quadros Quadnet and ARC RTCS TCP/IP both offered a free demo version that would run on the ColdFire evaluation board I could use so I wanted to test them both. Unfortunately, I did not have enough time to try both so I only tested Quadros.

	Pro	Con
ulP	Free, very small	Much left to user application
LwIP	Free, complete, frequently used	
uC/IP	Free	Large, not often used
Tinytcp, wattcp and others	Free	Not very usable
BSD 4.4	Free, stable	Too big
CMX-tcp/ip	ColdFire support, updates included	No demo
NetX	ColdFire support, tools & training available	No demo
NicheStack	ColdFire support, tools available	Limited demo
ARC RTCS TCP/IP	ColdFire support, tools available	
RTXC Quadnet TCP/IP	ColdFire support	Unstable demo
TargetTCP	ColdFire support	No demo
uC/TCP-IP	ColdFire support	Incomplete, no demo

6. LwIP

There are multiple reasons why I decided to test and evaluate LwIP instead of other available TCP/IP protocol stacks. LwIP is specially designed for micro controllers; other small TCP/IP implementations are developed for DOS or derived from the BSD implementation and are less efficient on microcontrollers. It also seemed that LwIP is the most referenced small TCP/IP stack, and the only one still being improved with an active user forum.

I decided to test LwIP without an operating system. By running LwIP without an operating system, I expected to get the highest performance from LwIP with the smallest system requirements. The performance would not be influenced by operating system characteristics.

6.1 About LwIP

LwIP is short for Lightweight Internet Protocol, a small TCP/IP implementation designed for microcontrollers with limited memory resources and processing power. Adam Dunkels originally developed LwIP at the Computer and Networks Architectures (CNA) lab at the Swedish Institute of Computer Science (SICS). Presently it is maintained by a group of 19 volunteers at Savannah, a website for distribution and maintenance of Free Software that runs on free operating systems.

LwIP is a full-scale TCP/IP implementation with optimised code size and memory usage. It includes the following protocols:

- Internet Protocol (IP), versions four and six, for worldwide addressing. It includes fragmentation and reassembly, and forwarding over multiple interfaces.
- Internet Control Message Protocol (ICMP), versions four and six, for network state related messages.
- User Datagram Protocol (UDP), for simple data frame transmission.
- Transmission Control Protocol (TCP), including congestion control, RTT estimation and fast recovery/fast retransmit for byte stream connections.
- Dynamic Host Configuration Protocol (DHCP), for automatic address assignment.
- Point to Point Protocol (PPP), for communication over serial lines.
- Serial Line Internet Protocol (SLIP), for communication over serial lines
- Address Resolution Protocol (ARP), for mapping between Ethernet and IP addresses.

All these protocols are optional and you can replace them by your own version or add your own protocols. You can choose between to API's to use the protocols. Using the raw call-back API you directly call the functions from the TCP/IP stack, this ensures optimal performance. You can also use the optional Berkeleyalike socket API. This API offers you some easy to use functions and handles the communication with the TCP/IP stack for you. This is less efficient then the raw API but easier to use.

The LwIP stack also includes some memory management functionality and optionally some statistics are kept for debugging and performance analysis to help with tuning.

There are multiple example applications, ports and network interface drivers available you can use directly or as an example for your own driver, port and application.

6.2 Usage

To use LwIP you need to do some configuration, a network interface driver, and of course a working environment. Your application needs to initialize the stack and regularly call some timer routines. In the following paragraphs, I describe how to configure the stack, and what initialisation and timer functions your application should call. I also describe how to use the raw TCP API and how to create a network interface driver.

To get a working environment you need a compiler, some linker and hardware initialisation scripts and some basic function like printf() for debugging. LwIP uses its own memory management so you don't need malloc() and free() routines, but you might want an operating system for some thread control. Getting a working environment can be very tricky even when you already have some examples from your hardware supplier.

6.2.1 Configuration

To use the LwIP stack first you need to define some settings in four header files and optionally create a sys_arch.c for the OS emulation layer. The main configuration file is called lwipopts.h and changes the default settings from opt.h. The other three header files are called cc.h, sys_arch.h and perf.h and contain OS and environment depended options. For all files, there are multiple examples available in the CVS tree.

6.2.1.1 lwipopts.h

In this file you can enable or disable parts of the stack, you can set the buffer sizes, and you can enable debugging. You can see a complete list of all options and their default settings in opt.h.

I tested the LwIP stack on the Motorola ColdFire, without an operating system, with only three extra parts of the stack enabled. I defined NO_SYS so all the semaphore and mailbox functions have null definitions. This can only be used when all LwIP functions are called in the same priority level so they do not interrupt each other. I also enabled LWIP_DHCP for automatic IP configuration and LWIP_STATS_DISPLAY for displaying a list of statistics on LwIP.

The size and number of all buffers I have chosen in this file are explained later on.

6.2.1.2 cc.h

This header file contains compiler and architecture dependent options like definitions integer sizes.

6.2.1.3 perf.h

In perf.h two functions are defined for performance measurement.

6.2.1.4 sys_arch.c and sys_arch.h

These two files define functions for the OS emulation layer. When you want to integrate LwIP with an operating system there are a few functions you have to create. These functions are used by LwIP for communicating with the operating system. Which functions you have to define is described in a document found in the CVS directory called sys_arch.txt. In addition, multiple working examples are available.

6.2.2 Initialisation

Before you use functions from the LwIP stack you have to initialise all the parts in a specified order. And when you use DHCP you have to wait for DHCP to resolve some IP settings.

The first function you have to call is stats_init() to zero all statistics. These statistics are very useful for debugging and performance tuning but you could disable them in a production release.

If you use an operating system you should call sys_init() to initialise the OS emulation layer. This OS emulation layer maps functions needed by LwIP to OS specific functions.

Next you have to initialise all memory buffers by calling mem_init() for the heap memory, memp_init() for a predefined number of different structures and pbuf_init() for a pool of pbuf's.

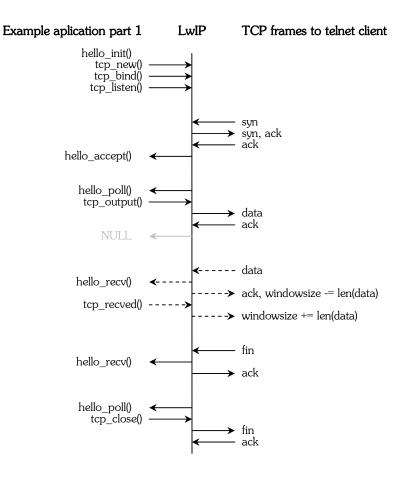
When this is done you can initialise the protocols by calling netif_init(), ip_init() and optionally udp_init() and tcp_init().

Now the LwIP stack is completely initialised, but before you can start using the stack, you need to start calling some functions at regular intervals as described below and you need to register and enable a network device. This is done by calling netif_add() and netif_set_default(). When you have specified the IP address of the interface, the net mask and the gateway IP address you can call, netif_set_up(). When you want DHCP to

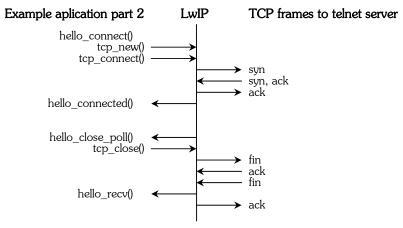
configure the IP settings you call dhcp_start(). After enabling the interrupts you have to wait for netif_is_up() to return true before you use the network device.

When all parts of LwIP are initialised, you can start to register TCP listeners and other services that use the LwIP functionality. An example of the initialisation is found in main.c.

6.2.3 Timer


There are a number of functions in the LwIP stack that have to be called at certain intervals. All the functions and there intervals are listed below and an example interrupt routine can be found in main.c in the appendices. The intervals can are given in the header corresponding header files and can be tuned.

tcp_fasttmr()	250ms
tcp_slowtmr()	500ms
ip_reass_tmr()	500ms
dhcp_fine_tmr()	500ms
dhcp_coarse_tmr()	60000ms
etharp_tmr()	5000ms


6.2.4 TCP

In the CVS tree of LwIP rawapi.txt is found, this document describes how to use the raw callback functions of LwIP. Because the information in the document is incomplete, outdated and does not give a clear example I will explain how you can use a TCP connection with LwIP by giving an 'as short as possible' example and commenting on it. As you can see, you need a large amount of code to use the raw callback API. The example consists of 2 parts that can be started by calling the functions hello_init() and hello_connect() at a priority level higher or equal to that of the Ethernet controller.

In the first part, I open a listening TCP connection that accepts a connection. After accepting the connection, it receives and confirms all incoming data, while trying to send a "hello world" message. The implementation waits for the other side to close the connection and responds by also closing the connection. The implementation keeps trying to send "hello world" and send a close from a poll function until it succeeds.

In the second part of the example, I open a connection to a telnet server and start receiving and confirming all incoming data with the same function as in the first part. Only this time I use a poll function that always tries and keeps trying to close the connection until it succeeds.

6.2.4.1 Listen for incoming TCP connections

- 1. To open a listening TCP connection you first need to create a tcp_pcb (protocol control block) structure using tcp_new(). In this structure, LwIP stores all information about a connection. If tcp_new() returns NULL no room is available for a new TCP connection and you can't open a new listening TCP connection.
- 2. When you succeeded in creating a new PCB you can try to bind it to a port and IP address using tcp_bind(). When you want to bind the listening connection to all local IP addresses or you only have one local IP address, you can use IP_ADDR_ANY as IP address. If the port is already in use tcp_bind() will

return ERR_USE and you can't open a listening connection at that port. Do not forget to cleanup the pcb when this happens.

- 3. The next step is to tell LwIP to start listening. For the actual listening connection, LwIP uses a different (smaller) pcb structure. This structure is allocated when you call tcp_listen(). If no space is available for a new listening pcb tcp_listen() returns NULL, if the allocation succeeds LwIP clears the original pcb and starts listening. When NULL is returned, you should clear the original pcb yourself.
- 4. The last step is to set some options in the pcb. You can give LwIP an argument, which is returned to you each time LwIP calls one of your callback functions. Usually this is a pointer to a block of status information you can use, but in our example, no status information is needed yet so we set it to NULL. The second option you should set is the priority of incoming connections. Each connection has a priority level, when all connections are in use, the connection that has a priority level equal to or lower than the priority level of the incoming connection, and has been idle the longest, will be removed. The last thing you need to do is to specify your accept function using tcp_accept().

```
err t hello init(void)
   {
      struct tcp_pcb * pcb;
      struct tcp_pcb * lpcb;
1.
      if ((pcb = tcp_new()) == NULL)
         return ERR_MEM;
      if (tcp_bind(pcb, IP_ADDR_ANY, 22) != ERR_OK)
2.
      {
         tcp_abort(pcb);
         return ERR_USE;
3.
      if ((lpcb = tcp_listen(pcb)) == NULL)
         tcp_abort(pcb);
         return ERR_MEM;
4
      tcp_arg(lpcb, NULL);
      tcp_setprio(lpcb, TCP_PRIO_NORMAL);
      tcp_accept(lpcb, hello_accept);
      return ERR OK;
   }
```

6.2.4.2 Accept an incoming TCP connection (passive open)

- 1. When someone tries to connect to our listening TCP connection and room for a new pcb can be allocated our previously specified accept function is called. In almost every case you need to allocate some memory for status information and set the location as the argument LwIP gives you when calling one of your functions. If you cannot, you can abort the connection by returning an ERR_MEM. In our case, we reserve only one byte.
- 2. When you have decided to accept the connection, you should declare your callback functions. You should at least declare an error and receive function. The error function is called when something goes wrong and is used to inform you the connection is no longer available and you should free the memory you were using for the connection. The receive function passes you the received data, or a NULL pointer when a close is received.
- 3. Optionally you can specify a poll function that is called periodically and a sent function that informs you when data you have sent has been confirmed. For this example, we are not interested in when data has been confirmed so we do not specify a sent function. We specify a poll function to be called every two TCP gross timer periods of half a second. If you want the connection not to be lost when to many other connections occur you should set the priority to a higher level using tcp_setprio()
- 4. To finish the accept function we return ERR_OK.

```
err_t hello_accept(void *arg, struct tcp_pcb *pcb, err_t err)
{
    u8_t *state;
```

```
1. if ((state = mem_malloc(1)) == NULL)
        return ERR_MEM;
    *state = 0;
    tcp_arg(pcb, state);
2. tcp_err(pcb, hello_err);
    tcp_recv(pcb, hello_recv);
3. tcp_sent(pcb, NULL);
    tcp_poll(pcb, hello_poll, 2);
4. return ERR_OK;
  }
```

6.2.4.3 Opening an outgoing tcp connection (active open)

- 1. To open an outgoing connection the first thing you usually want to do is reserve some memory, in our example just 1 byte for status information.
- 2. When this succeeds we will try to reserve a new tcp_pcb for the connection using tcp_new(). If this fails you should free the memory previously reserved and give up. You can also close another connection or retry using tcp_alloc() with a higher priority.
- 3. Now you can set the options in the same way as explained above. Instead of the poll function from our previous example, we let LwIP call a close function every five seconds.
- 4. Afterwards the pcb of the connection is ready and you can call tcp_connect(). If no room is available to create a TCP syn segment (a segment to inform the other side you want to open a connection), tcp_connect() returns ERR_MEM. In this case you can give up and clear the allocated memory and pcb or you can keep trying.
- 5. If you specified a connected function when calling tcp_connect() your connected function is called when the connection is established. If the connection fails, your error function is called. Currently, no error is given to your connected function. In the connected function, you can for example send some data to the other host. To keep this example simple, we try this only once.

```
err_t hello_connect(void)
     u8_t *state;
     err_t err;
     struct tcp_pcb *pcb;
     struct ip_addr ipaddr;
     IP4_ADDR(&ipaddr, 192,168,0,112);
1.
     if ((state = mem_malloc(1)) == NULL)
        return ERR MEM;
     *state = 1;
2.
     if ((pcb = tcp_new()) == NULL)
     {
        mem free(state);
        return ERR_MEM;
3
     tcp_arg(pcb, state);
     tcp_err(pcb, hello_err);
     tcp_recv(pcb, hello_recv);
     tcp_sent(pcb, NULL);
     tcp_poll(pcb, hello_poll_close, 10);
4.
     err = tcp_connect(pcb, &ipaddr, 22, hello_connected);
     if (err != ERR_OK)
         mem_free(state);
         tcp_abort(pcb);
     return err;
   }
5. err_t hello_connected(void *arg, struct tcp_pcb *pcb, err_t err)
   ł
     tcp_write(pcb, helloworld, 12, 0)
     return ERR_OK;
```

6.2.4.4 Receiving data

- 1. When data or a FIN-flag (passive close) has arrived your previously defined receive function is called. If the pbuf pointer is NULL, a FIN-flag is received. To cleanly close a connection, both sides have to successfully send a FIN-flag. Therefore, if you have already sent a fin flag you can clean up. If you haven't sent a FIN-flag yet you have to send it by calling tcp_close(). It is possible there is no room for a new tcp segment containing the FIN-flag so you have to keep trying to call tcp_close() until LwIP is able to store the FIN-flag. If you try closing only once the connection might stay in the close-wait state (see appendix 13.1 TCP state diagram)
- 2. If the pbuf pointer is set, the pbuf contains the received data. When you are done handling the data you should clear the pbuf and afterwards tell LwIP how many bytes you have handled using tcp_recved(). This enables LwIP to increase the receive window so new data can be send to us.
- 3. When you have successfully handled the received data you should return ERR_OK.

```
err_t hello_recv(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err)
      u8_t *state = (u8_t *)arg;
      ul6_t len;
1.
      if (p == NULL)
         if (*state == 255)
                                              /* close send */
           hello_end(pcb, state);
                                              /* close not yet send */
         else
            *state |= 2;
2.
      else
      {
         len = p->tot_len;
         pbuf_free(p);
         tcp_recved(pcb, len);
      return ERR_OK;
3.
```

6.2.4.5 Sending data

As the tcp_write() and tcp_close() functions might fail you have to keep trying until you succeed. You can use the poll and sent functions for this purpose but you could also use a different thread or the background loop for this purpose. You can use the status variables from the argument to remember what you wanted to send.

