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Abstract

This work presents methods that detect the limiting factors for the speed of TCP
in realtime. The limiting factors under consideration are the receive window,
network and application limitation. The similarities in functionality between
these methods are grouped in a framework in this work. In addition, this work
shows the implementation of the realtime detection methods in order to show
in realtime the limiting factors for the speed of TCP streams using a graphical
interface.
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Chapter 1

Introduction

1.1 Context

The monitoring of network activity is an important task in the network manage-
ment area. Network managers may be able to plan improvements in his or her
managed networks and even detect malicious activity by characterizing traffic
that pass through the managed network.

Currently, the monitoring of traffic flows can be performed by using two
major approaches:

e Active monitoring: data are injected into the network in order to per-
form measurements. An important drawback of this type of monitoring is
that it will interfere with data flowing through the network.

e Passive monitoring: data are captured from the network without inter-
fering the network activity.

By using these approaches, network managers may draw a health status of
the managed network in order to detect congestions and evaluate performance.

1.2 Motivation

The Transport Control Protocol (TCP) is one of the most used transport pro-
tocol on the Internet, therefore there is a great interest in the performance
[PFTKO00, LM97] and the limiting factors for the speed of TCP [ZBPS02]. Mark
Timmer, a graduated bachelor, has identified four speed limiting factors of a
TCP stream: the receive window, sender buffer, network and application limit-
ing factors. In addition, he developed an offline method to identify the limiting
factors for the speed of TCP streams by using passive measurement [Tim05]. He
also developed during his bachelor assignment, a tool to make offline analysis
of TCP streams out of a repository.

System and network administrators may be interested in finding out what
factors are limiting the speed of TCP streams in networks managed under their
supervision in realtime. Using the Mark Timmer’s tool, they are only able to
perform an offline measurement of the limiting factors for the speed of TCP
streams. The offline method requires that packets are first captured and stored



in a repository before they can be analyzed. As a consequence, there might be
events that could limit the transmission capacity of some TCP connections, but
they would be detected only when the repository was analyzed. This might not
allow network administrators to quickly respond to events that are disturbing
the TCP connections, for instance.

In order to solve these problems, this work presents a method that split TCP
connection into parts to determine a part’s limiting factor. A connection can
be split up in, for instance, in equal periods of time, i.e., the duration of each
part will be the same, and also in the number of packets, i.e., the number of
packets in each part will be the same. For each part of a TCP connection, the
methods presented in this paper will identify its limiting factor in realtime.

1.3 Research question

Based on the motivation presented, the main research question of this work is
“How to show, in realtime, the receive window, network and application speed
limiting factors of a TCP stream?” This research question can be subdivided
into multiple questions:

e How to identify in realtime those limiting factors for the speed of a TCP
flow?

e How to implement a program capable of showing those speed limiting
factors in realtime?

1.4 Research approach

In order to identify in realtime the speed limiting factors, this work presents new
methods based on Mark Timmer’s methods. Unlike Mark Timmer’s method,
we assume that TCP streams may be limited by multiple of the speed limiting
factors, identified in [Tim05], over its lifetime. Therefore, we propose methods
that determine the limiting factor for the speed of a connection. In order for
these methods to perform measurements they do not need to process the full
connection first as is done in the methods of Mark Timmer. In addition to these
methods, a new approach is used to detect a network limitation is presented in
this work. This method keeps track of the size of the congestion window for
certain major TCP implementations. In order to do that, the method presented
in this work need to know what the cause is for a packet to be out of sequence. To
determine this cause in realtime, this work proposes an adaption of the method
proposed in [JID*02], which is described in further details in Section 3.2.

In addition, this work also presents a graphical tool that enables network man-
agers to visualize the limiting factors for the speed of TCP streams flowing
through their network. This tool is designed by using the principles of a finite
state machine in order to identify the speed limiting factors in realtime. Based
on the theoretical design of the methods to detect the speed limiting factors, the
finite state machines are designed using UML state diagrams. For each speed
limiting factor, the percentage of all connections limited by a certain factor is
determined. This percentage is then visualized using a pie-diagram. Further
details about this tool is presented in Section 4.1



1.5 Contribution

This work has focused on the improvement of Mark Timmer’s methods in or-
der to measure in realtime the limiting factors for the speed of a TCP stream
[Tim05]. Based on these methods, a tool has been designed and implemented
in order to visualize in realtime the limiting factors of TCP streams.

1.6 Intended audience

This work is intended for two groups of audience:

e The first group are students who intend to extend the tool by adding new
measurement methods, analyze methods or output interfaces.

e The second group are system and network administrators.

1.7 Structure of paper

Chapter 2 gives an overview of the state of the art in the area of identifying
the limiting factors for the speed of TCP. Then Chapter 3 presents the develop-
ment of methods to identify in realtime these speed limiting factors. Chapter 4
describes the tool developed in this work to measure the speed limiting factors
in realtime. Chapter 5 then provides a manual for users interested in using the
tool. Finally, the conclusions of this work are presented in Chapter 6.



Chapter 2

State of the art

Research on the identification of the limiting factors for the speed of TCP has
been developed [ZBPS02, Tim05]. The most relevant research to be presented
in this chapter is that one developed by Mark Timmer. The main reason for
that is that his methods are used in this work as a base to develop a realtime
method for identifying limiting factors for the speed of a TCP flow.

One of the research questions that is answered in [Tim05] is “What factors
can limit a TCP flow?”. Mark Timmer states in his work that four types of
speed limiting factors can be identified:

e Receive window limitation
e Sender buffer limitation

e Network limitation

e Application limitation

In this work only the receive window, network and application limitation
factors are considered. The sender buffer limiting factor, which is based on
keeping track of the maximum number of outstanding bytes, is not considered
as [TdBP06] show this limitation occurs rarely.

This chapter therefore gives a brief overview on what kind of situations the
receive window, network and application limitations do occur and how these
situations can be determined using the methods described in [Tim05]. For a
more detailed explanation about Mark Timmer’s methods, see [Tim05].

2.1 Receive window limiting factor

In order to cope with the difference in the speed of receiving correct data from
a sending entity and reading this data by an application program, a receiving
entity will use a buffer. There may be a situation where the application program
does not read the data in the buffer fast enough to empty it. In a situation like
that, the sender can continuously send more data and, as a result, the buffer
can get overloaded. In order to prevent such a situation, the receiver entity has
the ability to limit the speed at which a sender is sending data by advertising
the space left in its buffer: the TCP receive window. The sender keeps a buffer



of unacknowledged data in order to perform retransmissions when necessary.
The amount of unacknowledged data in the sender’s buffer may not be greater
than the receive window as it is described in the specification of TCP [Pos81].
So when the size of the sender buffer is equal to the receive window the sender
may not send more data until data in the sender’s buffer is acknowledged.

To detect the situation where a receive window limitation does occur, two
quantities need to be known:

e The number of unacknowledged bytes at the sender entity, i.e.,
the outstanding bytes: the difference between the sequence number of
a packet and the largest acknowledgment number seen so far produces a
lower limit on the number of outstanding bytes at the sender.

e The number of bytes allowed to send by the sender as advertised
by the TCP receive window: this quantity sets a maximum limit on
the number of outstanding bytes in the sender.

Mark Timmer describes in his work two faulty methods to determine the
receive window known by the sender: the last measured receive window and
the highest measured receive window. According to Mark Timmer, a wrong
decision can be made if the number of outstanding bytes are compared with the
last or highest receive window, as described in his work.

A solution proposed in [Tim05] is to keep track of the maximum next se-
quence number (maxNextSegNr), i.e. the maximum value of a DATA packet’s se-
quence number plus its payload length over all data packets received at a certain
moment, and the maximum allowed next sequence number (maxAllowedNextSeq-
Nr), i.e., the maximum value of a ACK packet’s acknowledgement number plus
its advertising receive window over all ACK packets received at a certain mo-
ment. At first sight, a receive window limitation is indicated by the equality
of the quantities maxNextSeqNr and maxAllowedNextSeqNr. Besides this cri-
terium, other criteria may also indicate a receive window limitation. If the
sender is reluctant to send non-full packets or it transmits data in blocks, other
criteria may apply [Tim05]. A stream is considered receive window limited if
more than 50 percent of the receiver window limitation checks indicate a receiver
window limitation of the stream

2.2 Network limiting factor

Mark Timmer’s method to analyze the network limiting factor compares the
average bandwidth against the average achievable bandwidth of a TCP stream
using the TCP friendly formula (see Formula 2.1). The TCP friendly formula
is normally used as a congestion algorithm for applications not using TCP as a
transport layer protocol [Kla05].

The actual bandwidth is calculated at the end of each flow by dividing the
amount of data send (excluding the retransmitted data) by the lifetime of the
connection. This gives an average bandwidth for the stream.

_MSS ¢
" RTT /p

In order to calculate the average achievable bandwidth (BW) several quan-
tities need to be known. First the maximum segment size (MSS) needs to be

(2.1)



measured. This quantity can be measured by keeping track of the maximum
payload length of all DATA packets processed. Second the round-trip time needs
to be measured (RTT). The round-trip times is a value that indicates the time
elapsed for a message to travel to an end host and back. Third a constant (c)

has to be chosen. In [Tim05] a value of \/g is used. This value should be used

when delayed acknowledgements are used by the TCP connection [PFTKO0].
The last quantity to be measured is the loss rate (p). This quantity is deter-
mined by calculating the ratio between the number of loss events [Tim05] and
the number of packets.

