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Abstract

Internet traffic shows periodicities over 24-hour and 7-day intervals, because of office hours, business
days etc. This thesis tries to identify periodicities over shorter periods, in the order of seconds, tenths
of seconds and so on. This is mainly done for UDP traffic on the Internet. Using Fourier analysis
and available packet traces that were captured at several network locations with tcpdump, this thesis
shows that these so-called “short-term periodicities” can indeed be identified. Furthermore, by looking
at patterns (like peaks and notches) in the Fourier transforms of network traffic the behaviour in the
time domain of this traffic is further analysed.
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Chapter 1

Introduction

When designing data communication networks or devices for those networks, it is important to know the
behavioural details of the traffic that will be carried by the network or passing through the devices. The
first thing one might think of is, for example, the maximum possible traffic load that the network should
be able to handle. Besides that, the variability of the traffic load is an interesting aspect. Figure 1.1
shows a typical pattern of traffic load on a network.

Universiteit Twente Interfacel - interface traffic (30 minute average)
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Average: 448.34M 1B8.42M created on Mon Dec 4 14:50:16 2006

Figure 1.1: Traffic load on a network interface between the University of Twente and SURFnet.

Clearly the traffic load varies from time to time, but the same pattern of traffic load repeats day after
day. This means that the traffic shows the same pattern over a 24-hour period. Moreover, the traffic
load on weekends is on average somewhat lower than during business days: a 7-day period can therefore
also be recognised in network traffic. The problem in this thesis is to identify periodicities in Internet
traffic with periods that are much shorter than the two already mentioned, i.e. periods of seconds or
tenths of seconds and shorter. These so-called short-term periodicities can play an important role in the
evaluation of network (device) performance [6]: “Because the average of any periodic signal is lower than
its peak, which means that a link with periodic traffic is under-utilized.”

1.1 Problem description

Researching short-term periodicities of Internet traffic, gives rise to the following main questions:
e How can short-term periodicities be detected?
e What kind of traffic is causing short-term periodicities?

If these questions are answered, answers to other, more simple, questions like:
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e How much of the traffic is periodic?
e What periods are commonly found?

can be derived from the answers to the main questions.

1.2 Approach

Earlier work on short-term periodicities considers only specific types of traffic: [14] describes the traffic
patterns (and periodicities) for a dynamic and heavily-accessed Web server environment, whereas [3]
describes an application of using knowledge about short-term periodicities in TCP traffic in the defence
against “Denial of Service” (DoS) attacks. Both [3] and [14] use statistical/stochastic methods as well
as Fourier analysis to identify these periodicities. In this thesis, only Fourier analysis is adopted as a
technique to identify periodicities. Fourier transforms are used to search a dominant frequency/period-
icity in a packet trace, after which a binary search algorithm (also using Fourier transforms) is used to
pinpoint the specific traffic that is likely responsible for this periodicity. It may seem odd to ignore the
use of statistical/stochastic methods, but in the course of the research the sole use of Fourier analysis
provided results that were good enough to come to some conclusions for the questions posed earlier.
Another difference between this thesis and other work on short-term periodicities, is that it does not
focus on one specific type of traffic (like traffic to a Web server or DoS attacks), but tries to identify
periodicities caused by all kinds of protocols and services. The only limitation of this thesis is that there
was not enough time to examine the traffic which belongs to protocols/services that operate on top of
the Transmission Control Protocol (TCP). The protocols/services on top of the User Datagram Protocol
(UDP) are examined and one trace is examined for periodicities in traffic which belongs to the Address
Resolution Protocol (ARP). The Internet traffic that is used for the research are packet traces in the
traffic repository [16], described in Section 3.2.

1.3 Thesis outline

The first few chapters of this thesis are of an introductory character. Chapter 2 gives a short introduc-
tion to Internet traffic: how applications generate traffic and how a packet of data on the Internet is
assembled. This is necessary to show which information can be extracted from Internet traffic and how
this information can be used in the analysis of short-term periodicities. Chapter 3 provides a rather ele-
mentary introduction to Fourier analysis, on which the rest of the thesis is heavily based. Furthermore,
the technical details about the traffic repository that has been used are given, as well as an explanation
about using Fourier analysis on the packet traces within the repository.

Chapters 4 and 5 show how ARP and UDP traffic are analysed and provide the results of this analysis.
In the course of the research, a tool was developed to automate the process of identifying periodicities in
packet traces. Chapter 5 provides a general introduction to this tool, whereas Chapter 6 discusses the
implementation details of this tool.

After answering the questions stated above in Chapter 7, some recommendations for further research are
given in Chapter 8.



Chapter 2

The Internet

When researching short-term periodicities in Internet traffic, one first has to understand what the Internet
is and what sorts of traffic are sent over the Internet. This chapter will introduce the basics of the Internet
and will give a short introduction to the protocols that play a role in this thesis.

2.1 Definition of the Internet

The Federal Networking Council (FNC) defines Internet to be the following:

“Internet refers to the global information system that —

1. is logically linked together by a globally unique address space based on the Internet
Protocol (IP) or its subsequent extensions/follow-ons;

2. is able to support communications using the Transmission Control Protocol/Internet
Protocol (TCP/IP) suite or its subsequent extensions/follow-ons, and/or other IP-
compatible protocols; and

3. provides, uses or makes accessible, either publicly or privately, high level services layered
on the communications and related infrastructure described herein.”

Although this definition was given by the FNC more than ten years ago, it is still accurate. A less formal
definition of the Internet is that it is a global network that interconnects millions of devices (mainly
computers) and that it enables these devices to communicate with each other, wherever they are in the
world. The difference between the Internet of that time and the present time does not lie in the definition
given above. It lies in the amount and type of machines and devices that are attached to this world
wide network and the number of people that are using it. Those numbers have grown enormously in the
past few years. Nowadays, many people have access to the Internet and they all use it in various ways.
Computers still generate the most traffic on the Internet, although more and more services are facilitated
by the Internet: digital television, Voice Over IP, WAP, GPRS, UMTS etc. are all techniques based on
and making use of the Internet. With more people using the Internet and more services available on the
Internet, the amount of traffic between devices on the Internet consequently also grows.

Traffic is generated when two hosts (which is a more general name for all the types of devices connected
to the Internet) want to exchange information with each other (web pages, e-mails, multimedia streams,
etc.). To be able to send and receive information between two hosts, protocols are needed. More
information on the protocols observed in this thesis is given in the next section.

2.2 Protocols

Devices connected to the Internet are made by a large number of different manufacturers. To make
communication between different devices possible, these manufacturers all have to implement the same
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kind of “language” in their devices to make sure that the devices understand each other. These languages
are called protocols. In this section a few important protocols that form the basis of communication
through the Internet are described. Only a description on what protocols do and how they interact with
each other will be given. Information about the more technical side of how protocols do their job and
about the functioning of routers, switches etc. is explained in associated RFC’s! and books like [9], [11]
and [15].

