Experimental Validation of the TCP-Friendly Formula

Bachelor Assignment
Ruud Klaver (0004901)

r.klaver@student.utwente.nl

Design and Analysis of Communication Systems
Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente
Supervisor: Dr. ir. Pieter-Tjerk de Boer

April 6, 2005



Abstract

In this report I will attempt to verify the accuracy of the TCP-friendly formula, which describes
the bandwidth used by a TCP connection based on the RTT and loss rate of this connection.
First, a new and more accurate formula, specific to a particular TCP implementation, is derived
through analysis. This new formula and the original one are then compared in terms of accuracy
by doing both controlled and Internet TCP measurements.



Chapter 1

Introduction

The Transmission Control Protocol, or TCP [15], is ubiquitously used in both public and private
computer networks. It operates at the Transport Layer of the TCP/IP network layer model.
Usually working on top of IP, TCP is a connection-oriented protocol that supplies a bi-directional
stream of data between two hosts and handles such responsibilities as order correcting in case of
packet reordering, retransmissions in the case of lost or incorrect packets, and congestion control.
Congestion control means that a sending TCP host detects packet loss on the connection to the
receiving host and throttles its sending rate accordingly, to avoid sending more data than the
connection can handle. Several congestion control algorithms exist, but this report will only focus
on the algorithm found in the classic Reno TCP implementation [9].

When using a different protocol than TCP at the Transport Layer, which in most cases will be
UDP, this protocol may not perform congestion control. This means that application programmers
using the UDP protocol need to implement some form of congestion control themselves. If such
applications make use of connections on which TCP is also used, which will frequently be the case,
it is important that these connections apply the same amount of throttling that TCP does. This
is because if UDP connections are either less or more aggressive than TCP this will result in an
unfair distribution of bandwidth. To assess the amount of bandwidth used the so called TCP-
friendly formula [17, 19] exists. This formula gives an indication of the maximum bandwidth used
by a Reno TCP connection on a transmission path with certain latency and loss characteristics. If
a UDP application monitors these characteristics and applies this formula to throttle its outgoing
transfer speed, in theory it should acquire the same amount of bandwidth on that connection
as TCP applications do. This prevents any application from gaining an unfair advantage over
others in terms of used network resources or, in a worst case scenario, from transmitting too many
packets and causing a congestion collapse of the link.

This report will attempt to assess the validity of this formula in a realistic situation through
obtaining measurements of TCP connections. Chapter 2 will provide a detailed description of the
TCP-friendly formula. In chapter 3 the approach to obtaining the measurements is discussed.
After this in chapter 4 a new and more precise formula will be derived for one particular TCP
implementation, which shall be compared to the original formula in terms of accuracy. In chapter
5 the results of the measurements will be presented and compared to both the original and the
new formula. Finally in chapter 6 there will be some concluding remarks.



Chapter 2

The TCP-Friendly formula

The TCP-friendly formula attempts to describe the behaviour of a TCP connection that is in
equilibrium in the Congestion Avoidance state. To understand the inner workings of this formula,
we first need to understand the TCP congestion avoidance algorithm that is associated with TCP
Reno, which is defined in [23, 9]. Congestion avoidance is a mechanism that throttles the sending
data-rate of a TCP connection, so that this does not exceed the maximum attainable data-rate
of the IP path from the sending host to the receiving host. This is done by having the sending
TCP host keep a record of how many bytes it may send without receiving an acknowledgement
for those bytes, i.e. the number of bytes “in flight”. This record is called the congestion window,
or cwnd.

During the initial phase, which is called Slow Start, cwnd shall be exactly the Maximum Segment
Size, or MSS, and every time the sending side receives an ACK it will double cwnd. MSS
defines the maximum number of payload bytes the sender can transmit within a single segment,
limited by the TCP header size, the headers of lower network layers and finally the path MTU.
It is readily apparent that in this phase cwnd may grow exponentially. This exponential growth
continues until cwnd reaches a threshold value, called ssthresh. When this threshold value is
reached, the TCP connection enters the Congestion Avoidance phase, in which cwnd may increase
at a maximum pace of one M SS per Round Trip Time, or RTT. In contrast to the exponential
increase in the Slow Start phase, the Congestion Avoidance phase prescribes a linear increase.
These two different phases are illustrated in figure 2.1, where both the exponential and linear
increase can clearly be seen. Of course this growth of the number of outstanding unacknowledged
bytes cannot continue indefinitely, since the bytes need to be stored somewhere between the
sending and receiving host. Some of the bytes will actually “fill the pipe”, i.e. they will actually
be in transit on a line somewhere between the sending host and the receiving host, while others
will be stored in buffers of routers along this path. What will happen on the network layer is
that, as the sending data-rate increases, a router along the path that is experiencing congestion
on the interface to which the packets must be routed will drop at least one of these packets, since
they simply cannot traverse the link at that time and the input buffers on the incoming interface
are already filled. Note that packets will be dropped in some way or another in both classic tail
drop and Random Early Detection (RED) [13] routers, as well as in routers that implement other
queue management algorithms. The receiving host will notice that a packet is missing by means
of the TCP sequence numbers, and send either a duplicate ACK with the sequence number of the
packet it is missing, or it will send a selective acknowledgement (SACK) if both hosts implement
this TCP option. [18] Once the sending host has detected enough (where enough is usually three)
duplicate ACKs or SACKSs to assume that the loss of the packet is not caused by packet reordering
on a lower layer (in which case the problem will solve itself eventually), but because of a router
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Figure 2.1: Graph describing the congestion window of a typical TCP connec-
tion, displaying both the exponential Slow Start phase and the linear Conges-
tion Avoidance phase.

discarding a packet as previously described, it will go into what is known as Fast Retransmit /
Fast Recovery.

When the sending TCP host enters this state it will immediately retransmit the segment that the
receiving host is missing and set ssthresh to half the current cwnd. cwnd is set to the new value
of ssthresh plus three segments, as three duplicate ACKs were already received to enter the state.
For every consecutive duplicate ACK or SACK it then receives before it has received an ACK for
the retransmitted segments, i.e. as long as the sending TCP host is not receiving “normal” ACKs,
cwnd is increased by 1. This means that once this state is entered, the sender will have to wait
until enough ACKs have arrived to raise cwnd above its old value before it can start transmitting
new segments, because the number of segments that are in flight is equal to the old value of
cwnd. Typically it would have to wait for about half of RTT, since it needs half the number of
segments of this old value to start transmitting again. The other half of the RTT that it takes
for the retransmitted segment to be acknowledged is used for sending segments at the normal
transmission rate. The period that no segments are transmitted is used by the clogged router
to free up its buffer, while the continual transmission of packets during this phase is performed
because duplicate ACKs or SACKSs indicate that the receiving TCP host is still actually receiving
packets, and is thus an indication that the network can handle the transmission of more packets.
After the ACK for the retransmitted segment has been received, cwnd is set to ssthresh (i.e.
half its original value), and a new Congestion Avoidance cycle is started. This whole process
is illustrated in figure 2.2. Note that, as it is a result that is obtained from measurements, the
behaviour displayed in this graph does not exactly coincide with the theory presented here. The
congestion window does not actually grow during Fast Retransmit and the slope of its growth is
slightly curved. These are specifics of the TCP implementation used, which will be discussed in
chapter 4.

Besides being limited by the congestion window, a TCP connection is also limited by the receiver
window, at all time obeying the minimum of these two windows. The goal of this receiver window
is to allow the receiving host to specify how much buffer space it has available to receive TCP
segments. Although in this case the receiver window is only relevant pertaining data sent from the
sender to the receiver, this window can be set in any TCP header. That means that in the case of
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Figure 2.2: Graph describing the congestion window of a typical TCP connect-
ing during two Congestion Avoidance cycles.

a sender-receiver scenario, the receiving host signals the size of this window through the headers
of TCP ACK segments. The original TCP specification [15] reserves 16 bits in the header for the
receiver window, allowing a maximum window size of 64kb. To prevent this receiver window from
becoming the limiting factor on connections with a bandwidth-delay product in excess of 64kb,
which is quite common nowadays, the TCP window scaling option was proposed [16]. This option
allows a bitwise left-shift to be specified for the congestion window field of the TCP header, i.e. a
multiplicative factor of 2, where S is the window scaling factor. This allows for receiver windows
of up to 2%° (i.e. a gigabyte).

The observed congestion window of a certain TCP connection will, assuming that the character-
istics of the transmission path of this connection remains constant, display a periodic pattern as
illustrated in figure 2.2. The TCP-Friendly formula operates on exactly this premise. As stated
before, it describes the behaviour of a TCP connection that is in equilibrium, i.e. one that has
more or less constant characteristics and displays a certain pattern. A possible derivation is given
n [19], which we will go through here. It simplifies the periodic sawtooth to make it a perfectly
triangular shape, as can be seen in figure 2.3. In this graph, cwnd runs from % to W, W being
defined as the maximum cwnd size expressed in the number of windows of size MSS. Assum-
ing that every segment is acknowledged by the receiving host and that the congestion window
is opened at the maximum rate, the time taken to perform one Congestion Avoidance cycle is
% * RTT. We can then count the total number of segments transferred by calculating the total
surface area under the sawtooth for one cycle. Summing the rectangle and the triangle gives:
w\? 1 /W\® 3_,

(3) +3(5) =3 21)
If we define the probability that a segment is lost as p and that this event occurs once per
Congestion Avoidance cycle, we can assume that the number of segments transferred also equals
%. Using this equality we can express W as:

W= \/i (2.2)

We can then express the bandwidth BW in terms of MSS, RTT and the maximum cwnd size
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Figure 2.3: Simplification of the TCP congestion avoidance cycles as described
in [19].
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where C' = \/g = 1.22. Because the sawtooth pattern is grossly oversimplified, this formula is

(2.3)

This can be rewritten as:
(2.4)

just a rough approximation of reality. The formula itself is therefore a rough approximation of the
maximum bandwidth consumed by TCP connection with particular characteristics. Note that, as
previously stated, it is assumed that the characteristics, i.e. the RTT, the M SS and the loss p,
are constants.