For example, a common and default value for the maximum segment size of
TCP packets is 536 bytes [Pos81]. In combination with a value of 0.05 seconds

1
1000°

thousand packets get lost. With these values the average achievable bandwidth,
according to Formula 2.1, is:

for the round-trip time, \/g as constant and a loss rate of i.e., one out of a

3
536 /%
! ~ 9.3Mbitpersecond

— . Y
0.05 1555

According to Mark Timmer, a stream is considered network limited if the aver-

age bandwidth is 50 percent of the average achievable bandwidth.

2.3 Application limiting factor

The last limiting factor this work addresses is the application limiting factor.
This limiting factor is subdivided into two situations:

e Lack of data: a TCP stream may be limited in its throughput in the
situation where the application program has no data to send. An appli-
cation program such as an instant messenger sends data via TCP when
a user has typed a message. This situation can be measured by looking
at the number of outstanding bytes: zero outstanding bytes indicate the
situation where a TCP stream is limited by an application limiting fac-
tor. Only in the situation where the TCP stream is also receive window
limited, this criteria does not apply. A TCP streams with an applica-
tion program capable of providing enough data has almost the whole time
multiple bytes of outstanding data.

According to Mark Timmer, a connection can be considered limited by
a lack of data if at least two percent of the time the connection has zero
byte of outstanding data. When this limitation is detected other limiting
factors do not apply anymore to the connection as this limiting factor is
dominant above all others [Tim05].

e Application layer acknowledgements or requests: the protocol used
at application level may contain a feature to control the flow of data.
For instance, it can contain the feature to control retransmissions or the
throughput. As the methods in [Tim05] do not measure at application
level due to the number of protocols available, we cannot measure these
features. Since the methods are designed to process only half-duplex flows,



acknowledgment packets with a payload of even a few bytes gives an in-
dication that these features are present.

A connection is considered limited by application layer acknowledgements
or requests if at least ten percent of the number of ACK packets contain a
payload. As the detection of a payload in ACK packets does not indicate
for a hundred percent that connection is limited by this factor, this method
applies only when other limiting factors are not detected.

So far, in this chapter, we have looked at a summary of techniques used to
detect a receive window, network and application limitation of a TCP stream,
developed in [Tim05]. The next chapter will describes how these methods can
be modified in order to identify limiting factors for the speed of a TCP stream
in realtime.



Chapter 3

Realtime detection methods

In order to develop a realtime alternative for the methods described in [Tim05],
some additional requirements need to be met by the detection methods de-
scribed in this work. Before start describing the additional requirements for
each speed limiting factor, it is important to know a common property that
is used in all detection methods. These common properties are present in the
methods of Mark Timmer, but are not explicitly addressed by him in his work.

Every detection method that is considered in this
work, can be split up into two parts (see Figure 3.1).
The detection method is split up in parts in order
to assign specific requirements to a single part.

The first part, called the measurement
part, is responsible for processing TCP pack-
ets. Moreover, it contains criteria in or-
der to decide whether the TCP stream was
limited by a particular speed limiting factor
over a certain period of time. The sec-
ond part, called the interpretation part, com-
bines multiple measurements, taken by the mea-
surement part, in order to decide whether a
TCP stream is limited over a certain period of
time.

A common requirement for all speed limiting fac-
tors is that the criteria perform their measurements
based on the last received packet without the need
to reprocess packets received before. Resources like
memory and CPU cycles are scarce so storing pack-
ets for reprocessing can put a great burden on these
resources. This burden can eventually even become

TCP packet

Measurement
part

A sinale
measurement

Interpretation
part

Decision whether
flow is limited

Figure 3.1: Split up detec-
tion method into parts

a threat if not enough resources are available to process a TCP packet in time.
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3.1 Realtime method for receive window limita-
tion detection

The criteria developed in [Tim05] enables the methods in the measurement
part to perform the measurements efficiently; it processes packets only once
and in the order how they are received. Therefore we can use these criteria to
measure a single realtime receive window — ReRwnd — limitation without any
modifications.

The major problem we have to deal with in the development of a realtime
method for receive window limitation detection is: how can we determine of a
part of a TCP connection if this part is limited by a receive window limitation?
The method used in [Tim05] cannot be used as it determines for a complete
connection whether it is limited. In order to make this decision it has to pro-
cess the whole connection first. In order to deal with this problem, this paper
provides two solutions:

Time-based ReRwnd solution

The time-based solution works by making a decision whether a connection was
ReRwnd limited over a certain period of time. In order to do that, this solution
will keep track of two counters for each connection (See Algorithm 1 for pseudo
code):

e numberOfLimitations: this counter is increased by one every time the
measurement part measures a ReRwnd limitation.

e numberOfMeasurements: this counter is increased by one every time
the measurement part take a measurement in order to determine if the
connection is ReRwnd limited at that moment.

1 numberOfMeasurements := 0;
numberOfReRwndLimitations := 0;

N

for each RwRwnd measurement performed do
numberOfMeasurements++;
if measurement was ReRwnd limited then
‘ numberOfReRwndLimitations+-;
end

w N O A ®

end

Algorithm 1: Pseudo code Keeping track of the measurements

Algorithm 2 provides pseudo code for this solution to make a decision whether
the flow was limited over a part of its lifetime. This algorithm performs in paral-
lel with Algorithm 1 and they share the variables number0OfMeasurements and
numberOfReRwndLimitations. The parameter to this algorithm will be the
number n. This number determines the time interval between two decisions by
the interpretation part. If n is equal to the lifetime of a connection, then this
method will behave the same as the solution described in [Tim05].

11



input: n; The number of seconds between two decisions

1 for every n seconds do

2 if numberOfReRwndLimitations > 0.5 * numberOfMeasurements
then

3 ‘ signal RERWNDLIM;

4 else

5 | signal not RERWNDLIM;

6 end

7 numberOfReRwndLimitations := 0;

8 numberOfMeasurements := 0;

9 end

Algorithm 2: Pseudo code Time-based ReRwnd solution

Check-based ReRwnd solution

The time-based solution proposes an algorithm to decide after a specified time
whether or not a TCP connection was ReRwnd limited over the last period.
The check-based solution proposes an algorithm that will decide after a speci-
fied number of checks by the measurement part whether or not a TCP connec-
tion was ReRwnd limited. Algorithm 3 shows pseudo code of the check-based
solution.

input: m; The number of measurements between two decisions

numberOfMeasurements := 0;

-

2 numberOfReRwndLimitations := 0;

3 for each measurement performed do

4 numberOfMeasurements++;

5 if measurement was ReRwnd limited then

6 ‘ numberOfReRwndLimitations++;

7 end

8 if numberOfMeasurements == m then

9 if numberOfReRwndLimitations > 0.5 * numberOfMeasurements
then

10 ‘ signal RERWNDLIM;

11 else

12 ‘ signal not RERWNDLIM;

13 end

14 numberOfReRwndLimitations := 0;

15 numberOfMeasurements := 0;

16 end

17 end

Algorithm 3: Pseudo code Check-based ReRwnd solution

In each solution, the decision whether a streams was ReRWnd limited is
made if more than 50 percent of the detections were RwRwnd limited. This
threshold is copied from the work of Mark Timmer.

12



In the implementation of our tool, this work explains which method is used
in the implementation of the interpretation part.

3.2 Realtime method for network limitation de-
tection

Each implementation of the TCP protocol keeps track of a variable called con-
gestion window (cwnd). This variable stores the maximum number of outstand-
ing bytes in order to avoid congestion on the network. In the case where the
number of outstanding bytes is limited due to the congestion window, the TCP
flow is network limited.

A TCP stream may also be network limited without the congestion window
imposing that limitation. This situation is described in [TdBPO06]. In this work
we will not describe how this situation can be measured as this article was
discovered in one of the last phases of this work.

The most straightforward method to detect this situation is to measure this
cwnd variable and compare it to number of outstanding bytes. Although, this
method is the most straightforward, it is not the easiest method as this variable
is never advertised by the sender (as it is done for the receive window variable).

The method described by Mark Timmer indirectly measures the congestion
window; the achieved bandwidth is directly related to the congestion window
of a TCP stream (in the case the network is the only limiting factor of a TCP
stream). This achieved bandwidth is compared to the maximum achievable
bandwidth in order to determine a network limitation. This method can be
used without a problem in offline detection. Meanwhile, this method causes
some problems during realtime analysis: during a peak in available bandwidth,
the achieved bandwidth can be greater than the average achievable bandwidth.
Using a network limitation detection based on the average achievable bandwidth
may indicate a limitation of the TCP stream while this is not the case. Figure 3.2
illustrates this situation.

In order to determine the network limiting factor, multiple types of methods
can be used. One of the types makes use of the congestion avoidance principle
used in TCP Vegas, called delay-based congestion control. Briefly it detects
a congestion in the network if the round-trip time increases due to full router
buffers. However, an increase of the round-trip time does not directly indicates
a network congestion as described in [PJDO04].