2.2.1 TCP/IP reference model

To start off with, consider the TCP/IP reference model in Figure 2.1, on which the functioning of the
Internet (and its attached devices) is based. This model has four layers, which are based on the following

Application Layer
Transport Layer
Internet Layer
Host-To-Network Layer

Figure 2.1: The TCP/IP Reference Model

principles:
e When another level of abstraction is needed, a layer should be created.
e Every layer should have a well described function.

e The function of each layer should be chosen in such a way that certain protocols can be defined
(and internationally standardised) to operate on that layer only.

e The amount of information that has to be passed through the interfaces between different layers
should be as small as possible.

e The number of layers should be big enough so that different functions will not have to be in the
same layer, but small enough so that the TCP/IP architecture becomes too extensive.

As said, each layer has its own function. To be able to carry out this particular function, a layer depends
on the lower level layer. In this model, the shortest explanation of what the functions in each layer are
and how they depend on each other is that the Application layer determines what type of information
is exchanged (web page, mail, audio/video stream etc.). The Transport Layer then determines how
this information should be exchanged (in practice this means a choice between reliable or unreliable
transport). The Internet Layer determines where from and to it is exchanged and finally, the Host-To-
Network Layer takes care of the physical sending of the information. This model is used to show what
actions are undertaken to send information from one host to another in the next sections.

2.2.2 Application Protocols

When two hosts are exchanging information on the Internet, they make use of certain protocols in the
Application Layer, of which some are given in Table 2.1. More application protocols exist of course, but
these protocols are known by almost everyone that uses the Internet. Now suppose a web browser is
used to request a web page from a web server of which the address http://www.utwente.nl is known.
The type of information that is desired (a web page) and the application (a web browser) that is being
used, already determine what protocol is used in the Application Layer, since this is the protocol that is
implemented by the application. According to Table 2.1 the HyperText Transfer Protocol (HTTP) will
be used to fetch web pages when using a web browser. The Application Layer takes care of constructing

IRFC stands for Request For Comments: a document containing (technical) details about a certain protocol or service.
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] Application | Protocol |
‘Web Browser HTTP
E-mail Client POP / SMTP

File Transfer Client FTP

Table 2.1: Examples of applications and their related protocols.

a correct HT'TP request for the web server. This request then still has to be sent to the web server. This
is not the task of the Application layer, so the information is passed on to the underlying layer together
with the address information: the Transport Layer. In the Internet two protocols, TCP and UDP are
defined on this layer. Whether TCP or UDP is chosen depends on the type of application used. The big
difference between these two is reliability, which will be further explained in the following sections.

2.2.3 Transmission Control Protocol

The reliable transport protocol is called the Transmission Control Protocol (T'CP). The protocol is
connection oriented, which means that before hosts can send data to each other, a connection should
be explicitly set up between the two. This process of setting up the connection is called “handshaking”.
The reason for this handshake is that both hosts have to initialise many state variables, which are used
to guarantee the reliability of this protocol, which will be shown later. When the connection is set up,
both hosts can start sending data. The reliability of this protocol is achieved in the following way: when
a host sends information to another host, the sending host will get notified by an ACK packet from the
receiving host if the information was received. Figure 2.2 shows that when host A sends host B some

>

>

ACK

Time Out

ACK

Time Out

Figure 2.2: Example of the TCP protocol retransmitting a packet.

information, a timer is set at host A. If the ACK packet from host B is not received within a certain
amount of time, host A will assume that host B did not receive the packet and will retransmit it (even
if host B did receive the packet, because host A simply does not have proof of it). These (sometimes
necessary) retransmissions result in both hosts having to do some bookkeeping to keep track of the
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packets that are received, to be received, to be acknowledged etc., which explains the need for setting all
those state variables with a handshake procedure. Typical applications that make use of the reliability
property of the TCP protocol are web browsers (as in this example), mail clients and file transfer clients,
since the information exchanged by those applications should be complete and without errors. A high
transfer speed is always appreciated of course, but in applications that use the TCP protocol speed is
not the most important criterion.

In Figure 2.3 the structure of a TCP packet is given. The Destination Port field is used to indicate

32 bits

L \ - - ‘
0 8 16 24 32

Source Port Destination Port

Sequence Number

Acknowledgement Number
HL Flags Window Size
Checksum Urgent Pointer

Options
Data

»
«
B}
T

Figure 2.3: Structure of a TCP packet.

what upper layer application (protocol) should process the data contained in the TCP segment. For well
known application protocols, standard port numbers are assigned by the Internet Assigned Numbers
Authority (IANA). For this example, the typical destination port number would be 80, which is the
standard port number on which web servers operate. The Source Port field gives information about the
upper layer application (protocol) that sent this TCP packet. From the TCP header, only these port
fields are the only two fields that are of interest in this thesis. The Data field contains the information
that was passed on from the upper layer service, in this example an HTTP request. A description of the
rest of the fields (which also includes fields which ensure the reliability of the TCP protocol) is given in
RFC 793, which is the full specification for The Transmission Control Protocol.

2.2.4 User Datagram Protocol

The User Datagram Protocol (UDP) is a connection-less transport protocol, which means that applica-
tions can send information to each other at will, without having to do a handshake with the destination
host. This handshake is not needed, since the UDP protocol is not a reliable protocol: information
about whether or not the destination host received the information is not given, so no bookkeeping has
to be done about this and therefore no state variables have to be initialised. The simplicity of the UDP
protocol also simplifies the structure of a UDP header, as can be seen in Figure 2.4. Applications that
make use of UDP, rather than TCP, are applications that want to profit from high transfer speeds in
exchange for less reliability, e.g. real time and streaming applications like Internet telephony software.

32 bits
\= ‘ \ Ll Ll ‘ =\
0 8 16 24 32
Source Port Destination Port
Length Checksum
= Data o]

Figure 2.4: Structure of a UDP packet.
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Using a less reliable protocol for multimedia streams even has an advantage over reliable protocols: a
stream over a reliable connection through TCP would result in a stream with hick ups, because the
playback will pause if packets are not received in the right order, due to lost and retransmitted pack-
ets. Less reliable protocols will just forget about the lost packets and the playback continues anyway.
Furthermore, occasionally lost packets hardly have any disturbing effect on the quality of the playback.
Like in TCP, the Data field contains the information from the upper layer service. The Destination Port
and Source Port field will again be of interest in this thesis. A full description of the UDP protocol is
given in RFC 768.