The last argument of tcp_write() can be set to 0 or 1, when set to 1 the data you wanted to sent is copied and you can immediately reuse or clear the memory after the tcp_write() function returns successfully. When set to 0, you can clear or reuse the memory when the data has been acknowledged indicated by sent callback.

LwIP can combine multiple small pieces of data queued by tcp_write() into one tcp packet. This is done by waiting a while after a tcp_write() before actually sending. If you do want to send data immediately you can call tcp_output() after the tcp_write().

6.2.4.6 Closing a tcp connection

There are three ways for a connection to close. You requested the close yourself, the other side requested the close, or an error has occurred and the connection is aborted.

- 1. When a connection is aborted, LwIP clears the pcb and afterwards calls your error function. In your error function, you should clear the memory you used and prevent your threads or background loop from using the deleted pcb.
- 2. When the other side has sent you a close, you receive an empty data segment. You can still send some final data and afterwards (in the example indicated by state=3) you have to call a tcp_close(). When you succeeded in sending a close, you should cleanup. (see also the paragraph about receiving)
- 3. When you are the one to send the fin flag first, in our example done by defining a poll function to be called after 5 seconds that calls a tcp_close(), you have to wait for the other side to send a fin flag back. Meanwhile you can still receive data. When the fin flag arrives, you can cleanup.
- 4. To cleanup, you should free the memory you used for status information. The TCP connection could still be in the CLOSING, of LAST_ACK state (see TCP state diagram) waiting for a last ack, This means LwIP could still try to use one of the call-back functions, although our status memory has been cleared. To prevent this you should set all call-back functions to NULL.

```
void hello_err(void *arg, err_t err)
      mem_free(arg);
1.
   }
   err_t hello_poll_close(void *arg, struct tcp_pcb *pcb)
      u8_t *state = (u8_t *)arg;
      if (tcp_close(pcb) == ERR_OK)
         if ((*state & 2) == 2)
                                      /* close received */
2
           hello_end(pcb, state);
                                       /* close not yet received */
         else
з.
            *state = 255;
      }
      return ERR_OK;
   }
   void hello_end(struct tcp_pcb *pcb, u8_t *state)
   {
4.
      tcp_err(pcb, NULL);
      tcp_recv(pcb, NULL);
      tcp_sent(pcb, NULL);
      tcp_poll(pcb, NULL, 0);
      mem_free(state);
   }
```

6.3 Network interface driver

To use lwip, you need one or more network interface drivers. There are a few examples available including a PPP and SLIP for serial connections and a few Ethernet drivers. When you want to use an Ethernet controller, there is an ARP implementation available you can use for your driver. For the PPP and SLIP drivers you just need to define some in and output routines in "sio.h".

In this chapter, I describe the Ethernet driver I made for the Motorola ColdFire 5282 (MCF5282) Ethernet controller and what could be done to improve it. As the documentation on the usage of LwIP is very limited, I will also explain how you can implement a network interface driver for other devices.

6.3.1 MCF5282 Ethernet driver

For the Motorola ColdFire 5282 microprocessor, I have written a driver for the internal Ethernet controller. The driver initializes the Ethernet controller and copies data between the lwip buffers and the Ethernet

controller's buffers. It would be more efficient to merge the two different buffer types so the data does not have to be copied. There was no time for me to implement this, but I will explain how this could be done.

6.3.1.1 Zero copy

LwIP uses buffers called pbuf and each frame is spread over a chain of one or more pbuf's. The MCF5282 Ethernet controller uses a ring of buffer descriptors; each buffer descriptor points to a block of data and a frame can be spread over multiple data blocks.

To send data without first copying it you just have to copy the data and length fields from each pbuf in the pbuf chain to a consecutive buffer descriptor. You have to increment reference count of the pbuf with pbuf_ref(), so the pbuf won't be deleted until the Ethernet controller is done with it. When the Ethernet controller informs you a frame has been sent you have to check how many buffer descriptors are cleared and clear the corresponding pbufs (decrease the reference count) using pbuf_free().

To pass received data to the LwIP stack without copying it you can use a special pbuf type called PBUF_REF. When a frame is received you can allocate a pbuf for each block of data described in a buffer descriptor using pbuf_alloc() and chain the pbufs using pbuf_cat(). To know when the lwip stack and the user are done with the frame you have to increase the reference count from the pbuf chain with pbuf_ref(). And regularly check the reference count of the pbuf's to see if the reference count has been decreased back to one. When this is the case you are the only one using it and you can clear both the buffer descriptors and the pbuf chain. You have to clear the first non-empty buffer descriptor to be used by the Ethernet controller and make it point to the freed block of memory. This could be an other descriptor than originally used because the first packet received is not always the first packet freed.

Another way to pass the received data to the LwIP stack without copying it is by using the pbuf's from the PBUF_POOL. The LwIP stack supports a pool with a predefined number of pbuf's that have a predefined length. You can use these pbuf's by making all receive buffer descriptors point to a location within the data segment of a pbuf from the pbuf pool. Because the data segments from the pbuf pool are not aligned to sixteen bytes you have to align each buffer descriptor pointer within the data segment of the pbuf. This is not very memory efficient as each buffer could lose fifteen bytes. You have to regularly check for freed pbuf's in the pool so you can reuse them.

6.3.1.2 DMA errors

From experience of 3T, I learned there seems to be a small problem in the ColdFire 5282 with DMA. When data is written to a memory block from the processor and a DMA device simultaniously, data might get corrupted. This results in a TCP checksum error on frames with no checksum error on the Ethernet frame. This means you cannot ignore the TCP and IP checksums even if the lower layer can ensure only correct frames will be delivered. A possible solution might be to use separate memory banks for DMA and CPU writes.

6.3.1.3 Pointers misaligned

Another problem I encountered once is that the send buffer descriptor pointer of the driver and the Ethernet controller somehow got misaligned. The result was the driver kept waiting for buffer x to be cleared, while the Ethernet controller was waiting for buffer y to be filled. This could be easily remedied by checking if the other buffers are also full, when the driver encounters a full buffer descriptor. If this is the case and the buffer descriptor that should be emptied first is still in use, you should reset the driver and Ethernet controller.

It is not unthinkable other "impossible" events occur so it could build in some checks that result in a reset when something goes terribly wrong.

6.3.2 Initialisation

In the network interface driver you have to implement an initialisation function that will be called from netif_add(). In this function, you have to define a two-letter name describing the interface, the function that should be called to send an IP packet, the MTU and some flags. You also should initialise your hardware.

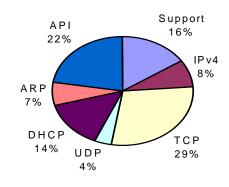
If the device is an Ethernet controller you should also call etharp_init() and define a hardware (MAC) address and the function to be called by the ARP protocol to send an Ethernet frame. You should also make sure a etharp_tmr() is called every 4 seconds.

6.3.3 Sending

In the function you defined to sent IP packets, you should simply make sure the IP packet is sent to the hardware. In case of an Ethernet device you should pass the packet to etharp_output(). This function will create an Ethernet header in front of the IP packet and send the Ethernet frame to the output function you defined for sending Ethernet frames. In this second output function, you send the frame to the hardware.

6.3.4 Receiving

When you have received an IP packet from your hardware, you should send it to the input function defined in the netif structure. In case of an Ethernet device, you should first check the type field. When the Ethernet frame contains an ARP packet you should send it to etharp_arp_input(), when the frame contains an IP packet you should first call etharp_ip_input() and remove the Ethernet header using pbuf_header() before you send it to the input function. It would also be wise but not strictly necessary to check the Ethernet checksum and the Ethernet destination field and drop the broken or unwanted packets. In case of the MCF5282 Ethernet controller, this is done by the hardware.


6.4 Configuration an Tuning

There are a lot of options, you can configure in LwIP. There are a number of parts you might not need and can disable and there are many buffer sizes you can change. For more information about the exact memory usage of all parts of the LwIP stack on the ColdFire I have included an overview of all the memory used by each part in appendix 13.5.

6.4.1 Disable parts

- The Berkeley-alike socket API is a very large part of the LwIP code (22%) and you need an operating system to use it. The API also uses some extra memory for buffers and messages. Using the socket API is a bit more common, easier and it might save some implementation time. However, when you have a very limited amount of memory available you can do exactly the same without the socket API.
- When you are not using DHCP or any other UDP protocol you could leave out UDP, however this won't save a lot of code size (1.55Kb on the ColdFire)
- DHCP is disabled by default. DHCP enables the board to automatically connect to most networks. You could also put the IP configuration in the implementation itself or ask the user to setup the IP configuration manually every boot every boot.
- LwIP can keep some information about the number of packets sent, the number of errors and memory usage. Disabling the stats will save 276 bytes of ram and 2.59Kb of code; it also saves the processor the small trouble of counting.
- Using a zero copy network interface driver saves a lot of RAM, as you do not need extra buffers for the network interface. It is also much more efficient because copying data is relatively CPU intensive.
- The checksum calculation is also cpu intensive and you could disable the checksum checking for incoming packets. You have to make sure that broken packets are discarded by the lower layers so no broken packets will arrive at your implementation.

module	size (kB)	percentage
Support	6.37	15.79%
IPv4	3.32	8.23%
ТСР	11.47	28.43%
UDP	1.55	3.84%
DHCP	5.76	14.28%
ARP	2.84	7.04%
ΑΡΙ	9.03	22.38%
total	40.34	100.00%

6.4.2 Buffer sizes

LwIP has three ways of allocating RAM. It is important to use values that do not contradict each other, for example a maximum segment size larger then the output buffer size is not very useful and could even lead to errors. The easiest way to know which values are most suited for your application is by testing it in the way you think it would typically be used and looking at the memory statistics to see how much memory and structures were used. You can set the values to a safe margin and if still memory errors occur you have to make choices between what is more important.

6.4.2.1 mem

LwIP has its own memory heap, controlled by mem_alloc() and mem_free(), this heap is mainly used for storing outgoing data and by the user application.

You could make sure the heap will never overflow by setting a high value for MEM_SIZE and low values for the number of TCP connections (MEMP_NUM_TCP_PCB), the size of the TCP send buffer (TCP_SND_BUF) and the number of TCP segments (TCP_SND_QUEUELEN). This will not make sure you always have room to send data because the send buffer or maximum number of segments might still be reached. This just prevents connections from not being able to send data, when other connections have used all the available memory.

In most cases you can just set the memory size high enough to allow a few connections to have their send buffers full while you could have some other connections open that are idle. A full memory heap is not a big problem because LwIP will just return an error to your application and your application can try again later.

I have set the send buffer for the connections to 2048 bytes, and the memory heap to 16000 bytes. This means the memory heap will take up 25% of the memory and about 7 connections can have their send buffers full before the heap will overflow. Increasing the buffer size will speed up sending because more data can be on its way at the same time, but it decreases the number of connections that can send at the same time without the heap getting full.

6.4.2.2 memp

For structures like PCB's, segments and ROM pbuf descriptors, LwIP uses a predefined amount of structures controlled by memp_alloc() and memp_Free().

The number of TCP listeners and UDP connections used is often known at compile time so you could set the corresponding memp values to exactly the number you need. The number of TCP connections that will be open at the same time is harder to predict. To help prevent connection failure when too many connections are established or in the time_wait state (a closed connections that is not sure the other side has successfully closed too), LwIP will automatically overwrite the oldest connection in time_wait state or another connection with a priority lower or equal to the new one.

There are also a number of pbuf structures in the memp memory. They are used to point to read only blocks of memory, so if you often send data directly from ROM you should allocate a lot of these pbuf structures, when you will never send data from ROM you can set this number to zero.

6.4.2.3 pbuf

For incoming frames LwIP uses a pool of pbuf's with a predefined length. They can be allocated and freed with pbuf_alloc(,PBUF_POOL) and pbuf_free(). The number and size of these pbufs should accommodate a number of receive windows. When these pbufs get full, data is lost and has to be retransmitted. You depend on congestion algorithms to slow down the amount of traffic sent to you. So a small receive window (TCP_WND) is advised, but a too small window will slow down the receiving speed.

In some cases, when you have your own buffer pool, or when you know the size of an incoming frame beforehand, another type of pbuf's is more suited for your network interface driver. In this case, you can just disable the pbuf pool by setting PBUF_POOL_SIZE to 0.

6.5 IO routines

I found out that even a very simple program, like an echo server, using the raw API of LwIP, was very large and complicated. This means creating your own applications using the raw API would take long and the chance of making mistakes would be rather large.

The example applications were running completely on interrupt sources which means they are running in a high priority level. It would be saver to run your application on a lower interrupt level so LwIP keeps running when an application hangs or asks a lot of processing time.

It would also be nice to be able to use the same IO function, like printf(), used for the serial console, for TCP an UDP connections.

Because of these three reasons, I decided to expand the IO routines from the serial console with routines to handle TCP connections. And to implement a background loop where you can register you applications to run in a low priority level. You can select a TCP or serial connection for each background application so the IO routines are automatically mapped to the connection of your choice.

It would have been nice to use locking functions to send and receive; however, this would mean the complete background loop locks. The only way to prevent this is by using different stacks for each application. This would come very close to writing your own operating system and that is not what we wanted. Instead, I use polling functions to check if data has arrived, or can be sent.

6.5.1 Usage

I have created a structure to describe a "connection", the same structure is used for a serial connection and a TCP connection, and it could be used for an UDP connection. You can use a pointer to this structure to select the connection you want to use (using io_select()). There are default pointers present for uart0, uart1 and uart2.

6.5.1.1 Main loop

For using the main loop you only need two functions, main_loop_add() and main_loop_del(). In main_loop_add() you register your main loop function with a connection and an argument. It returns a pointer to the structure describing the main loop function. The main loop functions will be called one after another, to keep the loops cycling fast they have to do only a short piece of code at a single call of the function. The main loop function can be removed with main_loop_del().

6.5.1.2 TCP

To open a listening TCP connection using the IO routines you call io_tcp_listen(), with the port number, acknowledge and close functions, and optionally an argument that is given to the acknowledge function when a connection is successfully opened. In your Acknowledge function, you need to return the argument for the close function.