Another technique, used in this work, is described in the next subsection.

Inferring technique

This method, as described in [Jai05], tries to keep track of the congestion win-
dow at the sender. In order to do so, first out-of-sequence packets are classified
as “retransmission”, “reordering”, “duplicate” or “unneeded retransmission”.
This process of classifying out of sequence packets is described in Subsection
Out of sequence classification. These classifications are used to simulate
the congestion window of three major TCP implementations (Tahoe, Reno and
NewReno). The process of simulation of these TCP implementations is de-
scribed in Subsection Simulation. Finally, one TCP simulation is picked as
most likely being the sender’s TCP implementation. In order to determine a

13
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Figure 3.2: Tlustration of situation where bandwidth is greater than the average
achievable bandwidth, but not network limited.

network limitation, the congestion window of this picked simulation is compared
to the number of outstanding bytes. As also the case in detecting the receive
window limitation, multiple criteria do apply for the detection of a network
limitation. These criteria are discussed in Subsection Detection criteria.

Out of sequence classification

The method used to classify out of sequence packets is described in [JIDT02].
This methods keeps track of the tuple (W, x, t) for each captured DATA packet.
The value W is the identifier in the IP packet, x is the TCP sequence number and
t is the time when the packet was captured. When an out of sequence packet
is received (a DATA packet with a sequence number x smaller or equal to the
highest sequence number capture so far), this packet is classified by the decision
process shown in Figure 3.3. Jaiswal describes this process in more detail in
[JIDT02].

Looking at the decision process, it shows us a possible problem: the sec-
ond decision in the process determines if a packet is captured before. At first
sight, this requires to store the tuples of all packets captured. However, this is
not necessary and might even cause problems: the wrapping of sequence num-
bers by TCP may indicate that a packet is received before; while actually the
sequence number is reused. As acknowledged out-of-sequence packets are clas-
sified as “unneeded retransmission”, an implementation of the decision process
should only store unacknowledged tuples. In addition, this solves the prob-

14
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no no
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ne | (R7) | no

(R5) yes (R7) (R4) yes
Network Unknown Reordering
Duplicate

Figure 3.3: Classifying out-of-sequence DATA packets

lem of wrapping since sequence numbers cannot be reused as long as they are
unacknowledged.

Simulation

The simulations of the congestion window of the three major TCP implemen-
tations are simulated using an FSM. For each implement an FSM models the
behavior of the sender. In order to perform the measurement of the congestion
window in realtime the methods should perform its measurements based on the
current processed packet. Since the original methods satisfy this requirement it
needs no adaptations.

The three TCP implementations have in common that they all have the
“slow start” and the “congestion avoidance” state. The implementations of the
algorithms in these states is actually required by [Bra89]. The behavior is also
common in each TCP implementation, exception for the reception of duplicate
acknowledgement packets in TCP Reno and NewReno.

In addition to the “slow start” and “congestion avoidance” states, TCP Reno
and NewReno have also the “fast retransmit” and “fast recovery” phases. The
two extra phases implement the “fast retransmit algorithm” and “fast recovery
algorithm”, respectively, as described in [Ste97].

The difference between TCP Reno and NewReno is the behavior of the “fast
recovery algorithm”. TCP Reno change to the “congestion avoidance” state on
the reception of a non-duplicate acknowledgement packet. TCP NewReno make
this change only in the case where this non-duplicate acknowledgement packet
acknowledges all bytes send before entering the “fast retransmit” phase.

15



The simulation of the congestion window has some uncertainties [Jai05]. The
congestion window is under-estimation if some of the three duplicate acknowl-
edgement packets gets lost between the measurement and the sender. Since we
are measuring at the sender side, this scenario is not very likely. Meanwhile,
the over-estimation (see [Jai05]) of the congestion may occur more likely in our
situation; The distance between the measure point and the receiver is larger
than in the case where the measurement is performed in the middle. Therefore,
the possibility that acknowledgement packets are lost is more likely.

Jaiswal concludes in [Jai05] the description of the method that the simulated
congestion window of 90 percent of the connections is within 0.5 - M.SS of the
actual congestion window. This conclusion is used in the detection criteria in
order to detect a network limitation.

Detection criteria

In order to detect a network limitation, one of the three simulating TCP FSMs
is chosen to be most likely the TCP implementation of the sender. In order to
choose the best FSM the number of outstanding bytes is checked against the size
of the receive window and congestion window of the simulation FSM. Since we
assume that the number of outstanding bytes does not limit the stream, the FSM
violates the TCP specification cwnd if the number of outstanding bytes exceed
the congestion window(cwnd). The FSM with the least number of violations is
chosen to be the best simulation FSM.

Finally, when the best FSM is chosen, its value of cwnd is compared to the
number of outstanding bytes in order to determine the network limitation. As
we saw in detection the receive window limiting factor, the sender can have
multiple sending schemes. This also results in multiple criteria to detect a
network limitation; for each sending schema one criteria.

The first, and most straightforward, criteria is the complete window utiliza-
tion. Algorithm 4 shows the algorithm of this criteria.

1 if cwnd-0.5*MSS < outstandingBytes cund+0.5*MSS then
2 ‘ return COMPLETECONGESTIONWINDOWUTILIZATION;
3 end

Algorithm 4: Criteria complete congestion window utilization

This criteria checks for the situation where the number of outstanding bytes
is equal to the congestion window (cwnd), taking into account the uncertainties
in tracking the congestion window. This criteria is used in the situation where
the sender uses a complete window sending scheme.

Besides the complete window sending schema, the sender may use the max-
imum segment size schema to send data. In this case, the sender only transmits
packets when its has enough data to fill a complete packet. The pseudo code of
this criteria is showed in Algorithm 5.

Last but not least, the sender may use the block sending schema. In that
situation the sender sends a burst of data equal to a block size, for instance,
4096 bytes. This burst is usually send over multiple packets. Algorithm 6 shows
the pseudo code of this criteria.

16



1 if cwnd - MSS - 0.5*MSS < outstandingBytes < cwnd + 0.5*MSS€¢
sizePreviousPacket == MSS then
‘ return MSSCONGESTIONWINDOWUTILIZATION;
3 end

Algorithm 5: Criteria MSS utilization

1 if this flow is block based then
2 if cwnd - blockSize - 0.5*MSS < outstandingBytes < cwnd +
0.5*MSSEE sizePreviousPacket == endPacketLength then
‘ return BLOCKCONGESTIONWINDOWUTILIZATION;
end
5 end

Algorithm 6: Criteria Block size utilization

The variable endPacketLength is explained in the work of Mark Timmer.
His work presents an algorithm to determine if a flow is send by a sender using
a block-based sending schema.

The major drawback of this detection method is that it cannot track the
congestion window of TCP implementations using a loss-based congestion con-
trol such as TCP Vegas.

Until now, we have described the measurement part of the network limitation
detection. As with other detection methods, this detection method also consist
of a measurement part. In the next section this work describes two algorithms
in order to determine in realtime if a stream is network limited — ReNwLim —
over a part in its lifetime.

Time and check-based ReNwLim solution

The Time and Check-based ReNwLim solutions are almost the same as the time
and check-based ReRwnd solutions, respectively. The only difference is that
the Time and Check-based ReNwLim solutions use the variable numberOfRe-
NwLimitations instead of numberOfReRwndLimitations. Therefore, this part
is not repeated here. For a description of these solutions see Section 3.1.

3.3 Realtime method for application limitation
detection

A TCP stream can be limited at the application layer in two scenarios: due
to the lack of data by the application to send and due to acknowledgments or
request at application level. The development of a realtime method to detect
these scenarios are based on the methods developed by Mark Timmer and are
described in the next two subsections, respectively.
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Lack of data

The detection of this scenario — ReAppLack — is based on the detection of the
number of outstanding bytes. In the detection method the period is measured
where a sender has zero outstanding bytes. The criteria described in [Tim05]
perform its measurement based on the current packet without the need to re-
process packets, therefore it needs no adaption in order to measure in realtime.

As with the ReRwnd limitation detection, the major problem is to deter-
mine in realtime if a connection was limited over a part of its lifetime. In order
to solve these problems two solution are provided: a “Time-based ReAppLack”
and a “Check-based ReAppLack solution”. These solutions have many similar-
ities with the solutions provided in Subsection 3.1; Both time-based solutions
determines their limitation after a period in time whereas the check-based so-
lution determines this limitation after a certain number of limitation checks by
the measurement part.

In the next two subsections these two solutions are described.

Time-Based ReAppLack method

To determ each n seconds if a flow is ReAppLack limited, the periods of zero
outstanding bytes have to be counted. Pseudo code in Algorithm 7 presents
how this period is tracked in variable zeroOutStandingBytesPeriod.