Additional to the assumptions already mentioned, there are a number of other assumptions and
conditions that the TCP connection must adhere to for the TCP-Friendly formula to be valid to
that connection. We shall give the complete list of requirements as (partly) presented in [19] that
are to be imposed on a TCP connection. When possible we shall try to illustrate this by showing
a graph where the requirement is not met.

1. There is only one segment lost during a Congestion Avoidance cycle, which is the segment
that triggers the congestion window to be halved.

2. The ACK strategy on the receiving side will be to send one ACK for every segment received.
If the ACK strategy is to send out an ACK for every 2 segments received, C is effectively
halved. However the ACK strategy must be consistently one or the other, so that C can be
a fixed value and different connections can be compared to each other.

3. The advertised receiver window must be large enough for the congestion window to grow
sufficiently on the sender side. Usually this means that both parties need to implement the



TCP window scale option. [16] An example of a connection where this is not the case can
be seen in figure 2.4.

4. The sender must always have data available to send. If this is not the case there isn’t always
enough data available to “fill the pipe” and make the congestion window grow at a steady
rate. This can be seen in Figure 2.6.

5. Both the sender and the receiver must implement the TCP SACK option. [18] This is
because, if several segments are lost during a Congestion Avoidance cycle (which often
occurs if the bandwidth-delay product is sufficiently large), the sender and receiver may go
into a request-response scenario to determine and retransmit the missing segments, while not
transmitting any other segments. This is caused by the fact that the receiver can only signal
that it is missing one segment at a time to the sender in the form of duplicate ACKs. This
scenario prevents the congestion window from exhibiting the typical Congestion Avoidance
sawtooth. SACKs prevent this by allowing the receiver to transmit more detailed information
about which segments it already has and which segments it is missing. This requesting and
responding of missing segments can also cause the connection going into a timeout and
subsequent slow-start, instead of performing normal Congestion Avoidance. The effects of
this can already be seen in figure 2.1.

6. Window opening strategies other than Congestion Avoidance, such as the ones used in TCP
Vegas [11, 12] and TCP BIC [24], shall not be used.

7. As stated before, the TCP connection must have reached a state of equilibrium in the
Congestion Avoidance phase and should display a perfectly periodic sawtooth. It will often
take the connection a few packet loss events to reach this state. A TCP connection that
experiences a lot of packet loss will also not reach this state of equilibrium, which can be
seen in figure 2.5.
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Figure 2.4: The red line in this connection, representing the number of bytes

in-flight, is limited by the blue line on top of it, which is the receiver window.

Also visible is that the congestion window, the purple line, is greater than the
receiver window.

Besides this rather simplified derivation of the TCP-friendly formula, more complex ones exist
such as [22]. This article assumes random loss characteristics instead of periodic loss, resulting in
the same formula, but with C' = 1.3. Because we are interested in the practical application of this



Outstanding Data (bytes)

15000
/|
10000 J\
\
\

\

\
\
\

I \ I \
I\ i\ i\ I\
I\ \ A A I
I\ \ [\ [\ [\
\ \ \ \ \ \
\ \ \ \ | \
\ \ \ \ \
\ \ \ \ )\ | \ | \ ‘\ \ |
\ \ \ \ \ \
J \ \J \\ \| \\ “‘J \\ “‘J \ ‘AJ\\ \

12:50:26 12:50:28 12:50:30

12:50:32 12:50:34
time

Figure 2.5: The number of bytes in flight on a typical high-loss TCP connec-

tion. Because of the high loss rate, a Congestion Avoidance equilibrium cannot

be reached. Note that all values are multiples of MSS, which in this case equals
1448.

formula and not a purely theoretical one, I shall not elaborate further on the derivation of this
factor.
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Figure 2.6: The red line represents the number of outgoing bytes on this TCP

connection, the blue the receiver window. The sending site cannot generate

enough segments to reach the receiver window. Amazingly this represents a
connection from Western Europe to the US West coast.



Chapter 3

Approach

With all the conditions mentioned in the previous chapter, the question arises of where and how
to measure TCP traffic to determine the exhibited behaviour. Although TCP is a bidirectional
protocol by nature, the TCP-Friendly formula describes traffic going from a sending host and
receiving host. To accurately perform RTT measurements, these measurements need to be done
at the sending host of this scenario. This is because the relationship between a transmitted segment
and its resulting received acknowledgement is the only direct causal one, and consequently the only
time difference that can be measured as an indication for the RTT. The specifications for TCP
timestamps [16] even state that a timestamp echo cannot be transmitted in a TCP packet that
has no ACK flag set. In this sender-receiver scenario, the receiver will never get any ACK packets,
besides the one for the connection establishment, so no reliable measurements can take place at
the receiving end. This means that for the purposes of this research we need at least control over
the sending host. Additionally, having control of the sending host has a number of other important
advantages in satisfying the conditions presented in the previous chapter. In particular condition
4 (having enough data availlable to fill the pipe) and condition 6 (the window opening strategy
must be classical Congestion Avoidance). If we do not have control over the sending party, making
sure these conditions apply or even ascertaining that they do becomes difficult.

Ideally we should have control over both the sending and receiving host. If this is not the case,
we should at least have control over the sending host, for the reasons stated above. In the case
that we have no control over the receiving host, it is still difficult to satisfy some of the conditions
in the previous chapter. Condition 2, which states that the ACK strategy should be to send one
acknowledgement for every segment received, is one of these conditions. In the next sub-chapter
we will discuss measures taken on the sending side to negate the effects of a varying ACK strategy,
so that this condition need no longer be satisfied. Both condition 3 and 5 are impossible to remedy
fully on the sending side, however. The former states that the TCP window scaling option should
be used on both sides, and that this window scale should be sufficiently large to allow the receiver
window to grow larger than the bandwidth-delay product of the pipe. From field trials it became
apparent that for most hosts this was not the case by default. The latter states that both parties
should use the TCP SACK option. This was also not found to be enabled for all hosts. As will
be discussed later in this paper, satisfying these two conditions turned out to be one of the major
problems in locating suitable testing hosts.



3.1 Linux 2.6

Because each TCP implementation specific to an operating system has subtle differences from
implementations founds in others, a choice to study one of those particular implementations has
to be made. For the purpose of this research, we will consider the TCP implementation as found
in the 2.6.9 Linux kernel. As the source code for this operating system is readily available [3],
the specifics of the implementation can be studied directly. Furthermore, as mentioned previously
we will mostly be studying its sending side behaviour, meaning that, given the fact that the
Linux operating system is widely used for server purposes nowadays, the research done will be
representative for a large number of TCP connections. The peculiarities of the Linux kernel TCP
implementation will be discussed in chapter 4, where a more accurate TCP-Friendly formula is
presented. On the controlled systems used for measurements the Gentoo Linuz distribution [1]
was used.

One of the conditions that need to be satisfied for the TCP-Friendly formula to be accurate is
that the acknowledgement strategy of the receiving host needs to be immediately sending one
acknowledgement for every segment received. This means that the receiving side should not
implement the so-called delayed ACK strategy [10]. From early field trials however it was clear
that most, if not all TCP hosts do implement this. In fact, the specifications [9] dictate that
this algorithm should be used and that implementing this means every second segment should be
acknowledged. It also became clear that the receiving host is not always consistent in its choice.
To negate the effects of any delayed ACK strategy, the congestion window growing algorithm of
the Linux kernel was changed slightly to reflect the fact that an acknowledgement is received for
several transmitted segments. The way that the Linux kernel performs Congestion Avoidance is
to count the number of ACKs received. Once this counter reaches cwnd, cwnd is increased by
one. By performing this counter increase the same number of times as the number of segments
acknowledged, we essentially change the meaning of the counter from the number of ACKs received,
to the number of segments acknowledged. This is perfectly compliant with the specifications [9],
and is even suggested:

Another acceptable way to increase cwnd during congestion avoidance is to count the
number of bytes that have been acknowledged by ACKs for new data. (A drawback of
this implementation is that it requires maintaining an additional state variable.) When
the number of bytes acknowledged reaches cwnd, then cwnd can be incremented by up
to SMS'S bytes.

The code for this slight change in the kernel can be found in appendix A. Note that strictly
speaking we would have to remember the segment size of the segments that are acknowledged,
since the acknowledgement just gives us a byte position and not a number of segments. Since
condition 4 already requires there to always be data to send and because of the Nagle algorithm
[20] that most hosts will implement, we can safely assume that all segments transmitted have the
maximum segment size M SS.

Another adjustment made to the Linux kernel is writing the current cwnd somewhere in the TCP
header so that it can be read out by a measuring application, the need for which will be discussed
later. There were two options in doing this: either finding some unused bits in the TCP header
that would not affect the normal operation of TCP when changed, or defining and adding a new
TCP option. In terms of complexity, the latter would require more code to be added to the kernel
than the first option, so the first option has preference. The urgent pointer of the TCP header
[15] takes up 16 bits, by far sufficient to store the congestion window, and is rarely used, making
it an ideal candidate. The change in kernel code for storing cwnd in the urgent pointer can be
read in appendix A. Note that this code also makes sure that if the urgent pointer is used (i.e.
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the URG flag is set), cwnd is not written in the urgent pointer field.