2.2.5 Internet Protocol

When the information that has to be sent is mapped on TCP or UDP packets, these segments/packets
again have to be mapped to Internet Protocol (IP) packets. The Internet Protocol is the most important
protocol used in the exchange of information on the Internet, since it is this protocol that makes the
actual sending of information from a source to a destination anywhere on the Internet possible. Global
unique addressing is one task of the Internet Protocol, as well as getting the packet from the source host
to the destination host. Every host on the Internet has one or more IP addresses assigned to it, to which
information in the form of IP packets (also called IP datagrams) can be sent. The information in an
IP packet is given in Figure 2.5. In this thesis only the Protocol, Source IP Address and Destination

P 32 bits _
L \ Ll Ll L
0 8 16 24 32
Version ‘ HL ‘ Type of Service Datagram Length
Identification Flags Fragment Offset
Time to Live ‘ Protocol Header Checksum

Source IP Address
Destination IP Address
Options

ov] Data F

Figure 2.5: Structure of an IP packet.

IP Address fields from the IP header are used. The protocol field tells what upper layer protocol (TCP
or UDP) should handle the further processing of this packet upon delivery at the destination host, i.e.
it tells what kind of packet the Data field is holding. The source and destination IP address fields tell
from which host the packet originates and to which host it should be delivered. Since only the address
http://www.utwente.nl is known, another (application) protocol is called upon to resolve the hostname
www.utwente.nl to an IP address. The protocol which resolves hostnames to IP addresses and the other
way around is the Domain Name System (DNS) protocol (RFC 1034/1035). IP address information
gathered with the help of this protocol is used in the IP header. A full description on all the fields in an
IP packet is given in RFC 791.

The IP header can be thought of as an envelope and the data/payload as a letter you would put in
that envelope, just as in regular mail: the information from the upper layer protocol is put into the
payload, and the destination address, which was already known in the Application Layer, is “written”
in the IP header. The IP protocol can then take care of the delivery of this packet. It could be that
the two hosts that are exchanging information are not directly connected with each other. Figure 2.6
shows a simple example of a packet that has to be sent from one host to another, which are connected
by one router. When the IP packet is sent out, the router will pick it up and forward the message to
the correct host. To do this, the router does not have to know anything about the data that is sent, nor
about the transport protocol that is used. It only has to look in the IP header to find out which host
should receive this packet. This is why a router lacks the implementation of an Application Layer and
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Application
Layer

Transport

Layer Layer
Internet Internet Internet
Layer Layer Layer

Host-To-Network
Layer

Host-To-Network
Layer

Application
Layer

Transport

Host-To-Network
Layer

Figure 2.6: A router between two hosts only uses two layers.

a Transport Layer: the Internet Layer already gives the information needed for the router to do its job.
So the Internet Protocol is not only taking care of the unique addressing of hosts, it also facilitates the
correct forwarding of packets through network devices like routers, switches etc.

Now that the information is wrapped in the right packets and addressed to the appropriate destination
host, it can still not be sent out on to the Internet physically. Devices on the Internet are all making use
of IP addresses, but these are just virtual addresses mapped on the hardware that is actually connected
to the Internet. Returning to the TCP/IP Reference Model in Figure 2.1, the IP addresses belong to
the Internet Layer. In practise, though, devices communicate on the lower Host-To-Network Layer, by
means of network adaptors which use another kind of addresses. In most modern day computers, these
addresses are Ethernet addresses (also called MAC addresses). For the physical sending of information,
the Ethernet address (which corresponds to the IP address the information should be sent to) should be
known. This mapping from IP address to Ethernet address is taken care of by the Address Resolution
Protocol, discussed in the next section.

2.2.6 Address Resolution Protocol

Suppose host A has to send out a packet to a certain host B on the same subnet or LAN (see Figure 2.7).
For the physical sending of the packet, knowing the IP address is not enough, since the network interface
which is sending out the packets, makes use of Ethernet addresses. An ARP module in the network
interface can resolve IP addresses to Ethernet addresses by broadcasting a request to machines on the
same subnet. In this example, host A would send out a request asking to which Ethernet address the
IP address 192.168.0.2 is mapped. Host B would then send a reply to host A, mentioning its Ethernet
address. Both hosts now have information on each others IP/Ethernet addresses stored in their ARP
table. At that point, host A can finally start transmitting its information to host B by putting the IP
packet into a so called Ethernet frame (see Figure 2.8), which results in Figure 2.9. This Ethernet frame
is then what is actually sent out by the network adaptor.
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Host A
192.168.0.1

ac-4{-3d-66-8d-2a

Figure 2.7: Two hosts on the same

Host B
192.168.0.2

45-3e-8f-7b-49-21

subnet

176 bits 32 bits
L S S S NS S S S S
64 112 160 176
Preamble Destination Source Type Data CRC
- ’ Address Address 7
Ethernet header
Figure 2.8: Structure of an Ethernet frame.
Applicaton HTTP
Layer Request
! | |
Transport TCP TCP
Layer Header Data
! |
Internet 1P 1P
Layer Header Data
! | |
Host-To-Network Preamble Ethernet Ethernet CRC
Layer Header Data

Figure 2.9: Ethernet frame containing an HTTP request.
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Chapter 3

Technical Background

3.1 Fourier analysis

Since a lot of work done in this thesis involves Fourier transforms, this section will explain what Fourier
transforms actually are. The first sections will discuss two kinds of representation (called domains) of a
signal. Subsequently, Fourier transforms will be explained and the type of transform that is used in this
thesis is explained more thoroughly.

3.1.1 Time domain

The time domain is the most natural representation of a signal. In this domain, the value of a signal is
given with respect to time. As an example, take a simple sinusoid given by

x(t) = cos(mt) (3.1)

in Figure 3.1. From the figure the value of the signal at some point in time can be determined. At ¢ =1,
the value is —1, at ¢ = 2, the value is 1 and so on.

x

Figure 3.1: Signal (3.1) in the time domain

3.1.2 Frequency domain

While the time domain is the most natural and intuitive representation of a signal, it is not always
the easiest domain to interpret when analysing a signal. This thesis is about gathering information on
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periodicities in a signal and therefore information about frequencies present in a signal. The frequency
domain gives this information in an explicit way, whereas the time domain only gives it in an implicit
way. In the example it is easy to see that the signal has a frequency of % Hz, with a maximum amplitude
of 1: a full period of the signal covers 2 seconds, which gives a frequency of

1 period 1
— = _Hz
2 seconds 2

A plot of this signal in the frequency domain is given in Figure 3.2. It shows directly which frequency

1.5+

Amplitude
I

=
o
T

0 0.5 1
Hz

Figure 3.2: Signal (3.1) in the frequency domain

(together with its amplitude) is present in the signal, without the need of further calculations.