1 zeroOutStandingBytesPeriod := 0;

2 for each zeroOutStandingBytes period do

3 zeroOQutStandingBytesPeriod = zeroOutStandingBytesPeriod +
measuredPeriod;

4 end

Algorithm 7: Pseudo code keeping track of periods with zero outstanding
bytes

In the time-based method to determine if a connection is ReAppLack lim-
ited, the time-based algorithm makes that decision every n seconds. This n
is a parameter passed to the algorithm (See Algorithm 8 for pseudo code).
This solution runs in parallel with Algorithm 7 and shares the variable zero-
OutStandingBytesPeriod. Every n seconds the methods determines if the vari-
able zeroOutStandingBytesPeriod was more than 2 percent of n seconds. In
that case the connection was ReAppLack limited. Algorithm 8 provides the
pseudo code of this algorithm.

input: n; The number of seconds between two decisions

1 for every n seconds do

if zeroOutStandingBytesPeriod > 0.02 * n then
‘ signal REAPPLACKLIM;

else
‘ signal not REAPPLACKLIM,;

end

zeroOutStandingBytesPeriod := 0;

end

®» N O oA W N

Algorithm 8: Pseudo code Time Base ReAppLack solution
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Check-based ReAppLack method

The check-based solution determines after m periods of zero outstanding bytes
at the sender if the connection was ReAppLack limited since the beginning
of those m periods. In order to determine this limitation, the period of zero
outstanding bytes is compared to the total period of measurement since the
beginning of the m periods. As the period between two checks by this solution
are not fixed, the current time is stored in the variable startMeasurement by
calling the method currentTime at the start of each check. Pseudo code for
this algorithm is provided in Algorithm 9

input: m; The number of measurements between two decisions

1 numberOfMeasurements := 0;

2 zeroOutStandingBytesPeriod := 0;

3 startMeasurement := currentTime();

4 for each zeroOutStandingBytes period do

5 numberOfMeasurements++;
zeroOutStandingBytesPeriod = zeroOutStandingBytesPeriod +
measuredPeriod;
if numberOfMeasurements == m then

8 if zeroOutStandingBytesPeriod > 0.02 * (startMeasurement -

currentTime()) then

9 ‘ signal REAPPLACKLIM;

10 else

11 ‘ signal not REAPPLACKLIM,;

12 end

13 startMeasurement := currentTime();

14 numberOfMeasurements := 0;

15 zeroOutStandingBytesPeriod : 0;

16 end

17 end

Algorithm 9: Pseudo code Time Based ReAppLack solution

The above two solutions determine whether a stream is ReAppLack limited
if more than 2 percent of total time the sender had zero outstanding bytes.
This threshold is copied from the work of Mark Timmer since this threshold,
presented in his work, produced proper results.

The decision which method is used in the implementation of our tool is
explained in Chapter 4.

Application layer acknowledgements or requests

The detection of this scenario — ReAppAck- is just based on the detection of
acknowledge packets containing a payload. As the detection methods in [Tim05]
only consider asymmetric TCP streams, acknowledgement packets containing a
payload are a good indication of this scenario.

The detection method developed by Mark Timmer base its measurement
only on the current packet received. The method counts the number of packet
containing a payload and the number of packets without a payload. As the
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method base their measurement on the current packet without to reprocess
packets, this method can be used in realtime without any modifications.

As with the detection of the realtime receive window limitation, the major
problem is in deciding wether a stream is limited over a part in its lifetime; the
methods of Mark Timmer assume that a connection is limited by one limiting
factor of its lifetime. In order to decide whether a connection is limited over a
part of its lifetime, two solution are presented in the next to subsections. These
two methods have similarities with the methods described in Subsection 3.1.

Time-based ReAppAck detection

The time-based ReAppAck detection methods works by keeping track of the
number of packets with and without a payload over the last n seconds ( This
variable n is an input parameter to the solution). To keep track of these coun-
ters, they are stored in the variables numberOfPackets WithPayload and num-
berOfPackets WithPayload, respectively. Algorithm 10 shows pseudo code of the
algorithm to keep track of these variables.

1 numberOfPacketsWithoutPayload := 0;
2 numberOfPacketsWithPayload := 0;

3 for each AppAck measurement performed do

4 if packet in measurement has a payload then
5 ‘ numberOfPacketsWithPayload++;

6 else

7 ‘ numberOfPacketsWithoutPayload++;

8 end

9 end

Algorithm 10: Pseudo code algorithm to keep track of
numberOfPacketsWithoutPayload and numberOfPacketsWithPayload

After n seconds the decision is made whether or not this streams was ReAp-
pAck limited or not. Pseudo code of this solution is provided by Algorithm 11.
Both Algorithms perform their measurements in parallel and share the variables
numberOfPacketsWithoutPayload and numberOfPacketsWithPayload.

Check-based ReAppAck detection

The check-based ReAppAck solution keeps track of the same variables number0f -
PacketsWithPayload and numberOfPacketsWithPayload in order to decide
whether a connection was ReAppAck limited over a period in its lifetime. The
check-based ReAppAck solutions makes this decision after a certain number of
packets measured. This number is the parameter m, provided as a parameter
to the algorithm. The pseudo code of this algorithm is shown in Algorithm 12.

The above two solutions make the decision whether a stream is ReAppAck
limited is made if more than 10 percent of the packets contain a payload. This
threshold is copied from the work of Mark Timmer.

The decision which method is used in the implementation of our tool is
explained in Chapter 4.
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input: n; The number of seconds between two decisions

numberOfPacketsWithoutPayload := 0;
numberOfPacketsWithPayload := 0;

3 for every n seconds do
4 if numberOfPackets WithPayload > 0.1 *
(numberOfPackets WithPayload + numberOfPackets WithoutPayload)
then

5 ‘ signal REAPPACKLIM;

6 else

7 ‘ signal not REAPPACKLIM;

8 end

9 numberOfPacketsWithPayload := 0;

10 numberOfPacketsWithoutPayload := 0;

11 end

Algorithm 11: Pseudo code Time-based ReAppAck solution
input: m; The number of measurements between two decisions

1 numberOfPacketsWithoutPayload := 0;

2 numberOfPacketsWithPayload := 0;

3 for each ReAppAck measurement performed do

4 if packet in measurement has a payload then

5 | numberOfPacketsWithPayload-++;

6 else

7 ‘ numberOfPacketsWithoutPayload++;

8 end

9 if (numberOfPackets WithPayload +

numberOfPackets WithoutPayload) == m then

10 if numberOfPackets WithPayload > 0.1 *
(numberOfPackets WithPayload +
numberOfPackets WithoutPayload) then

11 ‘ signal REAPPACKLIM;

12 else

13 ‘ signal not REAPPACKLIM,;

14 end

15 numberOfPacketsWithPayload := 0;

16 numberOfPacketsWithoutPayload := 0;

17 end

18 end

Algorithm 12: Pseudo code Time-based ReAppAck solution
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Chapter 4

Tool implementation

The improvements made in the previous chapter makes it possible to develop
a tool to visualize in realtime the limiting factors for the speed of TCP con-
nections. This chapter first describes a framework in which these methods are
implemented. In addition, the Sections 4.2, 4.3 and 4.4 describe the imple-
mentation of the receive window, network and application limiting methods,
respectively.

4.1 Framework

A framework can be described as is defined in [TCLO1]:

A framework is a software system especially designed to be reused in
different projects, or in the various products of a product line.

The word “reused” is the most important word of this quote as the framework
provides functionality that is common to the different projects, or in the various
products of a product. In our work we develop a framework which provides the
common functionality used by all measurement methods. Furthermore, this
framework eases the implementation of measurement methods.

Summarized, the basic goals of this framework is to provide a software system
that:

e captures packets in order to detect and visualize speed limiting factors.

e cases the implementation of methods to detect limiting factors for the
speed of TCP in the measurement and interpretation part.

In order to achieve these goals the following decisions had to be made during
the design of the framework:

e The framework is implemented using Java and Object Oriented
Techniques: The tool is not designed to run in a single environment
with a single operation system. The tool should therefore support multi-
ple operating systems. This work decided to use Java as it is a computer
language capable to run on multiple operating systems as long as it con-
tains a java virtual machine. In addition, the author of this work has some
experiences using Java and Object Oriented Techniques due to multiple
studied courses.
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e Only TCP packets are supported: as the methods are developed
to detect the limiting factors of the speed of TCP, this framework only
provides functionality to capture and process TCP packets.

e Capturing packets is performed at the sender side: this require-
ment is adopted from Mark Timmer’s methods by the methods developed
in Chapter 3. Detecting a limiting factor is much more accurate when
performed at the sender side [Tim05].

e Measurements methods are implemented using a finite state ma-
chine: the use of finite state machines (FSM) in the design of a measure-
ment method allow to analyze its behavior. A tool like the labeled transi-
tion analyzer [lts06] allow to verify this behavior. In order to implement
a FSM in the framework, the framework provides some facilities:

— For each connection measured, a FSM is created as the FSM models
the behavior of the connection. In order to process captured packet
by the current state of the FSM this state is stored.

— The states in a FSM produce data and this data may be required by
other states of the same FSM. In order to make this data available
to all states of the FSM, this data is stored outside the FSM.

e Packets are processed in sequential order: parallel processing of
packets will make the design of the framework much more complex. For
instance, a situation may occur where two packets, belonging to the same
connection, are processed in parallel. While capturing packet A occurred
before packet B, processing packet B may have finished before packet A.
If the result of processing packet B depends on the result of processing
packet A the framework needs to recover from such a situation.

