
PERIODICITY OF SNMP TRAFFIC

Bachelor of Science Thesis

Author: J.G. van den Broek

Date: August 1
st
, 2007

Committee: dr. ir. A. Pras

 dr. ir. P.T. de Boer

 Prof. Dr. J. Schönwälder

Our problems are man-made, therefore they may be solved by man.

No problem of human destiny is beyond human beings.

- John F. Kennedy

Abstract

The Simple Network Management Protocol (SNMP) is currently widely in use to control, monitor, and

configure network elements. Even though SNMP technology is well documented and has been the topic of

research a number of times in the past, not much research has yet been done with respect to periodicity in

SNMP traffic.

This thesis aims at the development of a method through which periodic and aperiodic SNMP traffic can be

separated. This will be achieved by the creation of a set of algorithms which in all are capable of finding

relations between single SNMP messages, resulting in sets of related SNMP messages. These sets will

subsequently be marked as either periodic, or aperiodic.

The developed algorithms are implemented in a toolset, which can be used for the analysis of available

SNMP trace files. The analysis results suggest that the developed algorithms are capable of separating the

two SNMP traffic types in nearly all cases. The toolset and the acquired results of this research can be used

as a basis for possible future research regarding just either of the two SNMP traffic types.

III

Acknowledgements

My first three years of studying at the University of Twente ended with a Bachelor of Science assignment,

which resulted in this thesis. After almost three years of following courses, I received this assignment in

which I had to apply the obtained knowledge and the developed vision. This assignment has been a real

challenge for me and I could not have done it without the help and support of a number of other people.

I would like to express my deepest appreciation to my assignment supervisor dr. ir. A. Pras, who works at

the department of DACS at the EWI faculty of the University of Twente, for his critical view, constructive

level of criticism and the time he has made available for our regular meetings. I also would like to thank

him for giving me the opportunity to present my intermediate findings of this research at the EMANICS

WP7 meeting in Bremen, Germany.

Secondly, I would also like to thank the other committee members for their constructive input during the

course of my research period: dr. ir. P.T. de Boer (DACS department) and Prof. Dr. J. Schönwälder (Jacobs

University).

Furthermore, a special thanks goes out to Mrs. Chapman (MA MALT, BEd Hons), for suggesting some

language related changes to the final draft version of this thesis.

Finally, I would like to thank my family for expressing their continuous support and words of

encouragement.

Gijs van den Broek

IV

This page intentionally left blank.

Contents

1 INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Problem description ... 1

1.2.1 Single manager and single agent.. 2

1.2.2 Single manager and multiple agents .. 4

1.2.3 Problem summary .. 7

1.3 Research questions... 7

1.4 Approach and thesis outline... 9

1.5 Intended audience .. 9

1.6 Related work.. 9

2 SESSION DETERMINATION .. 11

2.1 Basic definition.. 12

2.2 Considerations ... 12

2.2.1 Multiple referenced OIDs .. 13

2.2.2 Timeout and retransmissions.. 13

2.2.3 Table characteristics... 15

2.2.4 Non-get-like operation types.. 16

2.2.5 OID insertion and position change... 17

2.3 Complete session definition... 18

2.4 Algorithm... 20

2.4.1 Algorithm description .. 20

2.4.2 Example algorithm execution .. 22

3 IDENTIFYING SESSION TYPES .. 23

3.1 Basic definition.. 23

3.2 Considerations ... 24

3.2.1 Different manager-agent relations.. 25

3.2.2 Different operations on the same table... 26

3.2.3 Retransmissions within sessions .. 27

3.3 Complete session type definition ... 28

3.4 Algorithm... 29

3.4.1 Algorithm description .. 29

3.4.2 Example algorithm execution .. 31

4 FINDING SESSION SETS OF THE SAME SESSION SET TYPE ... 32

4.1 Introductory example... 32

4.2 Considerations ... 34

4.2.1 Multiple initiators... 35

4.2.2 Composite of periodic and aperiodic behaviour... 36

4.2.3 Multiple managers operating from the same IP address .. 37

4.2.4 Irregularly occurring session types .. 39

4.2.5 Incomplete session sets .. 41

4.3 Definitions ... 42

4.4 Algorithm... 43

4.4.1 Algorithm description .. 43

4.4.2 Example algorithm execution .. 50

VI

5 DETERMINATION OF PERIODICITY AND INTERVAL DETECTION 51

5.1 Introductory example... 51

5.2 Considerations ... 52

5.2.1 Timer related issues ... 53

5.2.2 Multiple intervals within a session set type ... 54

5.2.3 Composite of periodic and aperiodic behaviour... 55

5.2.4 Trace holes ... 55

5.2.5 Border session sets ... 56

5.3 Definitions ... 57

5.4 Algorithm... 58

5.4.1 Algorithm description .. 58

5.4.2 Example algorithm execution .. 64

6 TOOLSET DESCRIPTION ... 65

6.1 Toolset overview ... 65

6.2 Session determination algorithm.. 65

6.3 Session type determination algorithm.. 66

6.4 Session set and session set type determination algorithm.. 68

6.5 Periodic/aperiodic separation algorithm .. 69

7 ANALYSIS RESULTS.. 72

7.1 Trace l01t01 ... 72

7.2 Trace l03t02 ... 74

7.3 Trace l04t01 ... 75

7.4 Trace l05t01 ... 77

8 CONCLUSIONS.. 79

8.1 Research findings... 79

8.2 Recommendations.. 81

8.2.1 Toolset extension suggestions.. 81

8.2.2 Future research topics .. 81

APPENDIX ... 82

A1 Example algorithm execution – session detection ... 82

A2 Example algorithm execution – session type detection ... 86

A3 Example algorithm execution – session set detection .. 90

A4 Example algorithm execution – determination of periodicity.. 94

REFERENCES ... 97

LIST OF FIGURES.. 98

LIST OF TABLES.. 99

VII

1

Chapter 1

Introduction

1.1 Motivation
The Simple Network Management Protocol (SNMP) is currently widely in use to control, monitor, and

configure network elements including: network switches, printers, backup power supplies and many other

types of elements. Even though SNMP technology is well documented and has been the topic of research a

number of times in the past, not much research has yet been done with respect to periodicity in SNMP

traffic.

The desire for this topic of research developed during a time where large SNMP trace files, containing

possibly millions of recorded SNMP messages from a particular network, are available to researchers.

These files contain SNMP messages that occurred during a certain period of time on a single network. In

the long term, it is expected and desirable that specific research will take place on only either aperiodic of

periodic SNMP traffic that exists in these trace files. This marks the need for a method which can split

these trace files into two categories. After a separation method is developed, subsequent research can take

place on either of these two traffic categories.

The research regarding the topic at hand may be approached via a number of ways, but most notable via

one of the following three: through the use of Fourier analysis, the detection of traffic patterns of well

known SNMP applications, or the mapping and relating of SNMP messages to one another by extensively

analyzing the SNMP protocol characteristics. The first one would involve the sole use of Fourier analysis,

which may not yield the desired results concerning this topic, because there may be loss of traffic type

identification capabilities. The second suggestion would involve research of every implementation specific

characteristic, possibly through reverse engineering of the standard SNMP agent and manager

implementations that are in use today. Using this knowledge of patterns, it may be possible to remove all

periodic traffic (e.g. polling traffic) from the traces, which would remain the aperiodic portion. The third

option is the one that is chosen for this thesis. It is expected that through this more generally applicable

approach, it will be possible to identify portions of the trace files that are periodic or aperiodic in their

occurrence.

In order to create a basis for the stated possible future research related to specific forms of either periodic or

aperiodic SNMP traffic, research on the topic of separating these kinds of traffic from each other is

paramount. It is therefore the main aim of this thesis to develop methods and algorithms necessary to

accomplish this form of separation in the available SNMP trace files and thereby paving the way for future

research.

1.2 Problem description
The above explanation gives an abstract view of what is to be achieved in this thesis. But, in order to give a

better explanation of what the stated problem exactly encompasses, one must first understand the

interpretation of the term ‘traffic’ within the context of periodic and aperiodic SNMP traffic. SNMP traffic,

as such, may range from a single request-response sequence, to a complete table lookup. But, which

interpretation of the stated term is the right one within the context of this thesis? Following are two

scenarios of real world possibilities that stress the importance of understanding this definition of traffic and

do so by showing possible relations between SNMP messages:

� Chapter 1.2.1 describes a scenario with a single SNMP manager and a single SNMP agent. This

scenario only considers periodic SNMP traffic, occurring in regular polling instances;

� Chapter 1.2.2 describes an extended version of the previous one, in which one manager polls

multiple agents. This scenario describes both a case in which periodic polling occurs and one in

which that does not occur;

2

� Chapter 1.2.3 summarizes the whole problem, based on the two preceding scenarios.

1.2.1 Single manager and single agent
This first scenario discusses the first few possibilities of traffic relations through the elaboration on a

setting involving only a single SNMP manager and a single SNMP agent. The following examples will

stress the importance and difficulties of identifying relationships between any two or more SNMP

messages. This scenario will be used for the following cases:

� A basic case involving a single agent and a single manager which is only interested in the contents

of a single column of a table available on that agent;

� The same manager and agent, but the manager is in this case also interested in the contents of

another column of a table available on that agent.

Consider a simple network scenario, consisting of a single workstation connected, via a LAN, to a network

printer. Take into account that the workstation has some SNMP management software installed that

regularly polls some values on the network printer, which has the roll of an SNMP agent. The following

figure gives a brief overview of this situation.

Figure 1.1: Scenario visualization

The SNMP agent module on the network printer maintains a couple of values in three different single-

column tables. These tables have the following OIDs: α, β and γ. Each of these tables has a variable number

of listed values. Any of these values can be requested by an SNMP manager through the use of one or more

get, get-next or get-bulk requests.

Figure 1.2: Lexicographical order of available single-column tables at the agent side

The management station may be set up so that it will retrieve all the values from α-table every 300 seconds.

It is not interested in any value that is not part of this α-table.

Following is a time sequence diagram describing the flow of SNMP messages that include the actual

requests made by the manager and the subsequent responses given by the network printer.

3

T
im

e
(s

e
c
.)

Figure 1.3: TSD showing a single polling instance of the α-table

This time sequence diagram shows the manager sending a get-next-request, asking the agent for the first

value of the table that is referenced by the OID α. The agent answers with a response, containing the value

of the first instance of the α-table. The management application apparently continues asking for the value

that lexicographically follows the one that was just given by the agent. The agent replies with the

corresponding value, the second value in the table. The manager carries on and sends its third request:

requesting the value that is lexicographically following α.1. This may be the next value of the α-table or, if

that value does not exist, the first value of the table following the α-table. Because α.2 does not exist, the

agent replies with the value of the first item in the β-table (β.0). The manager interprets the received OID as

the endpoint of the single-column α-table.

The described scenario makes it clear that it is difficult to determine which SNMP traffic is to be

considered in the process of determining periodicity in SNMP traffic. The given scenario consists of a

couple of requests and subsequent responses that all seem intertwined when one looks at the listed OID in

each these messages respectively. So, should individual SNMP messages be considered periodic or

aperiodic, or should this whole given set of SNMP messages be considered periodic, if this α-table retrieval

process happens on a regular basis?

The first one is least likely to be considered correct, since a manager will always reference a single scalar

or request the contents of a table or possibly multiple tables in the case of polling. Therefore, under normal

conditions, there are always messages related to one another. Taking another look at the given time

sequence diagram and without having any knowledge of possible future patterns, the question arises: which

SNMP messages belong to each other? After considering the operational behaviour characteristics stated

earlier, one might suggest that the shown three requests and three responses are related to each other, since

they are all involved in a single table retrieval process. This relation will be called a session, which will

described further in chapter 2.

The request of the contents of multiple tables is also possible, as well as only a single table. Consider the

present scenario and take into account that the given manager is also interested in the contents of the single-

column γ-table, as shown in figure 1.2. So, the manager is now interested in the contents of both the α-

table, as well as the γ-table on a periodic basis. But, since the data type of the γ-table is such that it will

always contain only one scalar, the manager only asks for this single scalar. A polling instance of this

extended scenario is shown in the following time sequence diagram.

4

Manager Agent

Get-next-request(α)

Response(γ.0)

Get-request(γ.0)

Response(β.0)

Get-next-request(α.1)

Response(α.1)

Get-next-request(α.0)

Response(α.0)

T
im

e
(s

e
c
.)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Session #1

Session #2

Figure 1.4: A TSD of an extended scenario

The first part of this time sequence diagram is the same as in figure 1.3. However, after completing the

retrieval of the values in the α-table, a get-request, asking for the first value of the γ-table is shown. By not

asking for the second value of the single-column β-table, it becomes clear that the manager is not interested

in the values belonging to that particular table. This is in line with the settings of the SNMP management

application, as described earlier. Since the SNMP management application is aware that the OID belonging

to γ only encompasses a single scalar, it will not ask for any other values of that table, as can be seen in the

TSD.

As has been shown in figure 1.3, the first three get-next-requests and their related respective responses

show a clear relationship. It is apparent that through the sending of these three requests, the content of a

single table is retrieved. The fourth request is a get-request for a value in a completely different table.

Therefore, in this case, two different and independent sessions may be identified. The second session and

its messages are coloured blue in figure 1.4.

The above examples are simple ones. The identification of sessions in general is significantly more difficult

and will therefore be discussed more thoroughly in the course of this thesis. These examples have only

stressed the significance of identifying possible relationships between the occurrences of SNMP messages.

1.2.2 Single manager and multiple agents
Two possibilities of related SNMP traffic have been shown so far. This second scenario discusses the

possibility that the stating of relationships in the form of sessions alone may not be enough. It may be

possible that sessions are a part of a larger set of sessions that are all related in their occurrence. The

following examples will stress the importance and difficulties of identifying such relationships between any

two or more sessions. This scenario will be used for the following cases:

� An extended version of the one of the previous subsection, but now involving multiple agents that

are being polled on a periodic basis;

� The same manager and agents, but with the addition of aperiodic polling.

Consider the network setting of the previous example. In this example that scenario will be extended with

two other network elements that operate as agents. A single manager will regularly poll not only the

network printer, but also a network switch and a workstation. In total, this scenario includes a single

management workstation and three different agents. The following figure shows the involved connected

elements.

5

Figure 1.5: Scenario visualization

The available information, that is stored in various tables at the agents, remains unchanged for the case of

the network printer with respect to the tables in the previous example. Besides that, both agent 1 and agent

2 contain numerous tables of information that can be queried. However, the manager is only interested in

the complete contents of the single-column ε-table in the case of agent 1, the single-column γ-table in the

case of agent 2 and only the single-column α-table from agent 3. The manager is set up to retrieve all the

values from these selected tables every 300 seconds. Following is a time sequence diagram describing a

single polling instance, in which all of the three agents are being queried for the contents of the selected

tables.

T
im

e
(s

e
c
.)

Figure 1.6: A single set of sessions involving one manager and three agents

6

This TSD shows that at the beginning of the diagram the values in the ε-table are being consulted at agent

1. A few milliseconds later, the first get-next-request is sent to the second agent. Since the γ-table

apparently does not contain any values, a response is returned with the first value of a completely different

table, of which the manager does not have any interest in. Again a few moments later, still while the ε-table

is being read on agent 1, the values in the α-table of agent 3 are being requested. A little past 4 seconds is

eventually needed to retrieve all the desired values from the three agents.

Another interesting aspect of this TSD is the fact that sessions, involving different agents, can take place

simultaneously or almost simultaneously. This is one of many profound real world characteristics that must

be considered with regard to this thesis problem. One of the consequences of this phenomenon is that

sessions occurring between a manager and an agent may not always occur in the same order. Take again in

mind that the manager is set to poll the three agents every 300 seconds. The following graph shows a

possible scenario, describing three subsequent polling instances.

Figure 1.7: Sessions involved in regular polling instances of the three different agents

This scenario depiction shows a possible execution of three polling instances, where every bar represents a

period, during which SNMP messages flow between the manager and the respective agent. The first shown

polling instance is the same as in the given TSD, shown in figure 1.6. The other two show the possibilities

of a table increasing/decreasing in length over the course of a few minutes and the difference in the order of

polling by the manager of the three agents. These are just a few of the many characteristics that have to be

taken into account for this research topic, since these are all real world possibilities.

This view also suggests a clear relationship between the sessions that occur within a single polling instance,

or session set, which is discussed thoroughly in chapter 4. Also, each of these sessions is of a certain

session type. For example, a session that occurs between the manager and agent 1 is of a specific session

type and a session between the manager and agent 2 is of a different session type. A more elaborate

discussion on the exact purpose and definition of a session type is discussed in chapter 3. It also appears

that every session type occurs once in every session set. This is no surprise, because it was already known

what the manager settings were beforehand. However, this information about a manager is not likely

known in the case of the trace files that are to be used for this research. In order to still be able to identify

possible relationships between sessions, the question is posed: how to determine which sessions are related

and form session sets?

The above scenario describes a 300 seconds interval between every start point of a session set. As is shown,

this gives a clear periodic pattern. But, not every real world case will be as clear as that. The following

graph shows the occurrences of the different sessions in case the stated manager is set to poll only the

selected agents at times on which the user of the manager application desires the information of the

mentioned tables.

7

Agent 3

Agent 2

Agent 1

Time (sec.)

0 5 10 180 185 190 220 225 230

Session set #3Session set #1 Session set #2

Session Type #1

Session Type #2

Session Type #3

Figure 1.8: Irregular polling instances

Again, it becomes apparent that certain sessions are related and form session sets. However, these session

sets do not occur in a regular fashion based on a certain interval. It is therefore that the following question

is raised: once a couple of session sets have been identified, when are they considered periodic and when

aperiodic?

Another question that would apply is about the finding of intervals in periodic traffic. In the first scenario

of this subsection, describing periodic behaviour in the form of regular polling, it can easily be seen what

the interval is. However, there may be scenarios in which it may not easily be seen which intervals there

are.

1.2.3 Problem summary
This subsection has stressed the difficulties concerning the term ‘traffic’ within the context of the search for

a method that is capable of splitting SNMP traffic in periodic and aperiodic traffic. In this subsection have

three possibilities of SNMP traffic relations been discussed briefly. The scenario in chapter 1.2.1 clearly

shows the general difficulty of identifying relations between single SNMP messages. Still, the possibility

that single SNMP messages should be considered as either periodic or aperiodic seems certainly incorrect.

What remains are the two other possibilities. The discussion in chapter 1.2.2 shows that sessions alone may

also not be sufficient, since sessions are likely to be related to the occurrence of other sessions. Thus,

sessions could very well be part of a larger session set containing one or more related sessions.

Moreover, out of these session sets can become even larger relationships, describing sets of session sets,

which could be used for the determination of periodicity. But, in order for a specific session set to be

considered part of a set of session sets, all of its sessions must be of a session type that can also be found in

the other session sets that are of that same set of session sets. In other words, there is a necessity to be able

to compare different sessions. This raises the last question: how to determine the session type of a certain

session?

1.3 Research questions
The central theme of this thesis is the separation of periodic and aperiodic SNMP traffic from each other.

The previous section already laid out some of the problems concerning the identification of relations within

SNMP traffic. Still, there are two ways via which periodic and aperiodic SNMP traffic can be separated

from each other. One of them is by identifying periodic traffic and removing that, leaving the aperiodic

traffic, or by identifying the aperiodic part, leaving the periodic part. Since the latter option is more difficult

to achieve, because there is no specific expectable pattern in aperiodic traffic, the first option is chosen.

8

By identifying the periodic SNMP traffic, the remaining part is automatically the aperiodic part. But, this

identification process is characterized by quite a number of problems, as has already been shown in section

1.2. First, relations in the form of sessions need to be found, then possible larger relations, in the form of

session sets are to be identified, which combined with other comparable session sets may be marked as

either periodic or aperiodic. But in order to do so, one must have the ability to determine a session type of a

session, in order to compare the sessions making up a session set. This is to be used to compare session sets

for ‘equality’. After that needs to be determined whether a certain set of related session sets have a specific

periodic or aperiodic behaviour. If this would be periodic, it is also important to know which intervals can

be found in that specific periodic set of session sets.

Clearly, a number of steps need to be made in this process. For this reason is the main thesis problem

divided into smaller sub problems that are stated here. The combined answer of each of these questions will

yield the solution to the main thesis problem.

How to determine which SNMP messages belong to a single session?

The examples in the previous subsection show that in order to be able to identify ‘traffic’ as either periodic

or aperiodic, one first needs to be able to identify relationships between SNMP messages. This question

encompasses the identification of SNMP messages that contribute to a single session.

How to determine the session type of a session?

After sessions have been identified, it needs to be known of which session type a certain session is. This

way, different sessions can be compared for ‘equality’ and this forms in turn a basis for the next step: the

identification of larger forms of relations in the form of session sets.

How to determine which sessions form session sets?

Once the basic relationship between SNMP messages can be made, a method needs to be found to identify

any possible larger sets of sessions that could be related in their occurrence. The answer to this question

will form a basis for the next step: the determination of which session sets are to be marked periodic and

which aperiodic.

When is a session set considered (a)periodic?

Once related session sets can be identified, the next step is the determination of whether or not this set of

sessions and all their respective SNMP messages that make up these sessions, is to be considered periodic

or aperiodic.

How can intervals in periodic SNMP traffic be determined?

Only after a separation of traffic can take place will it be possible that either of these two types of traffic

can be analysed further. One of the most significant characteristics of the periodic traffic part will be the

intervals that are part of the periodic behaviour. Since multiple intervals might exist within a portion of

periodic traffic, a method needs to be determined that is able to find all the intervals that exist in that set of

traffic. The research regarding this question will also include an overview of intervals found in actual

SNMP trace files.

9

1.4 Approach and thesis outline
The approach of this thesis will be to position it around the already numerous existing SNMP trace files.

The eventual goal is to split these trace files into a category of SNMP messages that contribute to the

periodic part and another category which consists of the SNMP messages contributing only to the aperiodic

part.

This goal clarifies the need for algorithms that, when put together, yield the desired result. These

algorithms, which will be discussed extensively in chapters 2 through 5, will include one that is capable of

finding basic relations between single SNMP messages, resulting in sessions. A second algorithm will be

discussed in chapter 3 that can differentiate between different sessions. Thirdly, there will also be the need

for an algorithm that identifies inter-session relationships, which should result in the capability of finding

related sessions that would form session sets. It is then that an algorithm will be required that can state

whether or not a certain session set is periodic or aperiodic in its behaviour. This same algorithm will also

have to determine the intervals that can be found in periodic session sets.

Since the actual application of any developed algorithm requires the translation to computer programming

code, it is also important to find out what needs to be programmed and which computer applications are

already available for this phase in the research process. As will also be explained later on, no complete

application is yet available, however some existing applications can be used as a basis [1]. It is for this

reason that a toolset needs to be written to fulfil and automate all the tasks that make up the larger set of

algorithms that are to be developed. The description of the complete implementation is given in chapter 6.

After the algorithms have been developed and implemented, the combined toolset needs to be applied on

the available SNMP traces. The results of the total toolset of computer programs, as well as intermediate

results from the various members of the toolset, which are all discussed in chapter 7, will all in all help to

find the answers to the listed research questions, as well as back up statements made throughout this thesis.

This thesis will end with a concluding chapter, chapter 8, which contains an overview of the stated research

questions and their respective answers. Some recommendations for future research will also be given in

that same chapter.

1.5 Intended audience
This thesis is written for an audience consisting of those that are generally interested in SNMP related

research and researchers that operate in the field of SNMP, especially those that are interested in periodicity

of SNMP traffic. It is expected that this audience has a significant level of understanding of the general

operation of SNMP managers and agents. Readers are also expected to have some knowledge of the SNMP

protocol.

As a result of the above expectations, no elaboration will take place in this thesis on the general way of

operation of the SNMP protocol, nor that of SNMP managers and/or agents. However, whenever there

could be any ambiguity on the meaning or operation of anything related to any of the above, a short

description will be given.

1.6 Related work
During the time of writing, already multiple researches have been carried out at the Jacobs University

(Bremen, Germany) that have had some relation to the analysis and/or determination of periodicity of

SNMP traffic. For instance, a more general discussion regarding this topic can be found in [2]. Besides that,

a more recent MSc thesis by C. Ciocov [3] touches the topic in hand, though it discusses this only briefly

and poses no solutions to the problems raised in this thesis. A more elaborate and detailed approach

towards solving the central problem raised in this thesis was also attempted by M. Harvan [4]. He has made

some significant steps in this field of research. However, his approach - which makes extensive use of

Fourier analysis – did not yield a complete and proper identification of intervals within periodic SNMP

10

traffic, nor did he address the issue of separating the two types of SNMP traffic extensively. Still, his work

can be considered as significant within the context of this research topic.

At the University of Twente, I. Grondman [5] has done some research in the recent past, concerning

periodicity of internet traffic in general. With his research, with respect to SNMP traffic, he only

considered the periodicity of SNMP traffic as a whole. He did not look at periodicity at a more detailed

level, nor did his research include the separation of periodic and aperiodic SNMP traffic.

Clearly, plenty of research is either currently taking place, or has taken place in the past year that to some

extent could be related to the topic of this thesis. Still, none of the mentioned research projects take a

thorough and in-depth approach towards the separation of the two types of SNMP traffic. It is therefore the

aim of this thesis to bring the current level of research on this topic to a new level, by taking steps that have

not been taken before.

11

Chapter 2

Session determination

At this point it has been made clear what the general approach is that has been chosen to solve the problems

raised in this thesis. Furthermore, some information has already been given regarding the steps that have to

be taken as part of the stated solution. Still, it is unclear what a session exactly is and how it can be

detected. It is the purpose of this chapter to answer these questions.

Figure 2.1: Input and output of this algorithm

The first step, as part of the chosen solution, is the discovery of sessions, based on raw input. This input is

supposed to contain only SNMP messages that can be considered independently. It is also assumed that this

input consists of SNMP messages that have been recorded on a specific site for a specific duration. As a

result, it is expected that this input may be considered complete and therefore does not contain any wholes

(i.e. all SNMP messages that could have been recorded on that specific location have been recorded and no

SNMP messages have been filtered out prematurely). The output of this algorithm is supposed to be

nothing but sessions, such that every message that exists in the recording and was therefore fed to the

algorithm as input, also exists in one and only one session in the output.