In the previous example one thing is overlooked: the signal was transferred from the time domain to the
frequency domain only by looking at the frequency and the amplitude of the signal. But what happens if
the signal is shifted (in the time domain) somewhat to the left or to the right? It would still be a signal
with a frequency of 0.5 Hz and an amplitude of 1, so the amplitude plot in the frequency domain would
look the same. Apparently, some extra information should be given in the frequency domain. The phase
of a sinusoid gives information about its shifting to the left or right. To clarify this, another example is
given in which a signal = is comprised of three different sinusoids:

z1(t) = 2cos(m(t+3)) (3.2)
za(t) = bHeos(dn(t — 1)) (3.3)
z3(t) = 3cos(zm(t+1) (3.4)

z(t) = x1(t) + x2(t) + x3(2) (3.5)

Figure 3.3 gives the plot in the time domain of signal . To produce a plot in the frequency domain,
three things about all the sinusoids that are in z should be known: amplitude, frequency and phase.
To do this in the most easy way the decomposition of a signal should already be known, since the
needed information is not easily extracted from Figure 3.3. In this example, Equations (3.2) to (3.4) give
the decomposition of the signal = and the frequency domain information can be extracted from these
equations. Rewriting these equations in the form

zk(t) = acos(2m ft + ¢)

gives the information that is needed to reconstruct the signal in the frequency domain: for the frequency
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Figure 3.3: Signal z is built up from 3 different sinusoids

f, the amplitude is a and the phase is ¢. Equations (3.2) to (3.4) become

z1(t) = 2cos(2m-1-t+im) (3.6)
xo(t) = bHceos(2m-2-t—m) (3.7)
z3(t) = 3cos(2m-2-t+ 4m) (3.8

z(t) = x1(t) + x2(t) + 23(2) (3.9

It is common use that the phase shift of a sinusoid lies in the interval [—m, 7). If the phase is not in this
range, multiples of 27 should be added or subtracted to get it in that interval. This is justified by the
fact that any 2m-multiple shift of a sinusoid, results in the same sinusoid. Since the phase of signal x5 is
beyond the interval [—m, ), it should be reduced by 27, which gives —%ﬂ as the phase. The frequency
domain information from the three signals is collected in Table 3.1. With the information available from

this table, a amplitude and phase plot can be made (see Figures 3.4 and 3.5).

| Signal [ Amplitude | Frequency (Hz) | Phase |

I 2 % 57'('
To 5 2 -
T3 3 % —%7‘(’

Table 3.1: Information about the three sinusoids used for the signal in Figure 3.3

3.1.3 Fourier transforms

So far, a signal can only be transferred from the time domain to the frequency domain in simple cases:
either the signal only has one frequency present (Figure 3.1) or — if more frequencies are present (Fig-
ure 3.3) — the decomposition should be known in advance. When a signal in the time domain looks like
Figure 3.6 it is virtually impossible to extract frequency domain information from the figure. Because the
decomposition also is not known — which is the case in most real life situations — any periodic behaviour
in the signal can not be determined, although there could be periodicities present. Apparently, better
means are needed to discover the frequencies present in a signal like the one presented in Figure 3.6.
Baron Jean Baptiste Joseph Fourier (1768-1830) provided such a mechanism. He introduced the idea
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Figure 3.4: Amplitude plot for the signal in (3.5).
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Figure 3.5: Phase plot for the signal in (3.5).

that any periodic function, or a function on a finite interval could be represented by a sum' of sines and
cosines in the following way:

where

a(t) = ‘;i + 3 {ax cos(kwot) + by sin(kwot) },

wo

ag

by

N
3

Nl Nl g

c—

!

~

x(t) cos(kwot)dt

x(t) sin(kwot)dt

1n fact, Leonhard Euler had already published the expression

in 1744.

™
2

€z .
— — — =sIn
5 (

1 1
x) + 5 sin(2x) + 3 sin(3x) + ...

(3.10)

(3.11)

(3.12)

(3.13)
(3.14)
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Figure 3.6: A signal in the time domain

In these equations, T is the period of the signal x(¢) and wy is called the fundamental frequency of the
signal. Integral multiples of wy — here denoted with kwy — are called the harmonics of wg. The limits
on both integrals go from 0 to 7', but this is not necessary. This integration can also go from —7T to
0, or from —%T to %T. As long as the integration takes place over one full period, the limits can be
chosen freely. This can especially be helpful when integrating over a function with discontinuities. To

z 1

Figure 3.7: Sawtooth function

get a better feel for this, this is illustrated with the sawtooth function depicted in Figure 3.7. Although
this function is not continuous at all points, it can be expressed by a sum of sines and cosines which
are continuous. When looking at the sawtooth function, it is clear that the period T of the signal is 2
seconds. This immediately gives the fundamental angular frequency wy, since:

oo
Wo = T = B =T.
Equations (3.10)-(3.13) now become:
z(t) = % + Z{ak cos(kmt) + by sin(knt)} (3.15)
k=1

2
ap = / x(t) cos(kmt)dt (3.16)

0

2
by = / () sin(krt)dt (3.17)

0

The next step is to calculate the coefficients a; and by. Notice that the coefficients a; do not have to
be calculated at all: the sawtooth function is an odd function, just like sines are. Adding cosines to the
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expression would disturb this property of the sawtooth function. Hence,

ar =0 (VkEZ).

Calculating the coefficients by, gives:

2
b, = x(t) sin(kwt)dt
0
7 2. (71)k+1
= 7 (Vk > 0)

Now that the coefficients are calculated, Equation 3.15 can be filled in and the expression of the sawtooth

function becomes:
2 (=) sin(knt)

z(t) = 2 > - (3.18)

™
k=1

On page 17 the Figures 3.10 to 3.14 show the result of this approximation for respectively 1, 2, 3,
4 and 10 sine terms. It is clear that Equation (3.18) approaches the sawtooth function when more
harmonic frequencies are added. The above is actually an example of a Fourier series: starting off with
the fundamental angular frequency wy of the signal z(t), the signal can be expressed in terms of sines
and cosines with this fundamental frequency and its harmonics. Subsequently the frequency domain
information of the sawtooth function is known (see Figures 3.8 and 3.9).