The tool is composed of the framework in combination with the implementa-
tion of methods to detect the receive window, network and application limiting
factors. The framework captures in realtime packets from a network. These
packets are processed by each method before visualizing the speed limiting fac-
tors in realtime using a pie-chart. Figure 4.1 show the design of the framework

as a “black box”.
¢ packets

Framework

¢ A pie-char

Figure 4.1: Framework designed as a black box

The internal design of the framework is specified in more detail using four
components. Each component is described in more details in the next 4 sub-
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sections. At the end of this section, the relationship amount the components is
described.

Capture component

The main responsibility of this component is the sequential capturing of packets.
These captured packets are a representation, in memory, of the packets flowing
through a network. The captured packets are used to determine the speed
limiting factors. In the implementation of this component, the library jpcap is
used[jpc06]. Jpcap just provides in Java an interface to the C-library libpcap
in order to passively capture packets. The decision to use jpcap is based on the
widely use of libpcap by many programs like ethereal and tcpdump.

Measurement component

This component provides the facilities to implement methods to measure a lim-
itation in the speed of a TCP stream. Therefore, this component is the most
interesting component of the framework. This component is directly mapped to
the a measurement part of a detection method (see Chapter 3). The first task
of this component, on the input of a packet, is to determine to which connection
the packet belongs to. This information is needed as each connection contains
one instance for each measurement methods in the form of a finite state machine
(FSM). Each instance of the FSM processes the packet in order to determine if
the connection is limited by a speed limiting factor.

A FSM is described as a model of behavior. The model is composed of
states, transitions, guards and actions which are explained using the example
presented in Figure 4.2.

Facket captured [Packettype == TCP] / exampleAction

. .| AConcreteState AnotherConcreteState I

Packet captured [Packettype == TCP]

Figure 4.2: An example of a finite state machine

The FSM in Figure 4.2 represents a FSM that switches between the states
AConcreteState and AnotherConcreteState. This transition is made on the
reception of a packet with the condition (guard) that the packet is a TCP packet.
In addition, the transaction from state AConcreteState to AnotherConcrete-
State contains the action exampleTransaction(). This action is called when
the transition is made. A trace of the behavior of the example FSM is captured
in the sequence diagram presented in Figure 4.3.

This sequence diagram shows the reception of three packets by the FSM.
Initially the FSM is in state AConcreteState, therefore this state processes the
packet. The current state determines that the packet is a TCP packet and it
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Figure 4.3: Sequence diagram State Pattern

forces the transition of the FSM to the AnotherConcreteState. On transi-
tion the exampleAction method is also called. The next packet is processed
by the AnotherConcreteState as it is the current state. This state also deter-
mines that the packets is a TCP packet and a transition to AConcreteState is
forced. The next packet is therefore again processed by the AConcreteState as
described.

The actual FSM can be implemented in multiple ways in the framework.
One way is to use a state transition table. This table describes in each column
for each state the next state on reception of input and the option corresponding
to the transition. Table 4.1 shows the state transition table for the example
FSM.

’ \ packet captured[packet.type == TCP] ‘

AConcreteState | AnotherConcreteState/exampleAction()
AnotherConcreteState | AConcreteState

Table 4.1: State transition table

Another way to implement a FSM is the use of the state pattern. This
pattern has been designed using object oriented features. Nowadays, object
orientation is a popular technique to design an write software programs. As
our framework is also designed and implemented using object orientation this
pattern is used in the framework.

Figure 4.4 describes an UML diagram describing the structure of the state
pattern. In the state pattern each FSM consists of 1 or multiple states. All
these states will be concrete states derived from the abstract class State. In
order to keep track of the current state each FSM has a reference to one State
stored in the variable currentState.

Appendix B presents a more detailed description of the FSM pattern in our
framework.
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Figure 4.4: Class diagram state pattern

Interpretation component

This interpretation component is directly mapped on the interpretation part of
a detection method (see Chapter 3). The responsibility of this component is
to determine the limiting factor for each connection over a part in time. This
component is implemented in the framework using the time-based solution. The
time-based solution is preferable over the check-based solution as the time-based
solution provides updates of speed limiting factors with a constant interval.

Visualization component

The visualization component is responsible for showing the limiting factors using
a graphical interface. In order to show these limiting factors this component
pulls the decision made by the interpretation component for each connection.
This component then calculates the number of connections limited by a factor
and divides this number by the total number of connections. The outcome of this
calculation is the percentage of connections limited by a speed limiting factor.
If the percentages for all measurement methods are calculate this component
shows these percentages using a pie-chart.

Component relations

The relationship between the four components of a framework can be best de-
scribed using a diagram. Figure 4.5 shows the revealed “black box” previously
presented in Figure 4.1. The input and output data streams of Figure 4.5 stayed
the same, but now the internal components and the data streams between these
components is shown.

First, the capture components is provided with packets flowing through a
network. The capture components captures these packets and send the cap-
tured packets to the measurement component. This component performs its
detections and send any relevant information about the detection to the inter-
pretation component. This component performs it tasks and sends its decisions
to the visualization component when requested by the visualization component.
The visualization component creates a pie-chart showing the distribution of
the speed limiting factors. This pie-chart is outputted to the program’s user
interface.
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Figure 4.5: The relationship between the components in the framework

4.2 Implementing the realtime receive window
limitation detection

The implementation of the realtime receive window limitation method is based
on the design described in Chapter 3. This design is split up into two parts:
the measurement and the interpretation part. The implementation of the mea-
surement part is based on the improved method described in Section 3.1. The
FSM of the measurement part is designed using a state diagram. This diagram
is presented in Figure 4.6.

packet and is heading towards the receiver.
The guard packetype = Ak means that the packet is a Ak
packet and is heading towards the sender.

[The guard packet type = Data means that the packet is a Data j

tcpPacketReceived [packet e = Ack] f updateM axAllowedSecnrg

Initstate

tcpPacketReceived [packet. type| = Data] / upcateMaxSeqhr)

tcpPacketReceived [packetisfing || packet.isRs10]

tepPacketRereiver [packet.type = Data &4 |gapDetecteay] f UpdateMaxsedhirg

1cpPacketReceived [packet isFing || packet isRstg] f MideclleOfBurstatate H

tcpPacketReceived [packet.iype = Datal|/ updateMaxseqhr)

tepPacketReceived [packet tyne = Ack] f ramdCheck( && updateMaaliowedsegNr)

tepPacketRecehved [packet.isFing || packet isRst()] EndOfBursistate

tepPacketReceived [packet type| = Data &6 gapDetected)]

tcpPacketRecaived [packet type = Ack] / updatehaxAllowedseqnir

tcpPacketReceived| [packet type = Ark] / updateMaxAllowecSeqhrg

I Finishecstate | tepPacketReceived [packet.isFing |1 packet.iskst] I AfterGapState |

Figure 4.6: State diagram ReRwnd limitation detection

The state diagram consists of five states: InitState, MiddleOfBurstState,
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EndOfBurstState, AfterGapState and the FinishedState. On initialization of
the state diagram the initial state is the InitState. As long as an ACK packets
are received the value maxAllowedNextSeqNr is updated. On reception of a
DATA packet the MiddleOfBurstState is entered and the value maxNextSeqNr
is updated. The purpose of the Middle0fBurstState is to wait for the end of
the burst in order to perform the limitation detection. On the reception of a
DATA packet, the MidleOfBurstState checks whether this packet creates a gap
in the stream of DATA packets. If this is true the AfterGapState is entered. If
this check is false the value of maxNextSegNr is updated. The reception of an
ACK packet in the MiddleOfBurstState determines the end of a packet burst.
A ReRwnd limitation check is performed, the value of maxAllowedNextSeqNr
is updated and the End0fBurstState is entered. The EndOfBurstState is also
entered by the reception of an ACK packet in the End0fBurstState as the
method specifies that the limitation check can be continued after the reception
of an ACK packets after a gap. In the EndOfBurstState the reception of an
ACK packet and DATA packet will update the value maxAllowedNextSeqNr
and maxNextSegNr respectively. In addition, the DATA packet also causes a
transition to the MiddleOfBurstState in order to indicate the start of a net
burst of DATA packets. All states have in common that the reception of a packet
with the fields FIN or RST set causes the transition to the FinishedState. The
FinishedState is the end state and causes the Connection object to which it
belongs to be deleted.

The states in the state diagram can be mapped directly to concrete State
objects in the state pattern.

The interpretation part of this detection method is based on the time-based.
The check-based solution depends on the data rate of a TCP stream and the
number of limiting checks performed. In order to get a regular update in time
the time-based solution is used.

4.3 Implementing the realtime network limita-
tion detection

This section describes the behavior of the three FSMs, described in Section 3.2,
in order to track the congestion window of the sender.

First, some initial variables are initialized. One of these values is the variable
icwnd. This variable holds the number of bytes a sender can send after the
handshake and before the arrival of the first acknowledge packet. This number
of bytes is tracked in order to determine the value of icwnd. Another value set is
the ssthresh. This variable contains the slow start threshold. On initialization
this value is set to an extreme value, like 65536 bytes as this in practice done
by most TCP implementations[Jai05].