It is the sole purpose of this algorithm, which has the responsibility of detecting sessions, to detect all

sessions possible. It is supposed to detect the most basic form of relationships between SNMP messages

that belong together. In chapter 1.2 it has already been shown that the retrieval of values from a single

single-column-table and the messages that take part in that respective process, are to be considered as a

single session. Also it has been shown that the retrieval of values from n single-column-tables, which do

not follow each other directly lexicographically, ought not to be considered as a single session. Instead, n

different sessions should be detected.

But these are only a few cases where sessions can be clearly and easily identified. Real world scenarios, as

will be discussed later on, show that there are numerous cases where this is not so easy. Before these

scenarios are discussed, first a basic definition of a session is given. Then the most noteworthy scenarios

are being discussed with the purpose of extending the given basic definition of a session. After that the

complete definition, as well as the algorithm itself, shall be described thoroughly. In brief, the following

subjects will be discussed:

� A basic definition of a session is given, based on the information that has been discussed regarding

this term so far;

� Some aspects of (likely) real world scenarios that are, or should be taken into account in order to

be able find all sessions properly. This will involve scenarios in which, for example,

retransmissions occur, or certain columns exist that contain gaps;

� The complete definition of a session, based on the basic variant, as well as the considerations that

have been discussed in chapter 2.2;

� The algorithm description, describing all the steps necessary to find all sessions possible in every

likely scenario. This algorithm description is based on the complete definition of a session, as well

as the issues that have been considered in the sub chapters before that.

12

2.1 Basic definition
The term session has been used in chapter 1.2 only briefly for introductory purposes. But, the usage of this

term, as well as the depiction of sessions in many diagrams, already gives a good impression of the

meaning of a session. Based on this information, the following observations can be made about a session:

� It involves one or more SNMP messages;

� The involved SNMP messages are exchanged between exactly two network elements;

� All messages, minus the responses, are of the same operation type;

� The OID in every SNMP message appears to lexicographically increase, compared to the OID in

the chronologically previous SNMP message of that session.

Combining these four points into a basic definition of a session yields:

Definition A session is a set consisting of one or more SNMP message, which are all exchanged between

exactly two defined network elements. Furthermore:

� The messages in a session other than responses all have the same operation type;

� The OID in every message in a session is either lexicographically the same or increasing

compared to the OID in the chronologically previous message within a session.

As a result, sessions will consist of SNMP messages that overall at least adhere to this definition.

2.2 Considerations
The previous subsection discussed a very basic definition of a session. But this depiction is not ready to

cover most of the real world problem scenarios like: what if requests contain multiple OIDs, or what about

SNMP messages which are not requests at all? The most significant cases are highlighted here, which in

turn will assist in the determination of the complete definition of a session, as well as the algorithm itself.

It should be noted that all of the following subsections discuss cases that may not be considered as sessions,

based on the current definition of a session, but which are desired to be considered as such. In order to keep

the scenarios and examples uniform in their basics, the following information about the involved manager

and agent shall be used in the subsequent scenarios.

The agent that is involved in the scenarios has a number of single-column tables available, consisting of

one or more values that can be referenced by a manager. The following tree view shows some of the

available tables on the agent side.

Figure 2.2: Tree view of available tables at the agent side

This tree view shows some of the tables that can be referenced by a manager on a certain agent. It shows

one table with five values, one with two values and three tables with only one value. It should also be

understood that the tables α, β, γ and ε come lexicographically before table μ.

13

2.2.1 Multiple referenced OIDs
So far in this thesis, only simple get and get-next operations have been described within the context of

sessions. All of these only consist of request and subsequent response messages that contain only one

referenced MIB object. However, there are plenty of cases in practice where more than one MIB object is

referenced.

To signify this, consider a scenario involving the single manager and single agent mentioned. Now, assume

that a manager is set to retrieve the contents of only table α. It is not interested in any value of table β, γ or

ε. Since it may be the case that the table contains a significantly large number of values, the manager

application chooses to use get-bulk requests to retrieve all the values. These get-bulk requests also contain a

request for the first item of the μ-table, which will be requested with every request as a non-repeater. The

following time sequence diagram shows a session in which the selected values are retrieved. However, this

diagram highlights some issues that may require an extension of the definition of a session.

T
im

e
(s

e
c
.)

Figure 2.3: TSD describing a possible get-bulk operation

This TSD may seem odd, still it underlines a couple of real world problems that have to be taken into

account, before a complete definition of a session can be given. Clearly, there are three get-bulk request

messages requesting the desired information from the described agent. But, instead of just one OID being

positioned in a request and subsequent response, there are now multiples. Moreover, there is a non-repeater

section of the request that does not increase lexicographically compared to either that same position in the

previous request or previous response message.

This scenario highlights the following points that have to be taken into account for the completion of the

definition, as well as for the construction of the algorithm:

� Request and response messages may contain more than just one OID;

� Some OIDs may not increase lexicographically, compared to the same position in the list of OIDs

in the chronologically previous message.

2.2.2 Timeout and retransmissions
Another real world occurrence is the fact that SNMP messages may not arrive at their designated location,

as a result of various reasons. This is inherent in the usages of UDP as a transport protocol for SNMP

messages. Therefore, in case a request or response fails to arrive in time, some mechanism must be

triggered, so that the information cycle is still completed.

The following diagram shows an attempted table retrieval activity, initiated by the manager that has been

described before. This manager wants to request values from the given agent. In this case, the manager is

only interested in the contents of the β-table.

14

Manager Agent

Get-next-request(β.0)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Get-next-request(β)

Response(β.0)

Get-next-request(β.0)

Response(β.1)

Get-next-request(β.1)

Response(γ.0)

Figure 2.4: TSD showing the occurrence of a timeout and a retransmission

This diagram shows the retrieval of table values, which make up the β-table. However, the second request

message fails to arrive at the agent side. A timeout mechanism, operating on the manager side, which is in

this case set to resend a request after one second, resends the same request to the selected agent. This

second time, the request arrives and is being answered with a response. This goes on until the end of the β-

table has been reached.

The most profound characteristic of this scenario is the fact that if a message and its retransmission occur

subsequently within a session, without any other messages of that session occurring in between, then none

of the OIDs between the two messages may increase lexicographically. This is shown in the diagram with

the same OID reference being made in the second and third request (a retransmission of the second

request).

Because the SNMP trace files are recorded from a position between a manager and an agent, it is also

possible that a retransmission is seen at this recording position after another messages has already been

sent. For example, an agent may send two responses, of which one is a retransmission of the first, as a

standard measure to reduce the session time in case of a lost response. But, the first response may have

reached the manager side and the manager may have sent a new request as a result of that. It may now be

possible that this new request is seen at the recording position before the second response is seen. This case

would raise the issue that the OIDs compared between this second response and the request occurring just

before that may not increase lexicographically. The following diagram shows this possibility. For clarity

reasons, the requests and their respective responses (with the same request ID) have the same colour.

T
im

e
(s

e
c
.)

Figure 2.5: Standard retransmissions of responses

15

It should be noted that a similar situation could occur in the case of a retransmission of a request. In that

case, just before a response reaches the manager, a timeout could occur at the side of the manager, which in

turn retransmits its last request of which the response is received almost immediately after sending it.

Besides the list of OIDs that should be looked at within the process of extending the definition of a session,

one should also look carefully at other fields of an SNMP message. Most notable the request ID field, since

a retransmission of a request may have the same request ID, but will have the same list of OIDs compared

to the original request. On the other hand, retransmissions of responses will have the same request ID as the

request that is being answered [6]. However, the contents of the list of OIDs may be different, because the

respective table values may have changed during the time between the first response and its retransmission.

Hence, both the list of OIDs and/or their respective values may be different between two or more responses

to the same request.

The events of timeouts and subsequent retransmissions show a couple of aspects that have to be taken into

account, in order for a session, such as for example the one displayed in figure 2.5, to be properly

considered as such:

� ‘Equal’ requests and response messages may occur two or more times within a single session.

Retransmissions of requests may have the same request ID and will have the same list of OIDs.

Retransmissions of responses will have the same request ID, as the request that is being answered,

but the contents of the list of OIDs and their respective values may be different;

� If a retransmission of a message is received at the recording site, after a new message has been

seen, then the OIDs compared between the retransmission and the message before that, may in

some cases not increase lexicographically. In such a case, a retransmission of an earlier message

would be compared with a newer message;

� Although not described here, requests may in some cases not be followed by a related response, as

a result of the fact that the network element, which has the agent role, is turned off, or is simply

unreachable at the time of the request being sent.

2.2.3 Table characteristics
Tables containing one or more values at the agent side may have different characteristics. A table could

contain a few or many values. Normally, a value can be referenced by requesting the n
th

 value from a table,

resulting in the corresponding value, if that particular table has that many values. However, there are two

significant table characteristics that should be noted:

1. One of these is the possibility that a table, consisting of multiple columns, may have columns that

are of unequal length. So, consider for example that the OID α represents the first column of a

two-column table and OID β the second column and that the α-column contains more items than

the β-column;

2. A second possibility is that one or more columns of a table contain gaps. This means for example

that α.2 and α.4 can be referenced, but α.3 not. A get-next request querying α.2 would simply

result in a response containing α.4 (the lexicographically first item following α.2).

These two possibilities haven been visualised in the following time sequence diagram, which shows an

apparent proper session, consisting of get-next requests and their respective responses.

16

T
im

e
(s

e
c
.)

Figure 2.6: TSD describing table gaps and unequal column length

The TSD shows how a manager requests all of the items of two columns of a table at the agent side.

Because the β-column contains only two values, the end of that column is reached earlier than that of the α-

column. As a result, the manager only carries on with the α-column, which shows the described gap. Still,

the manager goes on with the requesting of values from this column, until it notices the end of that column.

These two table characteristics show that the following aspects with respect to these characteristics are

important for the definition of a session and the algorithm that will identify the involved messages in a

session:

� Not all requests and responses belonging to a single session have an OID list containing a fixed

and equal number of items as a result of unequal column length;

� The OID at a certain position in the list of OIDs in a response message may not always match that

of the OID on the same position in the respective request as a result of certain table characteristics.

2.2.4 Non-get-like operation types
Up to this point, only get, get-next and get-bulk operation type sessions have been discussed. There are

however also a number of other operation types. Although these other operation types will not result in

table retrieval processes, as get-next and get-bulk can do, an understanding must still be created regarding

the definition of a session with regards to these other operation types. Following are a few time sequence

diagrams showing SNMP messages which ought to be considered to be part of the same session

respectively. Every TSD shows a single session.

T
im

e
(s

e
c
.)

T
im

e
(s

e
c
.)

Figure 2.7a: Set session Figure 2.7b: Trap session

17

Figure 2.7a shows an apparent set operation involving a single set request and a confirming response from

the respective agent. Although multiple set operations can take place between a manager and an agent,

every single set request occurs on a specific separate basis; multiple set operations ought therefore not to be

considered part of a single session. However, also here exists the possibility of retransmissions. Hence this

possibility must be considered later on.

About the same can be declared about a trap session, as shown in figure 2.7b. Every occurrence of a trap

message is the result of a specific activity, like the rebooting of a certain network element. Therefore, every

trap message should be considered as a single session. However, again here applies the exception in the

case of a retransmission of a specific trap message.

The following figure 2.7c shows a single inform session, which consists of a request and a response. Since

this kind of operation, just like trap and set operations, is raised on an independent basis, should also inform

sessions be considered the same way. Also here applies the exception for retransmissions for either or both

the request and its response messages.

T
im

e
(s

e
c
.)

Figure 2.7c: Inform session

What remains is a report session. Since this kind of operation has not been documented strictly, it will be

hard to determine how a report session should look like.

Besides the get-next and get-bulk operation types, there are also a couple of other operation types.

Although these sessions will be less interesting, due to the fact that there are likely to be only one, two, or

maybe more (as a result of retransmissions) messages involved in such a session, these kinds of operations

must still be considered. As a result of the stated characteristics for these other operation types, can the

following important aspects be highlighted:

� Set and inform sessions should only contain a single request and a single related response, with the

exception for retransmissions. In that case, more than one request or response may be assigned to a

session, but these must still be equal to an already listed request or response message respectively;

� Trap sessions should consist of only exactly one trap message. However, in case a retransmission

is sent of a listed trap message, that retransmission should also be considered part of that specific

session;

� The expected behaviour and therefore the relations between report messages and possible related

response messages is not strictly documented and leaves room for implementers of SNMP

applications to choose how they use this kind of operation. Consequently, the complete definition

of a session, as well as the algorithm should be liberal enough, in order to allow for certain kinds

of report sessions.

2.2.5 OID insertion and position change
Most scenarios that have to be considered for the proper construction of a definition of a session and the

accompanying algorithm have already been considered. There are still a number of aspects that may occur

in the real world concerning this topic. These are more implementation specific and have thus nothing to do

with protocol related aspects, like the scenarios that have been considered so far. Two of these potentially

occurring aspects, related to the placing of OIDs in requests and response messages, will be discussed here.

18

For this scenario, consider again the manager and the single agent as described before. This time, the

manager is interested in the contents of the α-table and the β-table. Consider as well that the manager

application is set to request the first item of the μ-table once every three requests. Take also into account

that this same manager application is programmed in such a manner, that it may change the order of OIDs

being requested, while still being able to retrieve all values from the two tables. The following time

sequence diagram shows an example with these two phenomena included. The red requests show the

insertion of the additional OID. The green request has a changed order of OIDs.

T
im

e
(s

e
c
.)

Figure 2.8: TSD showing the changing of positions of OIDs and the irregular insertion of an extra OID

The diagram shows that the values belonging to the two tables in question are still successfully being

retrieved by the manager, despite the change in order in the case of the request marked green. Although this

scenario seems odd, still, in the case of bad programming, a manager may still choose to insert a request for

the first scalar of the μ-table on a regular basis in a get-next request, instead of choosing for a get-bulk

request with the non-repeater field. Another case of bad programming may be the cause of the change in

the order of OIDs.

These last two cases may influence the eventual version of the session definition, such that it will allow for

these two cases to occur in the available SNMP traces, while sessions are still being recognized properly.

The following points should therefore be taken into consideration:

� A manager may request all values of multiple columns through the use one or more sets of requests

and responses. However, the order of referenced columns may change along the way, without loss of

continuity for the manager. The manager may even choose to retrieve the contents of one column of a

table before retrieving the contents of another column of that same table, instead of just walking

through all columns of a table at once;

� A manager may be set to request one or more specific scalar values every few requests by adding the

desired OIDs to the list of existing OIDs of a request. This addition of OID(s) may happen on an

irregular basis.

2.3 Complete session definition
After considering the scenarios listed in the previous subsection, it can be stated that the basic definition, as

given in chapter 2.1 needs to be extended, in order to cover all the discussed cases. Taking the points from

the basic definition, as well as the points that have been highlighted in every listed scenario, the following

complete definition of a session results:

19

Definition A session is a set consisting of one or more SNMP messages, which are all exchanged between

exactly two network elements, which are each identified through their IP address and respective port

number. Furthermore:

� The messages other than responses in a session all have the same operation type;

� The following applies only to get-next or get-bulk requests:

o At least one OID in every get-next, or one OID which is not part of the non-repeaters of a

get-bulk request, which is also not a retransmission in a session, is lexicographically the

same compared to an OID in the chronologically last response to the previous request

within a session. This latter OID may be on a different position in the list of OIDs than

that of the OID in the list of the request message in question. This request must occur

within a specifiable amount of time after the last listed response (if any) and must come

from the same network element as the other requests of a session;

� A response message is considered part of a session if it occurred within a specifiable amount of

time after an already listed non-response that has the exact same request ID;

� Retransmission will be considered part of a session in the following cases:

o A retransmission of a response message is considered part of a session if it contains a

request ID that is equal to one of the already listed requests in that session and occurred

within a specific amount of time after the respective original response message. The list

of OIDs and the values may be different;

o A retransmission of a get, get-next, get-bulk, set, or inform request message is considered

part of a session, if it contains a list of OIDs that is equal (though the order may be

different) to one of the already listed requests in that session with the same list of OIDs.

The request ID may be different;

o A retransmission of a trap or report message is considered part of a session, if it contains

a list of OIDs that is equal (though the order may be different), to an already listed trap or

report message respectively;

This very extensive definition of a session may require some additional information. Since a session

involves a number of SNMP messages that all occur within a short period of time, it is therefore expected

that both the sending party and the receiving party communicate through a single port number and a single

IP address respectively. For example, if a manager wants to retrieve the contents of a table located at an

agent, it will use a specific port on its side for at least the duration of that session. It would make no sense if

a manager would change its port number during the process of retrieving all the values, if this requires

multiple requests to be sent, simply because this would make it impossible for retransmissions from the

agent, or otherwise delayed response messages, to be delivered properly to the manager application. Also,

if the port number would not be used as a filter, the messages coming from and going to different manager

applications/threads operating from the same IP address will be inadvertently considered to be coming

from/going to the same manager instance. This could result in sessions containing messages that are in fact

not related to each other. Also, it is expected that the agent will, as is normally the case, use a fixed port

number on which it can be contacted. Usually this is port number 161 [6].

The first point has already been elaborated upon in the previous sections. The second point is a result of

many restrictions that have been posed in the various scenario considerations. It is therefore that only this

declared link can be made between OIDs of different messages. This OID linkage with the last response

also applies only to get-next and get-bulk requests. A get-next and get-bulk request message must occur

within a specific amount of time after the last response in order for it to be considered part of an existing

session. This OID linkage does not apply to other operation type sessions, because only get-next and get-

bulk sessions can contain multiple requests that belong to a single session.

The third option applies a restriction to the addition of response messages to a session. As can be seen, no

OID requirements are made here. This is due to the listed table characteristics - like unexpected column

endings or gaps - that make the list of OIDs in responses unpredictable. Furthermore, the responses do not

say anything about whether or not the manager carries on referencing OIDs based on the last response.

Thus, they do not say anything about the manager continuing with a session, or starting a new session.

20

The fourth option comprises of different cases in which a message is considered a retransmission of an

existing SNMP message in a session, in which case that particular retransmission will also be considered

part of that same session.

Based on the given definition, the importance of not just looking at the ‘normal’ get-next and get-bulk

sessions, but also at, for example, a trap session should be stressed. No response can ever be found in a trap

session, therefore not all sessions will contain responses. As has also already been discussed, even get, get-

next and get-bulk sessions may not contain any response in certain scenarios. This could be the case when a

manager attempts to request the value of a certain scalar from an agent, which cannot be reached.

Nevertheless, a session will always start with an initiating non-response message.

2.4 Algorithm
It is now possible to describe the developed algorithm, now that the complete definition has been given and

the most significant problem scenarios have been discussed. As has also been discussed in the introductory

part of this chapter, this algorithm must accept single SNMP messages that have been recorded on a

particular network location and it is supposed to assign these messages to sessions consisting of one or

more SNMP messages.

2.4.1 Algorithm description
Before the steps taken are explained that are taken, it should be clear what information is stored during the

process and in what form. Since multiple independent sessions can occur at the same time on a particular

network, a list of so called open sessions must be kept. For each of these open sessions the following

information is stored:

Open Session

� Operation type

� Initiator party IP address

� Initiator party port number

� Other party IP address

� Other party port number

� {SNMP Message(s)}

Table 2.1: Stored open session information

The initiator is the source of the first message of a session. Besides this, there must also be a number of

limits set on specific characteristics, like the maximum time between the original message and its

retransmission. Following is a diagram showing the steps in the algorithm:

21

next SN
M

P
m

essage

available

next S
N
M

P
m

essage

available

Figure 2.9: Steps in the session detection algorithm

The diagram shows the following steps being made:

Step 1

This is the start point of the algorithm. In this point, a single SNMP message is loaded from the input,

assuming that the input has at least one SNMP message available in the beginning. Then, the type of the

message is determined: is it a response message or it is something else?

Step 2

If the message is a response, then in the second point the open sessions are being tested to see which open

session is ‘willing’ to accept this response message. This must be in accordance with the restrictions listed

in the definition section for this kind of message. It should also be noted that this response may only be

accepted when it is ‘timely’ (i.e. it must occur within a certain amount of time from the already listed

respective request in that session). In the unlikely case that multiple open sessions are willing to accept this

response message, shall the open session with the most recent addition of another message be considered

the proper session.

Step 3

If no willing open session could be found, the response message is discarded and ought to be considered as

unhandled. This could be the result of too restrictive timeout variables or it may be a response message of

which the respective request has never been seen by the recording unit. This is especially likely at the

beginning of a trace file. If other SNMP messages are available in the input to the algorithm, the next

SNMP message is to be considered in point 1. If the end of the input has been reached, the next step will be

point 7.

Step 4

In case a willing open session was found and selected for a message, then that message will be assigned to

that one particular session only. If other SNMP messages are available in the input of this algorithm, the

next SNMP message is to be considered in point 1. If the end of the input has been reached, the next step

will be point 7.

Step 5

If a message was loaded in point 1 that was not a response message, this step will attempt to find a willing

open session for this message. Hence, all open sessions are tested and only the case in which the open

session will adhere to the restrictions stated in the definition section, shall that particular session be

considered as the right one to which this message shall be added. It should be noted that for the operation

types, for which the comparison of OIDs takes place, this comparison takes place between this message and

the last response, if there is one available. The last response message is not per se the last response message

chronologically, but is always the last response to the last request. In some cases, it may be possible that the

22

chronologically last response is a retransmission of an earlier response to a request that is not the last one in

the session.

Step 6

If in point 5 no suitable open session could be found, then a new session will be created and added to the

list of open sessions. If after this creation still more available SNMP messages exist in the input, then the

algorithm will return to point 1, otherwise it will go to step 7.

Step 7

No more input messages are available. This means that no new SNMP messages can be added to any of the

still open sessions. All of the open sessions will therefore be closed.

After the completion of step 7 shall the algorithm have yielded a number of sessions containing one or

more messages. As explained before, in some exceptional case, it may be possible that a response message

could not be linked to any of the open sessions. Only in those cases shall a message not be part of any of

the resulting sessions.

2.4.2 Example algorithm execution
In order to give a better understanding of how all of these steps work together - yielding one or more

sessions - follows in appendix A1 an example situation for this algorithm. That example is placed in a

situation, which is not based on a real world trace, but is created artificially in order to highlight some of

the most important aspects of this algorithm.

23

Chapter 3

Identifying session types

The previous chapter described the algorithm that would turn a raw set of SNMP messages into sessions.

The next step in the process, which is described in this chapter, is the determination of session types and

assigning this session type definition to a session. This will in turn form a basis for the next step: the

detection of related sessions, forming session sets of a specific session set type.

Figure 3.1: Input and output of this algorithm

Up to now, not much has been stated about the term session type. The only aspect that has been made clear

is that it will be used in subsequent phases of the total set of algorithms. Still, in chapter 1.2 it has been

noted that session types have the purpose of differentiating between ‘equal’ and ‘different’ sessions. In

other words, it is supposed to be a method that supports other algorithms to signal whether or not two or

more sessions are to be considered equal or different. If so called ‘equal’ sessions occur multiple times

within the time frame of the recorded input, then clearly an algorithm is necessary that can determine

whether two or more sessions may be considered equal.

But, when for example a manager requests the contents of a specific table of an agent every few minutes,

not each of these sessions will appear to be exactly the same. There are a couple of reasons that cause this

difference to occur. The most significant one will be that a table, or column thereof, may have changed in

length during the course of a few minutes that makes up the time between two sessions. As a result a

second table contents request may yield fewer, more or in some cases the exact same amount of request and

response messages in both sessions. The session type is supposed to assist in this process of determining

when two seemingly different sessions may still be considered equal and when not.

This chapter is built up from the same subsections as the previous chapter regarding the session

determination algorithm. As a result, the following subsections will be covered in this chapter:

� A basic definition of a session type will be given, which is based on the discussed information

of session types so far. This definition will not be complete;

� Then, some scenarios will be discussed that show the difficulty of determining session types

for some cases. These case descriptions will be ended with suggestions for changes to the

basic definition of a session type;

� Based on the basic definition of a session type and the case descriptions given in section 3.2, a

complete definition of a session type shall be given in the third subsection. This will also form

the basis on which the algorithm will be described in the next subsection;

� The last section describes the algorithm for identifying and assigning session types to any

session.

3.1 Basic definition
The term session type was used in chapter 1.2 only briefly for introductory purposes. But, the usage of this

term, as well as the depiction of session types in some diagrams, already gives some impression of the

meaning of a session type. Based on this information, the following observations about a session type can

be made:

� Sessions involving the same operation type and refer to the same set of columns, should be

considered to be of the same session type;

� Sessions that are of the same session type may differ in length.

24

This results in the following basic definition of a session type:

Definition A session type is a type mark that can be determined for every session. Furthermore,

sessions with the same session type:

� May be of variable length (i.e. may not have an equal number of member messages);

� Reference values from the same set of specific scalars or set of columns of tables.

This definition seems quite basic indeed. Hence, in the following subsection some scenarios shall be

considered that will help to extend, or at least alter this basic definition into a complete definition covering

the greater majority of possible sessions.

3.2 Considerations
Only the fact that sessions of the same session type may have a different number of messages has been

considered so far. Following are a few important cases in which aspects of sessions and session types are

highlighted that have to be taken into consideration before a complete definition of a session type can be

given and even before the algorithm can be described.

In order to keep a uniform approach in these cases, a single scenario description will be given here. All

cases that are discussed will use this scenario description as a basis.

Consider a scenario in which two managers exist alongside two agents. Consider also that the first agent

has a large number of tables containing various values that can be referenced. The most important of these

are the following single-column tables:

Figure 3.2: Highlighted tables of agent #1

This figure shows that at least an α-table exists containing three values. Besides that is a β-table that

lexicographically follows the α-table and contains just two values. Finally, the μ-table, which is even past

the β-table lexicographically speaking, contains just one item at all times.

Another agent also contains numerous referenceable tables and values. Still, the following tables are

important in the following considerations:

Figure 3.3: Highlighted tables of agent #2

25

This shows that the second agent also has an α-table with the exact same amount of listed values. It does

not have a β-table like the first agent. Also, it has the μ-table, but in the case of this agent, this table may

contain more than one value at a particular time.