The example below does exactly the same as in the raw API example. It opens a listener to port 22, when a client connects hello_ack() is called and "hello world" is send to the client. Also the hello_ack() function registers a main loop to receive the incoming data and returns the main loop function pointer so the close function knows what main loop function to remove. If no main loop could be registered the connection is closed. In the main loop function, we check if data has arrived. If so, we receive and acknowledged the data.

```
void main()
{
    io_tcp_listen(22, NULL, hello_ack, NULL, hello_close);
}
void * hello_ack(void * arg, struct con *conn)
{
   struct ml *ml;
   printf("hello world\n");
   ml = main_loop_add(NULL, conn, hello_main);
   if (ml == NULL)
        io tcp close(conn);
    return ml;
}
void hello_main(void * arg)
{
    if (char_present())
    {
        in_buf();
        in_buf_ok();
    }
}
void hello close(void * arg)
    main_loop_del(arg);
```

The other example used was to open a connection to a server, send a "hello world" and close the connection. With the IO routines you can use io_tcp_add() to open a connection. This function will lock until it succeeds or fails. This may take a few seconds depending on the number of retries you have configured. You have to give an IP address and port number, but in our case, no argument or close function is needed as we close the connection ourselves. With io_select() we switch to the just created connection and we send the "hello world" and close the connection.

```
void main()
{
    struct con *old;
    struct con *new;
    struct ip_addr ip;

    IP4_ADDR(&ip, 192,168,0,112);
    new = io_tcp_add(&ip, 22, NULL, NULL, NULL);
    if (new != NULL)
    {
        old = io_select(new);
        printf("hello world\n");
        close();
        io_select(old);
    }
}
```

6.5.2 Implementation

6.5.2.1 Sending

LwIP can combine multiple small data segments into one TCP frame to decrease the number of packets that need to be sent. For every call to tcp_output() a new segment is made and only a few segments can be combined. Therefore, it would not be very efficient to send every byte to LwIP separately. This is why I implemented a small output buffer in the IO routines that combine the bytes send to tcp_out_char() and send them to LwIP when the buffer is full or when io_tcp_flush() is called. When you try to send a char, and we fail to empty the buffer to the LwIP stack, we have a problem because we cannot send back a failure. This is why I decided to wait for empty buffer space when we are in low priority and to throw the char away when we are in high priority. More about this dilemma in the last paragraph of this chapter.

6.5.2.2 Receiving

When a data pbuf is received, the pointer is stored in the connections structure, if a pbuf pointer is already stored in the structure the pbuf's are concatenated. When the application calls in_char() a byte is removed from the pbuf, acknowledged and returned. When in_buf() is called, the first pbuf is removed from the pbuf chain and returned, but not yet acknowledged. You have to call in_buf_ok() re acknowledge and remove the pbuf (a window update is send).

6.5.2.3 Closing

As explained in the raw API description, there are three ways to close a connection. By request of the application, by request of the other side or after an error occurs. Because a remote close or an error can come in while a main loop function is using the connection and we cannot remove a main loop function while it is running we have to actually delete the main loop functions at the main loop.

When an error occurs the connection state is set to closed so from that moment no more data will be send. A main loop function is registered to actually delete the connection and to call the connection's close function to free the memory (and main loop functions) used by the connection. When this is done, the main loop function deletes itself and possibly some main loop closing functions that were interrupted by an error before they could successfully close.

In the IO routines, no difference is made between the application and remote sides closing the connection. This means no new data can be sent after the other side sends a close but the data that is already in the buffers will be sent. A main loop function is registered to wait for the buffers to clear and to keep trying to send a close until it succeeds, when the close is sent to LwIP the main loop function calls the close function registered in the connection to free the memory (and main loop functions) used by the connection. When this is done, the main loop function deletes itself.

6.5.2.4 Locking

When you are using a background loop instead of an operating system you should never use locking functions because all background loop functions will have to wait for your lock. The io_tcp_add() function I implemented will lock for only a few seconds (so the implementation will recover) but still it would be better to use a call-back function for this purpose. A bigger problem is the out_char() function used by printf(). Printf() doesn't return a failure or success flag so you can only choose to lock, or to lose the data, when no more room is available. Both these solutions are not what you want so the only solution left is not to call printf() when not enough room is available. You could check this in the IO routines before a main loop function is called or before each printf() itself. If you make sure enough memory is available before you call the printf(), and you don't fill the same memory from interrupt functions, you can safely use printf.

6.5.3 Conclusion

The IO routines I wrote make it a lot easier to handle more than one connection and more than one application at a time. However, there are many additions you could make to improve the routines. I do not think it would be wise to enhance the IO routines a whole lot because when you want a lot more than these routines now do, it would be simpler and faster to use an existing operating system with the socket API.

In some cases, it would be more efficient to use the raw API without any enhancements. It could be your application never uses more then one connection simultaneously. Also in some applications, the TCP event can be handled very quickly. In these cases, there is no need for the extra code as there is no need to divide the processing time.

6.6 Testing applications

To intensively test LwIP, I wrote multiple applications and tried some of the existing applications for LwIP. I discovered that there are many things you can do wrong, and that is why I wrote an extensive explanation on how to use LwIP. For instance, you have to know how exactly to close a connection and when to stop using it. I also learned you have to use the right configuration and know not to send your data byte for byte.

I started testing LwIP using an http daemon and echo server that worked with the raw socket API. The amount of code needed for these examples was large and the code was not very well commented. This is why I decided to create my own IO routines and test it with some example applications.

6.6.1 Echo server

While creating the IO routines I used a very simple echo server as a test. It is just a routine that waits for incoming connections, accepts the connections, and sends and receives data.

6.6.2 Shell server

While working with the LwIP stack I felt the need for some debug information on demand. This is why I wrote a very simple shell to print all kinds of status information like connection state's LwIP counters, Ethernet controller counters, main loop functions, IP configuration and more. These functions can be used to debug later applications.

6.6.3 Proxy server

As an easy way to test the stack with multiple connections and a lot of traffic, I created a proxy like application. When you connect to this application, it opens a connection to the local proxy server and routes all the data between the two connections. This meant I could setup my web browser to use the ColdFire as a proxy server. While opening a website multiple connections are opened and closed and data is transferred in both directions. With a lot of surfing preferably at pages with a lot of pictures I had a very simple way to stress test the stack with all kind of events. After some debugging all data arrived correctly, no errors occurred and after the connections were closed all memory was freed. Even when a lot of packets got lost, the transfer rate slowed down but no errors occurred and eventually all data arrived correct and in the right order.

Only one problem I did not fix and should be fixed when you really want to use this application. When both the input and output buffers are full no new acknowledge can be received to clear the output buffers and because no data can be sent, the input buffers are not cleared by the proxy application. This is why your application should always acknowledge received data, or abort the connection, within a small time-span. If not the memory can not be cleared and the stack has to wait for a few timeouts and (failing) retransmissions before it wil abort the connection by itself. During this time no traffic is possible!

6.6.4 Test applications

I also wrote some test application to do some measurements. These applications are described in a later chapter.

7. Quadros

Quadros offers a TCP/IP stack called "TRXC Quadnet". It includes an operating system and socket API. They have a free version available that consists of a Binary image of over 200kB. The Binary image contains a default application that can download user applications so you can upload your new applications over the Ethernet connection. A small example application is available.

It soon became clear the implementation was not very stable and would stop working regularly without any apparent reason. Even when running the default application Quadros would not run stable. There was nothing in the documentation to explain this, but I do not think it is supposed to be this unstable. The binary version I used was specially compiled for the hardware platform I was using and is included by the hardware supplier. As the LwIP stack did not show any problems with the hardware except for the MII, I do not think it could be a hardware problem. When you would actually buy a version of the Quadros TCP/IP stack support is included and they would probably fix this problem. However, it does not vote well for them to supply a faulty demo version.

7.1 Test application

Still I decided to test the stack more intensively and write my own test application. The example application just started some binary services so no example was available on how to write your own application. With some searching I found out I could use the Berkeley-alike socket API to implement my own application, unfortunately some small parts I needed to use a select were left out so I had to implement them myself. I discovered the implementation was not exactly the same as the Berkeley-alike socket API, but it would probably work.

My implementation did work however often the connections did not close as expected and I often had to reboot the system. I implemented one application that could switch between incoming, outgoing and bidirectional traffic and could print the load to the serial terminal. To calculate the load I ran the same piece of code as I used in the LwIP stack, in the null task of Quadros. And I initiated my own timer to time the seconds.

8. Test setup

To get a better idea of the difference between the different TCP/IP stacks I have devised some tests. The first thing I wanted to know is how stable a stack is. I also wanted to know how much data an implementation could handle and how much processing time it would take. The creation of the test applications themselves also tells a lot about the stacks.

8.1 Stability

8.1.1 Too many connections

The first and simplest test was just opening more connections than a stack could handle and closing them. The stack should not give any errors and it should cleanup the connections correctly.

8.1.2 Too much incoming traffic

To check what would happen if the input buffers get full we have to send a lot of data to the stack. Because a connection should have a window size smaller than the input buffers, I used multiple connections to fill up the input buffers. I displayed the transfer speed for each connection during half a second for twenty-five seconds. It would be nice if the connection speed would be divided evenly over the connections. The connections should not fail and you should be able to close all connections afterwards, even when some buffers are still full. This test also shows how an implementation handles packet loss because received packets that cannot be stored will be discarded.

8.1.3 Too much outgoing traffic

I repeated the same test as described above with outgoing traffic. As the outgoing queue of a connection also has a size smaller than the output buffers, (and probably smaller than the receive window of the other side) again multiple connections are needed. No errors should occur and it would be preferred all connections create an even amount of traffic.

8.1.4 To much bidirectional traffic

The last test to test the stability of a TCP/IP stack is to test a lot of traffic to an echo server. This tells us if the stack can handle a lot of data without errors

8.2 Performance

8.2.1 Maximum speed

To get an indication of how much data a TCP/IP stack can handle I decided to test the maximum speed for, incoming, outgoing and bidirectional traffic. I tested multiple times with an increasing amount of connections to see what effect the number of connections has on the total amount of traffic a stack can handle.

8.2.2 Load

Something else that interested me was how much resources an implementation needs to handle a certain amount of traffic. To do this I measured the number of times a piece of code could cycle, during one second, on the ColdFire, with all interrupts disabled. I compared this value to the number of times the same piece of code could cycle, during one second, in a background loop, while the stack is handling a certain amount of traffic. I repeated the test with different amounts of traffic and with traffic in both directions separately and simultaneously.

8.3 Implementation

8.3.1 Test Client

To test the stacks I needed a test application to run on a workstation to open multiple connections with a specified amount of traffic. I could not find a suited test application so I decided to write one of my own. My only experience in programming on a Windows workstation was in Java but in my experience, Java is not very fast and not very stable. As the workstation I was working on was also a bit limited I was afraid, a Java implementation would influence the test results. This is why I decided to write my test application on a Linux workstation using C^{++} .

I created a class to open a test connection with a specified amount of traffic. To limit the transfer speed I took the sum of the sent and the received data, and divided this by the amount of time the test was running. I waited for the actual speed to be lower than the wanted speed before sending or receiving another data fragment. The TCP/IP stacks on the ColdFire would not immediately slow down sending when the test class slows down the receiving, because the buffers have to be filled first. This is why the test had to wait a while before taking measurements.

I made an option to enable or disable the outgoing traffic from the test connection class. By enabling the outgoing traffic and connecting to a dummy server on the ColdFire I could test incoming traffic on the ColdFire. By enabling outgoing traffic to an echo server on the ColdFire I could test bidirectional traffic. And by disabling outgoing traffic and connecting to a traffic generating server on the ColdFire I could test with outgoing traffic from the ColdFire.

I created a number of functions that make use of this test connection class to open multiple connections to the ColdFire. One of these functions opens multiple connections and measures the total speed. Another opened one connection and generated different amounts of traffic while requesting the load from a special server on the ColdFire that returns the load when it receives a message. Another test function I created just opened a lot of connections and tried to transfer a lot of data over all the connections. It showed the amount of traffic it could generate for each connection during half a second.

8.3.2 Test servers

8.3.2.1 LwIP raw API

To run tests on the ColdFire I needed an echo server that sends all received data back to the client, a dummy server that receives and ignores all incoming data and a traffic generating server that keeps trying to send as much data as possible. When a number of Clients were connected to the traffic-generating server, I could not connect another one because the already connected clients were using all output buffers. To remedy this I toggled the sending of the data on and off when a byte was received so the test client could decide when the test servers should start and stop sending.

Another test server I needed was a server that started the load test function in a background loop and returns the last measured load to the client when a byte is received. This enabled the test client request the load from the Coldfire.

8.3.2.2 LwIP low priority IO functions

I created the same three traffic-handling servers using my IO functions to test the difference between working in low and high priority levels. The load test would not be very useful as it would run in the same priority level as the IO functions and influence the results.

8.3.2.3 Quadros

As the free Quadros version is limited to only four TCP connections including the listening connections I created only one test server that I could switch between sending, receiving and echoing mode with the serial terminal. The load was also requested using the serial terminal.

9. Test results

Unfortunately, I could test the implementations only at 10Mbit half duplex due to problems with the MII bus on the MCF5282 evaluation board I used. Running on 100Mbit full duplex would give very different results as no frames would be lost on transfer and the Ethernet controller would be able to send Ethernet pause frames to prevent buffer overruns. The higher number of errors and buffer overruns did however give more interesting test results.

Because of the limited time available and the limitations and instability of Quadros I could not test Quadros as intensively as LwIP.

9.1 Stability

9.1.1 Too many connections

LwIP can handle as many connections as you have defined. When LwIP has too many connections open to open a new one, it can automatically abort an old connection. LwIP does this by first looking for a connection in time-wait state (see appendix 13.1 TCP state diagram), if no such connection is available it will abort the connection that has been idle the longest and that has a priority lower or equal to that of the new connection. This makes sure you can always connect to a TCP listener with a high priority. I tested this by opening to many connections with different priorities and LwIP reacted exactly as it was supposed to do.

In the free Quadros TCP/IP stack I could only test 3 connections simultaneously. When you tried to open a fourth it just failed.

9.1.2 Too much incoming traffic

When the incoming buffers of a TCP/IP stack are full and a new segment arrives, the stack discards the new data segment (congestion). The sending side does not know this so it waits for a timeout before it retries to send this data. Meanwhile the data segments of other connections that did fit in the buffers will be acknowledged and these connections will keep transferring data.

In the test results (see appendix 13.2.1.1), you can see that using the raw API of LwIP, about four or five connections can keep transferring but the other connections are idle. Sometimes an idle connection gets lucky and is able to start transferring after a timeout. As a result, one of the other connections will soon fail. It would be preferred that when congestion occurs all receive windows are reduced so all connections will slow down. However, the receive windows are already very small and have to be reduced to a value below the maximum segment size. This would not be very efficient.

In appendix 13.2.1.2 you can see working with a background loop will give roughly the same result as the raw API. The only difference is that the resulting speeds are a bit more random. This is due to the fact that the window updates from the active connections are send from the background loop instead of immediately after arrival as in the raw API version of the test program.

Unfortunately, I could test Quadros only with three connections (see appendix 13.2.1.3). This meant no congestion occurred and nothing noticeable happened. The transfer rate was divided evenly.

9.1.3 Too much outgoing traffic

When the memory of LwIP is full or all TCP segment descriptors are in use, no new data can be send. When testing LwIP using the raw API this resulted in only a few connections being able to send. When an acknowledgement arrives a segment is cleared and the corresponding connection is notified so it can send new data. This means connections that are already sending have a much higher chance at sending new data than connections that have to wait for a polling event (see appendix 13.2.2.1). When using the low priority IO functions the transfer rates are divided more evenly but the total transfer rate is lower (see appendix 13.2.2.2).

When running the same test on Quadros the transfer rates were extremely low (but stable). I have not found any explanation for this (see appendix 13.2.2.3).

9.1.4 Too much bidirectional traffic

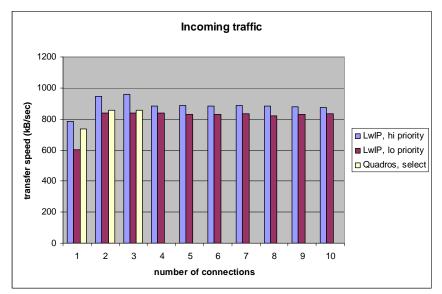
When the send buffers get full the raw API echo server I wrote for LwIP was not very efficient. Both the receive buffers and the memory was full so no acknolages could arrive and no memory could be cleared. This meant most of the time the connections were waiting for timeouts (see appendix 13.2.3.1).