0.8

<
o
T

Amplitude
o
N
I

0.2 -
0 IR
0 0.5 1 1.5 2 2.5 3 3.5
Hz
Figure 3.8: Amplitude plot for the sawtooth function
" ( ( ( |
A
A |
> 0J5 1 1J5 2 2J5 3 3J5 4
_%W L Hz

Figure 3.9: Phase plot for the sawtooth function

Although this is another way to map a signal from the time domain to the frequency domain, this is still
not a solution to the problem of determining periodicities in all possible signals: to develop the Fourier
series the fundamental frequency should be determined, but this can be an impossible job for functions
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Figure 3.10: Approximation of the sawtooth function with only the fundamental frequency
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Figure 3.11: Approximation of the sawtooth function with 2 harmonics
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Figure 3.12: Approximation of the sawtooth function with 3 harmonics
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Figure 3.13: Approximation of the sawtooth function with 4 harmonics
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Figure 3.14: Approximation of the sawtooth function with 10 harmonics
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where this fundamental frequency is not easily seen (consider Figure 3.6 again). A better approach would
be some kind of function that maps a signal from the time domain to the frequency domain in a more
explicit way. This is achieved by the (continuous) Fourier transform:

X(w) = /OO x(t)e ™“tdt (3.19)

— 00

If the continuous signal in the time domain z(t) is known, the frequency domain representation of this
signal can be determined by solving the integral in Equation (3.19). Again this seems a good solution to
the problem, but to solve this equation the function x(¢) should be known. In practise, only a sampled
discrete function x[n] of the actual function z(¢) is known. Sampling is done by measuring the value of
the signal z(t) at discrete-time points ¢,, = nAt, where n = ..., —-2,—1,0,1,2,.... The sampling period
is denoted by At. A formal definition of sampling then is:

z[n] = z(t)|t=nar = z(nAt) (VneZ)

In Table 3.2 an example is given for the sin(¢) function, which is sampled over one period of 27, with a
sampling period T of %Ow seconds. This gives 20 sampled values. Notice that the last sample does not

Sample || z[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] z[9]

Value 0 0.3090 | 0.5878 | 0.8090 | 0.9511 1 0.9511 | 0.8090 | 0.5878 | 0.3090

Sample || x[10] | z[11] x[12] x[13] x[14] | z[15] | =[16] x[17] x[18] x[19]

Value 0 -0.3090 | -0.5878 | -0.8090 | -0.9511 -1 -0.9511 | -0.8090 | -0.5878 | -0.3090

Table 3.2: The function sin(¢) samples over one period with 10 samples.

have the value zero, since this is a value of the next period of the function. In Figure 3.15, the discrete

k 12 45 10 1 1J2 1[3 1k4 1‘5 IT 1[7 1J8 o
~1

n
Figure 3.15: A plot of the sampled sin(¢) function

signal is plotted. The shape of a sine function is clearly visible. These samples can then be used in a
Discrete Fourier Transform (DFT), which is discussed in the next section. This enables the transforming
of a (continuous) signal, of which the exact function z(t) is unknown. A disadvantage of sampling is the
loss of information: the value of the signal is not known for all moments in time. The consequence of
this is that the accuracy of the DFT depends strongly on the chosen sampling period. Of course, the
DFT can also be used on signals that are already discrete by their nature.

3.1.4 Discrete Fourier Transform

For finite discrete signals the Discrete Fourier Transform, or DFT in short, is available. The Discrete
Fourier Transform is given by:

N—
X[ = Z x[n]e_i%ﬂ”” (v=0,1,...,N-=1) (3.20)

n=0

—
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In this equation, v stand for the discretised frequency. The actual frequency f depends on the sampling
period At that was used to generate the discrete signal or time series and the total number of samples
N:

v

I=xin
If X[v] is the N-point DFT of z[n], then z[n] can be obtained from X|[v] by applying the inverse DFT
given by

(3.21)

z[n] = % > X[l (n=0,1,...,N—1) (3.22)

Using Euler’s identity ‘
' = cos(¢) + isin(¢)

Equation 3.22 expands to

N—1

z[n] = % nz_% X[v] {cos(iz;vn) + isin(igvn)} (v=0,1,...,N —1) (3.23)

and again a sum of sines and cosines shows up, as seen before. Now suppose the DFT for the signal

described by Table 3.2 and Figure 3.15 would be calculated. A quick look at Equation (3.20) shows

that for the full DFT N elements will have to be calculated. Each element itself needs the full vector of

samples, which has length N. Therefore, the calculation of a DFT will roughly take something in the

order of N2 multiplications. Calculating the DFT for the example in Figure 3.15 would already cost
about four hundred multiplications to come up with the information shown in Figure 3.16.

1
1

| X[]
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Figure 3.16: Absolute value of the DFT of the signal in Figure 3.15.

Two peaks show up at the discretised frequencies v = 1 and v = 19. Calculating the associated frequencies
gives:

1 1

fi = 5——==-—"Hz
w20 2
19 19

flg = HZ

Tr20 2n

The frequency of the original sinusoid is % Hz, which is exactly equal to the frequency indicated by the
peak at v = 1 in the DFT of the sampled signal. Remarkable is that the peak at frequency v = 19 is
exactly the same as the peak at frequency v = 1. A check with Equation (3.20) shows that calculating
X[19] results in the complex conjugate of X[1]. When plotting the absolute value (or only the real part)
of the DFT complex conjugates show the same value, so X[19] corresponds to the same frequency as



20 CHAPTER 3. TECHNICAL BACKGROUND

X[1]. When sampling a signal with a sampling period At, the highest frequency that can be measured in
that signal is % Hz, which is called the folding frequency, or Nyquist frequency. The absolute values of a
DFT (of real data) are symmetric about this Nyquist frequency. This is because of the same relationship
that tied X[1] and X[19] together: X[v] is the complex conjugate of X[N — v]. Paying attention to
frequency components higher than the Nyquist frequency is therefore not useful, since it corresponds to
information that is already given by lower frequencies. So when making a plot of the absolute values of a
DFT, taking frequencies up to the Nyquist frequency is sufficient, when the original data is real valued.

3.1.5 Fast Fourier Transform

In the previous section it was already stated that the calculation of an N-point DFT will take as much
as N2 multiplications. This becomes a major problem when calculating DFT’s for large time series. In
this thesis, DFT’s will be calculated from time series with around 900,000 elements, which results in
810,000,000,000 multiplications when computing it by Equation (3.20). Even on the fast machines that
are available today, this will take quite a while. This old fashioned way of computing a DFT proves to
be very inefficient. The Fast Fourier Transform overcomes this problem. The FFT is an algorithm which
became widely known in 1965 after a publication of J.W. Cooley and J.W. Tukey ([4]), though the idea
for such an algorithm was not new at that time. Cooley and Tukey independently had re-invented an
algorithm which was already described by Carl Friedrich Gauss in 1805 and also by Carle Runge in 1903
([13]). The Fast Fourier Transform can be explained in the following way. When the number of samples
in a time series is even, Equation (3.20) can be rewritten in two separate equations. One for even indices
v =2m