A sender’s TCP implementation contains at least two states: the slow start
and the congestion avoidance state [Bra89]. The arrival of an acknowledgement
packet changes value of the congestion window (cwnd, in bytes) depending a
connection’s current state. In the slow start phase, the cwnd variable is increase
by “maximum segment size” (MSS) bytes and in the congestion avoidance state

this variable is increased by MSS - év‘{]flg on the reception of a non-duplicate
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acknowledgement packet. The detection of a loss by a timeout decreases the
variable cwnd to MSS bytes and ssthresh to maw(w, 2-MSS).
The variable awnd is the last advertised receive window of the receiver. This
behavior is common to all three TCP implementations whereas their behavior
on receiving three duplicate acknowledgement packets is different.

The implementation of TCP Tahoe reacts on the reception of three duplicate
acknowledgment packets the same as a timeout. TCP Reno adds fast recovery
to the implementation of TCP Tahoe.

TCP Tahoe reacts on the reception of three duplicate acknowledgments pack-
ets the same as a timeout.

TCP Reno adds to Tahoe a technique called fast recovery [Ste97]. The
fast recovery phase is entered by a TCP sender after three duplicate acknowl-
edgment packet. On the reception of the fourth duplicate acknowledgment
packet, the variable ssthresh is set to max(w, 2-MSS) and cwnd
to sstresh + 3. Thereafter, the variable cwnd is increased by MSS by every du-
plicate acknowledgment packet. On the reception of a new acknowledgment
packet, the variable cwnd is set to sstresh and the congestion avoidance phase
is entered.

TCP NewReno alters the behaviour of the recovery phase of TCP Reno.
TCP NewReno checks in the fast recovery phase if the reception of a non-
duplicate acknowledgment packet acknowledges all bytes before the fast recovery
phase. In this is not the case, TCP NewReno stays in the fast recovery phase.

4.4 Implementing the realtime application lim-
itation detection

The implementation of the realtime application limitation detection method is
based on the method described in Chapter 3. As all methods, this method
is also split in two parts: the measurement and the interpretation part. The
implementation of the measurement part is based on the two methods described
in Section 3.3: the method to detect lack of data scenario and the application
layer acknowledgments or request scenario. The implementation of these two
methods are described in the next two sections, respectively.

Lack of data

Figure 4.7 show the state diagram representing the FSM of the method to detect
a lack of data to send by the sender.

The FSM contains, besides the usual start and end states, the two states
InitState and IdleState. The IdleState represents the case where a TCP
connection has multiple of oustanding bytes. The processing of a data packet or
a acknowledge packets by this FSM causes an update of the value for maxNext-
SegNr or maxAllowedNextSeqNr using the actions updateMaxNextSegNr and
updateMaxAllowedNextSegNr respectively. The state InitState transits to the
IdleState on the processing of an acknowledgment packet by this FSM if the
number of outstanding bytes are zero, after an update of the value maxAllowed-
NextSeqgNr. In addition, the time the packet was captured is stored for later use.
In the IdleState is a transition performed on the reception of a data packet. In
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Figure 4.7: State diagram of the detection method to detect a lack of data

this case the last acknowledgment number equals the packet’s sequence number
the idle period is calculated by subtracting the capture time of the current
and the stored time. This time is signalled to the interpretation part. The
IdleState is not updating the value for updateMaxNextSegNr on receiving an
acknowledgment packet; the IdleState is only entered when all send bytes
are acknowledged. Therefore, a new acknowledge packet is just a reordered,
retransmitted or a copy of an acknowledge packet processed before and the
value for updateMaxNextSeqNr is not changed.

In addition to the transitions described in the last paragraph, all states
change to the end state of the FSM on processing a packet with the RST or
FIN field set.

Application layer acknowledgments or requests

Figure 4.8 shows the state diagram used to describe the FSM of the method in
order to detect application layer acknowledgments or requests in realtime. The
purpose of this FSM is to detect the number of acknowledgment packets containg
a payload. Besides the usual start and end state, this FSM only contains the
state InitState to achieve this purpose.

InitState

®<pankelﬂecewed fisFin() orisRst)]
ackPacketReceived [lisFin{ and lisR=t() and packet payloadSize == 0] signalAckvithoutPayloadReceived

ackPacketReceived [lisFing and lisRst) and packet pavioadSize = 0]/ signalAckPacketReceived and signalAckwithPayloadReceived

Figure 4.8: State diagram of the detection method to detect application layer
acknowledgments or requests

On initialization of the FSM, the state of the FSM is immediately changed
from the start state to the InitState. In the InitState three possible transi-
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tions are possible. On the reception of each packet where its RST or FIN field is
set, a transition is made to the FSM’s end state. The remaining two transitions
are performed from the InitState to the same InitState on the reception of
an acknowledgment packet. During each transition the interpretation part is
signaled for an limitation detection by the action signalAckPacketReceived.
Only in the case of the reception of an acknowledgment packet with a payload
the interpretation part is also signaled for the detection of a limitation by the
action signalAckPacketReceived.
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Chapter 5

Using the tool

This chapter is intended for users of the tool like network administrators in
order to install and use the tool. In the following paragraphs of this chapter,
the capabilities and limitations of the tool are discussed. In addition, this
chapter describes how the tool needs to be installed and the graphical interface
is discussed.

The tool is capable of visualizing the limiting factors for the speed of TCP
connections in realtime. As an input, the tool uses packets flowing though a
network and the tool outputs a pie-chart that shows the speed limiting factors
of the TCP connections.

The tool is implemented in Java[Jav06] using the library Jpcap[jpc06], there-
fore, the tool requires both a java virtual machine and the library JPcap to be
installed. For further information about how to install these components, their
respective websites have to be visited.

As the framework and the methods to detect the speed limiting factors are
designed to detect at the sender side, the tool should be installed near the
senders in the network. In addition, in order to perform a good measurement
of the speed limiting factors of a connection all packets of the packets need to
be captured by the tool. In practice this means that the best position to install
the tool is on the network gateway or on a computer capable of capturing
packets flowing through the network’s gateway. Figure 5.1 shows an example
of a network topology in which the tool is installed at the sender side. In this
example the data flowing through the gateway is copied to the tool in order for
it to capture these data.

If the tool is installed it can be started using the command line. By typing
the command:

java -cp ../1ib/jcommon-1.0.0.jar:../1lib/jfreechart-1.0.1.jar:
../net.sourceforge. jpcap-0.01.16.jar:.
nl.utwente.ewi.dacs.analyzerRT.Analyzer -D etho -N network-
prefix

in the src directory of tool’s directory.

The parameter cp sets the classpath of the java virtual machine to the ex-
ternal libraries used, separated by a colon. The parameter D parses the name of
the network device on which packets are captured by the tool. In our example
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The tool

g5, i

Figure 5.1: Example of a topology in which the tool is installed

the name of this interface is etho. This name is used in Linux to indicate the
first Ethernet device. Last, the parameter N parses the network prefix. This
is the network part of an IP address. It is used to determine if the sender or
sender of a packet is in the “sender” network. This parameter is calculated by
performing a bitwise AND operation on an IP address of the “sender” network
and the netmask of the network.

After a correct start of the tool a graphical user interface is presented. Figure
5.2 shows this interface. The interface consists of three components: a pie-chart,
a legend and a slider.

" RtAnalyzer —ox

Unknown

=23 Pl
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window

limitations
26

Network
limitations
=22

@ Lack of data = 12

® Receive window limitations = 26
Network limitations = 22
Acks with data = 17 @ Unknown = 23

Ey!

1 11 21 31 41 51

Figure 5.2: The graphical user interface of the tool

As figure 5.2 is showing, both the pie-chart and the legend show the percent-
age of limited connections for each limiting factor implemented in the tool. For
example, the pie-chart and the legend show that 12 percent of the connections
are limited by a lack of data. In addition, the pie-chart and legend show for
what percentage of connections it was unable to detect the limiting factor.

The slider is used to set the update interval of the pie-chart and agenda in
seconds. This interval can be set a value between 1 and 59 seconds. Default
this update interval is set to 5 seconds.
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Evaluation of the tool

The evaluation that is performed by this work is speed op analyzing TCP
streams. On of the major limitaitons, found in this evaluation, is the capturing
speed of the tool. On a regular PC with an AMD Athlon 800 Mhz processor
and 512 MB of internal memory, the tool can process no more than 10 Mbits
per second of data.

Evaluation that has not been performed, due to a lack of time, is the memory
and CPU usage of the tool. In order to measure these usages, an external tool
has to be used.