In this case, the low priority IO functions (see appendix 13.2.3.2) were much more efficient.

Again the Quadros implementation (see appendix 13.2.3.3) was very slow. In addition, although I could only open 3 connections the transfer rates became unstable.

9.2 Performance

9.2.1 Maximum transfer speed

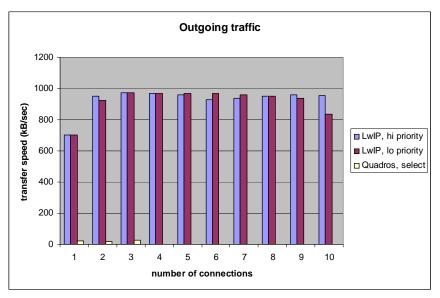

To measure the maximum transfer speed I opened one to ten connections and measured the maximum incoming, outgoing and bidirectional transfer speed. I compared the result from high priority raw API servers, low priority IO function servers and Quadros server using the socket API. The complete result can be found in the appendix and an overview is shown in the charts below.

9.2.1.1 Incoming trafic

When sending traffic to only one connection the transfer rate is clearly smaller than when you use multiple connections. Because I configured the receive window to only 2048 bytes the transfer speed of one connection using the LwIP stack was not optimal. The difference between one or more connections on the Quadros stack was smaller, this could indicate the Quadros stack uses a bigger receive window.

Although the Quadros stack, claims to be zero copy, while my LwIP stack did copy the data from the Ethernet controller to the stack, the LwIP stack appears to be faster using the raw API. Apparently, the handling of the packets has more influence on the transfer speed than being zero copy or not.

In appendix 13.3.1 you can also see that when only using 4 or less connections the transfer rates remained stable because the total size of the receive windows was smaller then the receive buffer. When sending traffic over more connections data gets lost and the transfer speeds become a bit less stable. (Testing on full duplex would probably have given a different result as the Ethernet controller could have sent a pause-frame and the frames would be delayed instead of lost.)

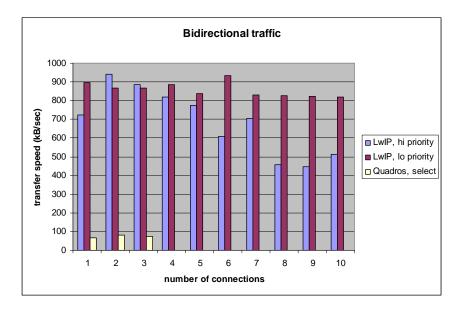


9.2.1.2 Outgoing traffic

When using only one connection for outgoing traffic again the maximum transfer speed was not optimal, the LwIP stack had an output buffer of 2048 bytes so it could only have 2048 bytes of data in the output buffers waiting to be acknowledged. This meant the stack had to wait for acknowledgements before sending more data.

This time the difference between using the high and low priority servers was very small. The Quadros stack hardly transferred any data. I do not know why the Quadros stack could not transfer the outgoing data any faster. It could be an undocumented restriction of the demo version or a mistake in the Quadros stack. I expect Quadnet could repair this problem rather quickly so the performance would be roughly the same as that of LwIP.

In appendix 13.3.2 you can see a little difference between the raw API version test applications and the low interrupt-priority main loop functions. The main loop divided the transfer speeds more evenly across the different connections.

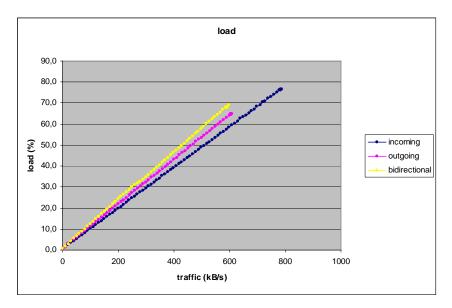


9.2.1.3 Bidirectional traffic

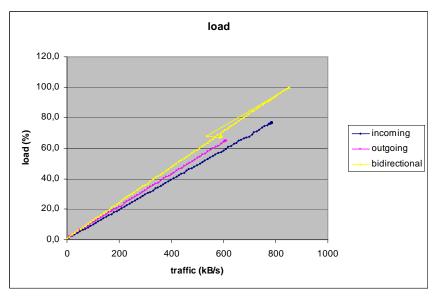
When testing with bidirectional traffic the results became very irregular, especially using the high priority raw API on LwIP. Even when I repeated the test many times, the results stayed unpredictable so the only thing you can tell from the actual values is that many packets got lost and a lot of timeouts occurred. (see appendix 13.3.3.1)

The low priority IO functions were a bit more efficient as they continuously tried to echo the received data and not only on timeout, sent, and receive events. When one connection gets a sent event it cannot always immediately send new data, as it may not have received data pending.

Again Quadros performance was very poor, hopefully Quadnet will fix this problem when you decide to buy Quadros.


9.2.2 Load with certain amounts of traffic.

The load is measured by counting the number of times the background loop cycles, divided by the number of times the background cycles with LwIP disabled. An increasing amount of traffic is created and the actual traffic rate is compared to the load. The measurement is done 5 times and the average is used. Some values are ignored because they did not reach the target speed due to loss-timeouts. The actual values can be found in appendix 13.4 and a chart is made from the averages and shown below.


I have tested the load only on LwIP using the raw API. The low priority IO functions would run in the same priority level as the load counter so no meaningful measurement could be taken. I was not able to run an accurate load test on the Quadros stack because it only worked well at very low speeds or full speed incoming traffic.

As you can see, there is a linear correlation between the transfer speed and the load. When the transfer rate reached a certain maximum speed, it stayed at that level. The output buffers were full and could not be emptied until an acknowledgement arrives or the receive window was fully used and the test application could not send any more data until a window update was sent.

- The load for incoming traffic will increase with 0.97% for every 10 kB/sec.
- The load for outgoing traffic will increase with 1.06% for every 10 kB/sec.
- The load for combined bidirectional traffic will increase with 1.15% for every 10kB/sec.

One test ran I got a different result for the bidirectional traffic. Somehow, the buffers did not get full and the transfer rate and load kept climbing until the load reached 100%. When this happened, the buffers did get full and the transfer rate fell back to the same value the other tests would not cross. This proves that a small difference in timing can have a huge effect; it might be the difference between packets colliding regularly or never.

10. TCP/IP with or without an operating system

For most of the small TCP/IP stacks I found, you could choose between running with or without an operating system. To help with the choice of using an operating system I will list some advantages and disadvantages.

10.1 Advantages of using an operating system

- When you run a TCP/IP stack without an operating system the stack would run completely in one priority level. When the stack is overwhelmed with more data than it can handle, it will use all the CPU time it can get. This means applications in the background loop will be overtaken completely. When using an operating system you can easily prevent this.
- When using an operating system programming gets a little easier as you can use locking functions to communicate with the TCP/IP stack. For instance, you could use a Berkeley-alike socket API. You can also make use of the operating system to separate each connection in a different thread so you do not have to worry about handling multiple connections simultaneously.
- Using an operating system makes your application easier to port to different systems. Most systems use operating systems so most applications are written to be used with operating systems.
- When something goes wrong in the TCP/IP stack the operating system will keep running and might be able to take action to recover.

10.2 Disadvantages of using an operating system

- You might not have enough ROM and RAM to run an operating system alongside your application, or it will decrease the efficiency of your program by using memory that would otherwise be used by the application.
- The operating system uses some CPU time, which reduces the amount of CPU time left for the application.
- An operating system increases the complexity of a system which means more things can go wrong and it is harder to find out where something went wrong.
- When using an operating system you have less control over the system, usually the operating system can do exactly what you want but in some cases it can not. When you are not using an operating system you can schedule the order of your functions any way you like, although it is a lot more work.
- When you want to integrate a TCP/IP stack with an existing application that does not use an operating system it could be easier to keep working without an operating system.

11. Conclusion

There are many TCP/IP stacks you can choose from and for each stack, you can make many configuration choices. I started with this document with four factors that play a role in choosing a TCP/IP stack. I will explain what I have learned about the TCP/IP stacks for each of these factors.

11.1 Ease of use

When you have little experience in working with microcontrollers, a commercial TCP/IP stack would be advisable. You could pay a company some money and in some cases, they will create a, ready to run, system for your microcontroller. All you need to do is create your application in a way that is much like creating an application for a workstation. For some commercial stacks, you will need to port it to the microcontroller of your choice yourself.

When you do have a lot of experience with microcontrollers, it would not be very hard to start using an open source implementation like LwIP. It will however take up some time to port the stack to your system, but you do not have to wait for someone else to create your port.

11.2 Stability

From commercial TCP/IP stacks you would expect stability would not be a problem. As we have seen with Quadros this is not always the case. You do get some support with commercial stacks so hopefully they will fix these kinds of problems.

When you want to use an open source implementation, you should look for a stack that is often used and intensively tested. LwIP is a good example of this. When errors do occur, you have to debug it yourself, or wait for someone else to solve the problem.

11.3 Performance

In paragraphs 9.2.1.2 and 9.2.1.3 we saw a big difference in performance. But while testing the Quadros stack, it did some times reach a speed close to that of LwIP, only never for long and not every time I tried. It appears there is some kind of problem in the Quadros version I tested, this could probably be fixed rather easily when you have access to the source code. When this problem is repaired, I expect little difference between the Quadros and the LwIP stack.

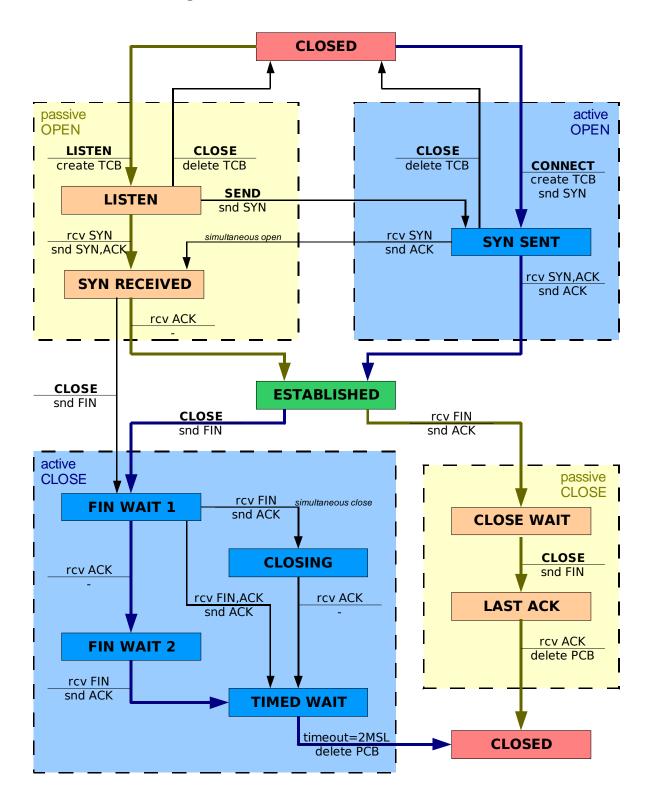
In addition, as all commercial stacks promise to be zero copy and very fast, I do not expect a huge difference between any of them. Tuning and configuration have more influence on the performance. Some commercial stacks like ARC RTCS supply a performance tool to help you optimising your configuration. In LwIP you can use a number of counters to optimise your configuration.

11.4 Cost

When you have little experience in embedded systems it could be cheaper to buy a commercial TCP/IP stack. For some commercial stacks, you can buy one licence for multiple projects. You may decide to pay for the support so you do not have to learn how to configure a TCP/IP stack yourself. Some commercial stacks come with tools to help you configure the stack and speed up the process of creating new applications; this can be useful when you create many simple applications.

When you do have experience with embedded systems or want to get some experience in embedded systems, it is cheaper to use an open source TCP/IP stack like LwIP. There are no indications that LwIP has any vulnerabilities or bugs, but you do have to be very careful not to make any mistakes in the way you use the stack, you will have to have a deeper understanding of what happens within the stack to be able to create stable system.

11.5 Final note


The choice for using an open source or a commercial implementation is very dependent on your experience and the application. You have to choose between handling it yourself and letting others worry about the details. The cheap way and the easy way. The risky solution and the less risky solution.

12. Abbreviations

- ARP Address resolution protocol, a protocol used by Ethernet to map IP addresses on Ethernet addresses.
- DMA Direct Memory Access, used by devices to communicate with memory without needing the processor
- PPP Point to Point Protocol, used for internet over serial lines.
- SLIP Serial Link Internet Protocol, used for internet over serial lines.
- LwIP Lightweight Internet Protocol, a TCP/IP stack I tested.
- TCP Transmission Control Protocol, for connection oriented byte stream connections over IP.
- IP Internet Protocol, for worldwide addressing.
- CPU Central Processing Unit, the main processor.
- MAC Media Access control.
- API Application Programming Interface, the interface between two pieces of code
- PCB Protocol Control Block, a block of information about a connection.
- RAM Random Access Memory, Memory that can read and written at any time.
- ROM Read Only Memory, Memory that can only be read, and sometimes written with some limitations.
- MII Media Independent Interface, interface between the physical interface and an Ethernet chip.

13. Appendix

13.1 TCP state diagram

13.2 Loss test

To test how the implementations handle buffer overflows I opened a few connections and generated more traffic than the implementation could handle. After starting the traffic, I waited a while for the transfer speeds to stabilise and took 50 measurements of the transfer speeds for each connections and the total transfer speed (all in kB/sec).

The transfer speeds for each connection is given in the first columns and the last column illustrates the total transfer speed. The last two rows give the average transfer speeds from all measurements and the percentage of measurements that indicated zero traffic.