The two managers are different in the sense that they operate from different IP addresses and may use

different implementations of SNMP management software.

3.2.1 Different manager-agent relations
This first case will discuss three specific cases of comparable sessions involving different managers and

agents that may not be considered the same. These are:

� Two managers requesting the contents of a specific table on a single agent;

� A manager requesting the contents of a particular table on the first agent and another manager

requesting the contents of a table with the same OID as in the first manager-agent relation on a

different agent;

� A single manager requesting the contents of one particular table on two different agents.

The following shows the messages making up two sessions that could occur between two different

managers (A and B) and a specific agent (C):

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

A 2110 C 161 get-bulk 1 α

C 161 A 2110 response 1 α.0,

α.1,

α.2

Table 3.1: Session 1 occurring between manager #1 and agent #1

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

B 1440 C 161 get-bulk 1 α

C 161 B 1440 response 1 α.0,

α.1,

α.2

Table 3.2: Session 2 occurring between manager #2 and agent #1

Apparently, two independent managers have interest in the contents of the α-table of agent 1. These

sessions look the same, but should they be considered as such: should they be marked with the same

session type?

The same can be asked about sessions occurring between two different managers and two different agents

that may have in common that both managers are interested in one specific table that is available at both

agents. Take for example the following sessions that may take place between two managers (A and B) and

two different agents (C and D).

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

A 1250 C 161 get-bulk 1 α

C 161 A 1250 response 1 α.0,

α.1,

α.2

Table 3.3: Session 1 occurring between manager #1 and agent #1

26

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

B 1880 D 161 get-bulk 1 α

D 161 B 1880 response 1 α.0,

α.1,

α.2

Table 3.4: Session 2 occurring between manager #2 and agent #2

Clearly, these sessions look the same, because at both agents the α-table contains the same number of items

at that specific time. Also, the same operation type messages were used to retrieve the contents of this table.

Still, should these sessions be considered of the same session type?

A final comparable case would be the involvement of a single manager requesting the contents of one

particular table, the α-table, on two different agents. The following two sessions again suggest that they are

of the same session type, but would this be a correct conclusion?

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

A 6420 C 161 get-bulk 1 α

C 161 A 6420 response 1 α.0,

α.1,

α.2

Table 3.5: Session 1 occurring between manager #1 and agent #1

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

A 5100 D 161 get-bulk 1 α

D 161 A 5100 response 1 α.0,

α.1,

α.2

Table 3.6: Session 2 occurring between manager #1 and agent #2

Although in all of these cases it would seem correct to state that a pair of sessions is of the same session

type, however there are a couple of observations that would contradict such a basic comparison and

conclusion of so called equality:

� The characteristics of tables with the same OID available on different agents may be different; i.e.

the meaning or desired interpretation of the contents of a specific table may be different for

different agents. Therefore, it remains questionable to state that two sessions - involving different

agents with the same table references made - are comparable;

� On the other side, the cases involving more than one manager should incorporate the fact that the

managers may be of different implementations and therefore they may have different

implementation specific characteristics. This could result in problematic situations when, for

example, periodicity is determined for specific sessions of a specific session type, since different

managers may use different polling intervals and start times. As a result, apparently comparable

sessions - involving different managers - should not be considered of the same type.

3.2.2 Different operations on the same table
Many sessions may reference the contents of only one particular table. But, these sessions may be of

different operations. This subsection will discuss two sessions involving just this kind of cases and will

continue addressing the question regarding when sessions should be considered of the same session type.

Consider a single manager A requesting the first scalar value of the μ-table on a single agent C through the

use of a get request:

27

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

A 1092 C 161 get-req 1 μ.0

C 161 A 1092 response 1 μ.0

Table 3.7: Get session occurring between manager #1 and agent #1

Now, consider the same single manager requesting the change of the first value of the μ-table on a single

agent through the use of a set request:

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

A 2109 C 161 set-req 1 μ.0

C 161 A 2109 response 1 μ.0

Table 3.8: Set session occurring between manager #1 and agent #1

These two different sessions take place between one manager and one agent. Also, they both involve the

same OID that is being referenced. Based on the present definition of a session type, these two sessions

would be regarded as of the same session type.

This example has shown that sessions involving completely different operation types could be considered

of the same type. This is inappropriate because of the following:

� Since session types will be used to determine equality of sessions in the process of determining

patterns in the occurrence of certain session types, it would seem incorrect to consider sessions

involving two different operation types to be of the same session type. Also, because it would

make no sense within the context of pattern detection of a certain session type, the set variant may,

for example, occur significantly less often that the get variant does;

� Because equal session types means that the involved sessions have the same meaning, it would

clearly be incorrect to state that, for example, a get session is equal to a set session simply because

it involves the same set of column references.

3.2.3 Retransmissions within sessions
Already the possibility of sessions that are of the same session type having a different number of messages

has been discussed. The reason that has been discussed so far would be that a table may change in length

during the course of time, therefore two sessions involving the same table and that are of the same session

type could have less, more or an equal number of messages. But, what about the case of retransmissions

within sessions that involve the same table(s)? The following example describes such a situation.

Take again the previously described scenario, consisting of a single manager A and a single agent C.

Following are two sessions that are the result of the manager querying twice the contents of the α-table.

The sessions clearly ought to be considered part of the same session type, but the second session contains

more messages as a result of retransmissions that do not occur in the first session.

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

A 4920 C 161 get-next 1 α

C 161 A 4920 response 1 α.0

A 4920 C 161 get-next 2 α.0

C 161 A 4920 response 2 α.1

A 4920 C 161 get-next 3 α.1

C 161 A 4920 response 3 α.2

A 4920 C 161 get-next 4 α.2

C 161 A 4920 response 4 β.0

Table 3.9: Get-next session occurring between manager #1 and agent #1 without retransmissions

28

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

A 4920 C 161 get-next 1 α

C 161 A 4920 response 1 α.0

A 4920 C 161 get-next 2 α.0

A 4920 C 161 get-next 2 α.0

C 161 A 4920 response 2 α.1

A 4920 C 161 get-next 3 α.1

C 161 A 4920 response 3 α.2

A 4920 C 161 get-next 4 α.2

A 4920 C 161 get-next 4 α.2

C 161 A 4920 response 4 β.0

Table 3.10: Get-next session occurring between manager #1 and agent #1 with retransmissions

This example stresses again that sessions which should be considered of the same session type, may contain

a different number of messages. The core observation of this example is:

� The occurrence of retransmissions should not affect the determination of the session type of a

specific session. Clearly, the shown sessions should be considered of the same session type, even

if one of them contains retransmissions.

3.3 Complete session type definition
After considering the scenarios listed in the previous subsection, it can be stated that the basic definition, as

given in chapter 3.1 needs to be extended, in order to cover all the discussed cases and incorporate their

respective points of interest. Taking the points from the basic definition, as well as the points that have

been highlighted in every listed scenario, it yields the following complete definition of a session type:

Definition A session type is a type mark that can be determined for every session.

Furthermore, sessions with the same session type:

� Have a common set of OID prefixes;

� Have occurred between the same set of network elements, which are defined by their IP address

and, if desirable, also their port number respectively;

� Are of the same operation type.

The first point have already been discussed in previous subsections and states that sessions of the same

session type refer to the same set of scalars or columns of tables. Point two is a result of the fact that

different agents may assign different meanings or expected interpretations to the values of table columns

that may have the same OID. The pair of network elements between which sessions of a certain session

type occur are identified through their IP addresses and in some cases also the port numbers of both sides.

However, not in all cases, because in the case of many sessions, they are started by a manager which uses a

different source port number for each session it starts. If that is the case, then the port number filter should

not be applied for the manager side. In some cases, like a trap session, it may even be desirable to not filter

on any of the port numbers, because in the case of a trap session it is the agent that initiates a session,

which could choose a different port number for every trap session originating from that agent.

Point three is a result of the example shown in chapter 3.2.2. That example signified the need to

differentiate between sessions involving different operations. As was stated earlier, a set session may be

completely unrelated in its occurrence to the occurrence of a get session involving the same set of OID

references. After all, this would give significant problems in future pattern detections, where these set and

get operations would be considered the same in their occurrence.

The last example scenario of chapter 3.2 stressed the importance of disregarding retransmissions within

sessions when a comparison is made on referenced OIDs between two or more sessions. This would leave

the ‘normal’ set of request and response messages (if applicable) that make up the sessions which are to be

scanned for OID reference comparison.

29

3.4 Algorithm
It is now possible to describe the developed algorithm, since the complete definition has been given and the

most significant problem scenarios have been discussed. As has also been discussed in the introductory part

of this subsection, this algorithm must accept sessions that are the result of the previous algorithm and it is

supposed to return a session type for every possible session.

3.4.1 Algorithm description
The algorithm will, as the description already would suggest, handle one session at a time. So, sessions will

be handled only sequentially. As a result, no information needs to be kept between the processing of two

sessions. However, during the processing of a particular session, a list comprising of OID prefixes is kept.

When, for example a get-next session requests the contents of all values in one particular column only, that

list will at the end of the processing of that session only contain the respective OID of that column (the

common OID prefix of the referenced column items). If on the other hand a get session is to be considered

that would request only a specific scalar value of a column, then only that specific OID of that value would

be listed. The purpose of that list is therefore to define which OID prefixes are referenced. A clear usage

example of this list will be discussed in the next subsection which describes an example algorithm

execution.

Besides the mentioned OID prefixes and the information about the operation type and the involved two

network elements, there is no other data being used during the processing of a session. Following is a

diagram that shows the steps taken in the algorithm in order to find the session type of each session given

as input to this algorithm:

n
o

re
s
p
o
n

s
e

m
e
s
s
a
g
e

m
e
s
s
a
g
e

a
v
a
ila

b
le

no
m

essages
left

Figure 3.4: Steps taken in this algorithm

At the moment of starting the algorithm, the table of OID prefixes is still empty. Then, a set of sessions can

be given as input to the algorithm for which for each of these sessions the respective session type needs to

be determined. Following is a description of each of the steps taken, which in the end will yield a session

type for each session:

Step 1

After starting the algorithm, the first session is loaded. This step will determine the involved network

elements and the operation type of the loaded session. This information will be used later on. Also, if it is

necessary, it will clear the table of OID prefixes that may still be left as a result of a previous processing of

a session. Of course, at the very start, this table will be empty. Then, since every session always has at least

one message, it will go to step 2. If no sessions are left in the input to this algorithm, it will go to point 4.

30

Step 2

This step will load the messages making up the session one at a time. It does so by beginning at the start of

the list of messages of a session. If a loaded message is a response, it will load the next message until it

either has reached the end of the list of messages of that session, or loads a non-response. In the latter case,

the algorithm will go to point 3.

Step 3

This is a very important step. Here, the non-response message is loaded and its OIDs are being compared

with those of the last response of that session that has been loaded so far. The following sub steps are taken

here:

� First, the last response message is searched for that is part of the list of messages of this session

that have been loaded so far. The last response is found using the same method as in the previous

algorithm. This last response is thus not just the chronologically last response, but the last

response to the last non-response message;

� Then, the OIDs between this non-response message and the found response message are being

compared for equality. All OIDs that are found in the latest non-response message and not in the

found response message will be taken to the next step. Note here that if no last response could be

found, all OIDs of this non-response message will be taken to the next step;

� The remaining OIDs are either explicit references to a column item, or just a column. These OIDs

are considered ‘new’ and are therefore considered as a new reference. This sub step will test to see

if any of these remaining OIDs is a reference to a column or scalar of which already a reference is

listed in the list of found OID prefixes. If that is the case, than that particular OID will not be

added to the list of found OID prefixes. This check makes use of a prefix comparison, which will

be shown in an example later on;

� Any remaining OIDs, for which there are no OID references which are already listed in the list of

found OID prefixes, will at this point be appended to this list.

After finishing these sub steps, the algorithm will return to step 2, where it will continue loading messages

of this session. If however no other messages are available, the algorithm will return to step 1;

Step 4

This point marks the end of the algorithm, where it will result all the session types for every respective

session that was given as input to this algorithm.

When a table retrieval session, using for example get-next messages, is being handled by this algorithm, it

will result in the OID prefixes of the columns or scalars that have been referenced. This, because the first

request of the session will reference the respective columns for the first time and all subsequent requests are

based on the returned OIDs of the last response occurring before that. Some cases for OID prefix

determination will be discussed here:

� In the case of an operation other than get-next and get-bulk, the referenced OIDs in the initial

message are not likely references to column(s), but rather direct references to column values /

scalars.

o In the case of a trap, inform or possibly a report session, this is obvious, since it is the

initiating party of that session that has full knowledge of the tables, columns and their

values. Hence, the OIDs referenced in these cases are direct references to column items /

scalars;

o Set sessions should also be considered as such, because either the manager is

programmed to reference specific column items / scalars, or it has retrieved that

knowledge through other sessions, like a get session. This is determined, based on

experiments with trace data from various locations.

� In the case of get-next and get-bulk, the OIDs are generally references to the columns themselves.

Even if specific values were to be retrieved through either of these operations, it is very likely that

the manager has been explicitly programmed to retrieve those specific values and will therefore

refer to these same instances in the future, if it is programmed to do so. As a result, in these cases,

the prefix of the OIDs in those non-response messages will be taken before they are being

compared with any of the listed OIDs in the list of OID prefixes. This will avoid specific

references to values / scalars being listed, which may change during the course of time, while the

31

meaning of factually equal sessions may be the same. Consequently, no unnecessary new session

types will be defined for these sessions that are actually the same.

In general, it should be added that in any case an OID is found that is a parent of any of the listed OIDs in

the list of OID prefixes during a point in time of the algorithm execution, then it will replace the child OID

which is listed in the list of OID prefixes. If after that still more OIDs in the list of OID prefixes are found

that are children of this new parent OID, then they will be removed.

After the algorithm has completed processing a particular session, it will yield a session type for that

session. This session type is made up of the following data fields, which make it possible to discriminate

between different sessions and allow for easy comparison for equality of sessions in the next algorithm.

Session Type

Operation Type

Initiator IP Address

Initiator Port Number *

Other Party IP Address

Other Party Port Number *

{OID prefix(es)}

Table 3.11: Information used to identify a session type

Note that two fields contain asterisks. This is because these fields may in some cases not be defined as a

result of the operation type of the session type, which has been discussed earlier.

In the subsequent parts of this thesis, only a reference may be made to a specific session type. This will

always be of the following format:

OPERATION_TYPE-INITIATOR_IP[INITIATOR_PORT]-OTHER_IP[OTHER_PORT]-[INDEX]

� OPERATION_TYPE: the operation type of the session type;

� INITIATOR_IP: the IP address of the initiator of the sessions that have this session type;

� INITIATOR_PORT: the port number of the initiator. This field may be disregarded, if desired;

� OTHER_IP: the IP address of the other involved party of the sessions that have this session type;

� OTHER_PORT: the port number of the other party. This field may be disregarded, if desired;

� INDEX: for the same set, consisting of an initiator and another party and a specific operation type,

there may be multiple session types. Hence this integer field will allow for differentiation between

session types of this sort.

3.4.2 Example algorithm execution
In order to give a better understanding of how all of these steps work together - yielding the respective

session types for each session given as input - follows in appendix A2 an example situation for this

algorithm.

32

Chapter 4

Finding session sets of the same session set type

At this point the definitions and the respective algorithms for sessions and session types have been

discussed. It is the purpose of the next step to find relations between the occurrences of certain sessions. As

has been stated previously, this requires the ability to determine when a session is to be considered ‘equal’

to another session. This has been achieved through the use of session types. Hence, this next algorithm will

accept sessions and their respective session types and will attempt to find relations in the occurrences of

these sessions.

Figure 4.1: Input and output of this algorithm

The attempt to find relations between the occurrences of sessions is a result of a previous observation made

in chapter 1.2, where it was mentioned that sessions are likely related to one or more other sessions. This is

the result of the fact that, for example, a manager is set to poll a list of agents every few minutes. Such

polling behaviour results in the same set of sessions, which occur every few minutes. Also, since a manager

may poll multiple agents, multiple sessions of a certain type may always occur within a certain amount of

time from each other. Once the relationship between one or more session types has been identified, this

shall result in a session set type describing session sets that are comparable and related. These two

definitions shall be discussed and further introduced in the next subsection.

This chapter gives an in-dept description of the involved definitions and the exact operation of this

algorithm. The following aspects shall be discussed in this chapter:

� First, an introductory example shall be given to explain the purpose and general expectations of

this algorithm;

� Then, a number of real world considerations shall be discussed, that will give a better

understanding of the exact desired result of this algorithm;

� Based on the definition of the involved terms, as well as the given real world consideration, the

algorithm shall be discussed.

4.1 Introductory example
Although the terms session set and session set type have already been illustrated in chapter 1.2 and

mentioned in subsequent chapters, a simple example will now be given that will only show the expected

purpose and results of this algorithm. A complete definition of these two shall be given later on in this

chapter.

Consider an example scenario with the following characteristics:

� Manager A polls two agents (B and C) every 300 seconds;

� This manager is only interested in the values listed in the columns with OID α or β;

� It requests these values through the use of sequential get-next request messages.

Following is an overview of the sessions that may take place during a period of about 600 seconds.

33

Start Time (sec.) Session type

1,2 get-next-request-A[]-B[161]-[0]

1,8 get-next-request-A[]-C[161]-[0]

301,1 get-next-request-A[]-B[161]-[0]

302,0 get-next-request-A[]-C[161]-[0]

601,3 get-next-request-A[]-B[161]-[0]

603,1 get-next-request-A[]-C[161]-[0]

Table 4.1: Two session types occurring both three times

This simple example overview shows the occurrence of six sessions that have been identified with the first

algorithm. The second algorithm has identified the session types of each of these sessions. Now these

sessions and their respective session types are given as input to this algorithm.

Since this algorithm is expected to find relationships between the occurrences of certain sessions, it should

see in this very simple case that the two session types always occur within seconds from each other.

Furthermore, they are all started by the same initiator A. So, by observing just these six sessions, it should

be the result of this algorithm to state that all occurrences of the two session types are related. In that case,

the following session sets can be identified:

Start Time (sec.) Session type

1,2 get-next-request-A[]-B[161]-[0]

1,8 get-next-request-A[]-C[161]-[0]

Table 4.2: Session set #1

Start Time (sec.) Session type

301,1 get-next-request-A[]-B[161]-[0]

302,0 get-next-request-A[]-C[161]-[0]

Table 4.3: Session set #2

Start Time (sec.) Session type

601,3 get-next-request-A[]-B[161]-[0]

603,1 get-next-request-A[]-C[161]-[0]

Table 4.4: Session set #3

Since all of these session sets have the exact same session types listed, these three session sets will be

considered to be of the same session set type:

Session set type #1

Session set #1

Session set #2

Session set #3

Table 4.5: Session set type #1

In this case, the related session types occur within a very short time span of each other. But, there may be

cases where this is not so obvious. As a result, it should be stated that all occurrences of session types

within a session set occur within a specific range of time of each other. This means that there can be no

gaps larger than a certain amount of time between the sessions within a single session set; i.e. all sessions

making up a particular session set should follow each other within a certain amount of time. If not, than

there may be reason to believe that a new session set is started. After all, when a manager, as in this case,

performs regular polling behaviour, then all sessions in a single polling instance follow each other very

34

fast. For example, after a manager completes the retrieval of a specific table, it will either immediately go

on with the next table on an agent, poll the next agent in its list, or stop and wait for the next point in time

where it is supposed to poll its list of agents.

This simple example has shown some important characteristics of the two definitions. The observations that

have been made so far about both of these definitions can be summarized as follows:

A session set encompasses:

� One or more sessions that occur within a certain time frame of each other;

� These sessions are to some extend related to each other.

A session set type encompasses:

� One or more session sets that have a certain level of equality with respect to the occurrence of

session types in these respective session sets.

The general meaning of the two involved definitions for this algorithm have now been discussed. Also, it

has become clear that this algorithm has the task of finding session set types involving related session sets.

These session set types and respective session sets will be used as a basis for the next and final algorithm.

The given example is very simple and is by no means complex enough to deal with real world problems

that may be encountered in traces. The following subsection shows some problem scenarios that have to be

addressed, before an exact definition of the two mentioned terms or the algorithm description can be given.

4.2 Considerations
Up to now only a very simple example has been shown, which clarifies the general purpose of this

algorithm and the steps that have to be taken within this algorithm. But, as has been said, this is just a very

simple case, which only consists of a single manager which generates obviously periodic session sets of a

single session set type. It is the purpose of this subsection to show a number of different scenarios and

aspects that a real world trace may have, which could yield some difficulties in the determination of some

session sets and session set types. Every scenario shall be ended with the aspects that have to be taken into

account for the complete definition of a session set type and its member session sets.

In order to keep a uniform approach in these cases, a general scenario description will be given here. All

cases that are subsequently discussed, will use this general scenario description as a basis.

Consider a scenario in which two managers exist alongside a single agent with the following specifics:

� The first manager A is programmed to retrieve all values from column α on a periodic basis, based

on a specific preset interval;

� The second manager B is programmed to retrieve all values from both column α and β on a

periodic basis, based on a specific preset interval;

� Agent C has a large number of tables containing various values which can be referenced. The most

important of these are the following tables, which are the same as in the previous algorithm

description.

Figure 4.2: Highlighted tables of agent #1

35

4.2.1 Multiple initiators
The already stated example in the introductory section involved only a single initiator party for every

session. This example scenario shows the potential difficulties that arise when in a trace file more than just

one initiator exists.

Consider the case in which both mentioned managers are actively polling the specified agent. The

following session types could occur within a specific time span:

Start Time (sec.) Session type

0,1 get-next-request-A[]-C[161]-[0]

0,2 get-next-request-B[]-C[161]-[0]

0,5 get-next-request-B[]-C[161]-[1]

150,1 get-next-request-A[]-C[161]-[0]

300,0 get-next-request-B[]-C[161]-[0]

300,1 get-next-request-A[]-C[161]-[0]

300,7 get-next-request-B[]-C[161]-[1]

Table 4.6: Occurrence of session types with multiple initiators

This table shows a segment of a potential trace file, translated to the session types of each occurring

session. Although this is a recording of just a little more than 300 seconds, the problem that arises with the

involvement of multiple initiators becomes clear: which session types should be considered related?

A first observation can be made regarding the fact that initiator and manager B uses a different interval to

poll its desired columns on the agent, than the other manager A does. As a result, the sessions with session

types that are initiated by different parties should not be considered related. If this would not be stated, then

it could be possible to conclude that session types get-next-request-A[]-C[161]-[0], get-next-request-B[]-

C[161]-[0] and get-next-request-B[]-C[161]-[1] are related, because in two cases all of these session types

occur within a reasonable time of each other. But, this would not cover the occurrence of session type get-

next-request-A[]-C[161]-[0] at time point 150,1 seconds.

Another possibility of session type relations would then be that the sessions that were initiated by different

initiators are considered separately. This seems correct, since a manager is programmed to perform a

certain behaviour, independent of the programmed behaviour of a possible other manager; i.e. the polling

behaviour of manager A is strictly independent of that of manager B. A manual observation of a few trace

files suggests this to be a correct assessment.

When the session types are first filtered and separated by initiator IP address, then it will be obvious to state

that the following two sets of session types contain session types that are related in their occurrence:

get-next-request-A[]-C[161]-[0] get-next-request-B[]-C[161]-[0]

get-next-request-B[]-C[161]-[1]

The next step, as has been stated in the introductory example, is the identification of session sets. Since

these contain occurrences of session types that are related to each other, it is possible to define the

following session sets:

Start Time (sec.) Session type

0,1 get-next-request-A[]-C[161]-[0]

Table 4.7: Session set #1

36

Start Time (sec.) Session type

0,2 get-next-request-B[]-C[161]-[0]

0,5 get-next-request-B[]-C[161]-[1]

Table 4.8: Session set #2

Start Time (sec.) Session type

150,1 get-next-request-A[]-C[161]-[0]

Table 4.9: Session set #3

Start Time (sec.) Session type

300,0 get-next-request-B[]-C[161]-[0]

300,7 get-next-request-B[]-C[161]-[1]

Table 4.10: Session set #4

Start Time (sec.) Session type

300,1 get-next-request-A[]-C[161]-[0]

Table 4.11: Session set #5

Now, it is possible to define the following session set types:

Session set type #1 Session set type #2

Session set #1 Session set #2

Session set #3 Session set #4

Session set #5

Table 4.12: Session set types #1 and #2

This scenario has shown the following topics that should be taken into account for the exact definition of

the terms session set and session set type and also the algorithm itself:

� Before attempting to find which session types are related in their occurrence, a filter should be

applied, which separates different sessions, initiated by different initiators.

4.2.2 Composite of periodic and aperiodic behaviour
This example will show some of the most profound difficulties regarding a situation in which both periodic

and aperiodic traffic intertwine with each other.

Take for example the extended scenario of the one previously considered and add the case that besides the

regular polling of both managers, also manager A performs an aperiodic get-request of the first scalar value

of the μ-column. This may result in the following overview of detected sessions and their respective session

types:

37

Start Time (sec.) Session type

0,1 get-next-request-A[]-C[161]-[0]

0,2 get-next-request-B[]-C[161]-[0]

0,5 get-next-request-B[]-C[161]-[1]

71,0 get-request-A[]-C[161]-[0]

150,1 get-next-request-A[]-C[161]-[0]

155,8 get-request-A[]-C[161]-[0]

298,6 get-request-A[]-C[161]-[0]

300,0 get-next-request-B[]-C[161]-[0]

300,1 get-next-request-A[]-C[161]-[0]

300,7 get-next-request-B[]-C[161]-[1]

328,5 get-request-A[]-C[161]-[0]

Table 4.13: Occurrence of session types with aperiodic addition

This table shows the same set of detected occurrences of session types as in the previous scenario, with the

addition of four sessions that are of a session type that seems to perform a behaviour that cannot be

matched with any of the already known session set types and their respective session sets that were found

earlier.

What becomes clear from this listing is that just filtering the initiator IP address will not solve the problem

for this scenario, as it did in the previous one. This is a result of the fact that even after such filtering, the

newly added session type still seems to be related to the occurrence of some session sets, because it occurs

within a reasonable amount of time within those existing session sets. But, on the other hand, this newly

added session type occurs more often and there are two cases where its occurrence is clearly unrelated to

any other session type, namely the occurrence at 71,0 seconds and at 328,5 seconds. In these two cases,

there are no other session types that seem to relate to any of these two occurrences; they seem to appear

independent. This could, for instance, be the result of a manager being ordered to retrieve a certain value by

the user of the manager application.