There were a few other settings that needed to be changed for the Linux kernel to meet the con-
ditions of chapter 2. All of these could be set using the Linux proc filesystem, or the sysctl utility.
These settings include disabling TCP BIC [24], which seems to be enabled as the default window
opening strategy for Linux 2.6, and increasing the buffer sizes assigned to TCP connections, which
in turn allows the window scale option to be set at a sufficiently high value.

3.2 Obtaining Measurements

TCP measurements were obtained by using a slightly modified version of the trafficsnd utility
included in the testrig [7] package, which sends a lot of zero bytes to a host on a specific port
during a specific period. This application was found to be more efficient than using netcat and
the Linux /dev/zero device. This was the only reason for using it, the rest of the testrig package
is not used. The receiving hosts used in lab setups and public hosts were running a simple discard
service as found in any Linux distribution.

All measurements of TCP traffic were performed using TCPDUMP [8]. This application allows
selectively snooping data on network interfaces and dumping this data to disc. The data was then
analysed using tcptrace [21], a program that retrieves a host of statistics from raw TCPDUMP
files. It can also produce graphs of amongst others the RTT and the number of bytes that are
in flight at any point in time. These graphs can then be viewed in a specific application, called
zplot. Since it can not directly measure the size of the congestion window, the number of bytes in
flight serves as an indication of cwnd, assuming that the sending host is constantly transmitting
bytes up to the number it is allowed to have in flight. This should already be the case because of
condition 4. This indication however is not sufficient to analyse exactly what is happening inside
the Linux kernel. For this reason the slight adjustments to the kernel mentioned previously were
made. Of course this means some adjustments also had to be made to tcpirace, allowing the real
cwnd to be drawn into the graph of the number of bytes in flight. The changes to the code can
be found in appendix B.

When taking TCP measurements, we should also consider condition 1 of our list in chapter 2,
which states that only one segment should be lost during a congestion avoidance cycle for the
purposes of calculating the loss p. Frequently more than one segment is lost during the recovery
phase of a cycle due to the inability of the sending TCP host to respond fast enough to the loss
of a segment. In order to still gain measurements for which the TCP-Friendly formula should be
valid, we can redefine the loss of a single segment when calculating p to the loss of several segments
that are closely together in time, calling this a loss event. For TCP connections where more than
one segment loss occurs per loss event this sacrifices only a small amount of accuracy, but this
is preferable to discarding the measurement completely. This loss event is also used in [19]. The
overall loss p can then be calculated as:

loss events

= 3.1
b total segments transmitted (3.1)

The number of loss events can be obtained manually by inspecting the graph of the number of
outstanding bytes and “counting the peaks”, but for long measurements this can be very tedious.
To simplify the gathering of measurements, the counting of loss events was implemented in TCP,
defining a loss events as a series of segments lost within twice the RTT of one another. Although
this may seem like an arbitrary measure, in practice this is a very efficient way of separating
different loss events. In [19] a range the length of one RTT is used, but this was found to be
inaccurate. The changes in code to tcptrace for implementing this can also be found in appendix
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B.

A lot of other small adjustments were made to the tcptrace code, mainly dealing with display-
ing debug information, so that the behaviour of the sending TCP host could be more precisely
analysed. The debug information statements can also be seen in the source code in appendix B.

Two types of measurements were done, one in the controlled environment of the lab, where we
had control of both the sending and receiving side and could influence a range of characteristics,
the other on the Internet, where only the sending side was under our control. To emulate different
situations and characteristics in the lab, the Linux traffic shaping features were used. Traffic
shaping in the Linux kernel consists of a number of “queueing disciplines” or qdiscs that can be
attached to an egress interface to control the queueing behaviour of traffic. To emulate different
bandwidth sizes, a simple token bucket filter was attached to the Ethernet interface of the sending
machine. As well as restricting the maximum sending rate, this filter allows its buffer size to
be set, emulating different router buffer sizes. Latency that is not related to router buffers was
emulated using the netem [5] qdisc, which allows a set delay in milliseconds to be added to an
interface. All measurements performed ran for 5 minutes or more.

The problem with using these queueing disciplines is that the packet capturing in the Linux kernel
actually takes place after traffic shaping. This means that any measurements done do not see the
qdiscs as part of the line. To circumvent this, the Ethernet bridging feature of the Linux kernel
was used, creating a bridge with only one interface attached. The behaviour of such a bridge
is exactly the same as the normal interface, with the advantage that qdiscs can be attached to
the actual interface, while measurements take place on the bridge, before passing through the
queueing disciplines. The qdiscs are thus seen as part of the line, allowing us to emulate the line
characteristics. This setup can be seen in figure 3.1.
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Figure 3.1: Schematic of the outgoing interface of the sending host with traffic

going from left to right. Traffic is measured at the libpcap tap of the bridge

interface br0, with traffic shaping being performed on the actual interface ethO.

If measurements were performed on the libpcap tap of the ethO interface, the
traffic shaping would not be considered to be part of the line.

The Internet measurements required us to find receiving hosts on the Internet that had a discard
service running and obeyed all the conditions of chapter 2. This was surprisingly hard to achieve
and in practice this meant that all receiving test hosts had to have someone operating them locally.
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Chapter 4

A New Formula

As [19] states, the model used to obtain the TCP-Friendly formula is only an approximation of the
behaviour of TCP congestion avoidance. In this chapter I will attempt to define a more accurate
formula that precisely describes the behaviour of TCP congestion avoidance as it is exhibited by
the Linux 2.6 kernel. Comparing this new formula to the classic TCP-Friendly formula, we can
then draw conclusions on its accuracy and applicability.

One simplification that is used as a basis for the TCP-friendly formula is that the value of the
congestion window cwnd describes a “sawtooth” pattern in a perfectly straight line, see figure
2.3. In practice however this will always be a series of small steps instead of a sloped line, which
can already be seen in figure 2.2. This is because TCP implementations will generally implement
Nagle’s algorithm [20], which dictates that when there are bytes in-flight, new segments may only
be transmitted if they have the maximum possible size M SS. This, together with condition 4 of
chapter 2, guarantees that the data actually sent is always a multiple of M S.S, thus providing a
step pattern. Secondly, in modern TCP implementations, such as the Linux kernel, cwnd is stored
in units of segments with size MSS rather than bytes, again guaranteeing that the number of
bytes sent is a multiple of MSS. Another thing that can be seen in figure 2.2 is that the general
line of the cwnd steps is slightly curved. This is because, in practice, the bandwidth BW is a
constant factor throughout, while RTT varies and not vice versa, as [19] would suggest. The
IP connection bandwidth is often limited by a single bottleneck link between two routers, which
determines the (constant) bandwidth of the TCP path. As more and more segments are allowed
to be transmitted, the buffer in the router right before this link fills up, gradually increasing the
RTT. This causes each step in the cwnd staircase to last slightly longer than the previous, causing
a somewhat curved staircase.

We can use the first property to revise the formula that describes the relationship between the
maximum congestion window W and the loss probability p. The second property will be discussed
later. One should note that, depending on W being an odd or even number, the behaviour is
slightly different. Instead of calculating the surface area under the cwnd line, we can deduce two
formulae based on the summation of the areas under the individual steps. The derivations for
the formulae will be illustrated using two example connections, one where W is odd (W = 11) in
figure 4.1 and one where W is even (W = 12) in figure 4.2.

For these formulae to be as accurate as possible, we need to know exactly what is going on
inside the Linux kernel. As stated before, the Linux kernel keeps a record of cwnd in terms of
packets with size M'SS. It is allowed to increase cwnd by one once it has received exactly cwnd
acknowledgements from the receiving host. Since by definition it takes one RTT to transmit
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Figure 4.1: A full Congestion Avoidance cycle with W = 11. Note that in the
staircase every first dot on a new plateau is actually two segments being sent
right after eachother.

cwnd segments of M SS bytes, this theoretically should allow cwnd to grow by one every RTT,
as is defined in [9]. There is one quirk in the Linux kernel however. The statement checking the
ACK count to see whether it can increase cuwnd, performed on reception of acknowledgements, is
performed before incrementing the ACK counter. The code for this is included in appendix A. In
practice this means that it will actually wait for cwund + 1 ACKs to arrive before increasing cwnd
by one. This is not strictly incorrect, since [9] only dictates a maximum speed of growth, but it
does not allow cwnd to grow as aggressively as possible. To illustrate the complete behaviour, we
shall now go through exactly one congestion avoidance cycle that occurs once the TCP connection
is in equilibrium. We assume that all the conditions presented in chapter 2 apply.