13.2.1 Incoming traffic

13.2.1.1 LwIP high priority raw API

1 : 2 : 3 : 4 : 5 : 6 :	0 0 0 0 0	188 129 194 223 223 207	196 207 198 223 223 149	160 121 139 225 223 202	194 209 129 0 0 82	111 211 200 223 223 207	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	-> -> -> -> ->	851 880 860 896 894 849
7 : 8 : 9 : 10 :	0 0 0	115 229 217 219	182 227 217 221	200 231 215 219	200 0 0 0	202 231 215 223	0 0 0 0	0 0 0	0 0 0	0 0 0 0	-> -> ->	900 919 866 884
10 . 11 : 12 : 13 :	0 0 0	219 223 223 207	221 223 223 207	219 225 221 207	0 0 0	223 223 219 211	0 0 0	0 0 0	0 0 0	0 0 0	-> -> ->	896 888 835
14 : 15 : 16 :	0 0 0	184 0 186	203 217 49	115 215 219	176 215 219	203 215 219	0 0 0	0 0 0	0 0 0	0 0 0	-> -> ->	884 864 894
17 : 18 : 19 : 20 :	0 0 0	221 1 0 15	29 202 215 66	221 198 219 198	223 194 215 203	223 200 219 202	0 0 0 0	0 0 0 0	0 0 0	0 62 3 156	-> -> ->	919 859 874 843
20 21 : 22 : 23 :	0 0 0	221 217 209	0 0 0	223 215 211	203 219 219 207	202 0 0 27	0 0 0	0 0 0	0 0 0	219 219 219 205	-> -> ->	884 872 862
24 : 25 : 26 :	0 0 0	203 223 192	0 0 35	205 221 203	125 188 0	207 219 207	0 0 0	0 0 0	0 0 0	113 41 205	-> -> ->	857 894 845
27 : 28 : 29 : 30 :	0 0 0	0 172 19 52	215 202 223 200	219 111 219 202	0 0 0 0	215 207 219 202	0 0 0 0	0 0 0	0 0 0 0	215 205 219 203	-> -> ->	866 900 902 861
31 : 32 : 33 :	0 0 0	21 139 200	211 209 119	215 131 203	0 3 0	215 211 203	0 0 0	0 0 0	0 0 0	215 176 145	-> -> ->	880 872 872
34 : 35 : 36 :	0 0 0	223 223 202	0 0 72	219 223 156	0 0 0	219 223 207	0 0 0	0 0 0	0 0 0	223 223 205	-> -> ->	886 894 845
37 : 38 : 39 : 40 :	0 0 0	121 213 223 215	200 211 227 213	174 211 225 217	0 3 0 0	202 213 225 219	0 0 0 0	0 0 0 0	0 0 0	202 3 0 19	-> -> ->	900 859 902 886
40 · 41 · 42 · 43 ·	0 0 0	215 3 0 31	213 221 215 217	217 219 215 215	0 0 0	219 219 215 219	0 0 0	0 0 0	0 0 0	223 215 217	-> -> ->	888 863 902
44 : 45 : 46 :	0 0 0	207 215 211	205 213 213	50 3 0	0 0 0	203 213 213	0 0 0	0 0 0	0 0 0	209 211 215	-> -> ->	878 859 855
47 : 48 : 49 : 50 :	0 0 0	223 227 209 221	221 227 211 219	0 0 0	0 0 0	219 229 209 221	0 0 0	0 0 0	0 0 0	219 227 211 219	-> -> ->	884 912 843 882
total: idle :	0	161 8%	164 14%	174 10%	64 62%	200	0	0 0 100%	0	113 36%	-> ->	877 53%

13.2.1.2 LwIP low priority IO functions

1 2 4 5 6 7 8 9 10	: : : : : : : : : : : : : : : : : : : :	280 160 249 290 176 3 52 139 205	256 313 305 158 229 276 37 217 319 221	7 23 129 266 166 182 392 147 0 178	19 309 302 96 25 168 213 156 166 180	3 25 13 70 109 1 96 256 84 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	-> -> -> -> -> -> -> -> -> ->	568 833 812 841 821 806 843 831 710 786
11 12	:	309 205	215 311	80 68	223 109	0 111	0	0	0	0 0	0	-> ->	829 808
13 14	:	123 309	296 15	143 282	133 82	141 145	0 0	0 0	0 0	0 0	0 0	-> ->	837 835
15 16	: :	176 156	88 178	254 160	233 170	76 168	0 0	0 0	0 0	0 0	0 0	-> ->	829 835
17 18	:	123 151	156 258	105 170	188 125	254 31	0 5	0 90	0	0	0	-> ->	829 833
19 20 21	::	196 333 200	194 149 47	103 23 135	31 158 180	5 3 9	137 29 25	186 131 243	0 0 0	0 0 0	0 0 0	-> ->	855 829 841
21 22 23	:	200 264 49	133 366	90 307	180 0 47	268 13	25 41 17	243 50 11	0	0	0	-> -> ->	849 813
24 25	:	50 35	292 152	13 1	23 149	123 129	92 225	156 121	0	0	0	-> ->	753 815
26 27	:	100 60	313 52	0	253 358	37 233	125 0	0 135	0	0	0	-> ->	829 841
28 29	: :	49 317	202 27	170 198	7 3	47 3	296 145	50 123	0 0	0 0	0 0	-> ->	823 819
30 31	: :	241 0	119 172	137 0	7 3	62 225	94 74	54 239	0 0	0 0	0 0	-> ->	717 715
32 33	:	133 35	109 292	45 113	109 5	0 23	254 221	176 121	0	0 0	0 0	-> ->	829 813
34 35 36	:	239 49 0	149 300 190	35 0 160	7 156 249	0 0 0	166 278 227	239 25 0	0 0 0	0 0 0	0 0 0	-> -> ->	837 810 827
30 37 38	:	0 74	190 50 105	180 0 127	249 147 7	103 117	227 237 315	270 68	0	0	0	-> ->	810 817
39 40	:	241 307	76 180	121 5	, 50 7	92 5	147 158	82 39	0	0	0	-> ->	811 706
41 42	:	156 19	417 52	102 133	3 145	84 176	52 3	5 176	0 0	0 0	0 101	-> ->	823 809
43 44	: :	205 256	7 78	162 123	109 88	245 45	0 121	35 90	0 0	0 0	37 9	-> ->	804 813
45 46	: :	3 0	200 182	107 200	15 100	9 0	280 133	5 154	0	0	184 39	-> ->	808 810
47 48 49	:	0 3 0	221 219 211	62 7 1	0 164 13	0 9 21 5	84 49 56	329 9 176	0 0 0	0 0 0	47 343 19	-> ->	745 808 696
49 50	:	0	135	0	13	215 50	56 152	176	0	0	19 372	-> ->	696 823
tota idle		136 14%	185 0%	109 14%	110 6%	80 16%	85 38%	74 38%	0 100%	0 100%	23 82%	-> ->	804 40%

13.2.1.3 Quadros, socket API

1	:	284	284	282	->	851
2	:	282	282	282	->	847
3	:	172	172	172	->	517
4	:	282	282	284	->	849
5	:	284	284	282	->	851
6	:	282	282	282	->	847
7	:	286	284	284	->	855
8	:	284	284	286	->	855
9	:	284	284	284	->	853
10	:	280	282	282	->	845
11	:	288	284	284	->	857
12	:	284	286	286	->	857
13	:	280	282	282	->	845
14	:	284	284	284	->	853
15	:	286	282	282	->	851
16	:	282	286	282	->	851
17	:	284	282	286	->	853
18	:	282	284	282	->	849
19	:	284	282	284	->	851
20	:	284	282	282	->	849
21	:	282	286	284	->	853
22	:	284	284	284	->	853
23	:	286	284	284	->	855
24	:	282	284	286	->	853
25	:	284	284	284	->	853
26	:	286	284	284	->	855
27	:	284	282	282	->	849
28	:	282	286	284	->	853
29	:	282	282	282	->	847
	:	284	284	284	->	
30						853
31	:	280	278	278	->	837
32	:	284	286	286	->	857
33	:	288	286	288	->	863
34	:	282	282	282	->	847
35	:	282	282	282	->	847
36	:	286	284	284	->	855
37	:	282	286	284	->	853
38	:	282	282	284	->	849
39	:	288	286	284	->	859
40	:	286	286	288	->	861
40	:	280	282		->	841
				278		
42	:	282	282	286	->	851
43	:	284	284	282	->	851
44	:	282	282	282	->	847
45	:	282	282	284	->	849
46	:	286	284	282	->	853
47	:	284	284	286	->	855
48	:	282	284	282	->	849
49	:	286	282	284	->	853
50	:	280	282	282	->	845
20		200	202	202		515
tota	1.	281	281	281	->	844
idle	:	0%	0%	0%	->	0%

13.2.2 Outgoing traffic

13.2.2.1 LwIP high priority raw API

1 2 3 4 5	::	0 0 0 0	0 0 7 0	0 0 0 0	327 325 398 472 468	0 0 0 13	327 325 398 474 466	325 325 158 0 0	0 0 0 0	0 0 0 0	0 0 0 0	-> -> -> ->	980 976 963 947 949
6 7	: :	0	264 478	0	211 0	0 0	209 0	266 476	7 0	0	0	-> ->	961 955
8 9 10	::	0 0 0	460 184 0	0 7 0	0 419 708	31 0 0	0 5 0	462 186 0	0 11 0	0 0 0	0 0 0	-> -> ->	955 815 708
10 11 12	:	0	0 27	0	553 151	323 149	0 198	0 203	0 203	0	0	-> ->	876 937
13	:	0	0	0	0	0	325	327	329	0	0	->	982
14 15	:	0 0	0 9	0 329	0 0	0 27	5 0	474 125	472 455	0 0	0 0	-> ->	953 947
16	:	0	0	388	0	0	272	0	302	0	0	->	963
17 18	:	0 0	0 9	468 468	13 0	0 5	470 468	0 0	0 0	0 0	0 0	-> ->	953 953
19	:	0	0	466	0	0	464	0	15	0	0	->	947
20	:	0	0	88	35	0	462	378	0	0	0	->	965
21 22	:	0 0	276 388	0 0	0 0	272 390	345 66	74 0	0 115	0 0	0 0	-> ->	968 961
23	:	0	453	31	9	453	0	0	0	0	0	->	947
24	:	23	464	0	0	466	0	0	0	0	0	->	955
25 26	:	0 0	39 0	0 3	0 5	451 474	417 474	27 0	11 0	0 0	0 0	-> ->	947 959
27	:	315	0	0	0	333	329	0	0	0	0	->	978
28	:	3	0	3	3	458	462	19	0	0	0	->	953
29 30	:	0 0	0 0	3 0	3 0	470 470	468 468	0 13	0 0	0 0	0 0	-> ->	947 953
31	:	13	0	15	15	455	408	5	0	0	0	->	953 951
32	:	33	0	435	433	37	0	0	0	0	0	->	939
33	:	0	7	437	435	0	0	7	7	0	0	->	896
34 35	:	52 470	0 0	0 0	0 0	56 470	0 11	0 0	0 0	0 0	0 0	-> ->	109 953
36	:	406	5	11	0	406	0	56	62	0	0	->	949
37	:	0	0	0	15	0	0	470	466	0	0	->	953
38 39	:	0 88	0 3	0 84	0 0	0 0	60 272	443 264	447 264	0 0	0 0	-> ->	951 978
40	:	370	0	374	103	100	272	204	204	0	0	->	978 949
41	:	0	0	0	478	480	0	0	0	0	0	->	959
42	:	0	3	0	458	353	11	5	113	0	0	->	947
43 44	:	119 480	0 0	121 480	354 0	0 0	0 0	0 0	351 0	0 0	0 0	-> ->	947 961
45	:	341	178	339	0	19	19	3	0	0	0	->	902
46	:	0	608	0	33	0	0	0	147	0	0	->	788
47 48	:	0 7	478 300	0	0 0	0 27	0 158	0 3	478 298	0 0	0 0	->	957 055
40 49	:	0	300 0	158 415	131	27	158 415	0	298 0	0	0	-> ->	955 963
50	:	0	0	327	325	0	325	0	0	0	0	->	978
tota		54	93	109	137	144	192	102	91	0	0	->	925
idle	•	72%	58%	52%	46%	48%	36%	50%	00%	100%	TUUS	->	62%

13.2.2.2 LwIP low priority IO functions.

1 2 3 4 5 6 7 8 9	:::::::::::::::::::::::::::::::::::::::	0 7 0 90 166 152 76	0 0 1 0 0 0 7	25 23 94 154 149 162 196 186 66	0 0 0 1 0 0 0 49	0 96 154 160 156 182 80 0	0 0 0 3 0 0 119 113	25 23 86 158 178 170 164 182 72	0 98 217 211 96 0 0 45	43 23 17 0 0 11 0 0 5	41 23 107 182 192 186 145 149 117	-> -> -> -> -> -> -> ->	135 94 508 868 900 874 855 870 555
10 11	:	0	0	0	25 45	0 47	25 54	0	25 64	0	25 45	-> ->	101 256
12 13	:	5 0	11 0	0 47	35 43	45 74	64 78	5 0	17 0	47 0	0	-> ->	233 243
14 15	:	0 9	0 5	105 115	133 21	158 184	164 113	0 117	0 145	0 5	113 147	-> ->	676 866
16 17	:	0 0	0 0	141 131	0 0	156 147	0 0	174 168	221 217	0 0	168 188	-> ->	862 853
18 19	:	9 0	43 43	43 0	0 51	43 0	13 0	37 0	56 49	11 0	88 47	-> ->	347 190
20 21	:	0 5	25 121	0 0	25 107	0 194	0 203	0 0	25 7	0 5	25 129	-> ->	101 776
22 23	:	0 0	170 182	3 0	176 154	23 0	176 174	176 207	0 0	0 0	170 170	-> ->	898 890
24 25	:	58 23	74 21	0 66	43 0	0 0	60 62	25 0	0 66	13 0	58 66	-> ->	335 307
26 27	::	0 0	0 0	25 49	0 56	0 5	25 49	0 23	25 3	0 60	25 3	-> ->	101 252
28 29	:	164 172	15 0	160 170	209 217	0 5	182 176	0 5	0	154 137	0	-> ->	888 886
30 31	:	135 98	5 98	141 1	3 0	149 258	205 264	215 1	5	0	5 76	-> ->	868 806
32 33 34	::	147 96 127	166 111 164	00	0 13	213 190 5	205 205	0 5 0	0 17	17 1 0	131 70 0	-> ->	882 713
34 35 36	:	127 0 0	104 90 86	19 131 233	198 152 253	5 0 9	182 225 0	0 23	166 227 94	29 100	0 21	-> -> ->	864 857 821
37 38	:	33 113	147 258	233 0 0	154 262	0	0	125 0	168 98	100 86 0	180 107	-> ->	896 841
39 40	:	105 172	235 235 7	35 200	202 219 0	33 184	7 0	0	94 154	5 0	100 158	-> ->	837 878
41 42	:	200 186	0 45	192 156	0 45	170 0	0	35 113	152 152	0 13	154 133	-> ->	906 851
43 44	:	0	166 176	0	160 131	0 45	0	164 147	186 196	0	186 186	-> ->	864 882
45 46	:	0 3	166 162	0 33	0	158 174	54 168	125 0	192 182	9 0	180 174	-> ->	888 900
47 48	:	0 0	168 176	0 0	54 88	160 41	158 149	0 5	172 158	0 60	190 196	-> ->	906 876
49 50	: :	7 0	170 166	84 178	0 0	0 68	107 186	0 0	164 158	105 0	229 158	-> ->	870 917
tota idle		47 48%	69 34%	70 34%	62 40%	75 34%	79 34%	59 40%	86 24%	19 54%	105 12%	-> ->	677 35%

13.2.2.3 Quadros, socket API

13.2.3 Bidirectional traffic

13.2.3.1 LwIP high priority raw API

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 11 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		$\begin{smallmatrix} & 0 \\ & 0 \\ & 0 \\ & 0 \\ 125 \\ & 0 \\ & $	0 0 0 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 24\\ 50\\ 50\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$\begin{array}{c} 15\\ 24\\ 50\\ 50\\ 89\\ 258\\ 7\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
32 : 33 :	0	271 5	0 0	0 0	275 0	11 0	0 0	0 3	2 0	0	->	561 9
35 :	50	0	0	0	0	0	1	0	43	0	->	96
36 :	23	301	0	0	0	391	0	3	31	0	->	751
38 : 39 :	0 6	4 114	0 0	0 0	0 0	376 3	0 0	3 3	381 13	0 0	-> -> ->	767 142
40 :	0	0	0	0	0	0	0	0	0	0	->	0
41 :	0	0	0	0	0	0	0	0	0	0	->	0
42 :	0	0	0	0	0	3	0	0	0	0	->	3
43 :	0	0	0	0	0	0	0	0	0	0	->	0
44 :	0	0	0	0	0	0	0	0	0	0	->	0
45 :	0	36	0	0	0	0	0	0	0	0	->	36
46 :	262	57	1	0	0	0	0	0	16	0	->	338
47 :	0	0	1	0	0	0	0	0	0	0	->	1
48 :	0	4	0	0	0	0	0	0	0	0	->	4
49 : 50 :	131 486	11 13	159 485	0 0	0 0	0	0	0 0	1 1	0 0	-> ->	305 987
total:	20	30	13	0	16	29	3	68	22	7	->	211
idle :	80%	60%	90%	98%	92%	80%	90%	74%	64%	90%	->	81%