N/2—1
Xpml= Y (z[n] +aln+ N/2)e N (3.24)
n=0
and one for the odd indices v =2m + 1
N/2-1
- 27 s 27
X2m+1)= Y e "F(a[n] — zln+ N/2)e ¥ (3.25)
n=0

If a new time series Yoven[n] is defined to be
Yeven|n] = z[n] + x[n + N /2], n=0,1,...,N/2—1 (3.26)
and another new time series yo44[n] to be
Yoaan] = e ¥ (x[n] — x[n+ N/2]), n=0,1,...,N/2—1 (3.27)

the Equations (3.24) and (3.25) are actually the N/2-point DFT’s of yeyen[n] and yoqa[n]. Creating
Yoven|n] from z[n] requires N/2 additions. Creating yoqa[n] requires not only N/2 additions, but also
N/2 multiplications. The computation time for a multiplication is about the same as the computation
time for an addition. If the computation time for those operations is ¢, the total computation time to

create both Yeven[n] and yoqa[n] is
3e

dN, where d = 5
If C(N) is the computation time needed to compute an N-point DFT, the previous calculations show
that

C(N) =dN +2C(N/2)
Since the calculation of a 1-point DFT requires no computations (the only frequency component X|[0]
will be equal to the only time component z[0]), C(1) = 0, which gives

C(N) =dNlog, N

With the help of the FFT algorithm, only O(N log, N) operations are needed, instead of O(N?) opera-
tions. The savings of the FFT algorithm is apparent in Figure 3.17. The FFT algorithm is most efficient
when the number of samples that is transformed is an exact power of two, since the FFT algorithm can
then break the original transform down in exactly log, IV transforms of length 1.
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Figure 3.17: The number of operations needed for calculating an FFT and a direct DFT.

3.1.6 Windowing

Windowing is a technique used with Fourier transforms for extracting and/or smoothing data. A window
typically is a positive, smooth symmetric function that has a value of one at its maximum and approaches
(or is) zero at the sides. A window is applied by multiplying it with the time series to be transformed.
When using a window, one should be aware that the input data is altered. Several well known windows
exist, including the Hamming, Hann and Blackman window, which all have their own characteristics.
In Section 3.1.4, a signal was sampled over exactly one period. In practise, this kind of ideal sampling
is impossible since the frequencies present in the signal are unknown, which means that the length of
one period of the signal is also unknown. Moreover, a signal could contain periodicities (which can be
shown by Fourier analysis), but does not have to be periodic itself. An ideal sampling period then does
not exist. This is illustrated by the following example: a % Hz signal, given by

x(t) = cos(nt) (3.28)

is sampled with a sampling period of 0.22 and 32 samples are taken. Taking the absolute value of the
FFT, results in Figure 3.18. Notice that only 17 samples are plotted, since the absolute value of the other
15 samples are copies of the samples 1 to 15. First of all, the actual frequency of the signal has no FFT
value associated with it. The information about this frequency is spread out to adjacent frequencies.
This phenomenon is called leakage. The amount and visibility of leakage depends strongly on the chosen
sampling period, the length of the time series and the actual signal that is transformed. Using a window
can reduce the effect of leakage, which results in a DFT that can be interpreted in a better way. In
Figure 3.19, a Hamming window is used on the sampled data before taking the FFT. A vector that
represents the 32 sample Hamming window is given by

21
H; =054—-0.4 —
0.5 0 6(:05(32>

with ¢ being the index in the vector. The result of using the Hamming window is that leakage into
adjacent frequencies is strongly reduced, which gives a plot that can be better interpreted.
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Figure 3.18: Absolute value of the FFT of the sampled (3.28) signal.
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Figure 3.19: Absolute value of the FFT of the sampled signal (3.28) with the Hamming window
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3.1.7 Zero padding

Zero padding is commonly used with DFT’s and especially FFT’s. Zero padding means appending zeros
to the time series to be transformed. These zeros can be added either at the beginning, at the end or even
somewhere in the middle of the time series, as long as they are added together in one place. The main
advantage of zero padding is that more resolution in the frequency domain is gained, since the spacing
in the frequency domain is inversely proportional to the number of samples in the time domain. Adding
more samples in the time domain, even zero-valued samples, will result in a more detailed frequency
spectrum. As an example, the sum of a 1 Hz and a 1.35 Hz sinusoid is sampled over 32 samples with a
sampling period of 0.125:

x(t) = cos(27t) 4 cos(2.707t) (3.29)

Taking the 32-point FFT results in Figure 3.20. Although it is for sure that two different frequencies are
present in the signal, these two distinct frequencies do not show up in Figure 3.20. When determining
short-term periodicities in a signal, this is undesirable behaviour. If 96 zeros are appended and the
128-point FFT is taken, Figure 3.21 is the result. It may look like a bigger mess (which are the effect of
leakage), but there are clearly two peaks visible in this figure, which are the result of more resolution in
the frequency domain, made possible by zero padding. Another use of zero padding is to speed up the
calculation of the FFT (see Section 3.1.5).

3.2 Traffic repository

The available packet traces within the traffic repository are binary files in PCAP-format?, containing
fifteen minutes of network traffic. All packets sent within those fifteen minutes are stored without
their payload/data from the Application Layer. The header information of each packet (discussed in
Section 2.2) is still available. Furthermore, the tcpdump tool that was used to create these packet traces
added a time stamp to each packet, which indicates when the packet was captured.

The following information per packet in a packet trace is therefore available:

e Time stamp

e Protocol

e Source IP address (scrambled) and port number

e Destination IP address (scrambled) and port number
e Ethernet addresses

To protect user’s privacy, the IP addresses in the packet traces are scrambled, using the tcpdpriv
utility. According to [16], addresses within one packet trace are scrambled in such a way that if two
of the original addresses are equal in the most significant n bits, then these two addresses will map
to scrambled addresses that are similarly equal in the most significant n bits. Therefore it can safely
be assumed that the mapping between original and scrambled addresses is a bijective mapping. As a
consequence, it is possible to determine whether or not packets were sent or received by the same host,
which is also of importance for the analysis of periodicities.

More information from the packet trace is available (like packet size), but not used for the research. The
information that is not available is:

e Actual IP-addresses

e Payload / data within the packets

2Typical applications that can read and write PCAP-files are tcpdump, ethereal and a periodicity analysis tool (pat)
that was developed during the research, which will be commented on in Chapter 6
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Figure 3.20: The absolute value of the FFT of signal (3.29) without zero padding.
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Figure 3.21: The absolute value of the FFT of signal (3.29) with zero padding.
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So in principle, for determining which traffic is responsible for certain periodicities there is enough
information available: the time stamps are necessary for information about the periodicities because
time domain information is needed to enable the use of Fourier analysis, while protocol information and
port numbers will give a hint on the sending/receiving application that could cause these periodicities.
The rest of the available information can be used for fine tuning the cause of periodicities.