The starting point for our cycle shall be the moment that the sending TCP host is allowed to
increase cwnd to W, attaining its maximum value. This permission is granted by means of
receiving the Wth (N.B.: not (W — 1)th) acknowledgement from the receiving host. At this
instance it is allowed to have two more segment in flight (i.e. unacknowledged) than it currently
has, i.e. a segment that may be sent as a result of the received acknowledgement and an “extra”
segment as a result of the increased cwnd. Both of these segments will then be transmitted by
the sending host. Now, somewhere along the connection path will be the IP hop that is the
bottleneck for the entire connection. The buffer in the router directly before this bottleneck link
(from the point of view of the sending TCP host) will have been gradually filling up as cwnd
was increased. The segment that is caused by the reception of the acknowledgement will neatly
fit in the buffer, but the “extra” segment transmitted will not be able to fit in the already full
buffer and will be discarded by the router. The sending TCP host however will not know this
(we assume that ECN is not used). Blissfully unaware, it will continue transmitting segments as
acknowledgements for segments sent before the lost segment come in. At some point of course the
receiving host will receive a segment that has an inconsistent sequence number and from that it
can see that a segment is missing. As a response for this inconsistent segment it will send a SACK,
stating that it has received this segment, but that the segment before this one is missing. This
SACK will arrive at the sending side one RT'T after it has sent the segment after the one that got
discarded, which as you may recall equates to W — 1 packets later, because all the links and buffers
along the transmission path can cumulatively accommodate that many packets. At this point the
sending TCP host starts paying attention, but it does not know if the SACK was caused by packet
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Figure 4.2: A full Congestion Avoidance cycle with W = 12. Note that in the
staircase every first dot on a new plateau is actually two segments being sent
right after eachother.

reordering along the route to the receiving host or by actual packet loss. In case it was just packet
reordering the problem should resolve itself eventually and the sending host continues transmitting
a segment as response to the SACK, because it actually does indicate that the segment sent after
the lost one has left the network and according to cwnd it is allowed to “replace” that packet in
the pipe. The SACK however does not increase the ACK counter, so cwnd will not be increased as
a result of it. This continues until it receives the third SACK, when it decides that there actually
was no reordering and the segment is lost, akin to the three-duplicate-ACKs rule in normal Fast
Retransmit. As a response to this it directly retransmits the lost segment, without transmitting
a new segment, and also resets the ACK counter to 0. As was said in chapter 2, ssthresh is now
set to half of cwnd. The number of segments transmitted during this period can be expressed as
140+ (W —-1)+2+1,0or W+3.

We have now entered what is known as the Fast Recovery phase. Now instead of waiting for half
a RTT and sending nothing and then sending again at the normal rate after that period, as is
described in [9] and chapter 2 of this report, Linux implements a form of “rate-halving”, as first
described in [14]. This means that once the sending host has decided that the segment was lost and
has retransmitted this lost segment, it sets cwnd to the number of outstanding segments, which
should be W —1. On every SACK it subsequently receives, it will alternate between lowering cwnd
by one and transmitting a segment, effectively halving the rate at which it transmits. This allows
the bottleneck buffer in the transmission path to gain some free space. Because the retransmitted
segment is acknowledged by the (W — 1)th incoming ACK, counted after the retransmission, a
total of % segments will be transmitted during this period, rounded down. This means % -1
in case W is even and % — 1% in case W is odd. We can also conclude that cwnd will have
been reduced by one (%) times, rounded up. Since directly after the retransmission we know
that cwnd = W — 1, this means that cwnd ends up at W — 1 — (% -1) = % if W is even, and
W—1—(%—-13)=% — 1ifitis odd. Or in short, the new cwnd is half of what it was before,

2 2 2
rounded down.

We should note that cwnd now equals ssthresh. In this situation, [9] states that the implemen-
tation is free to choose whether it wants to perform Slow Start or Congestion Avoidance. Linux
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actually chooses to do Slow Start in this situation, so cwnd is immediately increased by one when
it receives the next ACK. So now we start the typical Congestion Avoidance step pattern with
cwnd = ssthresh+1. There is only one snag in the Linux kernel. During the Fast Recovery phase,
it uses the ACK counter register to indicate its behaviour on the next received ACK, storing a 1
when cwnd should be reduced on the next ACK and storing a 0 when a new segment should be
sent. This means that when W is even, this counter is left at a value of 1 when the ACK for the
retransmitted segment is received. It is then not reset by the kernel when it enters Slow Start for
one segment and stays 1 when it enters Congestion Avoidance. The effect of this is that for the
first step of this phase, it sends one segment less than it really should. This step pattern then
represents the bulk of the segments sent and behaves quite rationally. As stated before, during
each step the sending host will wait for cwnd + 1 ACKs to arrive. Additionally, it is allowed to
send one extra segment when it is allowed to increase cwnd by one. The number of segments sent
during this phase when W is odd can be summed up by the following formula:

w1
1+ Z (z+2) (4.1)

W 1
r=5+3

In case W is even, this should be the following formula:

W-1 W-1
1+ Y @+2)-1= ) (z+2) (4.2)
w:%+1 z:%le

We can now add the formulae for the different phases together to form the formula describing the
total number of segments sent during one complete Congestion Avoidance cycle, which equates to
%. For the case where W is odd this results in:

W-1
1 w1
= W 1=
5 +3+ - lg 1 > (z+2)
=14 +3
W—-1 1 1
= > (z+2)+15W +25
o=+
13
= 7W2+2W+§ (4.3)
And if W is even this results in:
W—-1
1 w
So= WH3+ -1+ > (z+2)
p 2 w
z=-"5+1
W-1 1
= Y (x+2)+15W +2
x:%-&-l
3 7
= W y-W 4.4
sVt (4.4)

Note the resemblance to (2.1). If we solve the odd formula for W using the ABC formula we get:

8p — /25p2 + 24
W _8p p? + 24p

3p

25 24 8
_ T 4.5
9+9p 3 (4.5)
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And the even formula:

Wo— _7p—\/49p2+24p

3p

49 24 7
_ (¥ A 7 4.6
9+9p 3 (4.6)

In (2.3), RTT and W are used to express the total length of a single Congestion Avoidance cycle,
which in turn is used to calculate the total bandwidth. Because in practice RTT varies with he
number of segments that are in-flight however, we cannot provide an accurate formula for the
length of a cycle. Instead we will use a different approach to calculate the bandwidth BW. Let
us make a model of the transmission of a single segment, which we can safely assume to be of size
MSS. At the time of transmission we know how many segments there are in-flight including this
segment, as this should be equal to cwnd (assuming cwnd is kept in segments, not bytes). Let us
call the number segments that are in flight for segment N Fy. Once the ACK for the segment has
arrived we also know the RT'T for this particular segment and thus we know the time it takes to
fully transmit and ACK Fy segments. Let us call this RTT measurement RTTy. We can then
express the the bandwidth measurement obtained from this segment as:
RTTy

Because on a connection we will generally measure RTT as an average round trip time of all unam-
biguous segments, we can generalise this equation. To do this we define Fy,4, which is the average
number of segments in-flight obtained from all segments that provide valid (i.e. unambiguous)
RTT measurements. Generalising (4.7) gives:

MSS * Foyg

BW = =T,

(4.8)
Note that in all formulae from [19] this RTTg,4 is written as RTT, as shall be the case in the rest
of this report. As this equation provides the average bandwidth over all measured segments, this
should be a very accurate estimate of BW, using as many data as possible. When we solve this

equation for Fy,g:
Fovg =BW « RTT/MSS (4.9)

When we look at [19], we can see that this is actually a familiar equation. It is used in most of
the graphs in this article as a “performance based estimate of the average window size”.

At this point we should explain something about the ambiguous ACKs mentioned before. An
application measuring a TCP connection cannot blindly obtain a RTT measurement from every
segment it sees. Some segments generate so-called “ambiguous ACKs”, i.e. an ACK for which
cannot be determined which transmitted segment caused it. Because, as explained earlier, a
RTT measurement needs a direct causal relationship between one transmitted segment and one
received segment, a valid RTT measurement cannot be obtained from these ambiguous ACKs.
As all RTT measurements in this article were done using TCPTRACE, we will use its definition
of an ambiguous ACK [21]. Its manual specifies two cases of an ambiguous ACK. The first case
is the acknowledgement of a segment that was retransmitted. This ACK could be caused by the
original transmission of the segment or any of its subsequent retransmissions. The second case is
the ACK for a segment that has segments before it that are not acknowledged yet. An ACK for
this segment could be received because the actual segment was received on the other side of the
connection, or because a missing segment before it was received. This has to do with the fact that
TCP does not acknowledge individual segments, but instead notifies the sender which segment it
is expecting to receive next. In practice this means that no measurements can be done for SACKs.
The result of all this is that RTT is not the average round trip time of all segments, discarding
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a small number of segments each cycle. Consequently when we will be calculating the F,,, we
will also discard the number of segments that are in-flight for those segments that do not generate
valid RTT measurements. This provides for a more accurate indication of the bandwidth BW.
The end result however is that some segments each cycle are completely ignored for the bandwidth
calculation, but as in this model we assume BW to be constant this does not matter. In practice

BW should stay relatively the same during this period and because we are using as much data as
possible we should be able to accurately extrapolate the missing points.

By inspecting the RTT graph of a Congestion Avoidance cycle we can see which segments should
be taken into consideration, i.e. which ones generate valid RTT measurements, and also what
cwnd values are used at this point. This is because the RTT values will generally also describe a
staircase, increasing by one step every time one segment more is added to the buffer. The size of
the step is then the time it takes to transmit one segment in milliseconds. This can be seen for
both W =11 and W = 12 in figures 4.3 and 4.4 respectively. The derivation of Fj,, in the next

rtt (ms)
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| AR |
1000{ | | \
i e |
w| |
b -
600 U |
16:21:14 16:21:16 16:21:18 16:21:20

16:21:22

Figure 4.3: Round Trip Time graph for a full Congestion Avoidance cycle
where W = 11.

paragraph corresponds to these graphs.