13.2.3.2 LwIP low priority IO functions

1	:	125	19	110	108	11	54	62	198	43	7	->	742
1 2	:	125 78	117		108 80	17		62 27					742 791
	:			213	80 9		0		104	61	90	->	
3 4	:	233	33 196	41		88	121	107	34	29	106	->	808
-		65		96	129	15	88	5	117	66	72	->	853
5	:	29	9	174	202	33	9	7	56	29	174	->	727
6	:	15	25	78	11	56	0	17	247	100	253	->	806
7	:	62	123	24	94	140	0	5	119	39	182	->	792
8	:	31	33	113	0	274	33	0	27	131	158	->	804
9	:	243	121	9	0	1	256	0	23	111	41	->	810
10	:	29	0	118	41	0	112	92	102	115	224	->	835
11	:	21	37	82	243	0	23	103	115	43	151	->	821
12	:	54	25	0	64	115	96	168	27	92	176	->	821
13	:	123	0	131	7	113	151	111	5	113	68	->	827
14	:	154	194	0	31	70	29	113	94	25	125	->	839
15	:	33	66	117	113	0	17	231	178	5	7	->	772
16	:	152	23	127	160	0	11	268	58	29	3	->	837
17	:	80	25	178	62	0	0	64	149	160	105	->	827
18	:	31	66	115	41	0	0	290	39	147	43	->	774
19	:	81	192	18	172	0	39	100	62	96	83	->	846
20	:	64	213	70	0	0	39	76	0	152	213	->	831
21	:	215	125	11	207	43	47	47	0	50	47	->	796
22	:	103	233	5	94	49	64	0	98	188	0	->	837
23	:	152	115	137	168	29	113	0	131	0	0	->	849
24	:	68	152	50	113	52	70	49	56	125	92	->	833
25	:	233	35	15	25	213	29	203	27	0	35	->	819
26	:	131	37	0	11	229	0	188	0	217	0	->	815
27	:	149	100	0	39	49	333	1	0	58	3	->	735
28	:	200	109	0	117	5	119	0	17	243	0	->	813
29	:	117	202	0	100	90	101	0	62	154	0	->	829
30	:	202	56	0	74	70	200	3	52	162	5	->	829
31	:	268	29	0	249	0	52	0	105	103	0	->	810
32	:	115	37	0	88	0	176	0	282	11	101	->	813
33	:	119	182	0	103	7	107	0	253	52	1	->	829
34	:	198	207	0	1	0	0	0	207	203	0	->	819
35	:	243	154	0	7	0	0	0	130	263	43	->	843
36	:	215	209	0	0	0	31	0	209	88	76	->	831
37	:	153	121	0	19	144	196	0	86	88	13	->	823
38	:	181	149	0	0	291	0	0	39	0	162	->	823
39	:	62	127	0	0	70	29	0	86	273	80	->	730
40	:	27	141	0	0	199	86	0	115	47	190	->	807
41	:	7	282	0	0	17	39	Ő	127	43	282	->	799
42	:	29	188	0	0	46	80	78	43	192	194	->	853
43	:	90	200	0	0	62	123	25	180	70	66	->	819
44	:	249	145	0	50	305	0	15	0	0	28	->	794
45		13	72	0	286	105	0	98	0	50	176	->	804
46		98	51	0	17	110	0	266	0	184	78	->	807
47	:	241	82	0	68	86	0	176	0	154	0	->	810
48	:	43	121	0	221	268	0	52	0	96	0	->	804
40	:	43	54	0	239	130	0	125	0	254	0	->	814
49 50	:	, 164	209	0	141	130	0	84	0	227	0	->	827
50	•	T04	209	0	TAT	U	U	04	0	441	U		04/
tota	٦.	116	109	40	80	72	61	65	81	104	79	->	812
idle		08 110	109 4%	40 54%	80 20%	28%	5⊥ 32%	65 34%	81 22%	104 8%	20%	-> ->	812 22%
тате	•	0.9	т.º	71%	20%	20%	J 4 %	51%	22.0	0.9	20%		22.0

13.2.3.3 Quadros, socket API

13.3 Speed test results

Open 1 to 10 connections and check transfer rate during 5 times 5 seconds.

- 1. The first column gives the number of connections.
- 2. The second column gives the average total speed.
- 3. The third column gives the maximum total speed during 5 seconds.
- 4. The fourth column gives the percentage of times no traffic occurred on a connection during 5 seconds.
- 5. The last columns give the average speed per connection.

All speeds are again in kB/sec

13.3.1 Incoming traffic

13.3.1.1	LwIP on high priority test app	lications
10.0.1.1	LWI OIT HIGH PHOTILY lest app	incanons

	1	:	785	786	0%	785									
	2	:	945	947	0%	472	472								
	3	:	956	959	0%	318	318	318							
	4	:	881	885	0%	220	220	220	220						
	5	:	882	887	8%	200	204	87	211	178					
	6	:	881	885	13%	180	197	206	150	126	19				
	7	:	881	886	5%	77	184	44	156	141	186	90			
	8	:	874	883	0%	77	145	136	164	83	70	77	119		
	9	:	873	878	11%	86	59	148	134	133	5	55	127	122	
	10	:	871	874	20%	102	112	136	135	118	133	58	38	35	0
13.	3.1.	2		LwIP	on le	w pri	ority t	est ap	plicat	tions					
	1	:	566	604	0%	566									
	2	:	833	839	0%	424	409								
	3	:	832	838	0%	255	282	294							
	4	:	835	837	0%	227	150	225	233						
	5	:	827	829	0%	180	182	130	164	169					
	6	:	826	829	20%	234	230	20	146	0	194				
	7	:	827	833	0%	103	136	158	111	102	58	157			
	8	:	811	823	7%	134	163	127	119	58	70	94	43		
	9	:	816	829	0%	96	112	88	86	67	112	108	79	64	
	10	:	817	832	22%	104	141	74	93	81	49	0	65	94	112
10	0.1	0		~				1							

13.3.1.3 Quadros with test applications using select

incoming			traff	Lс			
1	:	706	737	0%	706		
2	:	854	858	0%	427	427	
3	:	343	855	20%	114	114	114

13.3.2 Outgoing traffic

13.3.2.1		LwIP	on hi	igh pr	iority	test a	pplica	tions					
1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 :	703 951 947 943 907 815 919 932 876 904	703 952 972 970 961 929 937 950 962 955	0% 0% 0% 0% 0% 11% 26%	703 475 345 354 243 114 129 150 121 110	475 243 181 131 189 106 165 61 107	358 304 166 185 115 119 101 30	102 175 132 171 139 170 110	191 117 142 112 124 115	75 90 86 62 94	163 84 106 195	73 126 121	0 0	18
13.3.2.2		LwIP	on lo	w prie	ority t	est ap	plicat	ions					
1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 :	703 917 931 947 953 926 893 936 866 657	703 926 972 969 969 968 961 953 936 834	0%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	703 472 296 211 105 151 111 122 60 92	444 303 231 237 143 175 135 97 54	331 306 263 252 62 82 79 83	198 131 140 115 171 53 55	214 81 192 139 109 48	156 118 70 88 55	117 113 114 55	101 97 75	166 60	75
13.3.2.3		Quad	lros w	ith tes	st app	licatic	ons us	ing se	elect				
1 : 2 : 3 :	24 15 24	24 16 25	0% 0% 0%	24 7 8	7	8							
13.3.3 Bidirectional traffic													
				. 1	,	, ,	1.	<i>,.</i>					
13.3.3.1	unect	LwIP		igh pr	iority	test aj	pplica	tions					
	724 911 760 774 257 503 97 180 108			<i>igh pr</i> 724 480 263 265 81 36 125 0 55 5	430 199 91 297 101 122 0 0 0	298 239 42 22 0 0 0 0	178 116 49 0 5 0	176 30 69 4 0 0	16 60 3 69 0	125 83 53 103	0 0 0	0 0	0
13.3.3.1 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 :	724 911 760 774 257 503 97 180	<i>LwIP</i> 725 941 886 820 775 610 706 459 448	Con hi 0% 0% 0% 12% 60% 17% 75% 60% 84%	724 480 263 265 81 36 125 0 55 5	430 199 91 297 101 122 0 0 0	298 239 42 22 0 0 0 0	178 116 49 0 5 0 0	176 30 69 4 0 0	60 3 69	83 53	0		0
13.3.3.1 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 :	724 911 760 774 257 503 97 180	<i>LwIP</i> 725 941 886 820 775 610 706 459 448 514	Con hi 0% 0% 0% 12% 60% 17% 75% 60% 84%	724 480 263 265 81 36 125 0 55 5	430 199 91 297 101 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	298 239 42 22 0 0 0 0	178 116 49 0 5 0 0	176 30 69 4 0 0	60 3 69	83 53	0		0
13.3.3.1 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : 13.3.3.2 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 10 : 13.3.3.2 1 : 8 : 9 : 10 : 13 : 3 : 4 : 5 : 6 : 7 : 8 : 10 : 13 : 3 : 9 : 9 : 10 : 13 : 3 : 9 : 9 : 10 : 13 : 10 : 13 : 10	724 911 760 774 257 503 97 180 108 886 848 843 861 811 848 817 806 817	LwIP 725 941 886 820 775 610 706 459 448 514 LwIP 896 867 867 867 867 867 885 836 933 829 825 823 820	Con hi 0% 0% 0% 12% 60% 17% 60% 84% Con lo 0% 40% 53% 55% 40% 55% 40% 52% 43% 0% 0% 8%	724 480 263 265 81 36 125 0 55 5 w pric 886 812 21 6 59 141 133 105 80	430 199 91 297 101 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	298 239 42 22 0 0 0 0 0 802 55 174 68 123 98 80 85	178 116 49 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	176 30 4 0 0 tions	60 3 69 0 0 75 90 101 130 3	83 53 103 114 82 141	0 0 120 81	0	

13.4 Load test results

Open 1 connection, generate an increasing amount of traffic and measure the load (percentage of processing time spend on the TCP/IP stack). To get an accurate result for the target speed the measurement was repeated 5 times and the average was taken over the test results that came close to the target speed.

Target	Tes	t 1	Tes	st 2	Tes	st 3	Tes	st 4	Tes	t 5	Ave	rage
Speed	Load	Speed	Load	Speed	Load	Speed	Load	Speed	Load	Speed	Load	Speed
kB/s	‰	kB/s	‰	kB/s	‰	kB/s	‰	kB/s	‰	kB/s	%	kB/s
0	5	0	5	0	6	0	5	0	5	0	0,5	0
10	13	10	15	10	13	10	15	10	15	10	1,4	10
20	25	20	25	20	23	20	25	20	25	20	2,5	20
30	34	30	34	30	34	30	35	30	34	30	3,4	30
40	44	40	44	40	44	40	44	40	44	40	4,4	40
50	52	50	54	50	54	50	54	50	56	50	5,4	50
60	63	60	63	60	63	60	63	60	63	60	6,3	60
70	73	70	73	70	71	70	73	70	73	70	7,3	70
80	83	80	81	80	81	80	81	80	83	80	8,2	80
90	91	90	90	90	91	90	90	90	95	90	9,1	90
100	100	100	100	100	100	100	102	100	103	100	10,1	100
110	112	110	112	110	110	110	108	110	112	110	11,1	110
120	120	120	120	120	122	120	120	120	120	119	12,0	120
130	129	130	130	129	130	130	130	129	130	129	13,0	129
140	139	140	141	139	141	140	139	140	139	140	14,0	140
150	149	150	149	150	149	150	147	150	147	149	14,8	150
160	158	160	158	159	159	160	158	160	159	160	15,8	160
170	170	170	168	170	170	169	170	169	166	169	16,9	169
180	178	180	178	180	178	180	180	179	178	180	17,8	180
190	190	190	187	190	188	190	187	190	187	190	18,8	190
200	197	200	197	200	198	200	198	199	198	200	19,8	200
210	205	209	207	209	207	210	207	210	207	210	20,7	210
220 230	215 226	219 229	217	219 228	217	219 229	217 226	219 229	215 226	219 229	21,6 22,6	219 229
240	236	239	238	239	236	239	238	239	236	239	23,7	239
250	248	249	246	249	248	249	246	249	244	249	24,6	249
260	256	259	256	259	256	259	256	259	256	259	25,6	259
270	266	269	266	269	266	268	265	269	265	269	26,6	269
280	277	278	275	279	275	279	275	279	275	279	27,5	279
290	283	289	283	289	285	289	285	289	285	289	28,4	289
300	295	299	294	299	295	299	294	298	295	299	29,5	299
310	302	308	304	309	306	308	304	309	304	308	30,4	308
320	312	318	312	318	314	318	312	318	312	318	31,2	318
330	326	328	323	329	321	328	321	329	324	328	32,3	328
340	333	338	333	338	333	338	331	338	334	338	33,3	338
350	341	348	343	348	343	348	341	348	341	348	34,2	348
360	353	358	353	358	353	358	353	358	353	358	35,3	358
370	362	368	363	368	362	368	360	368	362	368	36,2	368
380	372	378	372	378	372	378	370	378	373	378	37,2	378
390	380	388	382	388	380	388	382	388	382	388	38,1	388
400	390	398	389	398	390	398	389	398	392	398	39,0	398
410	401	408	399	408	401	408	402	408	401	408	40,1	408
420	409	418	411	418	413	418	413	418	409	418	41,1	418
430	421	428	419	428	418	428	419	427	421	428	42,0	428
440	430	438	431	438	430	438	428	438	430	438	43,0	438
450	438	448	438	448	440	448	440	448	440	448	43,9	448
460	448	458	448	458	448	458	448	458	447	457	44,8	458
470	458	468	458	468	458	467	457	468	458	468	45,8	468
480	467	478	470	478	469	479	469	479	469	477	46,9	478
490	479	488	479	489	479	488	477	488	477	489	47,8	488
500	486	499	489	497	489	500	482	498	491	498	48,7	498
510	492	509	499	509	498	506	494	508	496	498	49,5	509
520	504	517	511	519	504	518	509	520	508	518	50,7	518
530	515	527	516	528	515	529	515	528	515	527	51,5	528
540	521	537	523	539	525	537	528	537	526	537	52,5	537
550	535	549	533	550	537	548	538	549	535	548	53,6	549
560	547	557	545	560	543	559	545	559	545	559	54,5	559
570	554	567	555	569	552	568	559	568	554	567	55,5	568
580	562	579	564	580	564	580	567	579	565	580	56,4	580
590	576	589	572	589	576	590	571	589	572	590	57,3	589
600	584	600	582	599	586	598	584	597	586	599	58,4	599
610	594	607	596	608	593	609	596	609	594	607	59,5	608
620	601	620	605	619	608	618	603	620	603	618	60,4	619
630	615	627	615	629	615	629	613	630	615	629	61,5	629
640 650	627 637	639 649	623 635 642	639 649	628 633	640 646	628 633	637 650	623 633	639 649	62,6 63,4	639 649
660	644	656	649	660	639	660	645	656	644	659	64,3	658
670	654	670		668	650	670	656	669	650	669	65,2	669
680	667	678	666	676	661	679	662	676	664	679	66,4	678
690	669	689	669	689	673	689	673	688	673	689	67,1	689
700	684	699	683	699	683	699	686	697	679	696	68,3	698
710	691	710	691	709	691	710	691	709	690	710	69,1	710
720	703	719	707	718	705	718	701	718	703	719	70,4	718
730	707	727	703	728	708	726	707	730	710	730	70,7	728
740	720	738	724	740	730	738	720	739	718	738	72,2	739
750	739	747	730	750	730	748	732	749	724	745	73,1	748
760	742	759	741	759	741	757	739	759	741	759	74,1	759
770	744	769	751	769	751	770	751	768	754	769	75,0	769
780	761	779	764	778	758	777	759	776	759	779	76,0	778
790	766	786	766	785	766	784	764	784	764	784	76,6	786
800	766	784	764	785	766	782	766	783	764	783	76,5	783
810	766	786	766	784	764	786	766	779	763	708	76,6	784
820	764	785	764	784	766	784	766	783	766	783	76,5	784
830	764	784	764	784	764	785	766	785	766	786	76,5	785
840	764	786	764	786	766	783	764	786	766	786	76,5	785
850	764	786	764	786	766	786	766	786	766	783	76,5	785
860	766	786	766	786	768	784	766	786	764	785	76,6	785
870	766	786	766	786	766	786	764	786	764	785	76,5	786
880	766	786	766	785	763	783	763	784	763	782	76,4	784
890	759	780	766	786	761	784	764	783	766	785	76,3	784
900	764	785	764	785	766	784	766	785	764	785	76,5	785
910	764	782	761	780	761	782	764	784	764	784	76,3	782
920	761	781	763	784	764	784	763	784	764	785	76,3	784
930	764	785	764	784	766	785	766	786	766	786	76,5	785
940	766	786	766	786	768	786	766	786	766	786	76,6	786
950	763	785	764	786	764	786	764	786	766	786	76,4	786
960	764	786	766	786	764	786	764	786	764	786	76,4	786
970	766	786	764	785	764	786	766	786	766	786	76,5	786
970 980 990	766 764	785 786	764 766 766	786 786	764 766 766	786 786	766 766	786 786	766 766	786 786	76,6 76,6	786 786 786
1000	764	786	766	786	766	786	766	786	764	786	76,5	786