A result of these observations is that the newly added session type should be considered as independent in

its occurrence, based on the information given here. This would leave the already mentioned session set

types and their respective session sets unchanged and would add a new session set type consisting of four

session sets that all contain only one instance of this session type.

This scenario, in which besides regular polling traffic, also clearly aperiodic traffic occurs from the same IP

address as the one that generated periodic polling traffic, has highlighted the following aspect:

� When a relationship is looked for, the proximity in occurrence of session types should not only be

considered, but also the number of occurrences of each of the involved session types. This will

avoid session types being considered part of a session set, where they actually are not;

� The given example of this subsection also shows that the order of occurrence of session types may

not always be the same for every session set of a particular session set type. This may be the result

of parallel polling by a manager. In such a case, certain sessions may be seen before another

session from the perspective of the recording unit.

4.2.3 Multiple managers operating from the same IP address
Another significant difficulty is the possibility that two or more managers may operate from the same IP

address from the perspective of the recording unit (that creates the trace files) which is part of a network.

This problem shall be discussed here by using the example scenario given in the introductory part of this

subsection.

38

Before an example is given, it may be of interest to show the two most likely cases in which multiple

managers may operate from the same IP address:

� Two or more managers operate from a different IP address behind a NAT, in which case the

recording unit is placed on the other end of the NAT, which only sees a single IP address;

� Two or more managers operate as different applications on a single system with a single IP

address.

In either of the two cases, it is not easily possible to determine whether there are indeed multiple managers

operating from a single IP address, or that it is just one manager with potential odd settings. This is so

difficult, because most manager applications tend to use different port numbers on their side for every new

session. Also, in the case multiple managers operating from the same IP address, the only obvious

distinction will be their port number. However, by simply looking at the sessions initiated from a specific

IP address, it is not easy to state which session is started by which manager. This can have consequences

for this algorithm, if there are managers that reference the same columns on a specific agent by using the

same operation type, or worse, they have an overlap in session types and also use a specific interval for

their polling. This may result in multiple sessions of the same session type to occur simultaneously. In

order for this problem to occur, it is necessary that all involved managers operating from a single IP address

use a different port number for every session. Otherwise, it could still be possible to filter the sessions

based on the initiator’s port number.

Consider the following listing of recorded sessions:

Start Time (sec.) Session type

0,1 get-next-request-A[]-C[161]-[0]

0,2 get-next-request-A[]-C[161]-[0]

0,5 get-next-request-A[]-C[161]-[1]

150,1 get-next-request-A[]-C[161]-[0]

300,0 get-next-request-A[]-C[161]-[0]

300,1 get-next-request-A[]-C[161]-[0]

300,7 get-next-request-A[]-C[161]-[1]

Table 4.14: Occurrence of session types with aperiodic addition

This table shows that where previously three different session types were detected, there are now just two.

As a result of the fact that the two managers now operate from a single IP address and use a different port

number for every session, it results in the apparent double occurrence of session type get-next-request-A[]-

C[161]-[0] around 0 seconds in the trace and around 300 seconds. It is now no longer possible to

distinguish which manager started which session.

A possible solution to this very difficult scenario could be to not only look at a single occurrence of a

session type, but more on a higher level approach, in which one should look at all of the occurrences of

session types and whether then a specific kind of relation can be made, creating session sets that are

comparable and of the same session set type.

In this case, though nothing is known about the session types at later times of this trace, it would still be

possible to state that two instances of session type get-next-request-A[]-C[161]-[0] and a single instance of

the session type get-next-request-A[]-C[161]-[1] seem to be occurring twice in this small trace segment.

Besides that, a single occurrence of the session type get-next-request-A[]-C[161]-[1] can be found around

time mark 150,1 seconds. Thus, by not just looking at a single occurrence of a session type within a

potential session set, in combination with the more general look at the trace itself, yields the following

sessions sets that make up two different session set types:

39

Start Time (sec.) Session type

0,1 get-next-request-A[]-C[161]-[0]

0,2 get-next-request-A[]-C[161]-[0]

0,5 get-next-request-A[]-C[161]-[1]

Table 4.15: Session set #1

Start Time (sec.) Session type

150,1 get-next-request-A[]-C[161]-[0]

Table 4.16: Session set #2

Start Time (sec.) Session type

300,0 get-next-request-A[]-C[161]-[0]

300,1 get-next-request-A[]-C[161]-[0]

300,7 get-next-request-A[]-C[161]-[1]

Table 4.17: Session set #3

Session set type #1 Session set type #2

Session set #1 Session set #2

Session set #3

Table 4.18: Session set types #1 and #2

Besides the mentioned difference in trying to find relations, the general method of only considering

instances of session types that occurred within a specific time frame of each other, was also taken into

account in the above listed session sets. With this is meant that the session starting at 150,1 is not

considered a reasonable continuation of the first session set, assuming that the time between the end of the

first session set and the mentioned session is large enough, in order to conclude that this is indeed a new

session set.

Note that this problem would also arise if two different agents operate from the same IP address. Manager

initiated sessions are hard to differentiate between as has been discussed earlier, but it will be much more

difficult in the case of an agent initiated session, since the source port of that session will be

indistinguishable from other agent initiated sessions operating from the same IP address. However, manual

inspection of some trace files suggests that still a large number of agent initiated sessions use the standard

agent port number (usually 161 [6]) as the initiator port number.

The following observations can be taken as a result of this scenario description:

� Session sets of a specific session set type may contain multiple occurrences of the same session

type;

� Session sets making up session set types may contain session types which do not all occur an

equal amount within the respective session sets, nor in a trace.

4.2.4 Irregularly occurring session types
Another very difficult scenario is one that contains irregularly occurring session types within apparent

session sets that are of a session set type. This may be the result of, for example, a manager polling an

agent on a regular basis, but not every polling instance results in the exact same set of session type

occurrences. This phenomenon raises the question: how to find relationships between occurrences of

session types, when not every session type may occur in every session set of a session type?

To give a better understanding of the problem at hand, consider the following list of detected occurrences

of session types in a fictional trace:

40

Start Time

(sec.)

Session type Start Time

(sec.)

Session type

0,1 get-next-request-A[]-C[161]-[0] 600,2 get-next-request-B[]-C[161]-[0]

0,2 get-next-request-B[]-C[161]-[0] 601,2 get-next-request-A[]-C[161]-[1]

0,5 get-next-request-A[]-C[161]-[1] 899,8 get-next-request-B[]-C[161]-[0]

300,0 get-next-request-B[]-C[161]-[0] 900,1 get-next-request-A[]-C[161]-[0]

300,1 get-next-request-A[]-C[161]-[0] 900,4 get-next-request-A[]-C[161]-[1]

300,7 get-next-request-A[]-C[161]-[1]

Table 4.19: Occurrences of session types with some irregular occurrence

This example trace would suggest that the first three, the second three, the following two and the last three

session type occurrences all yield different session sets each.

Start Time (sec.) Session type

0,1 get-next-request-A[]-C[161]-[0]

0,2 get-next-request-B[]-C[161]-[0]

0,5 get-next-request-A[]-C[161]-[1]

Table 4.20: Session set #1

Start Time (sec.) Session type

300,0 get-next-request-B[]-C[161]-[0]

300,1 get-next-request-A[]-C[161]-[0]

300,7 get-next-request-A[]-C[161]-[1]

Table 4.21: Session set #2

Start Time (sec.) Session type

600,2 get-next-request-B[]-C[161]-[0]

601,2 get-next-request-A[]-C[161]-[1]

Table 4.22: Session set #3

Start Time (sec.) Session type

899,8 get-next-request-B[]-C[161]-[0]

900,1 get-next-request-A[]-C[161]-[0]

900,4 get-next-request-A[]-C[161]-[1]

Table 4.23: Session set #3

But, a closer inspection of the session types making up these session sets shows that a difference can be

detected. Of the four session sets there are three logically of a single session set type, namely: the first,

second and fourth. The third session set misses an occurrence of session type get-next-request-A[]-C[161]-

[0].

Irregularly occurring session types and therefore unequal session sets of the same session set type can be

the result of implementation specific aspects of, for example, the manager application. There may be

scenarios in which the manager decides to also request the values of another column or table, as a result of

the fact that a specific column item is of a value that requires further inspection.

A very simple example cause of such a scenario would be the following:

� A single agent is a network printer containing referenceable tables;

� A single manager set to poll certain tables on this agent every few minutes;

41

o If a certain table value of the agent suggests that there is a printer problem, then this

manager will also request the contents of a different table related to, for example, the

amount of paper left in each input tray, or the amount of toner left in each cartridge.

Hence, in the case a printer error is detected by this manager, it will generate more sessions, likely of a

different session type than usually occur in such a polling instance. This will result in irregularly occurring

session types within a polling instance.

Such a scenario, like the one described above, suggests that in some cases it would be desirable to consider

the irregularly occurring session type also as a member of some of the session sets that make up a session

set type. But this would raise a new question: in how many session sets does a session type need to occur in

order for it to be considered part of a session set of a specific session set type? When this number of

required occurrences is taken too low, it may result in session sets that contain the occurrences of session

types that are in fact not related in their occurrences to the other listed session types for that session set. On

the other hand, when this number is taken too high, it may incorrectly consider related (almost) regularly

occurring session type occurrences not to be part of a session set.

So, in the case of the example trace listing given in this subsection, it may be concluded that if a session of

session type get-next-request-A[]-C[161]-[0] occurs often enough in session sets, then all four listed

session sets may be considered of the same session set type. If a more restrictive approach would be taken,

then this example trace description would result in two different session set types, one involving the first,

second and fourth session sets and a second session set type that only involves the third session set.

The following can be stated, based on the observations made in this subsection:

� Certain session types may not always occur in every session set of a specific session set type;

� The respective sessions of irregularly occurring session types may, depending on the trace

characteristics, be considered part of a session set;

� This measure may result in session sets of a single session set type that contain a variable number

of session type occurrences.

4.2.5 Incomplete session sets
The final consideration which is being discussed is the occurrence of incomplete session sets. Where the

previous subsection discussed the irregular addition of session type occurrences to the session sets, this

section will cover the cases in which fewer sessions in session sets can be found.

There are a few causes for incomplete session sets. One of them is related to the starting and the stopping of

trace recordings. Since every trace recording may start and/or stop at a time during which a session is

active, this may result in an incomplete recording. Therefore, the very first and the very last session of a

trace recording may be incomplete. Take for example the case in which a single manager of a network

operates alongside a single agent. The manager is interested in the values of the α-column on a periodic

basis. Then, the following recording may take place on such a network:

42

Manager Agent

Get-next-request(α.2)

Get-next-request(α.1)

Response(α.1)

Get-next-request(α.0)

Response(β.0)

0.0

0.5

1199.0

1199.5

1200.0

Figure 4.3: TSD highlighting border traffic issues

This diagram shows that the beginning and the end session are likely incomplete. As a result, the very first

and very last session may be considered of a session type that may not be found in any other position in the

trace. This may also affect the determination of a session set at the beginning and the end of a trace.

Therefore, not only should the ‘border’ session be discarded before they are taken into consideration in this

algorithm, also the very first and very last session set may need to be discarded, in order to avoid session

set membership to an incorrect session set type.

Another cause of incomplete session sets could be that a regular polling instance, initiated by a certain

manager, takes so long that the time reaches the point where the manager is programmed to start its next

polling instance. The following graph shows this possibility:

Figure 4.4: Graph showing the possibility of incomplete session sets

Either the time between the polling instances is taken very short, or the timeout limits are excessively large.

In these cases, a manager could choose to abort a running polling instance and start the new one. This has

two consequences: the first mentioned polling instance did not complete, which may result in a too small

session set later on, and the time between two successive session sets may be very short indeed, which will

make it hard to distinguish between two session sets.

The following can be concluded, based on these two possibilities of incomplete session sets:

� The very first and the very last session and session set may need to be discarded, in order to avoid

possible matching problems with session set types;

� The time between session sets that may make up the same session set type may be very short.

4.3 Definitions
In the introductory chapter the two terms session set and session set type have already been discussed

briefly. Following are the two definitions and the respective characteristics of these two terms that have

been based on the scenarios discussed in the previous subsection.

43

Definition A session set encompasses one or more sessions that have the following characteristics:

� All occurred within a initiator specific time frame of each other;

� Are related in their occurrence to each other;

� Are all initiated by a single initiator.

Definition A session set type involves one or more session sets which:

� Are all initiated by a single initiator;

� All have a very high (initiator specific) percentage of session type occurrence equality (i.e. a

particular session type shall occur in (almost) all member session sets).

4.4 Algorithm
The given definitions of the two terms involved in this algorithm show that it is very difficult to find an

algorithm that is able to cope with all of these scenarios. Nevertheless, an algorithm has been developed,

which will be discussed thoroughly in this subsection. Moreover, the description of this algorithm shall be

followed by an extensive example which will incorporate many of the already stated difficulties, in order to

give an even better understanding of this algorithm.

4.4.1 Algorithm description
The algorithm that has been developed to find session set types involving of session sets shall be discussed

here. The steps taken in this algorithm will be described alongside an explanatory abstract example.

Before the algorithm can be described or even considered, it is necessary to define a number of variables as

a result of the observations made in the previous subsections of this chapter. The first one is a timeout value

that has to specify the maximum amount of time between the end and start of any two sessions that are

supposedly part of a session set. If the time between two sessions is larger than this value, it would not be

reasonable to consider those sessions to be related. On the other hand, this value should also not be taken

too small, in which case a new session set may be considered, where it is actually a continuation of an

existing session set. As a result, in normal traces, this is the minimum time between session sets that should

make up a session set type. Take for instance the polling behaviour of a manager. This manager may

initiate a session set every 300 seconds which each take 10 seconds to complete. Then, the timeout value

should be taken smaller than 290 seconds, in order to consider the session sets correctly. Note that this

value may be different for different initiators of sessions within a trace. But, for the sake of clarity, the

timeout value for the example shall be taken constant for all initiators at 3 seconds.

Another value that should be stated beforehand is the minimum amount of occurrences of a session type

before it will be considered part of the respective session sets that make up a larger set of session sets of the

same session set type. Also this value may be initiator specific or trace specific, but in this case it will be

set to 80%. Its purpose will be made clear later on.

Also, the maximum difference in length of session sets that belong to a single session set type should be

determined at this point. For simplicity, this will be set to ± 50% of the average length of the session sets

making up a single session set type. The exact calculation and involved variables of this value shall be

discussed later on.

Now, consider the case that a single manager is polling exactly 12 agents every 300 seconds. All of the

involved traffic has been recorded for a specific duration. Also, to show some of the characteristics of this

algorithm, an additional session is added at time marker 24, which is generated manually by the user of the

management application. Following is an overview of the first 620 seconds of the trace, translated to blocks

which represent individual sessions:

44

Figure 4.5: Sessions occurring within the first 620 seconds of an artificial trace

Note that some space can be found between sessions, which would indicate possible processing time at the

manager side. Also, note that some sessions occur simultaneously. This abstract example shall now be used

to explain the algorithm.

The following flow diagram describes the many steps of the algorithm from a more abstract view. The

meaning of every step and condition shall be made clear during the course of the next few pages:

#
{se

s
sio

n
s

o
f
th

is
in

itia
to

r}>
0

&
&

#
{s

e
s
s
io

n
s
e
ts

u
n
d
e
fin

e
d
}<

m
in

im
u
m

a
m

o
u
n
t

Figure 4.6: Steps as part of this algorithm

1. Remove incomplete ‘border’ sessions

As has been discussed in the previous subsection, there is a need to remove the incomplete border sessions

as a result of starting and stopping the recording of traffic on a network.

One of the measures includes that a specific amount of time from either border (start and end marker of a

trace) needs to be chosen, in order to cope with the time between retransmissions of messages. If, for

example, a manager waits 20 seconds before it sends a retransmission and just after a manager has sent its

message the recording starts. Then, it may be possible that the retransmission is seen as the first message of

a ‘new’ session almost 20 seconds after the start of the trace recording.

Once these sessions have been selected, it may very well be possible that there is nothing wrong with these

recorded sessions, because they may in some cases be complete. In those cases, these sessions will be of a

certain session type that will occur at least twice in the whole trace. If they are of a session type that only

occurs a single time in a trace, it is most likely that something of that session was not recorded. Hence, in

the latter case, the session should be removed before any further algorithm steps are taken.

45

These two filters can be summarized as follows: in order to remove incomplete border sessions, one should

remove all sessions that are within a certain amount of time from either border and are of a session type

that only has one occurrence in the whole trace.

2. Filter per initiator IP address

The second step, after the sessions and their session types have been given as input to this algorithm, is to

select one of the available initiator IP addresses of one of the sessions in the trace and filter all sessions,

such that only those sessions remain that have been initiated from a single IP address. The abstract

overview given in figure 4.5 shall remain unchanged after this filter is applied, since in that example only

one initiator IP address exists: the single manager.

3. Count session type occurrences

The next step is to count all occurrences of each remaining session type. Generally, in the case of a

manager that is set to poll a few agents on a regular basis, this would yield a list of session type occurrences

that are very close to each other in numbers. The main difference would be the result of the start and

stopping of the traffic recording, which could result in a missing of a certain session type occurrence in

either the very first and/or the very last session set. In the worst case, the difference between any two

session types would in such a case be two (the missing of a session type instance in the very first session set

and also in the very last session set).

4. Find the largest group of session types that seem directly related

This step is more difficult than the previous three. This step will use the generated overview of the number

of occurrences of each session type as input. It will try to find the largest possible group of session types

that, within the trace, always occur within the stated timeout of each other and all occur equally often in

trace and all occur the least number of times. This will result in a list of session types that are considered to

be directly related.

The first question to be answered in this approach is about the reason for looking for these session types.

As has been stated in the previous subsection, there must remain room for the possibility that a number of

session types do not always occur in every session set of a possible session set type. Still, there must be a

group of session types that do always occur in every session set of a session set type. This method aims at

finding those so called core session types, because they can be found in every session set that makes up a

session set type.

The second likely question that needs to be answered is about why the session types are picked that have

the least number of occurrences, instead of the session types that occur the most often. Although this latter

case would seem more plausible in scenarios in which there would be certainty that no two managers are

operating from the same IP address. A manager could, for example, be set to have two sets of polling

settings that are used independently of each other where there is an overlap in the used session types. This

would result in a trace that would be as complicated as one that is the result of two or more managers, or

SNMP enabled network elements for that matter, operating from the same IP address, where more than one

generates sessions that are of the same session type. As a consequence, the least often occurring session

types are being considered first.

Although this may seem sufficient to find all core session types, there is still a problem. In small polling

instances, all session type occurrences can be found relatively close to each other, in which case it would be

easy to find all core session types. But, in the case where sessions can take very long in time and occur

sequentially only and may also be very large, occurrences of related session types, may be removed from

each other more than the stated timeout. Therefore, some related session types may incorrectly be

considered as not being a session type contributing to a set of potential session sets that are of a session set

type. This problem will be addressed in the subsequent points.

46

Some of the twelve session types can be considered as core session types:

Figure 4.7: Some sessions are of a core session type

Although it would be expected that all twelve session types are considered a core session type, it may be

the case that at a point later on in the trace, which is not shown, the occurrences of related session types

were too far removed from each other in time. As a result, only 8 of the 12 session types have at this point

been considered as core session types. The sessions of these session types are marked in figure 4.7.

5. Scan for other potential session set members

Already the general structure of the potential session sets, making up a single session set type becomes

clear in the example. But, there are still sessions of session types that should logically be considered part of

a potential session set. These sessions need to be detected.

This step attempts to find the irregularly occurring session type occurrences, or the occurrences of related

session types, by taking the now existing preliminary session sets, which only consist of core session type

occurrences, and subsequently looking for sessions occurring within the stated timeout value of the existing

core session type occurrences.

Every preliminary session set that exists at this moment shall be considered one at a time. When one

preliminary session set is considered, then for every session that occurs in that session set so far shall a scan

be made that looks for sessions occurring within the timeout value of that session. Then, every session that

occurs within this range and is not yet listed as either a core session type occurrence, or potential session

set member, shall be taken into consideration. In some cases, it may also be possible to exclude potential

sessions that are of a session type of which already a session is detected in a particular preliminary session

set.

This step can be visualized in the abstract example as follows:

Figure 4.8: Selected scanning ranges from existing sessions

The pink marker field shows the time range that is at all times within the stated example timeout of 3

seconds from any of the sessions that are found so far. As can be seen, some sessions are now within this

range and are not yet listed as potential session set members. When these other sessions are considered as

potential session set members, this results in the following graph:

47

Figure 4.9: Possible new session set members selected

The next step is to repeat this process for the now new members of the respective potential session sets.

This will go on until either an occurrence of an already listed session type is scanned (if this filter is

selected), or when no new sessions can be found as a result of the fact that the time till the next session is

greater than the stated timeout value.

Only one other scan shall take place after the first one in the case of the abstract example:

Figure 4.10: Selected scanning ranges from existing sessions

This figure shows that all occurrences of the twelve session types are now selected for the next step. Before

this last scan, the third potential session set missed one session type occurrence, which has now been found.

Also, note that the scanning ranges are now a bit larger than before, because there are more sessions in the

potential session sets around which the range of 3 seconds is considered. Because the selected sessions in

the potential session sets all occur within the timeout range of each other, are all three shown scan ranges

forming a single block without wholes respectively.

After this last scan, the abstract example looks like this:

Figure 4.11: Potential session sets after completing the scanning process

Observe that just one session was not considered to be part of any of the potential session sets, because it

occurred more than the stated timeout value from any of the members of any potential session set. Also

note that of the three potential session sets shown, all twelve session type occurrences are found. These

potential session sets shall now be taken to the next step.

Note: in this example it is chosen to allow only one occurrence of a session type in every session set, in

other scenarios it may be desirable to allow multiple occurrences of a single session type within a single

session set. In such a case, only the timeout value shall restrict the scanning process. Based on some

manual inspections of various trace files, it is clear that in most cases it will not be desirable to allow

multiple occurrences of a singe session type within a single session set.

48

6. Detect proper session types

The potential session sets that have been found so far may contain session types that do not occur often

enough to be considered part of the session sets of a single session set type. As has been discussed in the

previous subsection, only session types that occur often enough (in enough potential session sets), shall be

considered part of the session sets of a particular session set type. This step will therefore look for session

types that do occur often enough.

This step does so by starting with the session type that occurred most often in the potential session sets

known so far. Then it takes the second session type and looks to see if these two both still occur often

enough in potential session sets. This continues until it attempts to add a session type to the test set of

session types, which results in too little session sets containing an occurrence of each of these session types.

Then, it will try the same with a different session type, until it finds the largest possible set of session types

of which each of these session types is occurring in enough session sets. When one session type is not

satisfactory at some point in this process, then it may be reconsidered at a later point in this process. In the

end the largest possible group of session types shall be found. The smallest group of session types consists

of the core session types.

In the case of the abstract example, there are twelve session types. These are all part of regular polling

behaviour and shall therefore be found in all session sets. The other mentioned session type is not part of

any of the potential session sets at this point, so only twelve different session types can be found in these

session sets. Since the three session sets shown are just the first three of an artificial trace, there may at the

end of this step be 100 detected session sets. As mentioned earlier in this example, the minimum

occurrence is set to 80%. Thus, the largest possible group of session types should be found in at least 80 of

the 100 session sets found. In this step, the algorithm will start by taking one of these twelve session types,

then another, until it finds the largest group of session types possible. Since this is a very simple example,

all twelve session types will make up this largest group of session types, because they occur in all 100

session sets. Therefore, these twelve session types will be taken to the next step.

7. Determine session sets of the same session set type

In this step shall for each of those potential session sets which were found, those sessions be selected that

are of one of the selected session types. Then, in these session sets all occurrences of session types that are

not a member of the selected group shall be discarded, which means that they will be considered in another

instance of this algorithm. This step will result in session sets that equal to or smaller in size than the

previously detected potential session sets, which now only contain occurrences of the session types that

were selected in step 6.

The selected session sets are all of a new session set type, if the number of session sets is larger that the

limit of minimum session sets per session set type (which is equal to the limit of minimal number of session

type occurrences of a session type in the session sets of a particular session set type). After this, all

involved sessions that make up these session sets shall be removed from the trace. If the minimum number

of session sets is too small, then all session sets shall be added to a list of floating session sets (session sets

that are not assigned to a session set type), which can result in a different or separate session set type later

on in this algorithm.

If there are still some potential session sets remaining after removing the selected session sets from the

inventory, then they shall be considered as follows:

� They will all be considered as floating session sets, if the total number of these remaining session

sets is smaller than the limit of minimum session sets per session set type. The respective session

sets and their sessions shall subsequently be removed from the inventory;

� If there are still more potential session sets than the stated limit, then the process, with these

potential session sets, shall go back to step 6, until either the number of session sets is too small,

or there are no potential session sets remaining after step 7 has been considered again.

The algorithm returns to step 3, if there are no - or less than the stated limit - remaining potential session

sets at this point and if there are still other unhandled sessions initiated by this initiator. If this is not the

case, the algorithm shall go to step 8.

49

In the case of the example, shall all session sets remain unchanged, because all session sets only contain

occurrences of session types that are a member of the selected twelve session types of the group of the

previous step. The resulting session sets, which are of a single session set type, can be shown as follows:

Figure 4.12: Session sets of a single session set type found in the first ~600 seconds of the trace

After this, there shall remain only a single session, as depicted in figure 4.12. The algorithm shall consider

this single session as a single session set, of just one session. Because the set of session sets is then smaller

than the stated limit, the session set shall be added to the list of floating session sets.

8. Handle floating session sets

This step involves the possibly generated floating session sets. This step will try to find a session set type of

which a floating session set may be part, or it will create a new session set type and assign a floating

session set to it.

The assignment of a session set to an existing session set type occurs only if the following conditions are

met:

� They will all be considered as floating session sets if the total number of these remaining session

sets is smaller than the limit of minimum session sets per session set type. Also in this case shall

the sessions making up the floating instances be removed from the inventory;

� The floating session set must have a significant match of occurring session types compared to the

longest session set of a session set type.