We can calculate the exact value of F,,, by adding up the number of segments that are in-flight
for each segment that generates a valid RTT measurement and dividing that by the amount of
these measurements. We will start counting at the same point we did when we were counting
the number of segments transmitted, i.e. the moment that the sending TCP host receives the
ACK that brings cwnd to its highest value W. The segment it then transmits as a result of the
ACK generates one valid cwnd measurement of W — 1. The “extra” segment is of course lost, so
it will never generate an ACK and accordingly no RTT measurement. Any segment sent after
this, up to and including the retransmission of the lost segment, will not generate valid RTT
measurements and should be discarded. Valid measurements start once again when the sending
TCP host receives acknowledgements from the segments it sent after the retransmission. We had
already determined that the number of segments sent during the Fast Recovery period is % —1lin
case W is even and % — 1% in case W is odd. Because during this time the sending host alternates
between sending a new segment and reducing cwnd by one in response to incoming ACKs, cwnd
for these segments will be sequentially lower by one for each segment transmitted. In case W
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Figure 4.4: Round Trip

Time graph for a full Congestion Avoidance cycle
where W = 12.

is even this means that the congestion window runs from W — 2 (remember that it was set to

W —1 for the retransmitted segment and that cwnd lowering is performed first) to, in %5 —
measurements, W — 2 — (% — 1 —1)

= % For the case that W is odd the measurements run
from W —2to W —2— (% —11 —1)

% + % We should keep in mind here that the last event
occurring as the result of a SACK, before the retransmission is acknowledged, in case W is odd

is a cwnd reduction, but when W is even this is the transmission of a new segment. This means
that, as the next ACK comes in that is a direct result of the single slow start step, the buffer
has not been allowed to empty out further in case W is even, but for the case where W is odd

it is one lower. This means that the number of bytes in-flight at the time of transmission of this
segment was % in the even case and ¥ — 1

w

5 in the odd case. For the next segment, the sending
TCP host was allowed to transmit two segments in short succession, because cwnd was increased

due to the single slow start step. One of these segments will result in a measurement of % if Wis
even and % = % if W is odd, the other segment will result in measurements of one segment higher
in both cases. For the next few segments the number in flight will stay the same as cwnd follows
its typical Congestion Avoidance stair step pattern. This means that it will result in cwnd + 2
measurements of cwnd segments being in the buffer, but one of these measurements is from the
step where cwnd is actually one higher, i.e. the first of the two segments that are sent in short
succession of each other. There is one exception to this, and that is the first step in case W is
even. Because the cuwnd counter is still set to 1, it will do one measurement less. This step pattern
continues on to W — 1 segments being in flight, of which we can see W — 1 + 1 measurements.
The next measurement is the result of the ACK that allows cwnd to increase, which is the first

measurement of our new cycle. We can now express Fy,q in the way we previously described. For
the case where W is odd this leads to:

W—-2 1 W 1 w-1
W-l+ Y ot —gto g+ > (@x@+2)-(W-1)
15 _ r=%+3 T3
avg _
W wW—-1

1+7—15+1+1+ (r+2)—1

M‘S
+
wle
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7W3 + 15W2 — 31W +9

= 4.10
OW?2 +24W — 9 ( )
If W is even this is:
W -2 W —
w W w
+ch+7 -+ meu — () -W-1
5 F+1
Favg = - W—
I+ 5 —1+1+ Z (x+2)—1-1
ﬂ
2
Ww-1
Z 2 + 3x)
I
T ow-1
> (@+2)+
%ﬂ
7W3 12W2 — 52W
_ + b (4.11)

9% W2+ 18W — 48

Now all we need to do is substitute W in these functions, so that they are expressed in terms of
p. For the odd case we substitute (4.3) in (4.10) and evaluate:

oo (65p + 21)+/25p2 + 24p — 163p? — 369p (4.12)
e 54p2 + 81p — 27p\/25p% + 24p '

For the even case we substitute (4.4) in (4.11) and evaluate:

5 (200p +84)\/49p% 1 24p — 1400p” — 1332p (4.13)
avg — .

108p2 + 324p — 108p+/49p2 + 24p

Finally, substituting these in (4.8) gives the following two equations that form two new and more
accurate TCP-friendly formulae:

MSS § (65p + 21)+/25p2 + 24p — 163p> — 369p

BWga = 414

T RTT 54p? + 81p — 27p+/25p% + 24p (4.14)
MSS  (200p + 84)/49p% + 24p — 1400p? — 1332p

BWeven = * (415)
RTT 108p2 + 324p — 108p\/49p2 + 24p

The basis of this model is that the RT'T is entirely variable, while the bandwidth BW remains
constant at all times. This constant BW is based on the fact that any variance in the number of
outstanding bytes only has an effect on the occupation of buffers in the transmission path, and
not the utilisation of transmission paths. This means that it is expected that this model is not
valid for TCP transmissions where this is not the case. To illustrate this we can look at figure
4.5. If the bandwidth-delay product of the transmission path is larger than the storage capacity
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Figure 4.5: An illustration of the congestion window of a TCP connection
where the bandwidth-delay product of the pipe is larger than the storage ca-
pacity of the buffers along the route.

of the bottleneck buffer, then in the lower part of the congestion avoidance cycle there will be less
bytes in flight than the storage capacity of the pipe. This means that all the data is actually in
transit and is not stored in the bottleneck buffer. The RTT will then not increase as more bytes
are allowed to be in flight in the pipe, until these bytes start filling the buffer again. The result
of this is that during this period RT'T will actually be constant and the bandwidth BW will be
lower. In the graph this is represented by a completely linear cwnd increase. When cwnd is larger
than the bandwidth-delay product of the pipe and the transmitted segments start using buffer
space, the cwnd increase is slightly curved again, caused by RTT increasing along with cwnd.
Considering all this, we can conclude that this model is valid for any TCP connection where the
bandwidth-delay product of the pipe before the bottleneck router is smaller than the buffer space
of this router. Because cwnd shall not be below W/2, the transmitted segments will always fill
the buffers in this case.
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Chapter 5

Results

For ease of comparison we shall present the formulae and measurements in the same way as is
done in [19]. These results can be seen in figure 5.1, with the x-axis representing the loss p and
the y-axis representing the number of average outstanding segments BW « RTT /M SS. Note that
this last metric equals Fy,4. Both these axes are in logarithmic scale. The red line represents
the classic TCP-friendly formula, which on a logarithmic scale is perfectly straight. The green
and blue curved lines represent the new and more accurate formula, for W being even and odd
respectively. The different points in the graph represent different types of measurements, which
will be explained later in this chapter.

Note that for the even formula, i.e. formula 4.15, strange discontinuities would be encountered if
we were to extend the range of the graph to higher than p = 0.1. Because at the point where
this discontinuity occurs the green and blue curves have already fallen below an average buffer
occupation of 1, this range of the formulae should not be considered, as the model is no longer
valid. One of the assumptions of the model from which the new formulae were derived was that
the sending TCP host always has data to send, i.e. that it is always transmitting data. If this is
the case, the average buffer occupation should always be above 1, hence the new formulae cannot
be applied in this area. For this reason, figure 5.1 only runs up to p = 0.1, the loss value for which
the average buffer occupation is still just above 1.

We can see that the lines of all three formulae have the same general shape and only really diverge
when the loss p reaches relatively high values. For these high loss rates, we can only find controlled
measurements in the graph. These measurements seem to confirm that the new formulae are indeed
more accurate for these loss rates, being positioned on or very close to these lines. Unfortunately,
none of the Internet measurements are present in this area, as there were none that had such
high loss rates. This is not unexpected, as generally buffer spaces in routers are sufficiently large
to prevent the bandwidth-delay product of a TCP-connection from being very low, resulting in
points in the upper left portion of the graph. Interestingly in some of the graphs presented [19]
we can see the same general behaviour for high losses in the simulation measurements obtained,
in particular in figures 4 and 9, which again seems to confirm that the new formulae are more
accurate than the original one.
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5.1 Measurement results

As explained in chapter 3, both controlled and Internet measurements were performed. For the
controlled measurements a variety of transfer speeds, buffer sizes and round trip times were used,
generating some 25 different measurements in total. The different combinations of these character-
istics can be seen in table 5.1. The reason that some combinations in this table were not performed
is because they did not abide the conditions of chapter 2 and consequently did not generate valid
measurements. To determine the accuracy of the controlled measurements, a single one of them
was done several times. From this we could tell that the variation in results is very small, in
the order of 1-3% for the loss metric p. We should note that this variation had proportionate
consequences for the metrics involved, e.g. if the loss p was a little lower, the bandwidth-delay
product was a little higher, which is what the different formulae predict. This indicates that single
measurements are sufficiently accurate.

| Buffer size (kB): [[2] 4 | 8 | 16 | 32 [ 64 [ 128 [256|
10 kbit/s JO[ 0
100 kbit /s 0/100 [ 0/100 0/100 0/100 0
1 Mbit/s 0/100/250 | 0/100/250 | 0/100/250 | 0/100/250 [ 0/100
10 Mbit/s 0/100 [ 0

Table 5.1: A table describing the controlled measurements performed, varying
in buffer size (columns), transfer speed (rows) and initial delay in ms (fields).

The loss rate of a single TCP-connection measurement was obtained by dividing the number of
loss events, which is defined in chapter 3, by the total number of segments transmitted from the
sender to the receiver. The RTT was determined by averaging the time differences between trans-
mission and reception of acknowledgement for each segment that generates a valid measurement,
as explained in chapter 4. The bandwidth BW was obtained by dividing the total amount of
payload data transmitted by the time taken by the entire TCP-connection.