13.4.1.1 Incoming traffic

Outgoing traffic

Target Speed	Tes Load	st 1 Speed	Tes	st 2 Speed	Tes	st 3 Speed	Tes Load	st 4 Speed	Tes Load	t 5 Speed	Aver Load	age Speed
kB/s	‰ 5	kB/s	‰ 5	kB/s	‰ 5	kB/s	%	kB/s	‰ 5	kB/s	% 0.5	kB/s
10	13	10	12	10	12	10	17	10	18	10	1,4	10
20	32	20	30	20	32	20	30	20	30	20	3,1	20
30 40	42	30	42	30	40	30	40	30	40	30 40	4,1	30
50	51 63	40 50	51 61	40 50	51 61	40 50	49 63	40 50	52 61	50	5,1 6,2	40 50
60	73	60	71	60	69	60	71	60	73	60	7,1	60
70	81	70	83	70	83	70	81	70	81	70	8,2	70
80	91	80	93	80	91	80	93	80	93	80	9,2	80
90	100	90	102	90	105	90	105	90	103	90	10,3	90
100	115	100	113	100	113	100	113	100	115	100	11,4	100
110	125	110	122	110	124	110	124	110	125	110	12,4	110
120	136	120	136	120	134	120	136	120	136	120	13,6	120
130	146	130	147	130	147	130	147	130	147	130	14,7	130
140	156	140	158	140	156	140	156	140	154	140	15,6	140
150	166	150	168	150	166	150	166	150	168	150	16,7	150
160	178	160	178	160	178	160	176	160	178	160	17,8	160
170	187	170	187	170	188	170	188	170	188	170	18,8	170
180	198	180	198	180	198	179	198	180	197	179	19,8	180
190	209	190	209	190	209	190	207	190	209	190	20,9	190
200	219 229	200 209	219	200	219	200	219	200	219	200	21,9	200
210 220	239	220	227 239	209 220	231 238	210 220	229 239	210 220	227 238	210 220	22,9 23,9	210 220
230	249	229	249	230	249	229	251	229	251	229	25,0	229
240	261	240	260	240	261	240	261	240	260	240	26,1	240
250	270	249	273	250	272	250	273	250	273	250	27,2	250
260	283	260	282	260	283	260	283	260	283	260	28,3	260
270	294	270	294	270	295	270	294	270	292	270	29,4	270
280	302	280	304	280	302	279	304	280	304	280	30,3	280
290	314	289	316	290	314	290	314	290	314	289	31,4	290
300	321	299	324	300	328	299	324	299	324	299	32,4	299
310	333	310	334	309	334	309	333	310	336	309	33,4	309
320	345	320	346	319	348	320	345	320	345	320	34,6	320
330	358	329	356	330	355	330	355	329	356	330	35,6	330
340	365	339	368	340	367	339	365	340	367	339	36,6	339
350	377	350	377	349	377	349	377	349	377	349	37,7	349
360	389	359	387	360	390	359	385	360	387	359	38,8	359
370	397	369	397	369	397	369	399	369	399	370	39,8	369
380	409	380	409	379	407	379	409	379	409	317	40,9	379
390	219	364	421	390	419	390	419	390	419	390	42,0	390
400	430	400	430	399	430	399	431	400	433	400	43,1	400
410	441	410	441	409	441	409	441	410	441	410	44,1	410
420	453	419	450	419	453	420	452	419	452	419	45,2	419
430	462	429	462	429	464	429	464	430	462	429	46,3	429
440	475	439	472	439	472	440	472	440	472	439	47,3	439
450	484	450	484	450	484	450	484	450	484	450	48,4	450
460	496	460	494	459	494	459	494	460	494	460	49,4	460
470	504	469	504	469	504	469	506	469	504	469	50,4	469
480	515	479	516	479	518	479	515	479	516	480	51,6	479
490	525	489	528	490	528	489	528	489	526	488	52,7	489
500	537	499	537	499	535	499	537	499	535	499	53,6	499
510	547	510	549	510	547	509	550	509	543	509	54,7	509
520	555	519	555	520	559	519	557	519	557	519	55,7	519
530	571	528	567	529	567	529	567	529	567	529	56,8	529
540	576	539	579		577	538	579	539	577	539	57,8	539
550	588	548	591	538 550	588	549	591	549	589	549	58,9	549
560	601	559	598	559	599	559	599	560	601	560	60,0	559
570	608	569	610	569	611	568	610	568	610	568	61,0	568
580	622	578	618	579	620	578	622	579	622	579	62,1	579
590	630	588	630	588	628	589	630	589	632	589	63,0	589
600	640	598	642	599	640	599	640	599	644	599	64,1	599
610	647	609	647	608	650	608	645	606	650		64,8	608
620	647	606	649	607	647	606	649	606	647	606	64,8	606
630	649	606	650	606	649	606	647	606	645	606	64,8	606
640	645	606	647	606	649	606	647	606	645	606	64,7	606
650	649	606	647	606	647	607	647	606	647	607	64,7	606
660	645	606	647	606	647	606	645	607	649	606	64,7	606
670	645	606	649	606	645	606	649	606	647	606	64,7	606
680	649	606	649	606	647	606	645	606	39	198	64,8	606
690	647	606	647	606	649	606	649	607	647	606	64,8	606
700	647	606	647	606	647	606	647	607	649	606	64,7	606
710	647	607	649	606	650	606	647	606	649	606	64,8	606
720	649	606	649	606	645	606	649	606	649	606	64,8	606
730	647	606	649	606	649	606	649	606	516	499	64,9	606
740	647	611	647	606	644	606	649	606	647	606	64,7	607
750	647	606	649	606	649	606	647	606	647	606	64,8	606
760	649	606	649	606	647	606	647	606	647	606	64,8	606
770	647	606	649	606	647	606	649	606	645	606	64,7	606
780	645	606	645	606	647	607	649	606	649	606	64,7	606
790	645	606	645	606	649	606	650	606	649	606	64,8	606
800	649	606	647	606	645	606	649	606	647	606	64,7	606
810	647 649	606 606	649	606	647 647	607 606	644	606 606	647	606	64,7	606
820 830	649	606	650 647	606 606	647	606	647 650	606	645 647	606 606	64,8 64,8	606 606
840	647	606	649	606	650	606	645	606	647	606	64,8	606
850	647	606	647	606	647	606	647	607	649	606	64,7	606
860	647	606	647	606	649	606	649	606	649	606	64,8	606
870	645	606	649	606	649	606	649	606	649	606	64,8	606
880	650	606	649	606	647	606	649	607	649	606	64,9	606
890	647	606	649	606	645	606	649	607	647	606	64,7	606
900	645	607	647	606	647	606	649	607	647	606	64,7	606
910	649	606	647	606	645	606	649	606	647	606	64,7	606
920	645	606	647	606	649	606	649	606	647	607	64,7	606
930	649	606	649	606	649	606	647	606	647	606	64,8	606
940	650	606	647	606	649	606	650	606	650	606	64,9	606
950	649	606	647	606	647	606	647	606	649	606	64,8	606
960	650	606	647	607	649	606	647	606	649	606	64,8	606
970	647	606	649	606	649	606	647	606	645	606	64,7	606
980	645	606	649	606	649	606	644	605	650	606	64,7	606
990	649	606	647	606	649	607	645	606	647	607	64,7	606
1000	647	606	645	606	647	606	647	607	647	606	64,7	606