Another part of the evaluation was analyzing if the tool measures the same
limitations as the tool of Mark Timmer. Since the tool is not detecting sender
buffer limitations, the tool may show incomplete information. In order to com-
pare the results of this tool and Mark Timmer’s, both tools should perform their
measurements based on the same TCP streams. In addition, if the tool of this
work performs its interpretation algorithms only after each stream, both tools
should show the same limiting factors.
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Chapter 6

Conclusions

This work has presented two contributions: the development of realtime meth-
ods to identify the speed limiting factors of TCP streams and the implementa-
tion of a graphical tool that visualizes these speed limiting factors. This work
started by presenting the methods developed by Mark Timmer for detecting
the speed limiting factors of TCP streams. In his work, Mark Timmer describes
methods to off-line identify the most dominant speed limiting factor over a com-
plete TCP connection. However, these methods do have two major drawbacks:

e The methods cannot determine in realtime the limiting factors of a TCP
stream. For network administrators it is interesting to see in realtime
the limiting factors for the speed of TCP connections flowing through
their network. With this information, network administrators can respond
immediately to changes in the distribution of the limiting factors.

e Mark Timmer assumes that a TCP connection is limited by one factor
during its lifetime. This assumption may not be true for connections with
a larger lifetime. A change in the path between the end hosts of a TCP
connection or a change of the size of a buffer in the end host are two
examples which can change the speed limiting factors of a TCP stream.

Since Mark Timmer’s methods do not enable realtime analysis, this work has
addressed the limitations found in his work by improving most of his methods
in order to perform realtime analysis.

The realtime methods presented in this work have been described by a com-
mon structure; all these methods consists of a measurement and interpretation
part.

The measurement part is responsible to detect a single limitation. For each
limiting factor under consideration a detection method is implemented in the
measurement part. The criteria developed by Mark Timmer in order to detect
a receive window and application limitation needed no adaption in order to per-
form realtime measurements; these criteria measure the limitations based on the
current captured packet without the need to reprocess stored packets. To mea-
sure a network limitation this work described an adaptation of [JIDT02]. This
adaptation drops the need to store all captured packets for reprocessing. This
method improves the way the network limitation is detected as the congestion
window is directly tracked.
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Based on the detections of a measurement part, the interpretation part de-
cides whether a connection was limited by a factor. This work has proposed
a new method to decided whether a connection was limited over a part of its
lifetime as a connection may be limited by multiple factors over its lifetime. The
method has improved the method of Mark Timmer as his method makes the
decision over the entire lifetime of a connection.

This work has implemented these realtime methods to detect the limiting
factor for the speed of TCP in a tool. The tool is capable of visualizing in
realtime the speed limiting factors of TCP connections captured by the tool.
This tool has improved visualizing the speed limiting factors of TCP connections
compared to the tool of Mark Timmer as the tool presented visualizes these
limiting factors in realtime. In addition, the tool presents the limiting factors
using a pie-chart. This presentation makes is easier for users of the tool to
receive a quick indication of the distribution of the limiting factors.

One of the objectives of this work was to improve the methods of Mark
Timmer in order to detect the limiting factors for the speed of TCP. The meth-
ods of Mark Timmer to detect the receive window and application limitations
have been improved in order to perform realtime limitations. This work has
not improved the method of Mark Timmer to measure a network limitation as
we have adapted the method described in [Jai05] to detect the network limiting
factor in realtime. The method to detect a sender buffer limitation was also not
improved as a decrease of the buffer size is hard to detect since this buffer size
is never advertised.

The other objective of this work was to design and implement a tool in order
to visualize in realtime the limiting factors for the speed of TCP. This objective
has been met by the implementation of the receive window, network and appli-
cation methods in a framework which is developed by this work. The framework
facilitates the capturing of packets and visualizing the limiting factors.

However, the implemented tool presents some limitations. One limitations
is concerned with the amount of packets captured per second. The framework
makes use of a library called Jpcap. This library is limited in the number of
packets it can capture. This limit is around 10 Mbits per second on a AMD
Athlon 800 Mhz. P.C. with 512 MB. of internal memory running on Windows
XP. In addition, the tool is only capable of showing one pie-chart. A problem
occurs if the tool is extended with a method unrelated to the limiting factor
methods. If, for instance, a method is added to measure the number of packets
of a TCP connection, the pie-chart is then both showing the number of packets
and the limiting factors making the pie-chart meaningless. Another problem of
the tool is that it is incapable of detecting the sender buffer limiting factor. As
this work has not improved this method, this method was not implemented in
the tool. In the case a TCP connection is limited by the sender buffer limiting
factor the tool is not showing this limitation. Instead, the tool may indicate
that the connection is limited by the network or it indicates the limitation is
unknown.

As future work more research needs to be performed in order to find a solu-
tion for these limitations and problems. The major bottleneck of our tool is the
interface between Java and the library libpcap, provided by the library Jpcap.
As libpcap is written in C, one could research the development of the tool in C
or C++. In addition, research can be performed to make the framework capable
of showing multiple charts. This feature makes the framework more useful as
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multiple unrelated measurement methods may be implemented into it. Further
research can also be performed in the area of detecting the sender buffer limita-
tion in realtime. Last but not least, the percentages used in the interpretation
part are copied from Mark Timmer’s work. The realtime detection of limiting
factors may take different percentages, compared to its offline equivalent.
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Appendix A

Structure framework

This appendix describes the structure of the framework using an UML class
diagram. The class diagram is presented by Figure A.1. This UML diagram
is not complete; some methods are not showed as they are not important in
describing the structure of the framework.
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Figure A.1: Class diagram framework

The UML class diagram is subdivided in four components described in Sec-
tion 4.1; the components are represented by a subsystem. Each subsystem is
represented in a different color. The capture, measurement, interpretation and
capture components have the color green, yellow, orange and blue, respectively.
Each class and part of a component is shown inside the component it belongs
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to.

The next 4 sections explain per component their classes and the purpose of
these classes. The fifth section explains how detection methods should be imple-
mented into the structure of the framework. Finally, the last section describes
the behavior of the framework in order to understand the structure better.

Capture Component

The capture component consists of the class Jpcap. This class is just a represen-
tation of the Jpcap library; it is not actually implemented in our framework. The
library captures packets from a network. For each packet captured the Pack-
etListener’s method packetArrived(packet : Packet) is called. A Packet
object is a representation of packet captured. This object is not shown in the
UML class diagram as it is part of the Jpcap library.

Measurement Component

One of the interfaces part of this component is the PacketListener inter-
face. This interface is implemented by the class ConnectionManager. The
ConnectionManager is receiving the packets captured by the Capture Com-
ponent. The purpose of the ConnectionManager is to determine to which
Connection the Packet is part of. If the Packet is the first packet of a con-
nection, the ConnectionManager creates a new Connection instance. The
Connection class is a presentation of a TCP connection. The Connection-
Manager calls the method processPacket (packet:Packet) of the Connection
object the packet is part of. The Connection class in combination with State
classes form the state pattern. This pattern is described in detail in Appendix B.
In order to signal the Interpretation Component, in for instance, the detection
of a limitation, a State object creates Event objects. Every Event object has a
reference to a Connection object as the source of the Event object as this source
is used in the Interpretation Component. This reference is passed as a parame-
ter during the instantiation of the Event object. These Event objects are send
by the framework to the Interpretation Component. Every implementation of a
measurement method should define its own Event objects by extending Event
objects.

Interpretation Component

The Event objects, send to the Interpretation Component, are processed by
the AnalyzerEventListenerProxy class. This class keeps references to multi-
ple implementations of the interface AnalyzerEventListener in order to proxy
the received Event objects to them. One of these references is a reference to
the GeneralEventListener object. This object is responsible of keeping track
of all Connection references send via the source of an Event object. These ref-
erences are needed as the GeneralEventListener needs to determine by what
factors each Connection is limited (when its AnalyzeLimitations(analyzers

Analyzable[]) method is called by the visualization component). The pa-
rameter analyzers is an array containing references to implementations of the
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Analyzable interface. Implementations of the Analyzable interface should im-
plement the method isLimited(connection : Connection).

Visualization component

The visualization component contains just the RtAnalyzer class. This class is
responsible of showing the graphical user interface (GUI). In addition, it is the
main class of the tool. Therefore, it initializes the framework and starts the
capturing in order to measure the speed limiting factors.

In order for the RtAnalyzer class to show a pie-chart in the GUI, it needs to
known what percentage of the total connections are speed limited by what factor.
To retrieve this information is, it calls the method AnalyzeLimitations with
parameter an Array containing implementations of the Analyzable interface.

Implementing detection methods into the frame-
work

In order to implement a detection methods in the framework, multiple elements
have to be implemented: the measurement and interpretation part of a detection
method (See Chapter 3) and the events of a detection method.

The measurement part is implemented using the state pattern. The details
of this pattern and how it is implemented into the framework is described in
Appendix B.

The interpretation part and the events are implemented as is described by
Figure A.2 using a UML class diagram.
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Figure A.2: Class diagram interpretation part and Events

The UML class diagram shows the implementation of the interpretation part
of the realtime receive window detection method. The class RundEventListener
implements both interfaces Analyzable and AnalyzerEventListener. On in-
stantiation of the class RwndEventListener this object is registered to the
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AnalyzerEventListenerProxy in order to receive the Event objects produced
by the measurement part. In order for the measurement part to signal multiple
events, multiple RwndEvents are implemented. For instance, the implementation
of the CompleteRwndEvent corresponds to the detection of a complete receive
window detection as is specified in [Tim05].
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Appendix B

Finite state machine

This appendix describes in more detail the usage of a finite state machine (FSM)
in the framework. The examples presented in this appendix are the more de-
tailed version of the ones described in Section 4.1.