It is important to set the beginning and end points inside a single measurement in a correct
position to obtain a valid measurement. As requirement 7 dictates, the connection should already
be in a state of equilibrium, i.e. it must already exhibit the typical Congestion Avoidance sawtooth
pattern. This means that the point where we start monitoring the desired characteristics should
be somewhere where this pattern has already started. Ideally the starting value of cwnd should be
equal to the value it ends at, so that we are always measuring an integer number of cycles. This
is assuming all cycles have the same time length and the same height, i.e. the same value for W.
If this is not done, the loss characteristic p may be higher or lower than is really the case, because
this is obtained by dividing the number of loss events, and thus the number of cycles, by the total
number of segments. If this total number of segments is not representative in proportion to the
number of loss events, this value will be off. This is particularly true for measurements where the
number of loss events is very low, i.e. situations where there are few Congestion Avoidance cycles.

Some of the controlled measurements performed are labelled as “Controlled measurements - Large
initial RTT”. These measurements were aimed at recreating that situation that was described at
the end of chapter 4, i.e. situations where the RTT caused by the propagation delay is significantly
higher than the the RTT caused by buffers. Indeed, the RTT graphs for these measurements
show that the RT'T remains constant for the first period of a Congestion Avoidance cycle as the
pipe is not filled yet, before rising in the typical step pattern when the buffers start filling up.
The expectation was that the formula would not hold for these types of situation, but as can
clearly be seen from the graph, the new formulae accurately predicted the characteristics for these
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measurements as well, the results of these measurements being perfectly on the lines. As of now
we cannot offer a coherent explanation for this behaviour.

When we look at the Internet measurements we can see that these deviate more from their pre-
dicted values than the ones performed in a controlled environment. This is to be expected, as the
controlled measurements represent an almost idealised case of Congestion Avoidance, while the
Internet measurements are subject to many fluctuations and outside influences. We will describe
the conditions experienced with each of the testing hosts.

The measurements labelled as “Internet measurements (ADSL Enschede)” were performed with
a receiving host that was connected to the Internet with a DSL line and located within the same
city as the sending host. Because this path is relatively short, conditions on the connection were
very stable. The result of this is that the three measurements performed generated very similar
results, as can be seen in the graph. These results match the expectations of the formulae. The
transfer speed for this connection was just over 6 Mbit/s, with a relatively short but regular
Congestion Avoidance cycle of roughly 1.2 seconds. In a 5 minute measurement this means a
total of roughly 250 cycles, providing a quite accurate measurement. The starting RTT of the
connection was around 13ms, rising up to a maximum of 80ms during the test. Because of the
relatively high speed however, a number of the Congestion Avoidance cycles contained more than
one segment loss during the Fast Retransmit phase. The effect of this was minimal, due to the
kernel modifications proposed earlier.

As the name suggests, measurements labelled as “Internet measurements (Capetown University)”
were performed with a receiving host on a university connection in South Africa. The connection
to this receiving host proved to be a lot less stable than the previous one. About half of the
measurements obtained from this host had to be discarded, as the transfer rates of these mea-
surements were under 10kbit/s and the loss rates were disastrously high (in the order of 33%).
Consequently these connections were not able to achieve a regular congestion avoidance cycle and
were in violation of condition 7 of chapter 2. A total of six measurements obtained, all of them
lasting 15 minutes to allow for enough cycles, did meet all the requirements and can be seen in
figure 5.1. As can be seen in figure 5.2, although the sawtooth pattern of the congestion window in
these measurements can still be recognised, this pattern is not regular at all and does not resemble
that of the idealised case. The transfer speeds of the measurements were in the range of 512-768
kbit/s, with the number of cycles in one measurement ranging from 8 to 36. It is clear that there
is a lot of variation in Congestion Avoidance cycles, both between and within measurements. The
initial RT'T was around 230-260ms, increasing to a maximum of 4.5 seconds while in transfer in
some cases. We learnt that this particular university employed a traffic shaper to manage the
traffic on its overcrowded Internet connection and that traffic to the discard port was delegated
to the lowest class of traffic. We suspect that this may have something to do with the extremely
high loss rates of some of the measurements, although we cannot offer a logical theory supporting
this. The result of the already mentioned instability is that the points in the graph corresponding
to the measurements are not always located on the lines of the formulae. We will discuss this after
describing the third testing host.

This third receiving host was located on a DSL in the vicinity of Stockholm, Sweden, labelled
as “Internet measurements (ADSL Stockholm)” in the graph. Measurements obtained from this
connection exhibited the same kind of instability as the ones from the testing host in South
Africa, with Congestion Avoidance cycles of irregular sizes. The initial RT'T on this connection
was around 30ms, which could peak up to over 400ms during the test. This, together with a
transfer speed of around 6.5-7 Mbit/s, caused relatively high bandwidth-delay products for these
measurements and correspondingly low loss rates. During the 5 minute measurements, typically
15-20 Congestion Avoidance cycles were performed. As can be seen in the graph, the resulting
points for these measurements are typically higher than would be predicted by the formulae. We
have highlighted one of the measurements in the graph as “Single Stockholm ADSL measurement
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- Complete”. The results for this measurement were obtained as normal, by selecting a starting
point where the cwnd matches the ending cwnd. The congestion window graph for this can be
seen in figure 5.3. The highlighted point in figure 5.1 represents data acquired from the entire
length of this congestion window graph. As can be seen in figure 5.1, this point is quite high above
the lines of the formulae, especially considering that the scale is logarithmic. To determine if this
discrepancy between the expected value and the measured value is caused by the instability of
the Congestion Avoidance cycles, a subsection of this measurement was selected that had cycles
of more or less the same size, which can also be seen in figure 5.3. The result of this selective
measurement is labelled in the graph as “Single Stockholm ADSL measurement - Selective”. It
can clearly be seen that this measurement is on the line of the formulae. This leads us to the
conclusion that the inaccuracy of the Capetown and Stockholm measurements is caused by the
Congestion Avoidance cycle instability experienced on those connections.

5.2 Unsuitable testing hosts

Unfortunately we were only able to obtain measurements from three different receiving hosts. As
explained in chapter 3, although in theory we only needed control over the sending host, in practice
we also needed control of the receiving host. To illustrate the difficulties in finding testing hosts
that satisfied all the conditions of chapter 2, we shall mention a few examples of hosts that did
not satisfy these conditions and were deemed unsuitable. One problem that occurred in many
receiving TCP hosts is the one encountered in the following two examples.

The first one is a measurement performed with a receiving host that is provided as a testrig [7]
testing host. The initial RTT from our sending host to this receiving host was 108ms. This host
advertised a window scaling factor of 2, providing room for a maximum possible receiver window
of 64kB * 22 = 256kB. The possible maximum however was not reached and the receiving host
specified a maximum receiver window of 232kB. The consequence of this was that the maximum
theoretical throughput was % %8 %1076 = 17.6Mbit/s. The obtained transfer rate was just
a little lower than this. This means that the bandwidth-delay product of the pipe was higher than
the maximum advertised receiver window, and the connection could probably sustain a higher
transfer rate. Another indication of this is that the RTT that was observed while the test was
running barely increased above its initial value of 108ms. More importantly for our purposes, the
receiver window was sufficiently low to avoid any loss of segments, causing the connection to not
perform any congestion avoidance cycles. Effectively this means that for this connection p = 0,
providing no useful measurement whatsoever and leaving us unable to apply the TCP-friendly
formula.

The second example exhibits the same problem, but of a slightly different nature. In one of the
earlier measurements with the testing host in South Africa, the receiver window was still left at
its default value. In this case this constituted a tiny receiver window of 32kB. The initial RTT
for the connection was 237ms, providing a maximum possibly transfer rate of 320’31;)?4 *8% 1076 =
1.1Mbit/s. The observed average throughput however was considerably lower, 270 kbit/s, while
the observed RT'T was considerably higher than its initial value, averaging 927ms. Yet there were
no retransmitted segments to be seen. This means that, although the pipe is completely filled
and the maximum available bandwidth is used, the buffers in the transfer path are not completely
filled, the number of outstanding bytes being limited by the receiver window. The result of this is
that again p = 0, there is no congestion avoidance cycle and the TCP-friendly formula cannot be
applied.

In both these cases the receiver window was not allowed to grow sufficiently to cause packet
loss. There are two cases to be distinguished here, the case such as the first one where the
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maximum number of possible outstanding bytes is smaller than the bandwidth-delay product of
the pipe, causing the sustained transfer rate to be lower than what it could be, and the case
where this number of outstanding bytes is smaller than the bandwidth-delay product of the entire
connection, including buffer space. In the first case the maximum attainable transfer speed is
not reached, in the second case it is. Had we used a sending host on a connection that had a
lower upstream capacity, the transfer speeds to the receiving hosts would be lower and with the
observed maximum receiver windows packet loss would be a lot more likely. Our setup however is
a realistic situation, in that a lot of TCP transfers on the Internet occur between sending servers
with a high link capacity and a receiving client on a broadband Internet connection, with a small
maximum receiver window. As already stated, a lot of possible testing hosts had to be discarded
because of this issue, as in these situations we had no or little control over the receiving host and
its maximum receiver window. In some cases someone operating the receiving host was willing
to help, but was unable to increase the window scaling factor for us, which was the case for a
receiving host in Newcastle.

There were also hosts that did not meet requirements other than the receiver window one. There
was a 10Mbit connection in Stockholm for example that exhibited very strange packet reordering.
Every so often a segment would “skip the queue” in some buffer in the transfer path, causing a
single segment to be delivered earlier than its preceding segments. This would cause a SACK that
indicated that it had received the faster segment and that it was expecting a lot of segments in
front of it. This strange packet reordering caused undesirable effects that could not be readily
explained, such as retransmissions for no apparent reason. Such effects made these measurements
unsuited for verification of the formulae.