If these conditions are met, then a floating session set shall be added to such an existing session set type. If

not, a new session set type shall be created consisting of only that floating session set. After that, the

following floating session set shall be considered, until all have been either assigned to an existing session

set type or have resulted in the creation of a new session set type.

The next activity within this step is the attempt to merge session sets that should be considered one.

Merging will only occur if the matching of the occurring session types is significant. This measure has been

added, because of the possibility that separate session set types are being created as a result of floating

session types.

In the end, all sessions initiated by a specific initiator shall have been considered, after which the algorithm

goes back to step 2, if there are still other sessions belonging to different initiators. If not, the algorithm

goes to step 9: the last step.

In the case of the abstract example, only the single separate session, which did not belong to any session set

yet, resulted in a floating session set. In this step, this floating session set would have been considered as

part of a new session set type, because it would not match with the only created session set type and its

session sets. Also, that session set would be of a length that is not within the stated limits of 50%; i.e. the

minimum length for a possible session set assignment would be 50% of twelve. But, this session set only

contains one session type occurrence.

9. Finishing

This is the final step of this algorithm that will be reached when it has handled every session that was given

to it as input (minus some possible border sessions). This step will present the results to the next algorithm

as independent session set types, involving session sets in accordance with the given definitions of the two

terms.

50

In the case of the abstract example, two session set types would have been detected, using the given preset

limits. One of the session set types would encompass all session sets which were initiated by the manager

as a result of pre-programmed regular polling behaviour. The remaining session, which was completely

unrelated to the session sets of the first session set type, resulted in a different session set type:

Figure 4.13: Resulting allocations of the given sessions

4.4.2 Example algorithm execution
Although the description of the algorithm and its steps has been given alongside an example, that example

was very abstract and straightforward. A more elaborate example is given in appendix A3.

51

Chapter 5

Determination of periodicity and interval detection

The definitions and algorithms of sessions, session types, session sets and session set types have now been

discussed. The traffic identification problem, as stated in chapter 1.2, has now been addressed, since SNMP

messages that are related to each other are now grouped into session sets. Moreover, session sets that have

a significant level of commonality with each other are of the same session set types. But, now the question

remains how can it be determined whether these session sets are periodic or aperiodic? Also, in the case of

periodic session sets, what are the intervals that can be found between these session sets? This chapter will

discuss the algorithm that has been developed to solve these questions.

Figure 5.1: Input and output of this algorithm

As shown in figure 5.1, this algorithm will accept session sets of a session set type and return whether a

session set is periodic or aperiodic. Also, in the case of periodic session sets, it will return the discovered

intervals.

In order to give a better understanding of the problems regarding this algorithm, this chapter is separated

into the following sections:

� An introductory example shall be discussed briefly in order to identify just some of the problems

and characteristics of both kinds of session sets;

� Then, before anything can be stated about the algorithm, it is desirable to discuss the exact

characteristics of both periodic and aperiodic session sets;

� Based on these consideration, it will be possible to give a definition of both kinds of session sets;

� Then, the algorithm shall be discussed, which shall be followed by an elaborate example.

5.1 Introductory example
Although the terms periodic session set type and aperiodic session set type seem straightforward, they both

do raise the question about when a session set type is supposed to be considered either one or the other of

these. Two example session set types shall be shown here to highlight this problem.

The first session set type is shown here and involves six session sets that are of this session set type:

52

Start Time (sec.) Session set

50 Session set #1

200 Session set #2

350 Session set #3

500 Session set #4

650 Session set #5

800 Session set #6

Table 5.1: Sessions sets making up a single session set type

This session set type shows that there are six session sets that are of this single session set type. The time

between the start points of the various session sets suggests that there is a clear interval of 150 seconds

between every start point. In such a case, it would be easy to conclude that this session set type is a periodic

session set type, because all of the six session sets are contributing to a specific interval.

The following table shows a different session set type and its session sets:

Start Time (sec.) Session set

20 Session set #1

180 Session set #2

320 Session set #3

400 Session set #4

550 Session set #5

780 Session set #6

Table 5.2: Sessions sets making up a single session set type

Again, this is a session set type that contains six session sets. But, in contrast with the previous example,

this example is less clear. By looking at the time of the various start points, it would be tempting to

conclude that there is a strict pattern for some of the session sets. For instance, the time between the start

points of session set #1, session set #2 and session set #3 suggest that there is almost an interval of around

150 seconds. But in the first case, it is 160 seconds and in the second it is 140 seconds. Then, there is also

the issue of the fourth session set, which occurs just 80 seconds after the third session set started. This

raises the question: should this session set type still be considered periodic, or just a portion of the session

sets of this session set type?

The following basic characteristics of both kinds of session set types can be summarized as follows:

Periodic session set type:

� There is a clear single interval between the occurrences of the respective session sets.

Aperiodic session set type:

� There is NO clear single interval between the occurrences of the respective session sets.

5.2 Considerations
The basic characteristics and problems regarding the determination of periodic or aperiodic behaviour of

session sets have already been discussed briefly. This section considers a number of problems that may

occur in the real world, which have to be dealt with in the algorithm. Also, the eventual complete

definitions of both kinds of session set types shall be given, based on these considerations.

53

5.2.1 Timer related issues
Assume that a manager is programmed to poll a set of agents every 300 seconds. Then, the traffic

belonging to a particular polling instance shall be grouped into a session set, which shall be part of a

session set type. But, at which point does the manager reset its timer and wait for the next polling instance

to be started? The following overview of the member sessions of a session set shows the possible reset

points:

Time (sec.)
0 10 20

Session initiated by a certain manager

1

2

Manager Agent

T
im

e
(s

e
c
.)

16.0

16.5

17.0

Get-next-request(β)

Response(β.0)

Response(γ.0)

Get-next-request(β.0)

3

4

Figure 5.2: Possible timer reset points

This figure shows 12 sessions that make up a single session set. If, for example, a manager is set to poll a

number of agents, where this figure shows the resulting sessions from a single polling instance, then there

are the following possible timer reset points on which the manager determines to wait 300 seconds, before

it starts the next polling instance:

1. The moment at which it starts with the first initiator message of the first session belonging to a

polling instance;

2. The moment of the first request for the last agent to be polled (the last session of a polling

instance);

3. The moment of the last request for the last agent to be polled (the last request being sent, before

the manager has completed a polling instance);

4. After the manager has received the last response to the very last request of the last session, as part

of a polling instance.

The determination of the reset point is an important process, because if this is not done properly, an

incorrect conclusion may be made regarding the periodicity of a session set type and its session sets. For

instance, if a manager resets its waiting timer to 300 seconds in point 4, then the unsuspecting observer

may state that there is no clear interval between the session sets. The following graph shows such a

situation:

Figure 5.3: Polling with timer reset point 4

This figure shows that when the interval between session sets of a session set type is considered based only

on the start points of the session sets, then in this case there will be an interval of 310 seconds between the

first and the second and an interval of 320 seconds between the second and the third. This is possible, since

54

session sets can sometimes take longer than other session sets of the same session set type. Still, in this case

there would be a clear problem, because with an interval that deviates so much from an average interval, it

is questionable to conclude that this session set type is to be considered periodic. If, on the other hand a

mechanism is developed, which can detect the proper timer reset point, then these difficult situations will

arise less often. However, such a mechanism may require a large number of session sets, in order to

determine the proper reset point.

Even when the timer reset point is determined correctly, or known ahead, there is still room for deviation in

the exact start time of, for example, a polling instance. Some possible causes for this are the following:

� A trace is recorded on some point of a network. This means that there is always some delay

between the time an SNMP message is sent and the time it is seen and recorded at the recording

unit. This means that the exact start point, from the perspective of the recording unit, may deviate

up to a few seconds;

� The waiting method used by, for example, a manager between polling instances is usually based

on a mechanism that is not very accurate. For instance, when a manager application uses the

sleep() method in Perl, like MRTG [7], then the actual interval between polling instance may be

up to one second removed from the desired waiting period. This is the result of the fact that this

method only accepts an integer amount of seconds.

Clearly, there are numerous aspects regarding the timer mechanism used for polling instances, or at least

periodic behaviour. The following points have been highlighted in this subsection, which need to be

incorporated in the algorithm:

� Different SNMP traffic initiators, which generate SNMP traffic on a regular basis, may use

different timer reset points. It is paramount that the proper reset point of a SNMP traffic initiator is

detected, before anything can be stated about the periodicity of the session sets of a session set

type;

� There is usually some time (up to a few seconds) between the moment of sending an SNMP

message at a network element and the moment at which this message is recorded at the recording

unit. This makes it also more difficult to exactly determine an interval;

� The waiting mechanism used by SNMP traffic initiators between periodic activities could be

inaccurate, which could result in a deviation from the desired waiting time between these periodic

activities.

5.2.2 Multiple intervals within a session set type
Up to now, only periodic session set types, which have a single interval between their session sets, have

been considered. However, in the real world, there could be a possibility that a periodic session set type

contains multiple intervals between its session sets. The following shows an example session set type,

which has two intervals: 150 seconds and 300 seconds.

Start Time (sec.) Session set

10 Session set #1

100 Session set #2

160 Session set #3

310 Session set #4

400 Session set #5

460 Session set #6

610 Session set #7

700 Session set #8

760 Session set #9

Table 5.3: Session sets making up a single periodic session set type with two intervals

55

This table of session sets shows the difficulty of determining which interval(s) can be found in a periodic

session set type. Also, it is usually not known in advance which interval(s) were used in practice. If this

possibility of multiple intervals is not considered, then this algorithm may in some cases incorrectly

conclude that this session set type is aperiodic. Therefore, the algorithm needs to be able to identify all

intervals between the session sets of a session set type.

This subsection has stressed the following:

� Within a single session set type may be session sets contributing to multiple intervals, which are

used to generate periodic traffic. If not all intervals are found correctly, an incorrect conclusion

could follow which would state that such a session set type is aperiodic.

5.2.3 Composite of periodic and aperiodic behaviour
Besides multiple intervals within a single session set type, it may even be possible to have session set types

that have, besides just aperiodic or periodic, also periodic or aperiodic session sets respectively. This could

result in significant problems and may also lead to incorrect conclusions regarding certain session set types.

The following example session set type shows this possibility.

Start Time (sec.) Session set

10 Session set #1

310 Session set #2

610 Session set #3

655 Session set #4

910 Session set #5

1210 Session set #6

1510 Session set #7

Table 5.4: Session sets making up a single session set type containing both kinds of session sets

This table shows that there are 7 session sets, of which most of them are following each other in a regular

fashion, such that an interval of 300 seconds could be detected. However, there is one session set that does

not seem to follow this regular pattern: session set #4. If this session set would be disregarded for a

moment, then all session sets follow 300 seconds after the previous one. This would remain session set #4,

which seems to be of a different interval, or is just an aperiodic occurrence. It could be the result of an

aperiodic activity, caused by, for example, the manually initiated polling of the same set of agents by a

specific manager.

This section has stressed the following:

� Session set types may contain both periodic and aperiodic session sets. The periodic session sets

shall act in a regular expectable fashion, based on (a) specific interval(s). The aperiodic session

sets do not act in a regularly detectable and expectable pattern.

5.2.4 Trace holes
Another issue that could occur, due to various reasons, are holes in a trace, which would result in

unexpectedly large chronological gaps between the occurrences of the various session sets that make up a

session set type. The following table shows such a possibility.

56

Start Time (sec.) Session set

35 Session set #1

335 Session set #2

635 Session set #3

1180 Session set #4

1480 Session set #5

1780 Session set #6

2080 Session set #7

Table 5.5: Session sets making up a single session set type containing a hole

This table shows a hole in the table between the third and fourth session set of a session set type. Observe

that the first three session sets seem to be part of a periodic behaviour, based on an interval of 300 seconds.

The same can be stated about session sets 4 through 7. So, do both parts actually belong together?

A few possible reasons for observable holes in a table are:

� The recording of traffic at the recording unit got interrupted for a certain amount of time;

� The network element responsible for initiating the session sets of this session set type stopped its

regular behaviour for a certain amount of time, but resumed at a later point, using the same

interval as before the interruption.

This subsection has shown the possibility of observable holes in a trace. Therefore, the following can be

concluded on this topic:

� Although a network element may be programmed to perform perfectly expectable patterns of

regularly occurring session sets, there may always be holes, due to various causes, that would lead

to unexpected occurrences of session sets (i.e. at different times than would be expected, based on

the knowledge of an interval). This makes it more difficult to determine which session sets

contribute to a specific interval within a session set type.

5.2.5 Border session sets
An issue that has also been considered in the case of the previous algorithm, but should again be considered

here, is incomplete session sets at the beginning and at the end of a trace.

Even though incomplete sessions have already been taken care of, it is still possible that the recording

started or stopped halfway an active polling instance, or another regularly occurring session set. Hence, it is

necessary that these incomplete session sets are removed from a session set type, before they are considered

for the periodicity analysis. The following example will demonstrate the necessity.

Start Time

(sec.)

Number of sessions in

session set

Session set

59 5 Session set #1

350 10 Session set #2

650 10 Session set #3

950 10 Session set #4

1250 10 Session set #5

1550 10 Session set #6

1850 6 Session set #7

Table 5.6: Session sets making up a single session set type with incomplete border session sets

The first listed session set contains just 5 sessions, where the ‘normal’ session sets contain 10. This would

suggest that some sessions have not been recorded. As a result, the observed starting time of that session set

cannot be determined correctly, since the actual first session of this session set is not recorded. If this

57

session set would be considered as a regular session set of this session set type for processing, then it may

be incorrectly concluded that the first session set does not contribute to the periodic behaviour with a 300-

second interval.

This logic can also be applied to the very last session set. However, in this case it is not the start time, but

the end time of the session set that is not recorded. This could affect the results of the timer reset point

determination process. A later discussion on this topic will stress that the end time of the last (incomplete)

session set is not relevant, but only the start time of the last session set.

The following can be concluded, based on the observations made in this subsection:

� Incomplete session sets, which occur at the very beginning or at the end of a trace and are of a

specific session set type, ought not to be considered in the process of determining periodicity and

should therefore be removed beforehand.

5.3 Definitions
In the introductory chapter, the two terms periodic session set type and aperiodic session set type have

already been discussed briefly. Based on the considerations stated in the previous subsection, it will be

required to add a third session set type: a composite session set type, because there is also the possibility of

a combination of both periodic and aperiodic session sets within a single session set type. Following are the

three definitions and the respective characteristics of these three terms, which have been based on the

considerations discussed in the previous subsection.

Before anything can be stated about the exact definitions of the three types of session set types, it is

desirable to explain what is exactly understood by a periodic session set and an aperiodic session set.

Following are the definitions used for these two terms:

Definition A periodic session set is a session set that is part of a subset of session sets that are all of a

specific session set type, which all occurred based on a specific definable single interval.

Definition An aperiodic session set is a session set that is NOT part of a subset of session sets that are all

of a specific session set type, which all occurred based on a specific definable single interval.

These two and the following definitions have been based on the topics described in the previous subsection.

The meaning of them shall be used for the remainder of this thesis. Following are the definitions of the

three variations of session set types.

Definition A periodic session set type is a session set type which has the following characteristics:

� One or more intervals can be found between the session sets;

� All session sets (possibly without an incomplete first session set) contribute to one specific

interval based behaviour only (not to more than one). Thus, each session set is a member of one

subset that contains session sets that are contributing to the same interval;

� No aperiodic session sets may exist.

Definition An aperiodic session set type is a session set type which has the following characteristics:

� No subset of session sets contribute to a specific definable interval;

� All session sets are marked aperiodic.

Definition A composite session set type is a session set type which has the following characteristics:

� Some of the session sets are part of a set of the session sets that contribute to a specific definable

interval;

� Some of the session sets do not contribute to a specific interval, but are purely aperiodic.

58

5.4 Algorithm
The definitions of the involved terminology and the most significant problem scenarios regarding this

algorithm have been discussed. This algorithm takes as input session sets that are of one specific session set

type and returns the periodic session sets and aperiodic session sets (if available). When a few session sets

result in a detectable behaviour with a specific interval, then such a set of session sets shall be considered a

subset of the session sets that contribute to one specific interval. An abstract example description is given

alongside the algorithm description, in order to clarify the steps taken in this algorithm. A more elaborate

example shall be given after that description.

5.4.1 Algorithm description
This algorithm is developed, based on the definitions and considerations given in the previous subsections

of this chapter. Following is an extensive description of this algorithm, which will be accompanied by a

very simple example, in order to clarify the steps taken, which are shown in the following flow diagram.

Figure 5.4: The steps taken in this algorithm

The core idea, around which this algorithm is developed, is the finding of the smallest intervals in session

set types first, before the larger ones. This is especially important in cases where session set types contain

multiple intervals, like for example 100 and 300 seconds. When first the larger intervals are detected, it

could be possible that the smaller intervals become invalidated and undetectable, if those session sets

contributing to larger intervals are removed after finding them. If no reasonable interval can be found for a

particular session set, then it will be considered aperiodic. Finally, this algorithm uses the assumption that a

single session set is either of the following within a session set type: an incomplete start session set, in

which it will be marked as such, aperiodic, or it is periodic in which case it may contribute to only one

interval.

As was the case with the previous algorithm, this algorithm also requires the definition of some predefined

values. These are usually trace specific, still they can be set by estimating and making consideration. The

following table shows the limits or variables that have to be set, before the algorithm is executed.

59

Limit Value

Max. start session set length

difference

The maximum length difference, compared to the average

session set length, of the first session set of a session set type.

Max. interval deviation Within a subset of the session sets that occur with a specific

interval, the maximum deviation from the average interval

between the session sets shall be this amount.

Max. average interval deviation Within a subset of the session sets that occur with a specific

interval, shall this limit be the maximum average deviation

from that interval.

Min. nr. of session sets in subset The minimum number of session sets within a set of session

sets that contribute to the same interval.

Max. time between session sets The maximum time between any two session sets within a set

of session sets that contribute to the same interval.

Table 5.7: Definition of preset limits/variables used in this algorithm

The second and third values avoid large changes in the intervals between the session sets that are

considered to be contributing to a single interval. The last one is used to detect time gaps between session

sets. The following values shall be used for these limits in the example described alongside the taken steps:

Limit Value

Max. start session set

length difference

25%

Max. interval

deviation

30 seconds

Max. avg. interval

deviation

10 seconds

Min. nr. of session

sets in subset

3

Max. time between

session sets

650 seconds

Table 5.8: Preset values used in the explanatory example

Following is an example of a session set type, which could be given as input to this algorithm. This session

set type shall be used to explain the steps taken in this algorithm.

Start Time

(sec.)

Last

session

start (sec.)

Last

request

(sec.)

Last

response

(sec.)

Number of sessions in

session set

Session set

0,23 7,27 7,32 7,46 12 Session set #1

150,50 159,10 159,88 159,98 20 Session set #2

300,40 308,12 308,39 308,42 20 Session set #3

449,93 457,15 457,78 457,95 20 Session set #4

600,98 609,02 609,22 610,34 20 Session set #5

750,11 758,57 758,67 758,72 20 Session set #6

Table 5.9: Session sets making up the example session set type

A first glance at this table of session sets suggests that there is little periodicity to be determined in this

session set type. Following are the steps that make up the algorithm that will yield a clear conclusion on

this session set type and its session sets.

60

1. Remove border session sets

The necessity of this step has already been discussed in chapter 5.2. This step involves the removal of the

first session set, if this one seems incomplete. The last session set, as in the previous algorithm, is not

eligible for removal, since this algorithm only looks at the intervals, which for the last session set is the

time at which this last session set starts, not when it ends. If a session set is considered to be part of a

session set type in the previous step, then there is no need to recheck this validity.

First, the average session set length is determined, without any of the two border session sets. If three or

less session sets are available, then the largest session set shall be considered for the average length value.

Then, this average length value is multiplied by (1-Max. start session set length difference), yielding the

minimum number of sessions in the first session set. If the first session set is smaller than that value, it shall

be removed, before the algorithm goes to the next step.

In this example, the calculated average session set length would be 20 and (1-0.25)*20 = 15. But, since 12

is smaller than 15, the first session set shall be considered incomplete and it will be discarded.

2. Detect set of session sets with the same interval

This step is the most important and significant one of this algorithm. Here, a set of session sets is to be

detected that contribute to the same interval, if that can be found. The description of this step has been split

into four sub steps, in order to keep this second step understandable.

2a. Find first two session sets

The first thing done in this step, is the detection of the first session set that has not yet been assigned to a

set of session sets with a specific interval. Then, the next unassigned session set is looked for. If this next

session set is found and it occurs within Max. time between session sets, then the interval between these

two session sets is determined. If this requirement is not met, then this first single session set shall be

considered aperiodic and it shall be removed from the input listing.

As a result, the first and the second session set shall simply be selected for consideration. If that does not

result in a large enough set of session sets to be considered contributing to a single interval, then when the

algorithm returns to this step after step 2d, it will attempt to keep the first session set selected and it chooses

the third session set as second session set for consideration. This goes on with the same first session set

selected, until either a large enough set is found in step 2d, or the gap between the first and second selected

session set is larger than Max. time between session sets. In this last case, the first session set shall be

considered as aperiodic and subsequently a new first session set shall be selected and the process shall be

repeated.

2b. Determine interval between selected session sets

The interval determination of a set of session sets involves two aspects. One is the determination of the

intervals between the session sets, measured for the four timer reset points. The other is the determination

of the proper timer reset point. Since a periodically repeating pattern shall use a specific interval, alongside

a specific timer reset point, it is expected that in the case of the timer reset point the total deviation from the

interval measured from that specific timer reset point is the smallest compared to the other timer reset

points. This does require enough intervals, in order to calculate the correct timer reset point.

First, the intervals for the four cases, as shown below, need to be calculated.

Figure 5.5: Four interval cases

61

The intervals between n listed session sets will be calculated as follows:

Interval calculation using reset point r (r = 0:3):
1

0

intervalSum = (getTimeAtResetPoint0(sessionSet[1]) - getTimeAtResetPoint (sessionSet[]))

interval = intervalSum / (-1)

n

i

i R i

n

�

�

��

If there are more than two session sets involved, then the average interval shall be calculated and also the

total deviation from this particular interval, which is calculated as follows:

Deviation calculation using reset point r (r = 0:3):

1

0

deviation =

|averageIntervalForThisResetPoint - (getTimeAtResetPoint0(sessionSet[1]) - getTimeAtResetPoint (sessionSet[]))|
n

i

i R i
�

�

��

After this has been done is it possible to state which reset point should be considered and thus which

interval shall be used. This will be the interval where the total deviation from the respective interval is the

smallest. It must be noted that this process will become more accurate when there are more session sets to

be considered. In the case of just two session sets, the reset point shall be chosen automatically at the start

of a session set, since manual trace inspections suggest that this reset point is used most often. This

predefined choice is necessary, because in the case of just two session sets, the deviation from the average

interval is for every reset point zero.

2c. Determine range of next session set

The next activity, after the interval determination, is the detection of the next session set by defining a

range, based on the interval between the existing session sets. This is shown in the following figure.
T

im
e

(s
e
c
.)

Figure 5.6: Finding session sets with a single interval

The range is calculated, based on the interval between the currently considered session sets of this interval

and the values Max. interval deviation and Max. avg. interval deviation, which were preset at the

beginning. This range determination process does not make use of the information of any other session set

than those listed in the set of session sets so far. Based on the interval of this set of session sets, it is

possible to expect the next occurrence within a certain range. The calculation goes as follows:

maxNextIntervalDeviation = (#{found session sets with this interval} * (Max. avg. interval deviation))-

 (Total deviation so far)

maxNextIntervalDeviation = MIN(maxNextIntervalDeviation, (Max. interval deviation))

lowerRangeLimit = (Time at reset point of last listed session set) + interval - maxNextIntervalDeviation

upperRangeLimit = (Time at reset point of last listed session set) + interval + maxNextIntervalDeviation

62

As has been noted in the previous sub step, in the case of just two session sets based on which an interval

and range is estimated, it should be noted that the range of the expected next occurrence is very large as a

result of the preset values. This is because of the fact that there is still no deviation from an interval, thus at

this point it can still be very large.

2d. Detect the next session set for this interval

Once the range is known, it is possible to search for a session set of the given session set type that occurs

within this range. One of the following is possible:

� If this is the case, then this session set shall be added to the subset for this interval and the

algorithm shall return to step 2b;

� If there are more than one session sets occurring within the set range, then the session set that is

deviating the least from the interval shall be chosen and the algorithm returns to step 2b;

� If there are no session sets within this range and

o The subset of session sets is still smaller than the limit (Min. nr. of session sets in subset),

then another first pair shall be tried in step 2a;

o The subset is larger than or as large as the limit (Min. nr. of session sets in subset), then

the algorithm goes to step 3.

In order to clarify the operation of this algorithm in these sub steps of this algorithm, here follows the

application of step 2 on the example input.

The first listed session set was removed, because it was considered incomplete in step 1. Then, the first

session set is started at 150,50 seconds. Here follow the steps taken:

� In step 2a also the second session set shall be found, because it is within the stated limit of 650

seconds. This will make the following two session sets eligible for consideration of a single

interval;

Start Time

(sec.)

Last

session

start (sec.)

Last

request

(sec.)

Last

response

(sec.)

Number of sessions in

session set

Session set

150,50 159,10 159,88 159,98 20 Session set #2

300,40 308,12 308,39 308,42 20 Session set #3

Table 5.10: Session sets that apparently contribute to a single interval

� In step 2b the intervals for every reset point shall be determined. This gives the following:

Initiator message of

first session (sec.)

Initiator message of

last session (sec.)

Last request of last

session (sec.)

Last response of last

session (sec.)