3.3 Plots of transforms

To determine periodicities in the available packet traces, frequency domain information should be extrac-
ted from those packet traces. To do this, the techniques that are described in the previous sections are
used. This section explains how Fourier analysis can be applied to a packet trace. The first step in this
process is to create a time series from the packet trace. After that, the FFT of this time series discloses
frequency information about this packet trace. This is further clarified by the following example. In
Table 3.3, some information about the first 10 packets in packet trace 1oc1-20020626-0415 is given. If

Time stamp Protocol | Source Address | Source Port | Dest. Address Dest. Port
04:15:01.263888 | 1P 135.216.170.24 | 3610 135.216.205.97 | 139
04:15:01.266938 | IP 135.216.172.50 | 4887 135.216.205.190 | 139
04:15:01.267628 | 1P 135.216.205.190 | 139 135.216.172.50 | 4887
04:15:01.267775 | IP 135.216.205.190 | 139 135.216.172.50 | 4887
04:15:01.269928 | 1P 135.216.168.239 | 1451 135.216.206.97 | 139
04:15:01.270131 | IP 135.216.206.150 | 3648 135.216.128.214 | 53
04:15:01.270273 | 1P 135.216.172.79 | 1037 135.216.204.22 | 139
04:15:01.270667 | 1P 135.216.128.214 | 53 135.216.206.150 | 3648
04:15:01.271137 | 1P 135.216.204.22 | 139 135.216.172.79 | 1037
04:15:01.271272 | 1P 135.216.171.66 1046 135.216.205.213 | 139

Table 3.3: Information about the first 10 packets in 1oc1-20020626-0415.

the first packet’s time stamp is chosen as a reference for ¢ = 0, the traffic can be modelled as a function
of time, as shown in Figure 3.22. To create the time series, some kind of sampling has to be done on

1

0 | | | | | | | |

Figure 3.22: First 10 packets in 10c1-20020626-0415 plotted as a function of time.

this function. The samples should represent the amount of traffic at a certain time. The approach here
is to model every packet as a unit impulse (with value 1) at the point in time that is equal to its time
stamp. Subsequently, the number of packets within a certain intervals [At - i, At(i + 1)) are counted,
with At being the chosen sampling period and i the index in the time series that is being created. If,
for the example above, a sampling period of At = 0.5 ms is chosen, the following time series would be
generated:

x=[1000001200003120]

which can be Fourier transformed, possibly after windowing and/or appending zeros. This short example
gives rise to the following questions:
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e What length should the sampling period be?
e Should windowing and/or zero padding be applied?

In Section 3.1.4 the term “sampling period” has already been explained. It also showed the importance
of this first question, since the sampling period determines the highest frequency that can be detected
(the Nyquist frequency). A trade off should be made here: a small sampling period will result in a higher
Nyquist frequency and therefore a broader frequency spectrum. On the other hand, a large sampling
period results in smaller time series and faster computations. After some trying, a sampling period of
1 ms seemed attractive: the computations of Fourier transforms were done in an acceptable amount of
time and the Nyquist frequency was at 500 Hz, which should be high enough for the first explorations
in the periodicity of Internet traffic, since this corresponds to a period of 0.002 seconds. This should
be enough because, for example, round trip times (the time between sending a packet and getting the
acknowledgement that it has been received, see Section 2.2.3) in network traffic are usually longer than
this period.

The packet traces in the repository each contain fifteen minutes of data. Sampling a packet trace with
a period of 1 ms, results in a time series with about 900,000 elements. Calculating the FFT from this
time series takes a long time. Appending zeros to get a time series that has a length equal to a power of
two will speed up this process significantly. Even if the computation of the FFT would be fast enough
on 900,000 elements, zeros would still need to be appended to get enough resolution in the frequency
domain. The amount of zeros that should be appended depends on the spacing in the frequency domain
that is needed for good results. As said before, more zeros will reduce the spacing in the frequency
domain and thus the error when determining at which frequency a peak in the FFT is present. This
choice was especially important in the development of the tool, described in Chapter 6. Returning to
the first question, why not take a sampling period that will immediately give a time series with a length
equal to a power of two? Solving the sampling period At in

900 _
At

n

that is needed when sampling 900 seconds (15 minutes) of data with 2" samples is easily done. This
however, will not work. First of all, the packet traces contain about 15 minutes of data, which means
that for every separate packet trace the above equation should be solved. An option is, of course, to just
truncate the data at 15 minutes, ignoring the rest. Then a problem would occur in the case of a packet
trace that is actually shorter than 15 minutes and zeros would still have to be appended to the time
series. Having a fixed sampling period has the advantage of working directly for every possible packet
trace length. Secondly, there is no real qualitative advantage of “stretching” the time series to a power
of 2 over the padding of zeros to a power of 2. So the effort of calculating appropriate sampling periods,
truncating time series etc. might just as well be saved. Another — though weaker — reason for not using
this method is that for basic calculations, it is a lot easier to work with a sampling period that is “a nice
number” instead of a number that is inversely proportional to a power of 2.

Windowing showed little useful effects on the outcome of the transforms. Zeros are appended, which
means that the data is already somewhat smoothed without the help of windowing. Moreover, applying
a window mostly effects the sides of a time series; in this case the right side of the time series is comprised
of zeros, on which windowing will not have any effect. For this reason, windowing is not used with time
series that represent the full 15 minutes of a packet trace.

When the FFT is calculated, the absolute value of it is plotted against a properly defined vector of
frequency values (calculated with Equation 3.21), which gives the Fourier transform plots used in this
thesis.



Chapter 4

Address Resolution Protocol

Traffic caused by the Address Resolution Protocol (ARP) is the first kind of traffic to be discussed.
Although the choice of starting with ARP is rather arbitrary, it proves to be a good exercise for the
rest of the traffic to be researched. This is mainly because the amount of ARP traffic on a (local)
network is relatively small compared to TCP- and UDP-traffic: when some pattern is discovered in the
frequency spectra of the traffic, it is fairly easy to resolve which packets caused this pattern to occur.
The knowledge obtained from this ARP exercise then can subsequently be used in the further analysis of
other traffic. For example: if some pattern in the frequency spectrum of ARP traffic can be explained, a
similar pattern in the frequency spectrum of UDP traffic might be explained by the same phenomenon.
In the next sections a closer look is taken at periodicities in ARP traffic. After starting off with a small
discussion about what kind of periodicities could be found in ARP traffic, a first frequency spectrum is
shown and analysed.