Another missed opportunity was a collection of testing machines used in the AMP [6] project.
The AMP project consists of a number of traffic measurement machines situated at universities
around the globe, but mostly in the US. On these measurement machines the testrig package [7] is
installed by default, which includes a discard server. However when obtaining measurements from
these machines it was clear that none of them implemented the TCP SACK option, resulting in
Slow Start being performed, and not Congestion Avoidance. This result can be seen in figure 2.1,
which is obtained from an actual measurement to one of these testing hosts.

One possibly interesting receiving host was situated in Uzbekistan. However, on initial inspection
of the connection, even when using ping there was over 50% packet loss. This host was discarded
for the same reason as some of the measurements to Capetown were, because too much packet
loss prevents the setup of a regular Congestion Avoidance cycle, violating condition 7.

On the other end of the spectrum were connections that managed to fill the entire 100Mbit/s
Ethernet link of the sending TCP host. An example of this was a receiving TCP host in Munich.
Because the result of this is the same as a lab measurement and because of the huge amount of
data generated with relatively few packet loss events, these measurements were deemed unsuitable
as well.
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Figure 5.1: TCP measurement results. Note that both axes are of logarithmic
scale.
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Figure 5.2: Graph describing the congestion window of one of the TCP mea-
surements to Capetown University.
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Figure 5.3: Graph describing the congestion window of the highlighted mea-
surement to the Stockholm ADSL host. The selected subsection is marked.
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Chapter 6

Conclusion

The goal of this paper is to verify the validity of the TCP-Friendly formula. If we look at the
results of chapter 5, we can see that the original formula and the newly derived formulae do not
diverge by very much, at least for sufficiently low loss rates p. This leads us to the conclusion
that for TCP connections with sufficiently low loss rates, the original TCP-Friendly formula is
accurate. From the few Internet measurements that were performed we can see however that high
loss rates are probably not very common, as none of the measurements we have performed fall
within this area.

The fact that the TCP-Friendly formula is not valid for high loss rates can also be found in [19].
If we look for example at some high loss measurements in figures 4 and 9 of [19] that do not
experience timeouts, we can see that they exhibit roughly the same behaviour as is predicted by
our new formulae. As the loss p increases, the measurements describe a more or less downward
slope. The authors of that article did not provide an explanation for this downward slope for TCP
connections with higher loss rates and without timeouts, while the formulae we have derived here
predict this behaviour. From this as well as from our controlled measurements, we can conclude
that the new formulae are indeed more accurate than the original TCP-Friendly formula.

But there is one big snag to the TCP-Friendly formula. It describes the maximum amount of
bandwidth a TCP connection uses, but as we experienced, it is actually quite difficult to recreate
the conditions where this maximum is actually reached. There are a lot of conditions that TCP
connections have to comply with in order to reach the maximum, which can be read in chapter 2.
As became readily apparent from the search for suitable testing hosts, a lot of TCP connections
do not adhere to these conditions. The implication of this is that anyone blindly applying the
TCP-Friendly formula should not expect the maximum to be reached easily. As a summary, we
shall describe the most common situations for which this maximum transfer rate will certainly not
be reached, or cannot even be applied.

The first and foremost culprit for us was the fact that on the great majority of systems the window
scaling is either disabled (such as on Windows systems) or set to too low a value (2 for recent
Linux systems, a rather pointless 0 for less recent ones and BSD systems) to cope with today’s
bandwidth-delay products. As the maximum receiver window is usually sufficiently high to fill the
bandwidth-delay product of the pipe, but not of the router buffers (see the examples of chapter
5), this is not necessarily a disadvantage to the throughput of the TCP-connection. The result
of this is that the maximum line transfer speed will always be reached, while the fact that the
buffers are not completely allowed to fill prevent any packet loss. For the purpose of obtaining
high transfer speeds this is an ideal situation, for maintaining decently low latency when transfer
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however it is not. Assuming loss is only caused by congestion, the TCP-friendly formula cannot
even be applied in this ever more occurring situation.’

There are also a number of causes that prevent the bandwidth from reaching its maximum value,
such as hosts not implementing the TCP SACK option [18]. Another cause is the fact that a
“loss event” metric needs to be used in a lot of cases instead of the actually measured packet loss,
preventing the use of simple packet loss counters that may already be present in network devices.
Of course, there is also the condition that the sending host must always have data available to
send, making the TCP-Friendly formula inherently inappropriate for application on interactive
TCP traffic or even media streaming applications.

Considering all this, there is probably not a whole lot of TCP traffic on the Internet that reaches the
maximum bandwidth as prescribed by the TCP-friendly formula. It would certainly be interesting
for further research to analyse exactly how much of the TCP traffic actually does reach this
maximum. Another interesting topic would be some investigation into what would happen if the
TCP-Friendly formula were to be applied on a UDP stream which is on the same IP path as one
or several TCP connections that have a receiver window (scale) that is too low, since initially that
UDP stream sees no loss and assumes that it can use infinite bandwidth.

In summary, the maximum bandwidth of the TCP-Friendly formula will be valid for a small
percentage of real TCP connections that adhere to a set of strict conditions.
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think the window scaling factor of the initiating host is. This can lead to very low throughput and even starvation,
as the receiver window signalling of the initiating host is interpreted differently by either end of the connection.
Soon after this was discovered, the default window scaling factor was set to a lower value.
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Appendix A

Linux Kernel Modifications

The changes made to the Linux 2.6.9 kernel are the following:

e Congestion avoidance is performed N number of times, where N represents the number of
fully sized segments acknowledged by the receiving host.

e The current congestion window cwnd is written to the urgent pointer, provided that the
urgent flag is not set.

For easy of readability the changes to the code are provided in the GNU diff unified format [2].

--- net/ipv4/tcp_input.c 2005-02-23 15:51:03.510203112 +0100
+++ net/ipv4/tcp_input.c.cust 2005-02-21 16:46:21.019789816 +0100
@@ -2958,7 +2958,16 @@
} else {
if ((flag & FLAG_DATA_ACKED) &&
(tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd))

+ {
+ unsigned int mss_now = tcp_current_mss(sk, 1);
+ s32 bytes_acked = ack - prior_snd_una;
+
+ while (bytes_acked > mss_now) {
+ bytes_acked -= mss_now;
+ tcp_cong_avoid(tp, ack, seq_rtt);
+ }
tcp_cong_avoid(tp, ack, seq_rtt);

+ }

}

if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
--- net/ipv4/tcp_output.c 2005-02-02 14:45:42.714147216 +0100

+++ net/ipv4/tcp_output.c.cust 2005-02-02 14:44:43.673122816 +0100
@@ -342,6 +342,9 @@

th->urg_ptr htons (tp->snd_up-tcb->seq) ;

th->urg =1;
}
+ else {
+ th->urg_ptr = htons(tp->snd_cwnd) ;
+ }

if (tcb->flags & TCPCB_FLAG_SYN) {
tcp_syn_build_options((__u32 *)(th + 1),
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Appendix B

TCPTRACE Modifications

These changes to TCPTRACE 6.6.1 reflect a number of ways to get additional information from
a TCP trace, either through graphs, debug output, or statistics output and even to omit certain
data we are not interested in. Additions to the code include:

e The Retransmission Event metric, allowing us to count segments that were lost within 2
RTTs from each other as a single event.

e Functionality to retrieve the Congestion Window from the urgent pointer field, provided that
the urgent flag is not set, and to draw this congestion window into the outstanding window
graph.

e Debug output about Congestion Avoidance cycles.

e Ability to disable drawing lines in the outstanding window graph to make nice graphs without
clutter for this report.

For easy of readability the changes to the code are provided in the GNU diff unified format [2].

--- tcptrace-6.6.1/tcptrace.h  2003-11-19 21:13:35.000000000 +0100

+++ tcptrace-6.6.1-mod/tcptrace.h 2005-02-14 13:51:35.149372752 +0100
@@ -145,6 +145,12 @@

#define MAX_HOSTLETTER_LEN 8

+#define max(x,y) ({ \

+ typeof (x) _x = (x); \

+ typeof(y) _y = (y); \

+ (void) (&_x == &_y); \
+ x> _y?_x:_y; B

+

/* several places in the code NEED numbers of a specific size. */
/* since the definitions aren’t standard across everything we’re */
@@ -329,6 +335,9 @@
u_llong unique_bytes; /* bytes sent (-FIN/SYN), excluding rexmits */

u_llong rexmit_bytes;
u_llong rexmit_pkts;

+ u_llong rexmit_events;

+ timeval last_rexmit;

+ seqnum last_rexmit_seq;
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u_llong ack_pkts;
u_llong pureack_pkts; /* mallman - pure acks, no data */
u_long win_max;
@e -350,6 +359,10 @@
/* stats on urgent data */

u_long urg_data_bytes;
u_long urg_data_pkts;
+
+ u_long last_cwnd;
+ seqnum last_cwnd_seq;
+ timeval last_cwnd_time;

/* Statistics to store the number of Zero window probes
seen and the total number of bytes spent for it. */
@@ -489,6 +502,7 @@

PLINE rwin_line;

PLINE owin_avg_line;

PLINE owin_wavg_line;
+ PLINE cwnd_line;

/* for tracking unidirectional idle time */
timeval last_time; /* last packet SENT from this side */

@@ -731,6 +745,8 @@

extern Bool do_udp;

extern Bool show_title;

extern Bool show_rwinline;