148,90 141,30 140,52 140,42

Table 5.11: Detected intervals for the given set of two session sets

The interval based on the first initiator message shall be chosen for the next step, since there is just

one interval and all deviations from the respective intervals are zero;

� Step 2c determines the range in which the algorithm expects the next session set to occur with this

interval. The calculation for the range is as follows:

maxNextIntervalDeviation (2 * 10) - (0) 20

maxNextIntervalDeviation (20, 30) 20

lowerRangeLimit 300,40 148,90 - 20 429,30

upperRangeLimit 300, 40 148, 90 20 469, 30

MIN

� �

� �

� � �

� � � �

63

As a result, a session set is expected to start between 429,30 seconds and 469,30 seconds in trace

time;

� The example shows that there is indeed a session set within the stated range, and step 2d will

therefore add this third session set to the subset of session sets that occur, based on an average of

around 150 seconds. Subsequently the algorithm returns to step 2b, where it will recalculate the

interval;

� The algorithm will go from step 2b to 2c, in which it will detect the next session set. This process

shall go on, until it reaches the end of the list of session sets in this session set type. In the end,

there will be six listed session sets within the created subset of session sets that contribute to this

single interval. Then, the algorithm shall go to step 3, because this subset contains more than the

minimum amount of session sets, as indicated by the respective limit.

At this point the algorithm has detected the following set of session sets that all seem to contribute to a

single interval and shall be taken to step 3 by this algorithm.

Start Time

(sec.)

Last

session

start (sec.)

Last

request

(sec.)

Last

response

(sec.)

Number of sessions in

session set

Session set

150,50 159,10 159,88 159,98 20 Session set #2

300,40 308,12 308,39 308,42 20 Session set #3

449,93 457,15 457,78 457,95 20 Session set #4

600,98 609,02 609,22 610,34 20 Session set #5

750,11 758,57 758,67 758,72 20 Session set #6

Table 5.12: Set of session sets taken to step 3

3. Store the created set of session sets with the same interval

When the algorithm reaches this step, it means that it has found a set of session sets that behave in

accordance with a specific interval. It is the purpose of this step to store this set of session sets accordingly.

When no other set of session sets of a particular interval has yet been saved, then the set given to this step

shall just be saved for later on, when it will be part of the results of this algorithm. However, it could be

possible that there is already a set saved.

In the latter case, every already existing set shall be tested to see whether the latest set may contain session

sets that behave with the same interval as a previously saved set. Two or more sets with the same interval

may be found as a result of, for example, large unexpected gaps between two session sets of a session set

type. In order to test for this equality in interval, all session sets of the first found set shall be added to the

session sets of the latest set. Then, the algorithm will determine whether the intervals and deviations, are

within the preset limits. If this is the case, then the latest set of session sets shall simply be added to the

already existing set of session sets. This measure means that sets with an average interval of, say, 152

seconds and a different set with an average interval of 149 seconds can be combined. It should be added

that any session set that is marked aperiodic shall not be compared with. If, however, no mergeable set

could be found, then this latest set of session sets shall simply be stored separately from those.

The algorithm will continue in step 2, but now with the next session set of the given session set type that

has not yet been assigned. If, on the other hand no remaining session sets can be found, then the algorithm

goes to step 4, where it will finalize the results.

4. Finishing

This is the last step taken by this algorithm for a session set type. This is simply the endpoint of the

algorithm for this session set type, in which it will release the results of the session sets of this session set

type. This result will include all found intervals and the session sets that are responsible for them

respectively. But, also the aperiodic session sets which could not be assigned to a set of session sets that

contribute to a particular interval. If there is still more input to this algorithm, then the algorithm will start

in step 1 with the new session set type, or otherwise terminate in step 5.

64

In the case of the discussed example, only one interval can be found with the set of session sets shown in

table 5.9. The result of this step for that particular set includes the following information per timer reset

point:

Timer reset point Interval (sec.) Total deviation (sec.)

First initiator of first

session of session set

149,90 2,30

First initiator of last

session of session set

142,01 3,65

Last non-response of last

session of session set

141,54 3,33

Last non-response of last

session of session set

141,18 4,35

Table 5.13: Resulting information about the found interval and its session sets

This tables shows that in this case the first timer reset point would have been taken, because the cumulative

deviation from the calculated average interval of 149,90 is 2,30 seconds, where for other timer reset points

this deviation is larger.

Therefore, session set numbers 2 through 6 are periodic and occur with a measured average interval of

149,90 seconds. Session set number 1 was discarded and is therefore not marked as either periodic or

aperiodic. As a result, because all of the ‘normal’ session sets are periodic, it can be concluded that this

session set type is a periodic session set type.

Note that the calculated interval is always an estimation, since the recording unit is likely to be separated

from an initiator of a session set type. Hence, the messages that are recorded are always recorded a little

later than the time at which they were originally sent. This also means that the messages are affected by a

certain network delay that may change with time. Finally, there is also the variable fluctuation in the exact

moment at which session sets are started, which has been discussed in a previous section of this chapter.

Thus, the interval remains an estimation. In the case of the example, it would have been likely that the

initiator party used an interval of 150 seconds.

5.4.2 Example algorithm execution
Although the algorithm description has been accompanied by an example, that particular example was very

straightforward, which did not cover the more complicated issues that were discussed earlier in this chapter.

Appendix A4 discusses a more complicated example of a session set type, consisting of both periodic and

aperiodic session sets.

65

Chapter 6

Toolset description

The algorithms that have been described have also been implemented into Perl scripts. It is only after such

an implementation that the algorithms can be applied on the many available SNMP trace files. The sole

purpose of this chapter is to describe for each algorithm how it is implemented and also how the results of

the four algorithms are linked to each other. The first section of this chapter shall give a general overview

of the implemented scripts. In the subsequent subsections, each of the implemented algorithms are

described briefly.

6.1 Toolset overview
All four algorithms have been implemented into a single Perl script respectively [8]. Each of these scripts is

considered as a phase within the set of scripts. Furthermore, the input that is given to the first algorithm, or

phase, is the result from an already available tool called SNMPDump [1]. The following figure shows the

relations between each of the involved scripts, which are shown as squares.

Figure 6.1: General overview of the involved scripts

6.2 Session determination algorithm
The first implemented algorithm, phase 1, is responsible for detecting sessions based on an unfiltered input

consisting of SNMP messages. These SNMP messages are given as input via a CSV file and result in

multiple smaller CSV files, each containing a small portion of the given input.

Figure 6.2: Input and output of this first algorithm

66

Following are the descriptions of the input to this respective script and also the generated output.

6.2.1 Script input
The input of this algorithm is a single CSV file consisting of one or more SNMP messages, where on each

line in the given CSV file a single SNMP message is described. It should be noted that these CSV files are

created by an already existing tool, called SNMPDump. That particular tool distils all SNMP messages

from a PCAP trace file and writes the found SNMP messages to a single CSV file.

Besides the SNMP messages, it is also possible to specify a number of parameters with the start of this

script. The following table contains the parameters that can be specified:

Parameter Purpose

-p [seconds] Maximum processing time

-r [seconds] Maximum timeout

Table 6.1: Most significant input parameters for the first implemented script

The maximum processing time parameters allows the user to specify the largest amount of time between

the last response and a subsequent request message within a session. This applies to table retrieval process

scenarios in which, for example, a manager has received responses to all outstanding requests and it than

needs to send a new request, as part of the table retrieval process. If the time between this particular request

and the last listed response for a particular session exceeds the limit, then that session shall be considered as

ended and the next non-response messages shall be assigned to different or new sessions. As a result, this

value should not be set too restrictive.

The second parameter specifies the maximum time between the original message and a retransmission, in

order for the last one to be considered as such. Also this value should not be set too restrictive, in order to

avoid scenarios in which a new session is incorrectly considered to have started, while in reality the

involved message is just a retransmission of an already listed message in a particular session.

6.2.2 Script output
As has already briefly been mentioned, the output of this phase script consists of one or more CSV files. A

different CSV file shall be created for each found session. All of these output CSV files are put into a single

output folder, each containing one or more lines. Each line represents a single SNMP message that is

assigned to that respective session.

Each of the output CSV files has a name that is of a specific format, which is shown here:

SESSION_OPERATION_TYPE-INITIATORIP_ADDRESS[INITIATOR_PORT_NUMBER]-

DESTINATIONIP_ADDRESS[DESTINATION_PORT]-[SESSIONNR].CSV

The session operation type that is mentioned in this file format is, for example, get, get-next or trap. The

session number allows enumeration of sessions that have all other fields in common. So, these sessions are

of the same operation type, are initiated by the same initiator, with the same port number and also the other

party information is the same.

6.3 Session type determination algorithm
The second implemented algorithm, phase 2, is responsible for detecting session types based on an input

consisting of sessions. These sessions are given as input via a CSV file respectively and result in one or

more CSV files, each containing references to sessions that are of the same session type. Besides that, there

are also two other files generated.

67

Figure 6.3: Input and output of this second algorithm

Following are the descriptions of the input to this respective script and also the generated output.

6.3.1 Script input
The input of this algorithm is a reference to a folder, which contains of one or more CSV files, each

consisting of SNMP messages that are part of the same session.

Besides the sessions, it is also possible to specify a number of parameters with the start of this script. The

following table contains the most significant parameter that can be specified:

Parameter Purpose

-d [0 or 1] Disregard (initiator) port number

Table 6.2: Most significant input parameters for the second implemented script

This single parameter allows the user to run this script in which it will not consider the initiator port

number as part of the session type information. This applies to the operation types get, get-next, get-bulk

and set. If this parameter is set to 1 and the script encounters a session with an operation like trap, inform or

report, then it will disregard both the initiator port number, as well as the port number of the other party in

the session type determination process.

6.3.2 Script output
The output of this phase script consists of one or more CSV files. Each CSV files contains references to

sessions (on each line a single reference) that were given as input and that have been marked with the same

session type. Therefore, a new CSV file shall be created for each found session type in the output folder of

this script.

Each of the output CSV files has a name that is of a specific format, which is shown here:

OPERATION_TYPE-INITIATORIP_ADDRESS[INITIATOR_PORT_NUMBER]-

DESTINATIONIP_ADDRESS[DESTINATION_PORT]-[SESSION_TYPE_NR].CSV

The operation type that is mentioned in this file format is, for example, get, get-next or trap. The session

number allows enumeration of session types that have all other fields in common. So, these respective

sessions are initiated by the same initiator, with the same port number and where also the other party

information is the same. Also, the session operation type must be the same. In case the parameter is set,

which has been discussed in the previous subsection, then the port number fields may be left blank in

selected situations.

68

Besides these CSV files, there are also two other files generated. One is the session type OID overview file.

This file contains for each session type the set of found OID prefixes that are determined to be specific for

a particular session type. This information in this file can be found for every found session type, where

each line contains the found OID prefixes per found session type.

The other file (the session type occurrence overview file) contains a chronological overview of the session

type occurrences, based on the sessions that have been given as input to this algorithm. Each line in this file

contains a reference to a session and the specific session type it is of. This chronological overview allows

for more easy and optimized processing in the subsequent scripts, which in turn do not need to load all

session and session type information.

6.4 Session set and session set type determination algorithm
The third implemented algorithm, phase 3, is responsible for detecting session set and their respective

session set type based on an input consisting of sessions and their session types. These are given to this

algorithm by means of a chronological overview of the session type occurrences. As output are CSV files,

one for each found session set. Moreover, there is for each session set type a file which describes the

session sets that are of that particular session set type.

Figure 6.4: Input and output of this third algorithm

Following are the descriptions of the input to this respective script and also the generated output.

6.4.1 Script input
The input of this algorithm consists of a reference to the folder containing all the files that have been

generated by the second algorithm. This third algorithm will only use the chronological overview file,

which contains all the information needed for this script. It is therefore not required for this algorithm to

load all sessions and session type information again. An abstraction, as given with this general overview

file, is enough to determine to which session set a particular session shall be assigned.

Besides this general overview of session type occurrences, it is also possible to specify a number of

parameters with the start of this script. The following table contains the most significant parameter that can

be specified:

Parameter Purpose

-s [0 or 1] General information overview only

-c [number] Consider only first c hours of the input

-d [0 or 1] Allow duplicates of session types within a single session set

-e [number] MINIMUM_SUPER_TYPE_INSTANCE_OCCURENCE_MULTIPLIER

-f [number] MINIMUM_SUPER_TYPE_INSTANCE_SMALLEST_OCCURENCE

-g [number] FLOAT_ASSIGN_INTERVAL_DEVIATION_FACTOR

-k [number] FLOAT_ASSIGN_MAX_INSTANCE_LENGTH_DIFFERENCE

-u [number] FLOAT_ASSIGN_MAX_INSTANCE_LENGTH_DIFFERENCE_MERGE

-p [number] FLOAT_ASSIGN_MIN_TYPE_MATCH_FACTOR

-t [number] FLOAT_ASSIGN_MIN_TYPE_MATCH_FACTOR_START_END

-z [number] FLOAT_ASSIGN_MIN_TYPE_MATCH_MERGE_FACTOR

-q [seconds] MINIMUM_TIMEOUT

-b [seconds] MAXIMUM_TIMEOUT

-r [seconds] DISCARD_BORDER_INSTANCES_SEEK_RANGE

-y [seconds] FORCE_TIME_OUT

Table 6.3: Most significant input parameters for the third implemented script

69

The first parameter allows the user to run the script in a specific mode in which only general information

about the involved initiators shall be given. This information includes the number of sessions initiated by

that particular initiator, but also an estimated timeout value that can be used for that initiator. This value

will be chosen for that particular initiator and is automatically calculated, but can also be overwritten by

setting the –y parameter.

The second parameter allows the user to let the algorithm consider only the sessions that occur within the

first specifiable number of hours. This allows the user to get a quick result, without having to consider all

sessions, which may take a very long time in some cases.

The remaining parameters can be used to adjust very specific aspects of the algorithm. It is not required to

specify any of these values, but the user may choose to do so in the case of some specific trace conditions,

which may desire such changes. The reader is advised to read the extensive descriptions of these

parameters given in the code of this script.

6.4.2 Script output
The output of this phase script consists of two types of output CSV files that are stored in a single result

folder. One type encompasses CSV files that contain information about a specific session set. The contents

of such a file describes the assigned session type occurrences, the start time of each assigned session, the

last request time and also the last response time. The second type of CSV files describes in summary the

session sets that are considered to be of the same session set type. Such a file exists for each session set

type and lists the following for each session set that is of that session set type: the number of assigned

sessions, the start time of the first session, the start time of the last session, the time of the last request in the

last session and the time of the last response in the last session.

Each of the output CSV files has a name that is of a specific format. A session set file has the following

format:

INITIATORIP_ADDRESS[INITIATOR_PORT_NUMBER]-[SESSION_SET_TYPE_NR]-

[SESSION_SET_TYPE_OCCURRENCE_NR].CSV

The contents of the initiator port number field may be left empty, depending on the preferences chosen in

phase 2. Besides that field, the session set type number allows for differentiation between different session

set types that encompasses session sets initiated by the same initiator. The last field, the session set type

occurrence number, is an integer value that indicates this session set number, which is considered to be of a

particular session set type.

The remaining result type file, a session set type file, is of the following format:

INITIATORIP_ADDRESS[INITIATOR_PORT_NUMBER]-[SESSION_SET_TYPE_NR].CSV

As can be seen, this is the same as in the last case, but with the exception that the session set type

occurrence number field is not included. Such a file will be generated for every session set type that is

defined.

6.5 Periodic/aperiodic separation algorithm
The fourth and last implemented algorithm, phase 4, is responsible for determining which session sets,

belonging to a particular session set type, are aperiodic and which are to be considered aperiodic. These

session sets are given to this algorithm by giving the contents of the output folder of the previous algorithm

as input to this script. The output of this script encompasses per session set type all the session sets that are

considered aperiodic, or are contributing to a specific interval and are thus considered periodic, or are

discarded.

70

Session sets

per session set

type

Phase 4

General

session set

type info.

Periodic

session sets

Aperiodic

session sets

Found

intervals

Discarded

session sets

Figure 6.5: Input and output of this fourth algorithm

Following are the descriptions of the input to this respective script and also the generated output.

6.5.1 Script input
The input of this algorithm consists of a reference to the folder containing all the files that have been

generated by the third algorithm. This fourth and last algorithm will load the session set information per

session set type. This avoids considering session sets that are of different session set types.

Besides specifying the path of the folder containing the information of session sets per session set type, it is

also possible to specify a number of parameters with the start of this script. The following table contains the

most significant parameter that can be specified:

Parameter Purpose

-b [number] FLOAT_ASSIGN_MAX_INSTANCE_LENGTH_DIFFERENCE

-c [seconds] MAX_INTERVAL_DEVIATION

-d [seconds] MAX_AVERAGE_INTERVAL_DEVIATION

-e [number] MIN_INSTANCES_IN_INTERVAL_SEGMENT

-f [seconds] MAX_TIME_BETWEEN_INSTANCES

-g [seconds] MAX_SEEK_RANGE

Table 6.4: Most significant input parameters for the fourth implemented script

These parameters can be used to adjust very specific aspects of this algorithm. It is not required to specify

any of these values, but the user may choose to do so in the case of some specific trace conditions which

may desire such changes. The reader is advised to read the extensive descriptions of these parameters given

in the code of this script.

6.5.2 Script output
The output of this phase script consists of two types of output CSV files. One type involves result files that

describe the overall result for a specific session set type. Such a file contains information about whether or

not the first session set of that session set type has been discarded, because it was considered incomplete. It

also contains information about every found interval within the session sets of this session set type. In case

71

there are session sets considered to be aperiodic, then this file will also contain information about this fact

and the number of session sets that are marked as such.

Output files that are of this first type, which are generated for every session set type given as input to this

algorithm, are of the following format:

INITIATORIP_ADDRESS[INITIATOR_PORT_NUMBER]-[SESSION_SET_TYPE_NR].CSV

It should be noted that the contents of the initiator port number field may be left empty, depending on the

preferences chosen in phase 2.

Besides this type of output CSV file, there is also another type, which contains more specific information.

These files contain information about the session sets that are contributing to a single interval within a

session set type, or contain information on the session sets that are marked aperiodic, or have been

discarded due to expected incompleteness.

The files that contain such specific information are of the following general format:

INITIATORIP_ADDRESS[INITIATOR_PORT_NUMBER]-[SESSION_SET_TYPE_NR]-[MARKER].CSV

This format is practically the same as the previous one, but with the addition of the marker field. This field

signifies whether this file contains information about session sets that are contributing to a single interval,

in which case it will contain an integer, or it may be the character ‘A’, if it contains information about the

aperiodically marked session sets. In case a session set is considered to be incomplete, then it will be

referenced in a file of this type with a ‘D’ as marker.

72

Chapter 7

Analysis results

The determination of the four algorithms and their implementation resulted in a toolset consisting of four

phase scripts, as described in the previous chapter. After this, it is possible to give some of the available

SNMP trace files as input to this set of scripts. This has been done with four trace files, where each has

been generated on a different network location. This chapter describes the results that have been found for

each trace file respectively. Due to applicable privacy regulations and information release policies, no

location or content specific information shall be described.

7.1 Trace l01t01
This trace is recorded on a national research network, which contains 24 hours of recorded SNMP traffic.

The following tables lists the results from this trace that have been generated, after giving this trace file as

input to the set of four phase scripts.

Description Value

Considered part of the trace file 100%

SNMP messages processed 71501

Unhandled SNMP messages 544

Found retransmissions 9,9% of all SNMP messages

Sessions found � 5321 get-next sessions

� 2636 get sessions

� 127 set sessions

� 8084 in total

Script parameters � Max. time between retransmission: 25 seconds

� Max. processing time: 4 seconds

Script processing time ~90 minutes

Table 7.1: Information about phase 1 results

This table lists the results after giving the single CSV file, representing this trace file, as input to the first

phase script. It shows that there were 544 SNMP messages that could not be assigned to any session. These

are all response messages. This could be the result of the fact that some requests have not been recorded

and are therefore not included into the trace file. As a result, the respective response message cannot be

assigned to sessions, because there is no existing session with the respective request listed.

The found number of retransmissions seems quite high in comparison to the other considered trace files.

This is likely the result of the fact that a lot of the listed requests are accompanied by two immediate

retransmissions that all occur within a second from the first request being sent.

Another noteworthy aspect is the relatively long script processing time. This is because of the fact that the

phase script used to process this trace file was one of the earlier versions, which was not yet optimized.

In the algorithm description of this respective phase, a number of considerations have been made, which

have been described in chapter 2.2. One of the considerations was about holes in tables. Inspection of this

trace file suggests that there are at least two tables being referenced which contain discontinuities (i.e. the

last part of the OID of the referenced column items need not be equal to the previously referenced OID for

that column plus one). This has been detected for tables like the cardIfIndex table (1.3.6.1.4.1.9.3.6.13),

where a device cannot be found for every index. The same can be said about the detected entPhysicalTable

(1.3.6.1.2.1.47.1.1.1). But, because the manager in question uses get-next requests to retrieve the contents

of these tables, no irregularity and therefore no discontinuity between the response-non-request relations

has been found.

73

Besides this consideration, also no unexpected OID insertions have been detected in this trace file, or a

change in the order of column references during the retrieval of the contents of a table or column.

Description Value

Session types found � 3726 get-next session types

� 1650 get session types

� 127 set session types

� 5503 different session types in total

Script parameters � Disregard port number of initiator in session type

discovery

Processing time 10 minutes

Table 7.2: Information about phase 2 results

This table summarizes the results from the phase 2 script, after giving the results from the phase 1 script as

input to it. An important aspect of this result is the relatively large number of session types found with

respect to the number of found sessions. This suggests that there are a very large number of unequal

sessions in this trace file.

Description Value

Session sets found 39

Session set types found 29

Script parameters � No timeout enforcement (auto detect was used)

� Multiple occurrences of a session type within a

session set were NOT accepted

Processing time 1 day, 23 hours and 45 minutes

Table 7.3: Information about phase 3 results

This table shows the results from the phase 3 script execution on this trace. The results show that there are

very few session sets considered to be of the same session set type. This already suggests that there is a

very large percentage of aperiodic behaviour in this trace file.

Description Value

Periodic session sets 0

Aperiodic session sets 39 (100%)

Script parameters Default settings

Processing time < 1 minute

Table 7.4: Information about phase 4 results

The results of this last script show that no session sets have been marked as periodic, so no intervals have

been found. All session sets are considered aperiodic, because only one session set type describes three

session sets, which do not have an identifiable interval. All other session set types describe only two or just

one session set, for which automatically aperiodicity is concluded. A different report [9] on this particular

trace confirms this finding.

In chapter 5.2, a number of considerations have been made. In this trace were no interruptions in periodic

behaviour (e.g. interval changes) detected. Also, there have no session set types been found which involve

session sets that form a composite of both periodic and aperiodic behaviour.

74

7.2 Trace l03t02
This trace is recorded on a university network, which contains 6,5 days of recorded SNMP traffic. The

following tables lists the results from this trace that have been generated after giving this trace file as input

to the set of four phase scripts.

Description Value

Considered part of the trace file First hour

SNMP messages processed 361000

Unhandled SNMP messages 0

Found retransmissions 80469

Sessions found � 5157 get-next sessions

� 1783 get sessions

� 20940 in total

Script parameters � Max. time between retransmission: 25 seconds

� Max. processing time: 4 seconds

Script processing time 15 minutes

Table 7.5: Information about phase 1 results

This table lists the results after giving the single CSV file, representing this trace file, as input to the first

phase script. The script execution went relatively fast, because the phase script used to process this trace

file was more optimized than in the case of the previous trace.

Inspection of this trace file suggests that there were no unexpected OID insertions, or a change in the order

of OIDs during the retrieval of the contents of a table or column have been detected.

Another result of this inspection is that there is at least one table being referenced which contains

discontinuities. This has been detected in the ifTable, where not for every IP address a listing can be found.

But, because the manager in question uses get-next requests to retrieve the contents of these tables, no

irregularity and therefore no discontinuity as such between the response-non-request relations has been

found.

Description Value

Session types found � 57 get-next session types

� 1220 get session types

� 1277 in total

Script parameters � Disregard port number of initiator in session type

discovery

Processing time 8 minutes

Table 7.6: Information about phase 2 results

This table summarizes the results from the phase 2 script, after giving the results from the phase 1 script as

input to it. An important aspect of this result is the small number of session types found with respect to the

number of sessions. This suggests that there are a very large number of sessions in this trace file that are of

the same session type.

Description Value

Session sets found 4734

Session set types found 43

Script parameters � No timeout enforcement (auto detect was used)

� Multiple occurrences of a session type within a

session set were NOT accepted

Processing time ~ 6 days

Table 7.7: Information about phase 3 results

75

This table shows the results from the phase 3 script execution on this trace. The results show that there are

on average multiple session sets considered to be of the same session set type. Another interesting aspect of

this considered trace segment is that there are seven unique initiators found. One of these initiators is

responsible for 35 of all session set types found. However, only two of these initiators were responsible for

creating session set types with more than two session sets.

Description Value

Periodic session sets 12, involving 14508 sessions (interval 900 seconds)

20, involving 40 sessions (interval 180 seconds)

34, involving 492 sessions (interval 300 seconds)

6, involving 12 sessions (interval ~55 seconds)

Aperiodic session sets 4662

Script parameters � MAX_INTERVAL_DEVIATION=10

� MAX_AVERAGE_INTERVAL_DEVIATION=2

Processing time < 1 minute

Table 7.8: Information about phase 4 results

The results of this last script show that in this trace both periodic and aperiodic session sets have been

found. Although by far the greatest portion of all sessions is assigned to session sets that are periodic, there

are still a large number of session sets that are considered to be aperiodic. In the case of this trace, there is

one particular reason for this. Many sessions that are of a particular session type occur in some polling

instances more than once. Because the phase 3 script was executed with the parameter set to not accept

multiple occurrences of the same session type within a single session set, this resulted in many session set

types which just describe one or more session sets that only contain a single session each. As a result, all of

the respective session sets are considered aperiodic, because no interval can be determined for these

irregularly occurring sessions.

In chapter 5.2 have a number of considerations been made. In this trace no interruptions in periodic

behaviour were detected. However, there is one session set type which was found and which describes

session sets that form a composite of both periodic and aperiodic behaviour. This occurs in the case of a

specific session set type that only encompasses session sets that contain trap sessions.

7.3 Trace l04t01
This trace is recorded at a server-hosting provider, which contains 4 hours of recorded SNMP traffic. The

following tables list the results from this trace that have been generated after giving this trace file as input

to the set of four phase scripts.