The FSM in the framework is implemented using a state pattern. The cur-
rent state of a FSM is stored by the framework in order to let this state process
a captured packet. Based on the processed packet, the current state can decide
to change the current state of the FSM or, for instance, perform a measurement.

Figure B.1 shows an UML diagram where the class Connection and State
form the state pattern used in the framework. The pattern starts with a Con-
nection class.
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Figure B.1: Class diagram state pattern

The Connection class represents a connection and is instantiated for every
new connection measured. One of the facilities that the framework offers is the
storing of the current state of each FSM for each connection. This facility is pro-
vided by the attribute currentState. This attribute stores in every Connection
object the current States for each FSM implemented. These current States are
used by the method processPacket (packet : TCPPacket) of a Connection
Object. This method is called every time a packet is captured belonging to the
connection. The parameter TCPPacket represents the captured packet. The
responsibility of this method is to call the method processPacket (connection
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Connection, packet : TCPPacket) of each State stored in the attribute
currentState and store the returned State as the new current State. The pa-
rameter TCPPacket is again the captured packet and the parameter Connection
is the connection the TCPPacket belongs to. The facility to store data outside a
FSM is also provided by the Connection class. The methods like getInt (id :
String) and setObject(id : String, value : Object) are two examples
to retrieve an integer and to save an object represented by the key id respec-
tively.

The state pattern further consists of an abstract State class. This is a su-
per class for all States in all FSMs. In order to process the captured packets the
method processPacket (connection:Connection, packet:TCPPacket):State
should be overridden by all implemented States of a FSM. The return value of
this method should be the next current state of the FSM. Figure B.1 shows the
design of an example FSM implementation. The State class is extended by the
abstract ExampleState class. The only purpose of this class is to keep refer-
ences to the concrete State implementations of this FSM: this class has two at-
tributes ACONCRETESTATE and ANOTHERCONCRETESTATE. Concrete States can use
these references as return value of the method processPacket (connection:—
Connection, packet:TCPPacket):State in order to change the current State
of the FSM. The code in Appendix C shows in further detail how this is im-
plemented and used. The two concrete States AConcreteState and Another-
ConcreteState perform the actual processing of TCP packets. The behavior of
the states in the example is to switch between the two States in each reception
of a TCP packet (see Figure B.2).

TCP Packet captured
. | AConcreteState I | AnotherGoncreteState I

TCP Packet captured

Figure B.2: An example of a finite state machine

To make this behavior more clear an example of a sequence diagram is
represented by Figure B.3.
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Figure B.3: Sequence diagram State Pattern
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The object Framework is a virtual object representing the capturing of
packets by the framework. On the capturing of the first TCP packet the
method processPacket of the Connection object is called. The initial current-
State of the ExampleFSM is set to the State ACONCRETESTATE therefore the
method processPacket of ACONCRETESTATE is called. This method returns
a reference to the State ANOTHERCONCRETESTATE. In the Connection object
the currentState is therefore set to ANOTHERCONCRETESTATE. When method
processPacket of the Connection object is called for the second time the
method processPacket of State ANOTHERCONCRETESTATE is now called. This
method returns a reference to the State ACONCRETESTATE and the current State
is set to this reference.
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Appendix C

FSM sourcecode

This appendix provides parts of source code of the implmentation of the ReRwnd
FSM in the framework. Parts of the source uninterested for showing the imple-
mentation of the FSM are replaced by “...”.

Connection.java

public class Connection extends TimerTask {

public Connection(String id, State[] initStates) {
this.id = id;
this.initStates = initStates;

}

public void processPacket (TCPPacket packet) {

for(int i=0; i<initStates.length; i++) {
initStates[i] = initStates[i].processPacket(packet, this);
}
}

State.java

public abstract class State {
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protected AnalyzerEventListener eventListener;

protected State() {
eventListener = AnalyzerEventListenerProxy.getInstance();

}

public State processPacket(TCPPacket packet, Connection connection) {
if (connection.isData(packet)) {
connection.setSizePreviousDataPacket (packet.getPayloadDataLength());
}

return this;
}
}

RwndState.java

public abstract class RwndState extends State {

public static RwndState STARTUPFASESTATE = StartupState.getInstance();

public static RwndState ENDOFBURSTSTATE = EndOfBurstState.getInstance();
public static RwndState MIDDLEOFBURSTSTATE = MiddleOfBurstState.getInstance();
public static RwndState AFTERGAPSTATE = AfterGapState.getInstance();

public static RwndState FINISHEDSTATE = FinishedState.getInstance();

public State processPacket(TCPPacket packet, Connection connection) {
State state = super.processPacket(packet, connection);

if (state !'= this) {

// super method changed the state
}

return this;

3
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StartupState.java

public class StartupState extends RwndState {
protected static StartupState instance;

public static StartupState getInstance() {
if (instance == null) {
instance = new StartupState();
}

return instance;

}

public State processPacket(TCPPacket packet, Connection connection) {
State state = super.processPacket(packet, connection);

if (state != this) {
// super method changed the state
}

if (packet.isFin() || packet.isRst()) {
return processEndOfFlow(packet, connection);
} else if(connection.isAck(packet)) {
return processAckReception(packet, connection);
} else if(connection.isData(packet)) {
return processDataReception(packet, connection);
} else {
return this;
X
X

protected State processAckReception(TCPPacket packet, Connection connection) {
updateMaxAllowedSeqNr (packet, connection);

return this;

3

protected State processDataReception(TCPPacket packet, Connection connection) {
updateMaxSeqNr (packet, connection);

return MIDDLEOFBURSTSTATE;
}
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AfterGapState.java

public class AfterGapState extends RwndState {
protected static AfterGapState instance;

public static AfterGapState getInstance() {
if (instance == null) {
instance = new AfterGapState();

3

return instance;

}

public State processPacket(TCPPacket packet, Connection connection) {
State state = super.processPacket(packet, connection);

if (state != this) {
// super method changed the state
}

if (packet.isFin() || packet.isRst()) {
return processEndOfFlow(packet, connection);
} else if(connection.isAck(packet)) {
updateMaxAllowedSeqNr (packet, connection);

return AFTERGAPSTATE;
}

return this;

EndOfBurstState.java

public class EndOfBurstState extends RwndState {
protected static EndOfBurstState instance;

public static EndOfBurstState getInstance() {
if (instance == null) {
instance = new EndOfBurstState();
}

return instance;

3
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public State processPacket(TCPPacket packet, Connection connection) {
State state = super.processPacket(packet, connection);

if (state != this) {
// super method changed the state
}

if (packet.isFin() || packet.isRst()) {
return processEndOfFlow(packet, connection);
} else if(connection.isAck(packet)) {
updateMaxAllowedSeqNr (packet, connection);

return this;
} else if(connection.isData(packet)) {
updateMaxSegNr (packet, connection);

return MIDDLEOFBURSTSTATE;
} else {
return this;

FinishedState.java

public class FinishedState extends RwndState {

protected static FinishedState instance;
protected Timer timer;

public static FinishedState getInstance() {
if (instance == null) {
instance = new FinishedState();

}

return instance;

}

public State processPacket(TCPPacket packet, Connection connection) {
State state = super.processPacket(packet, connection);

if (state != this) {
// super method changed the state
}

if (!connection.getScheduledForFinish()) {
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connection.setScheduledForFinish(true);

}

return this;
}
}

MiddleOfBurstState.java

public class MiddleOfBurstState extends RwndState {
protected static MiddleOfBurstState instance;

public static MiddleOfBurstState getInstance() {
if (instance == null) {
instance = new MiddleOfBurstState();
}
return instance;

}

public State processPacket(TCPPacket packet, Connection connection) {
State state = super.processPacket(packet, connection);

if (state != this) {
// super method changed the state
}

if (packet.isFin() || packet.isRst()) {
return processEndOfFlow(packet, connection);

} else if(connection.isAck(packet)) {
return processAckReception(packet, connection);

} else if(connection.isData(packet) && !connection.isGap(packet)) {
return processNormalDataReception(packet, connection);

} else if(connection.isData(packet) && connection.isGap(packet)) {
return processGapDataReception(packet, connection);

} else {
return this;

¥

}

protected State processAckReception(TCPPacket packet, Connection connection) {
if (connection.isMeasuringAtSendingSide()) {
rwndCheck (connection) ;

3

updateMaxAllowedSeqNr (packet, connection);
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return ENDOFBURSTSTATE;
}

protected State processNormalDataReception(TCPPacket packet, Connection connection) {
updateMaxSeqNr (packet, connection);

return this;

3

protected State processGapDataReception(TCPPacket packet, Connection connection) {
return AFTERGAPSTATE;
}

protected void rwndCheck(Connection connection) {
eventListener.handleAnalyzerEvent (new RwndCheckEvent (connection)) ;

checkCompleteRwndUtilization(connection);
checkIntegerPacketRwndUtilization(connection) ;
checkBlockBasedRwndUtilization(connection) ;

}

protected void checkCompleteRwndUtilization(Connection connection) {

}

protected void checkIntegerPacketRwndUtilization(Connection connection) {

}

protected void checkBlockBasedRwndUtilization(Connection connection) {
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