+extern Bool show_owinline;

+extern Bool show_avg_owin;

extern Bool docheck_hw_dups;

/* constants for real-time (continuous) mode */

extern Bool run_continuously;

--- tcptrace-6.6.1/tcptrace.c 2003-11-19 15:38:05.000000000 +0100
+++ tcptrace-6.6.1-mod/tcptrace.c 2004-11-15 12:29:58.944555568 +0100
@@ -132,6 +132,8 @@

Bool filter_output = FALSE;

Bool show_title = TRUE;

Bool show_rwinline = TRUE;
+Bool show_owinline = TRUE;
+Bool show_avg_owin = TRUE;

Bool do_udp = FALSE;

Bool resolve_ipaddresses = TRUE;

Bool resolve_ports = TRUE;
@@ -224,6 +226,10 @@

"show title on the graphs"},
{"showrwinline", &show_rwinline, TRUE,

"show yellow receive-window line in owin graphs"},
{"showowinline", &show_owinline, TRUE,

"show red owin line in owin graphs"},
{"showavgowin", &show_avg_owin, TRUE,

"show green and blue average owin lines in owin graphs"},
{"res_addr", &resolve_ipaddresses, TRUE,

"resolve IP addresses into names (may be slow)"},
{"res_port", &resolve_ports, TRUE,

+ o+ 4+ o+

--- tcptrace-6.6.1/trace.c 2003-11-19 15:38:06.000000000 +0100
+++ tcptrace-6.6.1-mod/trace.c 2005-02-14 13:51:10.300150408 +0100
@@ -591,10 +591,12 @@
plotter_nothing(ptp->a2b.owin_plotter, current_time);
plotter_nothing(ptp->b2a.owin_plotter, current_time);

}
- ptp—>a2b.owin_line =
+ if (show_owinline) {
+ ptp—>a2b.owin_line =
new_line(ptp->a2b.owin_plotter, "owin", "red");
- ptp—>b2a.owin_line =
+ ptp->b2a.owin_line =
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new_line(ptp->b2a.owin_plotter,

if (show_rwinline) {
ptp—>a2b.rwin_line =
@@ -603,14 +605,20 @Q
new_line(ptp->b2a.owin_plotter,

}
- ptp—>a2b.owin_avg_line =
+ if (show_avg_owin) {
+ ptp—>a2b.owin_avg_line =

new_line(ptp->a2b.owin_plotter,
- ptp->b2a.owin_avg_line =
+ ptp->b2a.owin_avg_line =
new_line(ptp->b2a.owin_plotter,
- ptp—>a2b.owin_wavg_line =
+ ptp—>a2b.owin_wavg_line =
new_line(ptp->a2b.owin_plotter,
- ptp—>b2a.owin_wavg_line =
+ ptp->b2a.owin_wavg_line =
new_line(ptp->b2a.owin_plotter,
}
ptp—>a2b.cwnd_line =
new_line(ptp->a2b.owin_plotter,
ptp->b2a.cwnd_line =
new_line(ptp->b2a.owin_plotter,

+ o+ 4+ + o+

}

@@ -1216,8 +1224,10 @@
free(ptp->b_portname) ;
free(ptp—>b_endpoint) ;

if (ptp->a2b.owin_line) {
free(ptp->a2b.owin_line);
if (show_owinline) {
if (ptp->a2b.owin_line) {
free(ptp->a2b.owin_line);

+ o+ 4+ o+

}
}

if (show_rwinline) {

-1226,14 +1236,21 @@
}

}

[¢¢]

if (ptp->a2b.owin_avg_line) {
free(ptp->a2b.owin_avg_line);
if (show_avg_owin) {
if (ptp->a2b.owin_avg_line) {
free(ptp->a2b.owin_avg_line);

}
if (ptp->a2b.owin_wavg_line) {
free(ptp->a2b.owin_wavg_line) ;

o+ o+ o+ o+ o+

}
}
if (ptp->a2b.owin_wavg_line) {
- free(ptp->a2b.owin_avg_line);
+ if (ptp->a2b.cwnd_line) {
+ free(ptp->a2b.cwnd_line);
}
if (ptp->b2a.owin_line) {
free(ptp->b2a.owin_line);
if (show_owinline) {
if (ptp->b2a.owin_line) {
free(ptp->b2a.owin_line);

o

"owin" s “red") ;

"rwin", "yellow");

"avg owin", "blue");

"avg owin", "blue");

"wavg owin", "green");
"wavg owin", "green");
"cwnd", "purple");

"cwnd", "purple");
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+ }
}

if (show_rwinline) {
@@ -1242,11 +1259,16 @@
}
}

if (ptp->b2a.owin_avg_line) {
- free(ptp->b2a.owin_avg_line);
if (show_avg_owin) {
if (ptp->b2a.owin_avg_line) {
free(ptp->b2a.owin_avg_line);
}
if (ptp->b2a.owin_wavg_line) {
free(ptp->b2a.owin_wavg_line) ;

o+ o+ o+ o+ o+ o+

}
}
if (ptp->b2a.owin_wavg_line) {
- free(ptp->b2a.owin_wavg_line);
+ if (ptp->b2a.cwnd_line) {
+ free(ptp->b2a.cwnd_line);
}

if (ptp->a2b.segsize_line) {
@@ -1781,6 +1803,31 Q@
SeqRep(thisdir,thisdir->min_seq)-1500,
"c"’ "Dll);

struct timeval copy_current_time;
copy_current_time.tv_sec = current_time.tv_sec;
copy_current_time.tv_usec = current_time.tv_usec;

if (ZERO_TIME(&thisdir->last_cwnd_time))
thisdir->last_cwnd_time = copy_current_time;

if (!(thisdir->last_cwnd_seq))
thisdir->last_cwnd_seq = thisdir->seq;

if (! (URGENT_SET(ptcp))) {
if (thisdir->last_cwnd && th_urp != thisdir->last_cwnd) {
fprintf (stdout,"CWND has changed to %d, %d bytes (or %d segments) transfered in %g seconds " \
"during last CWND period.\n", th_urp, thisdir->seq - thisdir->last_cwnd_seq, \
(thisdir->seq - thisdir->last_cwnd_seq > 0) ? (thisdir->seq - \
thisdir->last_cwnd_seq) / thisdir->max_seg_size : 0, \
elapsed(thisdir->last_cwnd_time, copy_current_time) / (1000%1000)) ;
thisdir->last_cwnd_time = copy_current_time;
thisdir->last_cwnd_seq = thisdir->seq;
}
thisdir->last_cwnd = th_urp;

R I T T I T T s T s S o e

}

/* stats for rexmitted data */
if (retrans_num_bytes>0) {
@@ -1794,6 +1841,31 @@
thisdir->event_retrans = 1; thisdir->event_dupacks = 0;
}

thisdir->rexmit_pkts += 1;

struct timeval copy_current_time;
copy_current_time.tv_sec = current_time.tv_sec;
copy_current_time.tv_usec = current_time.tv_usec;
if (thisdir->rexmit_pkts > 0) {

double reach;

+ o+ o+ o+ o+ o+

35



thisdir->rexmit_events += 1;
}
thisdir->last_rexmit = copy_current_time;
thisdir->last_rexmit_seq = thisdir->seq;

+ if (thisdir->rtt_last == 0.0)

+ reach = thisdir->rtt_max * 2;

+ else

+ reach = thisdir->rtt_last * 2;

+

+ if ((elapsed(thisdir->last_rexmit,copy_current_time) > reach) || (ZERO_TIME(&thisdir->last_rexmit))) {
+ thisdir->rexmit_events += 1;

+ fprintf (stdout,"Retransmission event found at %s with rtt of %g us, used value %g us, %g seconds " \
+ "and %d bytes passed since last event\n", ts2ascii(&copy_current_time), \

+ thisdir->rtt_last, reach, (!(ZERO_TIME(&thisdir->last_rexmit))) ? \

+ elapsed(thisdir->last_rexmit,copy_current_time) / (1000%1000) : 0, \

+ (thisdir->last_rexmit_seq != 0) 7 thisdir->seq - thisdir->last_rexmit_seq : 0);

+ }

+ } else {

+

+

+

+

+

thisdir->LEAST++;
thisdir->rexmit_bytes += retrans_num_bytes;
/* don’t color the SYNs and FINs, it’s confusing, we’ll do them */
@@ -2402,6 +2474,9 @@
}
extend_line(thisdir->owin_avg_line, current_time,
(thisdir->owin_count?(thisdir->owin_tot/thisdir->owin_count):0));
+ if (! (URGENT_SET(ptcp)) && th_urp) {
extend_line(thisdir->cwnd_line, current_time, th_urp * thisdir->max_seg_size);

+

+ }
}
}

if (run_continuously) {

--- tcptrace-6.6.1/output.c 2003-11-19 15:38:04.000000000 +0100
+++ tcptrace-6.6.1-mod/output.c 2005-02-14 13:51:26.894627664 +0100
@@ -281,6 +281,7 @@
StatLineI("actual data pkts","", pab->data_pkts, pba->data_pkts);
StatLineI("actual data bytes","", pab->data_bytes, pba->data_bytes);
StatLineI("rexmt data pkts","", pab->rexmit_pkts, pba->rexmit_pkts);
+ StatLineI("rexmit events","",pab->rexmit_events, pba->rexmit_events);
StatLineI("rexmt data bytes","",
pab->rexmit_bytes, pba->rexmit_bytes);
StatLineI("zwnd probe pkts","",
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