Description Value

Considered part of the trace file 100%

Unhandled SNMP messages 0

SNMP messages processed 15099

Found retransmissions 431 (2,9%)

Sessions found � 192 get-next sessions

� 2785 get-bulk sessions

� 4527 get sessions

� 7504 sessions in total

Script parameters Only default settings used

Script processing time < 1 minute

Table 7.9: Information about phase 1 results

76

This table lists the results after giving the single CSV file, representing this trace file, as input to the first

phase script. The script execution went relatively fast, because the phase script used to process this trace

file was more optimized than in the case of the first trace. Another factor is that the sessions detected in this

trace seem to be spaced apart further than in the other two traces discussed so far.

Inspection of this trace file suggests that there were no tables referenced in this trace which contain

discontinuities. Besides this consideration, also no unexpected OID insertions, or a change in the order of

OIDs during the retrieval of the contents of a table or column have been detected.

Description Value

Session types found � 58 get-bulk

� 4 get-next

� 95 get session types

� 157 session types in total

Script parameters � Disregard port number of initiator in session type

discovery

Processing time < 1 minute

Table 7.10: Information about phase 2 results

This table summarizes the results from the phase 2 script, after giving the results from the phase 1 script as

input to it. An important aspect of this result is the small number of session types found with respect to the

number of sessions. This suggests that there are a very large number of sessions in this trace file that are of

the same session type.

Description Value

Session sets found 737

Session set types found 16

Script parameters � No timeout enforcement (auto detect was used)

� Multiple occurrences of a session type within a

session set were NOT accepted

Processing time 49 minutes

Table 7.11: Information about phase 3 results

This table shows that 16 session set types were found, while in reality there may have been fewer session

set types. This is likely the result of a too restrictive timeout used between sessions that make up a session

set. Manual inspection of this trace file suggests that there are very large gaps between some sessions

initiated by one particular IP address, which may in reality still be part of the same polling instance. In

some cases, this gap is larger than 60 seconds. Besides load spreading by an intelligent manager

application, this phenomenon could also be the result of the possibility that some traffic, involving certain

polling instances, has never been seen by the trace file recording unit. Nevertheless, at this moment it is

considered not to be realistic to suggest that sessions occurring more than 60 seconds after its predecessor

are still part of the same session set.

Another import observation regarding this trace file is that information about the involved network

elements states that the primary manager of that network operated on a system with three different IP

addresses. The number of sessions per initiator that were detected in this trace confirm this. It should be

added that even after considering the three initiators to be the same, there would still be very large gaps

between some sessions that may in reality belong to a single polling instance.

It should also be noted that there were some irregularly occurring session types found. This is likely the

result of the fact that some agents did not respond in some polling instances, where in other polling

instances they did react.

77

Description Value

Periodic session sets 147, involving 6785 sessions (interval 300 seconds)

Ambiguous session sets 590, involving 719 sessions

Script parameters Default settings

Processing time < 1 minute

Table 7.12: Information about phase 4 results

The results of this last script execution show that one session set type, involving 49 session sets, initiated

by a particular IP address, are all considered to be periodic. An interval of 300 seconds was detected, no

session sets of this session set type were considered aperiodic. The remaining session set types were

initiated by either of the other two initiators. The respective session sets involve those that may have been

part of just one session set type, as a result of the described anomaly involving this initiator. But, because

the cause of this phenomenon remains questionable, some session sets of these session set types have been

marked as ambiguous, instead of either periodic or aperiodic. In total 92% of all sessions are assigned to

session sets that are marked periodic and 8% are marked ambiguous. If the cause of this phenomenon can

be determined, then it may be that 100%, or almost that part, of all sessions can surely be considered part of

session sets that are marked periodic.

In chapter 5.2, a number of considerations have been made. In this trace no interruptions in periodic

behaviour were detected, nor were there session sets detected that belong a session set type which form a

composite of both periodic and aperiodic behaviour.

7.4 Trace l05t01
This trace is recorded on a German governmental network, which contains 24 days of recorded SNMP

traffic. The following tables lists the results from this trace that have been generated after giving this trace

file as input to the set of four phase scripts.

Description Value

Considered part of the trace file First 24 hours

SNMP messages processed 1121000

Unhandled SNMP messages 0

Found retransmissions 40

Sessions found � 6 get-next sessions

� 573395 get sessions

� 4 trap2 sessions

� 573405 sessions in total

Script parameters � Max time between retransmission: 25 sec.

� Max processing time: 4 seconds

Script processing time 9 minutes

Table 7.13: Information about phase 1 results

This table lists the results after giving the single CSV file, representing this trace file, as input to the first

phase script. The script execution went relatively fast, because the phase script used to process this trace

file was more optimized than in the case of the first trace.

Inspection of this trace file suggests that there were no unexpected OID insertions, or a change in the order

of OIDs during the retrieval of the contents of a table or column have been detected.

78

Description Value

Session types found � 4 get-next session types

� 129 get session types

� 3 trap2 session types

� 136 session types in total

Script parameters � Disregard port number of initiator in session type

discovery

Processing time 1 hour and 45 minutes

Table 7.14: Information about phase 2 results

This table summarizes the results from the phase 2 script, after giving the results from the phase 1 script as

input to it. An important aspect of this result is the small number of session types found with respect to the

number of sessions. This suggests that there are a very large number of sessions in this trace file that are of

the same session type.

Description Value

Session sets found 12381 or 4239

Session set types found 15 or 8

Script parameters � No timeout enforcement (auto detect was used)

� Multiple occurrences of a session type within a

session set were NOT accepted

Processing time 5 days, 2 hours and 4 minutes

Table 7.15: Information about phase 3 results

This script was executed with the parameter set which disallows multiples sessions of the same session type

to exist in the same session set. However, manual inspection suggests that sessions of the same session type

exist within the same polling instance and should therefore be considered part of the same session set.

Merging these session set manually yields 4239 session sets and 8 session set types.

Another observation of the inspection of this trace segment shows that there were no irregularly occurring

session types found within a set of session sets that belong to the same session set type.

Description Value

Periodic session sets 4229 (20 seconds)

Ambiguous session sets 10

Script parameters Default settings used

Processing time ~ 5 minutes

Table 7.16: Information about phase 4 results

The results of this last script execution shows that the largest session set type, describing 4229 session sets,

are all periodic. All of these session sets contribute to a single interval of 20 seconds. The remaining ten

session sets were initiated by different network element, forming all session set types which each

encompass three session sets or less. No periodicity could be found in any of these session sets, resulting in

ten aperiodic session sets.

In chapter 5.2, a number of considerations have been made. In this trace no interruptions in periodic

behaviour were detected, nor were there session sets detected that belong to a session set type which form a

composite of both periodic and aperiodic behaviour.

79

Chapter 8

Conclusions

8.1 Research findings

Based on the main research goal of this thesis, as stated in chapter 1, it can be stated that significant

progress is made in the field of research regarding the complete separation of periodic and aperiodic SNMP

traffic in SNMP traces. Although the devised methods and algorithms theoretically suggest a proper way of

achieving this goal, the actual application of the generated scripts on the available SNMP traces suggests

that there may still be some research required.

As has been shown in the previous chapter, almost all periodic SNMP traffic could be separated completely

and without any uncertainty. However, a small percentage of the SNMP traffic is considered ambiguous

and therefore no complete separation of the two types of SNMP traffic could yet be attained for every

available SNMP trace file. One of the possible reasons for this may be that absolute and complete

separation of the two types of traffic may not be possible in every situation due to the lack of completeness

of a trace file. This and other possible reasons for this issue have been discussed in chapter 7.3.

At the beginning of this thesis were the central research questions posed and described briefly. These

questions have been answered in the chapters that followed. These questions and their respective answers

will be briefly summarized in the remainder of this chapter.

How to determine which SNMP messages belong to a single session?

Chapter 2 discussed the created algorithm for this problem in much detail. The core aspects of this

algorithm include the use of a separation method, which filters SNMP messages, such that only SNMP

messages belonging to the interaction between two network elements remain. Another filter separates all

SNMP messages that are of a certain SNMP operation type (and the possibly related response messages)

into their respective categories. A timeout mechanism will then be used to select individual sessions.

The application of this implemented algorithm on a couple of SNMP trace files (chapter 7) suggests that

this algorithm was properly implemented and that the consideration of sessions as a means of relating

single SNMP messages is a correct approach and proper basis for the larger relationships, like session sets.

Chapter 2.2 discussed a number of possible scenarios that have been taken into account during the creation

of this algorithm. After exposing this implemented algorithm to the four real world trace files, it can be

concluded that multiple OID references within the same message, retransmissions and sessions other than

get sessions have been seen in these trace files. However, unequal column lengths of columns that make up

a particular table, have not been seen in any of these trace files. The same can be said about holes in

columns or tables which result in a discontinuity in the relations between the non-response and response

messages that are part of a single session. This means that discontinuities that can be found in some tables,

like the ifTable, do not result in discontinuities of the non-response and response relationships within a

single session. This is the result of the fact that managers make use of get-next requests in order to retrieve

the contents of these kinds of tables. Moreover, no sessions have been found that contain irregular OID

insertions, or have column reference order changes during a table or column retrieval process.

How to determine the session type of a session?

After sessions could be identified, the next step was the identification of session types. Chapter 3 discussed

this algorithm thoroughly, which showed a method that would involve the identification of the operation

80

type of the non-response messages in a session, as well as the OID prefixes of the referenced OIDs. It has

been described that for different operation types different methods of identification were used.

The developed algorithm and its implementation seem to be a proper way to differentiate between different

sessions and therefore allow for easy comparison of sessions in subsequent algorithms.

How to determine which sessions form session sets?

Being able to identify sessions forms a basis for the possibility of looking for larger relationships. Clearly,

as stated in chapter 1.2, sessions hardly occur independent of others. In most cases, there is a clear

relationship between the (regular) occurrences of certain session types. In the developed algorithm, as

discussed thoroughly in chapter 4, the occurrences of session types during the course of a certain time

window are compared for proximity. If two or more session types have a significant number of their

occurrences within a certain time range of one another, then these are considered to be related. These

related session types, and thereby the occurrences of their respective sessions, form session sets of a

specific session set type, which each in turn consist of one or more sessions.

Also for this algorithm a number of possible problematic scenarios have been discussed in chapter 4.2.

After applying this implemented algorithm to the available real world trace files, it is shown that multiple

initiators on a single network, session set types encompassing session sets of which some are behaving

periodically and others aperiodic have all been found in one or more trace files. Besides that, also

incomplete session sets and irregularly occurring session types have been found. On the other hand, no

scenarios have been found that suggest that there are multiple managers operating from a single IP address.

However, there was one trace file that contained SNMP traffic that originated from a single manager that

operated from three different IP addresses.

When is a set of sessions considered (a)periodic?

After a session set type has been identified, the next step is the determination of whether this session set

type and its session sets are to be considered periodic or aperiodic. Only when enough of the respective

session sets occur in a regular fashion, based on one fixed interval, shall this subset of session sets be

considered periodic. It shall be marked as aperiodic traffic in most other cases. However, there remains

some room for specific traffic, as stated in chapter 7.3, which is to be considered neither of the above. This

kind of traffic will be considered as ambiguous, meaning that it could be either of both traffic types. This is

the result of the fact that in some scenarios too little is known about the causes of certain SNMP traffic,

which as such leaves too much uncertainty on whether or not it is periodic or not. A number of possible

reasons and scenarios have been discussed in that particular section.

A number of considerations have been made for the development of this algorithm, as described in chapter

5.2. The real world trace files contain cases in which for a particular session set type, there are some

session sets that are marked as periodic and others are marked aperiodic.

How can intervals in SNMP traces be determined?

Intervals can only be found in the periodic SNMP traffic segment. Hence, it is required that a complete set

of SNMP traffic first be separated into the two types of traffic by using the toolset which is explained in-

dept in chapter 6 and its application in chapter 7. The last script of this toolset also determines all available

intervals in every session set type for which at least some of the respective session sets are considered to be

periodic. The result of this application contains all found intervals, as well as their level of contribution to

the subset of traffic as a whole.

81

8.2 Recommendations
Although significant research results have been described in this thesis with regards to the complete

separation of the two types of SNMP traffic, there still remains some ground uncovered. Therefore, this

final chapter will list some suggestions for future research projects that may be considered in order to

achieve the absolute and complete separation of these traffic types, where this is possible. The next list also

suggests future research topics, based on the findings of this thesis.

8.2.1 Toolset extension suggestions
Some suggestions with regard to the existing set of tools that were either used and/or developed in the

process of this thesis assignment are the following:

� The first research suggestion would be about polling consistency. This would require an analysis

of the existing programming implementations of manager applications. One might want to look

for situations and conditions in which certain SNMP managers will halt the execution of an active

polling sequence. The current toolset may need to be adjusted or extended, in order to cover these

potentially exceptional situations;

� Another suggestion would involve research on whether or not certain SNMP management

software is programmed to spread the network load of its polling activities over a certain amount

of time between two start points of polling instances. This could be one of the potential causes of

some of the encountered problems with the existing toolset;

� At the moment, the toolset searches for session type occurrences and attempts to assign these to

session sets. It would be of much interest to know, if and under which circumstances there are

relations between the occurrences of SNMP messages with different operation types and that are

initiated by different initiators. For example, is there a relation between the occurrence of a trap

message, initiated by an agent, and a possible polling of that agent by the manager that received

that trap message?

8.2.2 Future research topics
The following topic has become potentially interesting for future research:

� Now that the separation of the two kinds of traffic is possible, research is required to find a

definitive list of causes of aperiodic and periodic traffic. It would also be interesting to understand

more about the potential relationship between a certain aperiodic activity and the actual aperiodic

SNMP traffic that this causes;

82

Appendix

A1 Example algorithm execution – session detection
In order to give a better understanding of how all of the first algorithm steps work together - yielding one or

more sessions - here follows an example of a situation for the algorithm that is described in chapter 2. This

situation is not based on a real world trace, but is created artificially in order to highlight some of the most

important aspects of the defined algorithm.

Consider the following set of recorded SNMP messages as input for the algorithm:

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

0,1 C 161 A 1100 response 4 α

0,35 A 1100 B 161 get-next 10 β,

γ

2,11 A 1099 E 161 get-req 9 μ.0

2,20 E 161 A 1099 response 9 μ.0

2,35 A 1100 B 161 get-next 10 β,

γ

2,38 B 161 A 1100 response 10 β.0,

γ.0

2,45 A 1100 B 161 get-next 12 β.0,

γ.0

2,51 B 161 A 1100 response 12 β.1,

ε.1

2,52 D 161 F 2290 trap 91 α.0

2,59 B 161 A 1100 response 10 β.0,

γ.0

2,62 A 1100 B 161 get-next 15 β.1

2,71 B 161 A 1100 response 15 γ.0

30,35 A 1101 B 161 get-next 16 β,

γ

Table A1.1: Approximately 30 seconds of recorded SNMP messages

At the beginning of the algorithm, no open session yet exist. The algorithm, as depicted in figure 2.9,

begins at the first point. It loads the first message: a response message. Then it goes to point two, where it

is determined that no session is willing to accept this message, simply because there is no open session

available. As a result, the next step is point 3, where the response message is discarded. As has already

been suggested, at the moment at which the recording of messages starts, the recording may begin

recording messages belonging to already active sessions. Therefore, just like in this case, these response

messages ought to be discarded, if no session accepts them. Since more messages are available in the input,

the algorithm now returns to point 1.

The second message is a get-next request coming from manager A, which is sent to agent B. Requested are

the first values of columns β and γ respectively. Since this is a request message, the algorithm goes from

point 1 to point 5 and then to point 6, since still no open sessions exist. But, in contrast to the previous

message, this request will cause the creation of a new and open session. This new session will contain only

this single get-request at this point. Again, more input is still available, so the algorithm goes back to point

1, considering the next message. The following single open session exists at this point.

83

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

0,35 A 1100 B 161 get-next 10 β,

γ

Table A1.2: Open session #1 (not yet closed, intermediate result)

The third message is a get-request, not a get-next request as the previous one. Since this message takes

place between two different network elements, it cannot be part of the existing open session that is bound to

a relation between manager A and agent B. This is just one of the many restrictions that this message does

not meet, in order for it to be assigned to the existing open session. As a result, another new open session is

created which will contain only this get-request message:

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

2,11 A 1099 E 161 get-req 9 μ.0

Table A1.3: Open session #2 (not yet closed, intermediate result)

The fourth message is a response to the third message. Because the source and destination information of

this response match the destination and source information respectively of the listed request this response

message will be assigned to that second open session. Other reasons for acceptance are the fact that it also

matches the request ID of the listed request and the response occurs in a timely fashion after the listed

request message:

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

2,11 A 1099 E 161 get-req 9 μ.0

2,20 E 161 A 1099 response 9 μ.0

Table A1.4: Open session #2 (not yet closed, intermediate result)

The fifth message is clearly a retransmission of message 2. And because it matches the criteria to be

considered as a retransmission, it will be assigned to the first open session.

The sixth message is either a delayed response to the request with request ID 10, or a response to the

retransmission of that request with the same request ID. In either case, it matches the criteria for this

message to be assigned to the first open session. This open session will by now contain the following

messages:

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

0,35 A 1100 B 161 get-next 10 β,

γ

2,35 A 1100 B 161 get-next 10 β,

γ

2,38 B 161 A 1100 response 10 β.0,

γ.0

Table A1.5: Open session #1 (not yet closed, intermediate result)

The seventh message shows a request message, which seems to be a continuation of a table retrieval

process, based on the last received response by the manager. Since both OIDs in this request are equal to

both OIDs in the last listed response of open session 1, this message can be considered a continuation of

open session 1. Therefore, it is added to open session 1.

The next message is a response message to this last request. Note that the end of the γ-column has been

reached. Because it can be identified as a proper response to a listed request in open session 1, it will be

added to that open session:

84

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

0,35 A 1100 B 161 get-next 10 β,

γ

2,35 A 1100 B 161 get-next 10 β,

γ

2,38 B 161 A 1100 response 10 β.0,

γ.0

2,45 A 1100 B 161 get-next 12 β.0,

γ.0

2,51 B 161 A 1100 response 12 β.1,

ε.1

Table A1.6: Open session #1 (not yet closed, intermediate result)

The ninth message is a trap message that is communicated between an agent and a manager of which no

open sessions exist yet. More generally, there is no open session for trap messages that would be willing to

accept this message. Therefore, a third open session is created:

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

2,52 D 161 F 2290 trap 91 α.0

Table A1.7: Open session #3 (not yet closed, intermediate result)

The tenth, eleventh and twelfth recorded message all seem to belong to the first open session. The tenth

message is no doubt a proper member of open session 1. The eleventh message is a new request message.

As stated in the restrictions for requests to be assigned to an existing session, at least one of the OIDs in the

request must match one of the OIDs in the last response to the last request. This example shows the

importance of not just looking for, and comparing with the last chronologically listed response message in

an open session. If that would not have been done, this request (the eleventh message) would incorrectly be

seen as the start of a new open session. Instead, now it is seen as a continuation of the table retrieval

process. The twelfth message is simply a response to this request. This yields the following list of member

messages, making up open session 1:

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

0,35 A 1100 B 161 get-next 10 β,

γ

2,35 A 1100 B 161 get-next 10 β,

γ

2,38 B 161 A 1100 response 10 β.0,

γ.0

2,45 A 1100 B 161 get-next 12 β.0,

γ.0

2,51 B 161 A 1100 response 12 β.1,

ε.1

2,59 B 161 A 1100 response 10 β.0,

γ.0

2,62 A 1100 B 161 get-next 15 β.1

2,71 B 161 A 1100 response 15 γ.0

Table A1.8: Session #1 (session closed, final result)

The last recorded message occurs almost 30 seconds after the last processed message and therefore it

cannot be considered a timely resumption of any of the open sessions. Therefore, before this last message is

to be considered, all open sessions that have not received any new messages for a certain timeout period,

85

should be closed and stored as results of this algorithm. As a result, the processing of the last listed message

of table A1.1 shall result in a new open session. After that, only one open session will exist.

Since no new messages can be found in the input, the algorithm will go to step 7, where it will close all

open session, in this case only one, and store all of them as results of this algorithm execution. In the end,

the following sessions will have been detected, besides the listed closed session in table A1.8:

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

2,11 A 1099 E 161 get-req 9 μ.0

2,20 E 161 A 1099 response 9 μ.0

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

2,52 D 161 F 2290 trap 91 α.0

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

30,35 A 1101 B 161 get-next 16 β,

γ

Table A1.9: Result of sessions 2, 3 and 4 (all sessions closed, final result)

This example algorithm execution has shown the most characteristic elements of the defined algorithm in

connection with the related complete definition of the term session.

86

A2 Example algorithm execution – session type detection
In order to give a better understanding of how all of these steps work together - yielding the respective

session types for each session given as input - here follows an example situation for this algorithm. This

situation is not based on a real world trace, but is created artificially, in order to highlight some of the most

important aspects of the defined algorithm.

Consider the following set of sessions as input for the algorithm that detects session types:

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

0,60 C 161 A 6001 trap 1000 α.0,

α.1,

β.1

0,61 C 161 A 6001 trap 1000 α.0,

α.1,

β.1

Table A2.1: Session #1 describing a trap session

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

10,81 A 2800 C 161 get-req 5 β.1,

γ.1

10,83 C 161 A 2800 response 5 β.1,

γ.1

Table A2.2: Session #2 describing a get session

Time

(s.)

Source

IP

Source

Port

Destination

IP

Destination

Port

Operation Request

ID

OIDs

44,25 B 4905 D 161 get-next 1 α,

β,

ε

44,27 D 161 B 4905 response 1 α.0,

β.0,

ε.0

44,28 B 4905 D 161 get-next 2 α.0,

β.0,

ε

46,30 B 4905 D 161 get-next 2 α.0,

β.0,

ε

46,33 D 161 B 4905 response 2 α.1,

β.1,

ε.0

46,35 B 4905 D 161 get-next 3 α.1,

β.1,

ε

46,39 D 161 B 4905 response 3 β.1,

γ.0,

ε.0

Table A2.3: Session #3 describing a get-next session

These three sessions are given as input to the algorithm. Following is a step-by-step description of this

algorithm handling the first session:

87

� The first algorithm is loaded first, as described in the step description in chapter 3. In step 1, the

determination is made that it involves a trap session. Then, since there are two messages available,

the algorithm goes to step 2;

� Here it loads the first message, the first trap message. Since this is not a response, the algorithm

goes to step 3, where the OID prefixes are determined;

� Here follows a description of the sub steps taken in point 3:

o At this point the list of OID prefixes is still empty. Also, there can no last response be

determined, since there is no response message loaded in this session yet. Therefore, all

three OIDs will be taken to the next sub step;

o Now, the first OID of this message will be tested. If it contains a prefix that matches any

of the listed OIDs in the list of OID prefixes, then this OID will not be considered further.

However, if it does not, then its prefix will be taken and will subsequently be added to the

list of OID prefixes. Since this list is currently empty, its prefix (α) will be added to the

list of OID prefixes;

o The second OID shall then be considered. This OID contains a prefix that is equal to the

one currently listed in the list of OID prefixes. Hence, it shall not be considered further;

o The third and last OID is of a different column than the previous two, which results in the

addition of the prefix of this OID to the list of OID prefixes. In the end, for these three

OIDs α and β shall be taken to the next sub step.

Now that this message has been dealt with, the algorithm shall return to point 2, where the next

message is loaded;

� The next message of this session is a non-response message, thus the algorithm will go to step 3;

� Here follows a description of the sub steps taken in point 3 for this second message:

o Again, no last response can be found and the only listed elements in the list of OID

prefixes are that of the α-column and the β-column;

o Using the same methodology, now the OIDs of this message shall be checked for

matching prefixes. Since all three OIDs are the same as those in the first trap message, it

follows that all of these OIDs match one of the prefixes already listed in the list of OID

prefixes. As a result, no new OIDs will be added to that list.

Now that this message has been dealt with, the next message can be processed;

� Since there are no additional messages to be found in this session, the next session shall be loaded

and considered in point 1. The result for this first session is the following information, that

together encompasses the information of the session type of this session:

Session Type

Operation Type Trap

Initiator Party IP Address C

Initiator Party Port Number <NOT CONSIDERED>

Other Party IP Address A

Other Party Port Number <NOT CONSIDERED>

{OID prefix(es)} {α, β}

Table A2.4: The session type information for session #1

Note that the port numbers have not been stated, as a result of the algorithm description discussed earlier.

Also note that the second message - a retransmission of the first message of this session – did not influence

the list of OID prefixes for this session type. A third point of interest is the list of OID prefixes. As is

shown, only the columns containing the items referred to in the two trap messages form the list of OID

prefixes.

Following is a step-by-step description of this algorithm handling the second session:

� From point 1, the algorithm goes to point 2, after resetting the session type information fields for

this session;

� The first message being loaded is a request message and will be handled in point 3;

o There is still no response loaded yet, so no OID comparison can take place between this

request message and the most recent response message;

88

o The first OID of this message does not match any of the listed OIDs, since the list of OID

prefixes is still empty at this point. The prefix of this OID shall now be extracted, before

it will be added to the list of OID prefixes;

o The second OID refers to a different column and has therefore no matching prefix with

the listed OID in the list of OID prefixes. As a result, it shall be added to this list.

Now that this message has been dealt with, the next message shall be processed;

� The algorithm will return to point 2, since still more messages are available in this session;

� In point 2 the next message is being loaded, but this is a response message, which is not

considered in this algorithm. After this message, no other messages can be found and the

algorithm returns to point 1; the result for this session is the following information, that in all

encompasses the information of the session type of this session:

Session Type

Operation Type Get-request

Initiator IP Address A

Initiator Port Number <NOT CONSIDERED>

Other Party IP Address C

Other Party Port Number 161

{OID prefix(es)} {β.1, γ.1}

Table A2.5: The session type information for session #2

In this case, the initiator of the session was manager A, which contacted agent C. Also, here is the port

number of only one side stated, because of the operation type of this session, which has been explained

previously. Finally, the two messages of this session resulted in a list of two OID prefixes.

Following is a step-by-step description of this algorithm handling the third and final session of the input

given to this algorithm:

� From point 1, the algorithm goes to point 2 after resetting the session type information fields for

this session;

� In point 2, it loads the first message, which is a request. Then, the algorithm goes to step 3 to deal

with the OIDs of this request message;

� In point 3, the OIDs of this request shall be compared with those of the last response. But, this is

the first message of this session, so no response is loaded yet.

o Since the list of OID prefixes is empty and the OIDs listed in this first request are not

references to the same column / scalar as in a previous response, the table of OID

prefixes shall be filled with these three OIDs.