	13.4.1.2	4.1.2 Diairectional speed												
Ibb Ibb <th></th> <th></th> <th></th> <th colspan="2"></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th colspan="3"></th>														
	kB/s	%	kB/s	‰	kB/s	‰	kB/s	‰	kB/s	‰	kB/s	%	kB/s	
30 46 31 46 30 46 30 46 30 46 30 90 80 50 70 80 70 80 80 70 70 90 80 50 70 80 <th>10</th> <th>18</th> <th>10</th> <th>18</th> <th>11</th> <th>17</th> <th>11</th> <th>17</th> <th>11</th> <th>17</th> <th>11</th> <th>1,7</th> <th>11</th>	10	18	10	18	11	17	11	17	11	17	11	1,7	11	
b b c d		30 44												
10 10<	40	56	41	56	41	56	41	56	41	56	41	5,6	41	
1 1 </td <td></td>														
80 112 80 113 80	70	88	70	90	70	90	70	90	70	90	70	9,0	70	
113 147 113 138 110 138 110 136 <td></td> <td>90</td> <td></td> <td></td>											90			
157 150 157 150 <td></td>														
140 173 140 171 140 173 140 <td>120</td> <td>147</td> <td>120</td> <td>149</td> <td>120</td> <td>149</td> <td>120</td> <td>147</td> <td>120</td> <td>149</td> <td>120</td> <td>14,8</td> <td>120</td>	120	147	120	149	120	149	120	147	120	149	120	14,8	120	
1001														
1102701002701002771002701001001001001001001001001001001001001001001001001001001001												18,4		
1301201201301201301201301301201301	170	207	170	207	170	207	170	207	170	205	170	20,7	170	
200 240 100 241 100 244 100 243 100 210 250														
120 120 <td>200</td> <td>243</td> <td>199</td> <td>244</td> <td>199</td> <td>243</td> <td>199</td> <td>244</td> <td>199</td> <td>243</td> <td>199</td> <td>24,3</td> <td>199</td>	200	243	199	244	199	243	199	244	199	243	199	24,3	199	
240 280 240 280 <td>220</td> <td>263</td> <td></td> <td>266</td> <td>219</td> <td></td> <td></td> <td></td> <td></td> <td>266</td> <td></td> <td></td> <td></td>	220	263		266	219					266				
260 300 240 301 240 301 240 301 240 301 240 301 240 301 240 301 240 301 240 301 240 301 240 301 240 301 250 301 250 301 250 301 <td></td>														
1 2 2 2 3 2 3 3 2 3 3 2 3	250	300	249	302	249	299	249	300	249	299	249	30,0	249	
280 280 270 380 270 380 270 380 270 380 270 380 270 380 270 380 270 380 <td></td> <td>259 269</td>													259 269	
310 346 236 346 230 346 230 347 230 347 230 310 332 330 341 330 441 430 440	280											32,6		
330 372 372 372 372 373 370 370 372 379 330 372 372 372 372 379 370 370 372 379 340 440 384 440	300	346	299	348	299	346	299	348	299	346	299	34,7	299	
333 382 323 379 320 382 333 384 323 384 382 383 350 446 384 448 384 448 384 448 384 448 384 448 384 448 384 448 384 448 384 448 384 448 384 448 384 448 384 448 384 448 384 448 384 448 384 448 384 448 384 448		360 372		360 372			309 319	358 372		358 370			309 319	
360 466 388 466 384 462 384 464 384 464 384 463 384 300 440 378 440 378 441 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440	330	382	329	382	329	379	329	382	329	384	329	38,2	329	
310 430 368 428 368 428 368 428 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 460 440 460 440 460 440 460 440 460 440 460 440 460 440 <td>350</td> <td>406</td> <td>348</td> <td>406</td> <td>348</td> <td>406</td> <td>349</td> <td>402</td> <td>348</td> <td>404</td> <td>348</td> <td>40,5</td> <td>348</td>	350	406	348	406	348	406	349	402	348	404	348	40,5	348	
380 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 378 440 <td></td>														
4400 442 388 442 388 444 488 444 488 444 488 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 448 <td>380</td> <td>440</td> <td>378</td> <td>440</td> <td>378</td> <td>441</td> <td>378</td> <td>441</td> <td>378</td> <td>440</td> <td>378</td> <td>44,0</td> <td>378</td>	380	440	378	440	378	441	378	441	378	440	378	44,0	378	
440 448 458 450 447 520 447 440 552 447 552 447 552 447 553 447 553 447 553 447 553 447 553 447 555 447 556 447 556 447 557 447 557 447 557 447 557 447 553 453 461 533 537 663 533 624 535 537 653 537 653 613 537 653 613 537 663 537 633 537 633 537 633 537 633 537 633 537 633 537 633 537	390 400			452 462	388 398		388 398	452 462	388 398	452 464	388 398			
440 428 448 428 448 448 448 448 448 448 448 448 448 449 440 441 440 441 440 <td></td>														
450 520 447 518 447 520 448 521 447 52.0 447 460 538 447 532 448 532 447 530 447 550 447 460 558 447 556 448 544 447 555 448 564 447 555 448 564 447 555 448 564 447 555 448 564 447 555 447 450 555 448 564 457 457 457 450 457 457 450 560 557 457 457 450 557 457 457 453 457 453 457 453 457 453 457 453 457 457 457 453 457 453 457 453 457 453 457 453 457 453 457 453 457 453 457 453	430	496	428	496	428	498	428	498	428	498	428	49,7	428	
470 538 467 542 467 542 477 556 478 555 477 555 477 555 477 455 477 455 477 455 477 455 477 456 477 456 477 450 554 477 457 447 455 477 400 579 467 560 589 506 559 506 559 507 467 577 467 550 560 560 577 667 567 667 577 663 577 663 567 667 557 667 567 667 577 667 677 567 667 577 667 577 667 577 667 577 667 577 667 577 667 577 667 577 667 577 667 577 667 577 667 577 667 577 577 673		508 520												
480 555 477 555 478 554 477 555 477 400 585 467 565 487 565 487 555 477 500 573 467 575 486 574 470 575 460 575 467 460 575 460 575 467 460 575 460 575 460 575 460 575 460 575 467 460 575 467 560 575 667 567														
500 579 497 577 497 576 497 577 497 577 497 577 497 577 497 577 497 577 497 577 497 577 497 577 497 577 497 577 497 577 497 577 497 577 497 577 497 577 673 557 623 557 623 557 633 647 633 647 633 647 633 647 633 647 633 647 633 647 633 647 633 647 633 647 633 647 633 647 643 641 657 641 657 643 657 643 657 643 657 643 657 643 657 643 657 643 657 643 657 643 657 643 657 643 653 677 673 <td>480</td> <td>555</td> <td>477</td> <td>554</td> <td>477</td> <td>555</td> <td>477</td> <td>555</td> <td>478</td> <td>554</td> <td>477</td> <td>55,5</td> <td>477</td>	480	555	477	554	477	555	477	555	478	554	477	55,5	477	
510 588 507 588 506 589 508 589 508 589 508 589 508 589 508 589 508 589 508 589 508 589 508 517 613 528 613 528 613 528 613 528 613 548 633 547 633 547 633 547 633 547 633 547 643 547 643 547 643 547 643 557 647 557 647 557 646 657 667 657 667 657 667 657 667 657 667 657 667 657 667 657 667 657 667 657 667 657 667 657 667 657 667 657 667 657 663 568 673 569 673 569 673 569 673 569 673 <td></td> <td>56,5 57,7</td> <td></td>												56,5 57,7		
530 611 526 611 527 611 526 613 526 612 526 540 625 538 623 537 623 537 623 536 624 537 633 547 633 547 550 626 557 669 577 669 577 669 577 667 577 670 577 560 683 586 661 577 661 587 681 586 691 576 677 577 580 660 681 587 681 586 691 587 681 580 683 591 693 683 591 693 683 591 693 693 597 683 693 693 693 693 693 693 693 693 693 693 693 693 693 693 693 693 693 693 693	510	589	507	588	506	589	506	589	508	589	506	58,9	507	
550 632 546 633 547 633 547 633 547 633 547 633 547 633 547 633 547 633 547 633 547 633 547 637 557 645 557 646 657 557 500 663 576 657 567 657 567 657 657 657 657 657 657 657 657 657 657 657 657 657 657 657 657 658 653 557 663 556 653 656 653 656 653 656 653 656 653 657 658 653 557 653 653 557 656 653 557 656 653 557 656 653 657 653 653 557 656 653 657 557 656 653 657 553 657 553	530	611	526	613	527	611	527	613	526	613	526	61,2	526	
560 645 556 647 557 647 557 645 557 646 557 567 <th></th>														
580 669 577 663 576 671 577 67.0 577 590 663 567 661 566 681 587 663 587 600 683 597 663 596 691 596 693 597 663 597 610 881 590 671 588 671 590 681 590 683 591 673 590 681 590 683 591 673 590 681 590 683 591 673 590 683 591 673 590 673 591 683 691 593 673 591 683 591 683 591 673 591 673 591 673 591 673 591 673 591 673 591 673 591 673 591 673 591 673 591 673 591 673 593 673	560	645	556	647	557	645	557	647	557	645	557	64,6	557	
60063359769359669359669159669359769,359661063159063359067358967459068159068,058063063359067758967459068159167358967458068159068,0580640691593674588673581671588671588671581670581671581673					567									
610 681 595 681 590 681 590 681 590 683 590 676 587 676 589 679 590 681 590 683 673 588 673 588 673 588 673 588 673 589 673 588 671 589 673 588 681 591 673 588 681 591 673 588 681 591 680 590 590 590 590 590 673 588 673 581 673 <td></td>														
630 663 590 676 587 676 589 673 588 676 589 673 589 660 673 590 673 589 681 591 676 589 681 591 680 590 660 611 591 673 589 674 589 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589	610	681	595	681	590	683	591	681	592	676	590	68,2	592	
660 673 990 678 889 673 691 673 681 591 680 590 670 673 691 678 689 673 591 676 587 67,8 589 680 679 591 677 673 591 676 587 67,9 591 690 681 691 679 591 679 591 679 591 67,9 591 700 683 691 679 584 673 591 679 591 67,8 589 710 683 691 678 591 676 590 673 591 67,8 589 730 674 580 673 591 676 589 674 590 674 590 760 681 589 673 591 673 591 673 591 673 590 770 <		683	590	676	587		589	681	591	679	588	67,9	589	
660 671 691 678 589 663 691 66,0 690 670 679 691 678 589 676 587 67,8 589 660 679 590 679 591 679 591 679 591 67,8 589 660 681 691 679 590 674 589 673 591 673 591 67,8 590 700 686 691 679 588 673 591 673 589 673 581 673 591 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581 673 581														
680 679 591 671 591 673 591 690 681 591 673 591 678 591 679 591 673 590 700 686 591 679 591 678 589 681 592 681 590 710 683 591 676 590 677 591 673 590 720 674 586 678 591 676 590 678 589 678 589 678 589 678 589 678 589 678 589 678 589 678 589 678 589 678 589 678 589 678 589 678 589 678 589 678 589 678 589 676 588 678 589 677 589 673 589 673 589 673 589 673 589 673 589	660	681	591	678	589	679	591	678	589	683	591	68,0	590	
700 686 591 679 591 678 589 681 592 66.1 590 700 678 588 679 580 678 590 673 589 67.8 589 700 674 588 679 580 678 590 674 589 67.8 589 740 674 580 681 591 676 589 671 591 67.8 589 750 681 582 676 589 676 588 681 591 67.8 590 760 681 582 679 581 676 589 676 588 681 592 690 590 770 678 589 673 589 676 588 681 592 679 590 780 678 588 673 589 673 589 673 589 679 589	680	679	590	679	591	681	592	678	590	679	591	67,9	591	
710 683 591 678 589 678 589 678 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 673 589 674 590 673 589 674 590 673 589 674 590 673 589 674 590 673 590 760 681 589 679 591 679 591 679 591 673 589 674 589 674 580 674 580 674 580 674 580 674 580 673 580 674 580 674 580 673 580 674 580 674 580 674 580 673 580 673 580 673 580 673 580 673 580 673 580 673 5														
730 674 586 676 588 678 590 684 594 679 589 67.8 589 750 681 589 679 591 676 589 674 590 67.8 590 760 681 589 679 591 679 591 678 589 674 590 67.8 590 770 678 589 679 581 679 581 671 588 681 592 68.0 590 780 678 589 678 589 681 588 683 592 67.9 589 800 676 588 678 589 674 589 683 592 67.9 589 810 676 588 678 583 679 588 673 591 67.9 589 820 678 589 673 587 679 588	710	683		678	590	679	589	678	589	679		67,9	590	
750 681 589 679 591 679 592 678 589 674 500 67.8 590 770 678 589 679 591 679 589 681 588 681 592 68.0 590 770 678 589 679 581 679 581 681 588 681 592 67.9 590 780 678 589 678 589 671 588 683 592 67.9 589 800 676 588 681 592 678 589 679 582 800 676 588 683 592 681 592 678 589 67.9 589 810 676 588 681 591 679 588 679 589 673 589 67.9 580 820 677 580 679 589 679 589	730	674	586	676	588	678	590	684	594	679	589	67,8	589	
760 681 592 686 591 679 591 678 589 676 588 68.0 590 770 678 589 673 588 679 591 679 591 679 591 679 591 679 591 679 591 679 591 679 591 679 591 679 591 679 591 679 591 679 591 679 589 671 590 677 589 679 580 681 590 677 589 679 580										681 674				
780 681 587 683 592 673 588 679 591 673 591 673 591 673 591 673 591 673 590 800 678 588 681 590 674 589 681 592 673 583 673 583 810 676 588 681 592 673 583 673 583 673 583 673 583 820 678 591 686 592 684 592 681 590 673 588 68,2 591 820 677 583 673 583 673 583 673 583 673 580 673 581 673 583 673 583 673 583 673 583 673 583 673 583 673 583 673 583 673 583 673 583 673 583 <	760	681		686		679		678		676		68,0	590	
800 678 588 681 590 674 589 681 590 67.9 589 810 676 589 683 593 674 589 673 589 67.9 590 820 678 591 686 592 684 592 681 590 679 588 68,2 591 830 678 591 674 587 681 590 679 580 679 580 679 581 67,9 580 840 678 588 679 580 671 580 673 589 67,9 580 670 683 592 678 589 679 590 679 580 679 580 679 580 679 580 679 580 679 580 679 580 679 580 679 580 679 580 679 580 679 580														
810 676 589 683 593 679 588 679 592 678 589 67.9 590 820 681 591 666 592 681 591 683 591 684 681 591 684 591 684 591 681 590 840 678 588 679 589 679 580 679 581 684 591 681 590 850 679 588 679 589 679 580 679 588 681 592 673 588 67.9 589 860 679 588 679 589 679 590 679 588 679 580 679 580 679 580 679 580 679 580 679 580 679 590 673 580 673 580 673 580 673 580 673 580 673														
830 681 591 674 587 681 591 683 591 684 591 681 590 840 678 590 678 588 679 589 679 590 673 581 67.9 589 850 679 588 671 589 679 589 681 592 673 588 67.9 589 860 679 588 671 580 673 589 67.9 589 870 683 592 676 588 678 590 673 589 67.9 590 800 678 589 678 580 678 580 679 590 673 580 67.8 589 800 678 581 678 580 679 590 673 580 67.8 580 800 678 581 679 591 676 587	810	676	589	683	593	679	588	679	592	678	589	67,9	590	
840 678 590 678 588 679 589 679 580 673 581 67.9 580 850 679 588 671 580 673 581 673 581 67.9 580 860 679 588 681 590 681 586 678 589 681 580 678 589 681 580 678 589 673 590 673 590 67.9 590 800 678 589 678 581 679 590 679 580 679 590 679 580 679 590 679 580 679 590 679 580 679 590 679 580 679 590 679 580 679 590 679 580 679 590 679 580 679 590 679 580 679 590 679 590 67,9 590	830	681	591	674	587		591	683	591	684		68,2 68,1	590	
860 679 588 681 590 679 592 681 586 678 589 68.0 589 870 683 592 676 588 678 590 679 590 679 590 679 590 679 588 67.8 589 880 678 590 676 587 679 590 679 588 67.8 589 900 6778 591 678 580 676 587 679 590 67.8 589 900 6778 591 679 590 676 587 679 590 67.9 590 900 6778 588 681 591 674 589 681 590 67.9 590 67.9 590 920 681 590 677 580 677 590 67.9 590 67.9 590 67.9 590 67.9 590 </td <td>840</td> <td>678</td> <td>590</td> <td>678</td> <td>588</td> <td>679</td> <td>589</td> <td>679</td> <td>590</td> <td>679</td> <td>591</td> <td>67,9</td> <td>590</td>	840	678	590	678	588	679	589	679	590	679	591	67,9	590	
880 678 589 678 581 679 590 679 588 67,8 589 800 678 590 678 588 679 590 673 590 678 588 900 679 591 679 590 681 590 678 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 679 590 67,9	860	679	588	681	590	679	592	681	586	678	589	68,0	589	
880 678 590 678 580 679 590 676 587 679 590 67.8 589 900 679 591 679 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 681 590 679 590 679 590 679 590 679 590 681 590 681 590 681 590 681 590 681 590 679 590 683 590 679 591 683 590 678 580 678 580 678 580 679 591 679 591 679 591 679 591 679 590 673 590 673 590 673 590														
910 678 588 681 591 679 591 681 599 681 590 680 590 920 681 591 674 589 684 591 676 590 679 590 67.9 590 930 681 590 681 588 679 592 678 590 679 590 68.0 590 940 679 591 678 580 679 591 68.0 591 950 683 590 676 582 678 590 677 591 68.0 591 960 683 590 678 580 683 592 681 590 676 588 68,0 590 970 678 580 678 589 676 588 679 589 67,9 590 980 676 589 678 589 678 589	890	678	590	678	588	679	590	676	587	679	590	67,8	589	
930 681 590 681 588 679 592 678 590 679 590 68.0 590 940 679 591 678 590 679 580 683 593 679 591 68.0 591 950 683 590 676 588 683 592 681 590 678 588 68,0 590 960 681 590 676 588 683 582 681 590 678 588 68,0 590 970 678 590 679 591 679 591 679 589 67,7 590 980 678 589 678 588 676 588 681 590 67,9 580 990 676 592 678 589 676 588 681 590 67,9 580	910	678	588	681	591	679	591	681	589	681	590	68,0	590	
940 679 591 678 590 679 589 683 593 679 591 68,0 591 950 683 590 676 588 683 593 679 591 68,0 591 960 681 590 676 588 683 592 681 590 676 588 68,0 590 970 678 590 678 580 674 590 676 589 67,7 590 970 678 590 679 580 674 580 676 589 67,9 590 980 678 589 678 588 676 588 681 590 67,9 589 990 676 592 678 589 678 589 679 589 67,8 590														
960 681 590 678 589 674 590 676 589 67,7 590 970 678 590 679 581 679 591 679 589 67,9 590 980 678 589 661 592 678 589 678 589 676 589 679 589 990 676 592 678 589 678 589 679 589 67,8 590	940	679	591	678	590	679	589	683	593	679	591	68,0	591	
970 678 590 679 590 681 589 679 591 679 589 67.9 590 980 678 583 681 592 678 589 676 589 679 589 67.9 589 990 676 592 678 589 678 589 678 589 679 589 67.8 590	960	681			590		589	674	590	676	589	68,0 67,7	590	
990 676 592 678 589 678 589 678 589 679 589 67,8 590	970	678	590	679	590	681	589	679	591	679	589	67,9	590	
1000 678 591 679 590 678 588 678 590 683 590 67,9 590	990	676	592	678	589	678	589	678	589	679	589	67,8	590	
	1000	678	591	679	590	678	588	678	590	683	590	67,9	590	

13.4.1.2 Bidirectional speed

13.5 LwIP memory usage

Code size and RAM and ROM usage when compiled for the ColdFire. All values are in bytes.

- text is the as ambler code
- rodata are the variables that resides in ROM and are read only
- data are the variables that can be written and have an initial value witch means they reside in both ROM and RAM and are copied from ROM to RAM at startup.
- bss are the variables without an initial value, they reside only in RAM
- common are global variables used by multiple source files.

	text r	odata da	ita b	ss c	common t	total ROM T	otal RAM
src/core/ipv4/icmp.o	632	0	0	0	0	632	0
src/core/ipv4/ip_addr.o	110	8	0	0	0	118	0
src/core/ipv4/ip_frag.o	1656	8	0	7376	0	1664	7376
src/core/ipv4/ip.o	1002	0	0	0	0	1002	0
src/core/inet.o	1280	0	0	16	0	1280	16
src/core/mem.o	966	0	0	16017	0	966	16017
src/core/memp.o	458	44	0	5204	0	502	5204
src/core/netif.o	622	0	0	10	0	622	10
src/core/stats.o	818	407	0	0	1	1225	1
src/core/pbuf.o	1768	0	0	13063	0	1768	13063
src/core/raw.o	606	0	0	4	0	606	4
src/core/tcp_in.o	5536	0	0	44	4	5536	48
src/core/tcp_out.o	2540	0	0	0	0	2540	0
src/core/tcp.o	3668	13	6	1	20	3687	27
src/core/udp.o	1588	0	0	8	0	1588	8
src/core/dhcp.o	5902	0	4	0	0	5906	4
src/netif/etharp.o	2906	6	0	200	0	2912	200
src/api/api_msg.o	2674	0	44	0	0	2718	44
src/api/sockets.o	3806	0	44	6	0	3850	50
src/api/tcpip.o	206	0	0	9	0	206	9
src/api/api_lib.o	2560	0	0	0	0	2560	0
	41304	486	98	41958	25	41888	42081
					I		
src/support/io.o	4318	373	116	1	0	4807	117
src/support/printf.o	1854	0	0	0	0	1854	0
src/netif/ethernetif.o	2078	231	0	0	12244	2309	12244