� Then the next message is considered, which is a response, which will not be considered. The third

message is again a non-response and will be checked in point 3 of the algorithm overview.

o Now, a previous response can be found. And this non-response message contains three

OIDs out of which two (α.0 and β.0) are equal to one of the listed OIDs of this last

response respectively. The third OID in this request (ε) cannot be found in the last

response, so it may be a new column or scalar reference. But, because it has a prefix

equal to one of the already listed OIDs in the list of OID prefixes, also this third OID

shall have no influence on this list. In all, this means that no new columns or specific

scalars are being referenced with this new request message. Therefore, all three OIDs in

this message shall not be eligible for addition to the list of OID prefixes, which in turn

will stay the same.

� The third listed non-response message is a retransmission of the second request message. Since

also for this request message the same applies to all of its listed OIDs, as in the second request

message, this request shall not have any influence on the listed OIDs in the list of OID prefixes;

� The fourth request message contains in total three OIDs, out of which again two OIDs (α.1, β.1)

match exactly those of the response occurring just before it. The third listed OID (ε) is not listed in

this last response, but its prefix matches an already listed OID in the list of OID prefixes.

Therefore, all three OIDs in this message shall not be eligible for addition to the list of referenced

OIDs, which in turn will stay the same;

89

� After the last response message has been read by this algorithm, the following information shall

form the session type information of the found session type:

Session Type

Operation Type Get-next-request

Initiator IP Address B

Initiator Port Number <NOT CONSIDERED>

Other Party IP Address D

Other Party Port Number 161

{OID prefix(es)} {α, β, ε}

Table A2.6: The session type information for session #3

This information shows that indeed only three unique OID prefixes have been found in this session. This

information will in turn form a basis for the comparison of sessions in future algorithms. It should again be

stressed that the port number information of the initiator (because of the operation type) may be

disregarded in future comparisons between sessions, because the source port number changes per session

for almost every manager implementation. This has been determined through manual observations made in

various trace files from different locations.

When looking at the results of this algorithm for each of the handled sessions, it can be stated that none of

these three sessions have the same session type, even if the port numbers are not considered. One of the

reasons is that all resulting session types have different lists of found OID prefixes. This field, amongst

others, must be equal, as a result of the complete definition of a session type.

90

A3 Example algorithm execution – session set detection
Although the description of the third algorithm and its steps has been explained alongside an example, that

example was very abstract and straight forward. It is the purpose of this subsection to suggest and handle a

more difficult input of sessions and their session types.

Since real traces do not give away the programmed behaviour details of the network elements involved in

the recorded traffic in that trace, nothing will be given here in advance. The result should not be influenced

by this.

The following limits will be stated in advance. Note that these values may be changed to the specifics of a

trace or even per considered initiator, as has been stated in the algorithm description.

Limit Value

Border session

scan range

20 seconds

Timeout within

session set

10 seconds

Min. session type

occurrence

3

Max. session set

length difference

50%

Table A3.1: Pre-defined limits

Then, consider the following table of session type occurrences that have been recorded in an artificial trace.

This table will subsequently be given as input to the algorithm.

Start Time

(sec.)

Session type Start Time

(sec.)

Session type

0,1 get-next-request-A[]-C[161]-[0] 704,5 get-request-B[]-C[161]-[0]

0,4 get-next-request-A[]-D[161]-[0] 751,9 trap-C[]-A[]-[0]

49,7 get-request-B[]-C[161]-[0] 889,2 get-next-request-A[]-C[161]-[1]

55,6 trap-C[]-A[]-[0] 894,8 get-next-request-A[]-D[161]-[0]

290,1 get-next-request-A[]-C[161]-[1] 1095,2 get-request-B[]-C[161]-[0]

294,4 get-next-request-A[]-D[161]-[0] 1290,6 get-next-request-A[]-C[161]-[1]

590,3 get-next-request-A[]-D[161]-[0] 1296,1 get-next-request-A[]-D[161]-[0]

595,0 get-next-request-A[]-C[161]-[1] << RECORDING ENDED AT 1400 SEC. >>

Table A3.2: Possible input to this algorithm

Although this is a very short trace, it will highlight some of the problems that have been discussed in the

previous subsections.

The first step, after this has been given as input to this algorithm, involves the removal of potential

incomplete sessions at both borders, as a result of starting and stopping the recording of traffic. A limit for

scanning for incomplete sessions is preset to 20 seconds. Scanning for sessions in this trace that occur

within 20 seconds of a border results in only two sessions at the beginning of the trace that could possibly

be incomplete. However, only the first of these two sessions is of a session type that is not seen anywhere

else in the trace, therefore only the very first listed session shall be removed, before continuing with the

next step.

The next step is the selection of one of the initiator IP addresses. Since there are three different initiator IP

addresses (A, B, C), A shall be the first initiator IP address for consideration. This results in the following

subset of sessions of the trace, which have been initiated by A:

91

Start Time

(sec.)

Session type Start Time

(sec.)

Session type

0,1 << NOT CONSIDERED >> 889,2 get-next-request-A[]-C[161]-[1]

0,4 get-next-request-A[]-D[161]-[0] 894,8 get-next-request-A[]-D[161]-[0]

290,1 get-next-request-A[]-C[161]-[1] 1290,6 get-next-request-A[]-C[161]-[1]

294,4 get-next-request-A[]-D[161]-[0] 1296,1 get-next-request-A[]-D[161]-[0]

590,3 get-next-request-A[]-D[161]-[0] << RECORDING ENDED AT 1400 SEC. >>

595,0 get-next-request-A[]-C[161]-[1]

Table A3.3: Subset of the given input

Step three involves the counting of the session types now listed. This results in an occurrence count of five

for get-next-request-A[]-D[161]-[0] and a count of four of get-next-request-A[]-C[161]-[1].

Then, the largest group of equally few occurrences should be selected out of these two session types.

Clearly, this would only result in the session type get-next-request-A[]-C[161]-[1] to be selected, since this

is the only one that is of the smallest number of occurrences.

In step 4 and 5, all possible potential session sets shall be discovered, which will form a basis for step 6.

Following is the overview of the found potential session sets:

Start Time

(sec.)

Session type

290,1 get-next-request-A[]-C[161]-[1]

294,4 get-next-request-A[]-D[161]-[0]

Table A3.4: Session set #1

Start Time

(sec.)

Session type

590,3 get-next-request-A[]-D[161]-[0]

595,0 get-next-request-A[]-C[161]-[1]

Table A3.5: Session set #2

Start Time

(sec.)

Session type

889,2 get-next-request-A[]-C[161]-[1]

894,8 get-next-request-A[]-D[161]-[0]

Table A3.6: Session set #3

Start Time

(sec.)

Session type

1290,6 get-next-request-A[]-C[161]-[1]

1296,1 get-next-request-A[]-D[161]-[0]

Table A3.7: Session set #4

Session sets in tables A3.4 through A3.7 all contain one occurrence of the core session type each. In step 6,

the best group of the involved session types shall be determined. In this case, the question reduces to

whether only the core session type or also the other session type should be considered in the session sets

that are going to make up a single session set type. In the mentioned four session sets, both session types

occur equally often. As stated in the specification of this step in the algorithm, both session types shall be

considered. This shall be taken to the next step: step 7.

Step 7 involves the finding of the session sets that are going to make up a session set type. This will result

in this case in the listed four session sets in the tables A3.4 through A3.7. The algorithm returns to step 8,

92

because there is still one session that belongs to initiator A and because there will not be any more session

sets that are undefined at this moment. This single session will simply result in the following floating

session set, because it involves just one session set, which is lower than the stated limit.

Start Time

(sec.)

Session type

0,4 get-next-request-A[]-D[161]-[0]

Table A3.8: Floating session set

There are no other sessions remaining which belong to initiator A, after this session set has been added to

the list of floating session sets. This means that the next step for this algorithm is step 8, in which the just

created floating session set is considered.

Step 8 defines the attempt to assign a floating session set to an existing session set type, or if that fails, a

new session set type will be created. In this case, only one session set type exists for this initiator IP

address, so only this single session set type will be considered. The pre-set limits suggest that the minimum

percentage of comparable session types between a floating session set and a session set type must be 50%,

or better. In this case, the floating session set contains just one session of a particular session type that can

also be found in the session sets of the session set type. As a result, there is a 50% match. The next limit to

be considered is regarding the length of the session set. This may only differ 50% of the session sets

already listed of the session set type (i.e. a floating session set may be of length one, two or three in this

case). Since also this prerequisite is met, this floating session set can be added to this session set type,

which would yield, after considering this single initiator IP address, one session set type consisting of five

session sets of which four are of length two and one of length one. No merging attempts shall take place in

this case, because there is just one session set type.

Next is step 2 again, in which the next initiator IP address (B) is considered. Following is the overview of

the sessions that are initiated by IP address B:

Start Time

(sec.)

Session type

49,7 get-request-B[]-C[161]-[0]

704,5 get-request-B[]-C[161]-[0]

1095,2 get-request-B[]-C[161]-[0]

Table A3.9: Subset of the given input

There is just one session type involved here. Also, all sessions are more than the stated timeout value

removed from each other, thus in this case, this would result in a single session set type consisting of three

session sets which all contain one session type occurrence. Therefore, no floating session sets need to be

considered. The next and final initiator IP address can now be considered.

The last initiator IP address that needs to be considered is initiator IP address C. After applying the filter for

this initiator, this yields the remaining set of sessions:

Start Time

(sec.)

Session type

55,6 trap-C[]-A[]-[0]

751,9 trap-C[]-A[]-[0]

Table A3.10: Subset of the given input

By the same reason used for initiator IP address B, it can now also be concluded in this case that there will

be a single session set type, consisting of two session sets, because the two occurrences of the single

session type are more than the preset timeout value removed from each other. Also, in this case no floating

session sets shall be considered or processed.

93

After this, all sessions have been assigned to a single session set that belongs to a particular session set

type. Then, the algorithm will go from point 8 to point 9, in which it will terminate and return the resulting

three session set types that have been found.

This example has shown that both clearly periodic and aperiodic session set types can be detected. Also, it

is shown that in the case of regular polling, as in the case of initiator IP address A, all polling instances

match a session set that is part of a session set type. Subsequently, the respective session set type and its

session sets cover the programmed polling settings of that initiator. In other words: all traffic related to a

particular polling setting has been isolated into session sets that are of a single session set type. It is also

shown that sessions which occur irregularly, as in the cases of the other two initiators, the algorithm is still

able to identify the individual and independent session set types. This shows that this algorithm operates

completely independently of any possible periodicity of session sets. The determination of intervals and

whether or not the session sets of a session set type are periodic or aperiodic and if periodic, what the

intervals are, are topics that will be addressed in the fourth algorithm description.

94

A4 Example algorithm execution – determination of periodicity
Although the algorithm description was accompanied by an example, that particular example was very

straightforward and did not cover the more complicated issues that were discussed earlier in chapter 5.2.

This subsection discusses a more complicated example of a session set type, consisting of both periodic and

aperiodic traffic session sets.

Consider the following 19 session sets, which are all of the same session set type, given as input to this

fourth algorithm.

Start Time

(sec.)

Last

session

start (sec.)

Last

request

(sec.)

Last

response

(sec.)

Number of sessions in

session set

Session set

10,58 12,27 12,78 12,88 4 Session set #1

25,62 31,59 32,30 32,35 10 Session set #2

124,84 129,99 130,52 130,62 10 Session set #3

225,89 231,68 232,56 232,66 10 Session set #4

310,48 315,86 316,73 316,83 10 Session set #5

325,32 330,76 332,22 332,32 10 Session set #6

380,97 386,12 387,53 387,63 10 Session set #7

424,13 429,73 431,04 431,14 10 Session set #8

525,27 530,66 531,65 531,75 10 Session set #9

609,97 615,53 616,26 616,36 10 Session set #10

625,18 630,92 631,58 631,63 10 Session set #11

725,03 730,53 731,60 731,70 10 Session set #12

825,38 830,92 832,27 832,37 10 Session set #13

910,14 915,22 916,23 916,33 10 Session set #14

1125,29 1130,33 1131,09 1131,14 10 Session set #15

1210,53 1216,19 1217,67 1217,77 10 Session set #16

1225,85 1231,40 1232,22 1232,32 10 Session set #17

1326,24 1331,29 1332,17 1332,22 10 Session set #18

1425,42 1431,97 1432,59 1432,68 10 Session set #19

Table A4.1: Set of session sets in a session set type given as input to this algorithm

The following list of values shall be used, besides this list of session sets given as input to the fourth

algorithm. This list shall be followed by the description of the steps taken by this algorithm.

Limit Value

Max. start session set

length difference

25%

Max. interval

deviation

10 seconds

Max. avg. interval

deviation

3 seconds

Min. nr. of session

sets in subset

4

Max. time between

session sets

650 seconds

Table A4.2: Preset values used in this example

95

The very first thing that occurs is the removal of the incomplete first session set in the first step of the

algorithm. Since the maximum start session set length difference is 25% and the average session set length

of the session sets, minus the first and the last session sets is 10. This gives a minimum session set length of

7,5 sessions for the first session set. However, there are only 4 sessions assigned to the first session set, so

the first session set shall not be considered further.

The next steps involve the detection of intervals and the sessions that contribute to these intervals

respectively.

� First, an attempt is made to find an interval based on the combination of session sets 2 and 3.

o After calculations, follows that the interval between these two is 99,22 seconds, based on

the first timer reset point;

o Using the formulas given in the description of step 2c and the given preset values, it

follows that the next session set should occur within the range [218,06; 230,06];

o In step 2d it is concluded that there is indeed a session set within the stated range.

Therefore session set 4 is added to the subset of session sets that contribute to the same

interval.

� The next step is to find the fourth member. First, the algorithm returns to step 2b.

o Here the interval shall now be recalculated for the three members. Now, the average

interval is 100,14 seconds, based on timer reset point 1, which yields the smallest total

deviation of 1,83 seconds from its respective interval;

o This gives the range for the possible fourth member session set: [318,86; 333,20];

o In step 2d it is concluded that there is a session set within the stated range. Therefore

session set 6 is added to the subset of session sets that contribute to the same interval.

� This process repeats for session sets 8, 9, 11, 12 and 13. The algorithm returns to step 2b, after

finding session set 13 to be contributing to this single interval.

o Here the interval shall now be recalculated for the currently nine members. Now, the

average interval is 100,08 seconds, based on timer reset point 1, which yields the smallest

cumulative deviation of 4,62 seconds from its respective interval;

o This gives the range for the possible tenth member session set: [915,46; 925,46];

o In step 2d it is concluded that there is no session set within the stated range. Because the

now created set of session sets contributing to this single interval is larger than the stated

limit of 4, this set of session sets shall be saved in step 3.

� Now, the algorithm starts again in step 2a, but now with 9 fewer session sets.

o In step 2a the first two session sets shall be selected: session set numbers 5 and 7;

o The interval shall now be recalculated for these two members, which is 70,49 seconds,

based on timer reset point 1;

o This gives the range for the possible third member session set: [445,46; 457,46];

o In step 2d it is concluded that there is no session set within the stated range. As a result,

because the now created set of session sets contributing to this single interval involves

just 2 which is fewer than the stated limit of 4, this set of session sets shall not be

considered further. Instead the algorithm will go back to step 2a, where it will attempt to

select a different pair of initial session sets.

o In step 2a session sets numbers 5 and 10 shall now be selected as initial session sets that

may contribute to a particular interval. This is still allowed, because these two session

sets are less than 650 seconds removed from each other.

� Now, the algorithm will retry to find a third session set, but now with a different pair of initial

session sets.

o After calculations follows that the interval between these two session sets is 299,49

seconds, based on the first timer reset point;

o Using the formulas given in the description of step 2c and the given preset values, it

follows that the next session set should occur within the range [903,46; 915,46];

o In step 2d it is concluded that there is a session set within the stated range. Hence, session

set number 14 is added to the subset of session sets that contribute to the same interval.

� The next step is to find the fourth member for this second interval. First, the algorithm returns to

step 2b.

96

o Here, the interval shall now be recalculated for the currently three session sets. The

average interval is 299,83 seconds, based on timer reset point 1, which yields the smallest

total deviation of 0,68 seconds from its respective interval;

o This gives the following range for the possible fourth member session set: [1201,65;

1218,29];

o In step 2d it is concluded that there is a session set within the stated range. Therefore,

session set number 16 is added to the subset of session sets that contribute to the same

interval.

o Now, the process is repeated, but no new session sets shall be added to this set anymore,

because no new session sets shall be found. As a result, this set of 4 session sets is sent on

to step 3, because this set matches the limit of 4 session sets. So, now two sets of session

sets have been found, each containing session sets that contribute to a different interval.

� The algorithm now goes again back to step 2a.

o In step 2a the first two remaining session sets shall now be selected: session sets 7 and

15. But, because the time between these two session sets exceeds the limit of 650

seconds, session set 7 shall automatically not be considered further. This means that

session set 7 will be marked as aperiodic. Now, the next first two session sets will be

selected: session sets 15 and 17.

o After calculations, it follows that the interval between these two is 100,56 seconds, based

on the first timer reset point;

o Using the formulas given in the description of step 2c and the given preset values, it

follows that the next session set should occur within the range [1320,41; 1332,41];

o In step 2d it is concluded that there is a session set within the stated range. Therefore,

session set 18 is added to the subset of session sets that contribute to the same interval.

o Subsequent execution of step 2b, 2c and 2d, shall result in the addition of session set 19

to this subset of session sets.

The algorithm has now allocated all given session sets to either a periodic set of session sets that contribute

to a particular interval, or to the general set of session sets that are all marked aperiodic. In this case, two

intervals have been found: 100 and 300 seconds. Also, one session set was marked aperiodic.

97

References

[1] Schönwälder, J. (2007). Snmpdump. https://trac.eecs.iu-bremen.de/projects/snmpdump (June 2007).

[2] Schönwälder, J. (2007). SNMP Traffic Measurements. Internet Draft. Bremen, Germany: Jacobs

 University.

[3] Ciocov, C. (2007). Simple network management protocol trace analysis. Bremen, Germany: Jacobs

University.

[4] Harvan M. (2006). SNMP Traffic Measurement and Analysis. Bremen, Germany: Jacobs University.

[5] Grondman, I. (2006). Identifying short-term periodicities in Internet traffic. Enschede, The Netherlands:

University of Twente.

[6] Stalling, W. (1998). SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Rev. 3. United States of America:

Addison-Wesley.

[7] Oetiker, T. (2007). MRTG. http://oss.oetiker.ch/mrtg (July 2007).

[8] Broek, van den, J.G. (2007). Bachelor of Science assignment support website.

 http://wwwhome.cs.utwente.nl/~broekjg/bsc (July 2007).

[9] Schippers, J. (2007). Analysis of SNMP usage in the real world. Enschede, The Netherlands: University

of Twente. p. 19

98

List of Figures

1.1 Scenario visualization ... 2

1.2 Lexicographical order of available single-column tables at the agent side 2

1.3 TSD showing a single polling instance of the α-table... 3

1.4 A TSD of an extended scenario .. 4

1.5 Scenario visualization ... 5

1.6 A single set of sessions involving one manager and three agents 5

1.7 Sessions involved in regular polling instances of the three different agents................... 6

1.8 Irregular polling instances... 7

2.1 Input and output of this algorithm... 11

2.2 Tree view of available tables at the agent side.. 12

2.3 TSD describing a possible get-bulk operation .. 13

2.4 TSD showing the occurrence of a timeout and a retransmission 14

2.5 Standard retransmissions of responses .. 14

2.6 TSD describing table gaps and unequal column length .. 16

2.7a Set session... 16

2.7b Trap session .. 16

2.7c Inform session... 17

2.8 TSD showing the changing of positions of OIDs.. 18

2.9 Steps in the session detection algorithm ... 21

3.1 Input and output of this algorithm... 23

3.2 Highlighted tables of agent #1 .. 24

3.3 Highlighted tables of agent #2 .. 24

3.4 Steps taken in this algorithm... 29

4.1 Input and output of this algorithm... 32

4.2 Highlighted tables of agent #1 .. 34

4.3 TSD highlighting border traffic issues .. 42

4.4 Graph showing the possibility of incomplete session sets .. 42

4.5 Sessions occurring within the first 620 seconds of an artificial trace 44

4.6 Steps as part of this algorithm... 44

4.7 Some sessions are of a core session type .. 46

4.8 Selected scanning ranges from existing sessions .. 46

4.9 Possible new session set members selected .. 47

4.10 Selected scanning ranges from existing sessions .. 47

4.11 Potential session sets after completing the scanning process .. 47

4.12 Session sets of a single session set type found in the first ~600 seconds........................ 49

4.13 Resulting allocations of the given sessions ... 50

5.1 Input and output of this algorithm... 51

5.2 Possible timer reset points... 53

5.3 Polling with timer reset point 4... 53

5.4 The steps taken in this algorithm .. 58

5.5 Four interval cases .. 60

5.6 Finding session sets with a single interval .. 61

6.1 General overview of the involved scripts.. 65

6.2 Input and output of this first algorithm ... 65

6.3 Input and output of this second algorithm... 67

6.4 Input and output of this third algorithm .. 68

6.5 Input and output of this fourth algorithm .. 70

99

List of Tables

2.1 Stored open session information ... 20

3.1 Session 1 occurring between manager #1 and agent #1 .. 25

3.2 Session 2 occurring between manager #2 and agent #1 .. 25

3.3 Session 1 occurring between manager #1 and agent #1 .. 25

3.4 Session 2 occurring between manager #2 and agent #2 .. 26

3.5 Session 1 occurring between manager #1 and agent #1 .. 26

3.6 Session 2 occurring between manager #1 and agent #2 .. 26

3.7 Get session occurring between manager #1 and agent #1... 27

3.8 Set session occurring between manager #1 and agent #1.. 27

3.9 Get-next session occurring between manager #1 and agent #1 w.o. retransmissions 27

3.10 Get-next session occurring between manager #1 and agent #1 with retransmissions 28

3.11 Information used to identify a session type... 31

4.1 Two session types both occurring three times... 33

4.2 Session set #1.. 33

4.3 Session set #2.. 33

4.4 Session set #3.. 33

4.5 Session set type #1 .. 33

4.6 Occurrence of session types with multiple initiators... 35

4.7 Session set #1.. 35

4.8 Session set #2.. 36

4.9 Session set #3.. 36

4.10 Session set #4.. 36

4.11 Session set #5.. 36

4.12 Session set types #1 and #2... 36

4.13 Occurrence of session types with aperiodic addition .. 37

4.14 Occurrence of session types with aperiodic addition .. 38

4.15 Session set #1.. 39

4.16 Session set #2.. 39

4.17 Session set #3.. 39

4.18 Session set types #1 and #2... 39

4.19 Occurrences of session types with some irregular occurrence .. 40

4.20 Session set #1.. 40

4.21 Session set #2.. 40

4.22 Session set #3.. 40

4.23 Session set #3.. 40

5.1 Sessions sets making up a single session set type ... 52

5.2 Sessions sets making up a single session set type ... 52

5.3 Session sets making up a single periodic session set type with two intervals 54

5.4 Session sets making up a single session set type containing both kinds of session sets . 55

5.5 Session sets making up a single session set type containing a hole 56

5.6 Session sets making up a single session set type with incomplete border session sets ... 56

5.7 Definition of preset limits/variables used in this algorithm .. 59

5.8 Preset values used in the explanatory example ... 59

5.9 Session sets making up the example session set type ... 59

5.10 Session sets that apparently contribute to a single interval ... 62

5.11 Detected intervals for the given set of two session sets .. 62

5.12 Set of session sets taken to step 3.. 63

5.13 Resulting information about the found interval and its session sets................................ 64

100

6.1 Most significant input parameters for the first implemented script................................. 66

6.2 Most significant input parameters for the second implemented script 67

6.3 Most significant input parameters for the third implemented script 68

6.4 Most significant input parameters for the fourth implemented script 70

7.1 Information about phase 1 results ... 72

7.2 Information about phase 2 results ... 73

7.3 Information about phase 3 results ... 73

7.4 Information about phase 4 results ... 73

7.5 Information about phase 1 results ... 74

7.6 Information about phase 2 results ... 74

7.7 Information about phase 3 results ... 74

7.8 Information about phase 4 results ... 75

7.9 Information about phase 1 results ... 75

7.10 Information about phase 2 results ... 76

7.11 Information about phase 3 results ... 76

7.12 Information about phase 4 results ... 77

7.13 Information about phase 1 results ... 77

7.14 Information about phase 2 results ... 78

7.15 Information about phase 3 results ... 78

7.16 Information about phase 4 results ... 78

A1.1 Approximately 30 seconds of recorded SNMP messages... 82

A1.2 Open session #1 (not yet closed, intermediate result) ... 83

A1.3 Open session #2 (not yet closed, intermediate result) ... 83

A1.4 Open session #2 (not yet closed, intermediate result) ... 83

A1.5 Open session #1 (not yet closed, intermediate result) ... 83

A1.6 Open session #1 (not yet closed, intermediate result) ... 84

A1.7 Open session #3 (not yet closed, intermediate result) ... 84

A1.8 Session #1 (session closed, final result) .. 84

A1.9 Result of sessions 2, 3 and 4 (all sessions closed, final result).. 85

A2.1 Session #1 describing a trap session ... 86

A2.2 Session #2 describing a get session... 86

A2.3 Session #3 describing a get-next session... 86

A2.4 The session type information for session #1 ... 87

A2.5 The session type information for session #2 ... 88

A2.6 The session type information for session #3 ... 89

A3.1 Pre-defined limits .. 90

A3.2 Possible input to this algorithm... 90

A3.3 Subset of the given input... 91

A3.4 Session set #1.. 91

A3.5 Session set #2.. 91

A3.6 Session set #3.. 91

A3.7 Session set #4.. 91

A3.8 Floating session set ... 92

A3.9 Subset of the given input... 92

A3.10 Subset of the given input .. 92

A4.1 Set of session sets in a session set type given as input to this algorithm......................... 94

A4.2 Preset values used in this example .. 94