4.1 Possible periodicities in ARP

This section is about ARP traffic that could influence the periodicity of network traffic. So why may
someone expect periodic behaviour in ARP traffic in the first place? One reason could be unanswered
requests. Many protocols use time outs when waiting for an answer. If an answer is not received within
this time-out, another request will be sent and again a time-out is set. Several attempts for obtaining
an answer can be made in this way, although in ARP only a few attempts will be made at a rate of one
per second. If there is still no reply after the last request, the network interface will not try again until
a host tries to send new data (for which again ARP requests have to be sent). A quick conclusion would
be that these repeated retransmissions at a rate of one per second could, for now, be interpreted as an
occasionally appearing periodic signal at a frequency of 1 Hz.

An entry in a host’s ARP table is only kept there for limited time. A typical expiration time for an entry
is 20 minutes. So suppose that in the example from Figure 2.7, host A has nothing to send to host for
at least 20 minutes. The ARP table at host A will then drop the entry for host B. If host A then wants
to send information to host B, one or more new ARP requests must be sent. So if a session between
host A and host B interrupts frequently for at least 20 minutes, again a repeating retransmissions of
ARP requests would be seen, but at a much slower rate. Furthermore, it is likely that these “interruption
intervals” are not of the exact same length: one could be 30 minutes, another could be 50 minutes and yet
another could be 3 hours. So the rate at which requests are retransmitted in this case are most certainly
not fixed. A periodicity caused by expiring entries in ARP tables is therefore unlikely to occur. Even if
it would occur, the matching frequencies would be far lower than the frequencies which are of interest in
this thesis, which are the frequencies belonging to short-term periodicity. Moreover, these intervals are
larger than the 15 minutes that the packet traces are in length, which makes it even impossible to figure
out whether a frequency should be associated with an expired entry in an ARP table.
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4.2 A first packet trace examined
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Figure 4.1: ARP frequency spectrum for 1oc1-20020625-0415

If the ARP traffic in packet trace 1oc1-20020625-0415 is Fourier transformed and plotted, Figure 4.1
is the result. The choice for discussing this packet trace is based on the remarkable peaks seen at the
frequency of 100 Hz and its harmonics. These peaks clearly indicate some kind of periodicity in this
packet trace which can be further investigated.

Intuitively, one could already say that there is something interesting happening with a (repeating) time
interval of 0.01 second, since this is the period corresponding to a frequency of 100 Hz. A first move to
retrieve the source of this frequency is to pick those packets out of the packet trace that have something
to do with this 0.01 second interval. Although it is not likely that a frequency of 100 Hz is caused by
two successive packets that are sent/received a hundredth of a second apart from each other, it is worth
the try to plot the time intervals between two successive packets. In Figure 4.2 this is done for all the
packets within the earlier mentioned packet trace. The horizontal axis represents the packet’s position
within the trace. The vertical axis represents the time interval between that packet and its predecessor.
Of course, for the first packet there is no predecessor and hence no plotted point. Surprisingly enough,
at a time interval of 0.01 second, a horizontal line can be identified, which indicates that a reasonable
amount of packets are this interval away from their predecessor. The next step is to isolate these packets
from the trace and see if there is something special happening. This is simply done by taking the original
packet trace and dropping those packets that are more than 0.0105 or less than 0.0095 seconds away
from their predecessor. The 5% margin is rather arbitrary but some margin should be used, since most
packets will not match the exact time interval. Furthermore, it is not sure that the frequency that is
being investigated is exactly 100 Hz. A big amount of packets in this selection were sent from Ethernet
address 00:90:27:4d:61:7e. Taking a closer look at these packets shows that the 0.01 second intervals are
caused by retransmitted ARP requests sent from this Ethernet address. A reasonably large amount of
ARP requests, for many different addresses, is done by this address so it could be assumed that it is
the address of a router. Another possibility could be that some virus is trying to spread itself to other
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Figure 4.2: Time intervals between packet n and packet n — 1

machines on the network, which also results in a large amount of ARP requests. Taking a closer look at
the ARP requests that are sent out by this network adaptor with Ethereal, showed that these requests
are always at least 0.01 seconds apart from each other and that an ARP request for the same address is
never repeated within one second. A conclusion so far is that the 100 Hz peaks found earlier are mainly
caused by this network adaptor (a router or some virus infected machine), sending out (retransmissions
of) ARP requests at a rate of 100 per second, most probably due to the internal clock of the router or
machine.

This can be verified by taking these particular packets apart from the rest of the traffic, making a new
Fourier transform and plot the results (see Figure 4.3). This shows some quite interesting results: not
only do the peaks at 100 Hz and its harmonics show up again, on both sides of these peaks some smaller
peaks made their way into the plot. A possible explanation for these so called sidebands could be that
some kind of modulation is applied to a signal. Unfortunately, it is not clear where this modulation-like
behaviour comes from. Another interesting feature in Figure 4.3 is that an arch pattern is showing
repeatedly from the left to the right of the plot. This arch pattern will be further explored in the next
section.

Now the disadvantage of this method is that periodic traffic does not necessarily have to be caused by
successive packets, which was assumed earlier. Consider Figure 4.4: the red packets are sent periodically
and the blue packets are randomly placed. Sometimes the red packets are in successive order, but a
random number of blue packets can be in between two reds. This means that for the method to work,
the “red stream” should first be taken apart from the rest of the traffic. Then the time intervals between
two packets can be measured to see if some periodicity is caused by this traffic. To do this for all the
streams in a trace would take a lot of time. Another solution for this problem could be to plot not only
the time interval between to successive packets (packet n and packet n — 1), but also the time intervals
between packets with other indices, so n and n — 2, n and n — 3 etc., since these intervals can also give
a hint for the presence of a periodicity.
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Figure 4.3: Fourier transform of ARP requests sent from 00:90:27:4d:61:7e
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4.3 Repetitive behaviour in the time domain

As discussed in Section 4.1, ARP requests are retransmitted if no answer is received. In the packet trace
used, a retransmission for an unanswered ARP request was retransmitted at most two times. So when a
host is offline and ARP requests are done for this host, three ARP requests are done in total. This can
be modelled as a system with a (discrete) input signal 2[n] and an output signal y[n], which repeats the
input signal three times with a delay of k seconds. The following holds for this system:

yln] = z[n] + z[n — k] + z[n — 2k] (4.1)

A visual representation of this is given in Figure 4.5. The point in discussing this is to explain the

z[n] = ] y[n] = RA

Figure 4.5: The system with transfer function H(w) causes a repetition of the input signal

arch pattern in Figure 4.3. The transfer function H(w) of this system can be easily constructed from
Equation (4.1), since it is a superposition of delayed signals. For a system delaying the input signal with
k time steps the function for the output signal is

yln] = z[n — k]

with a corresponding transfer function

H(w) = e~
For the system described the transfer function therefore is
H(w) =1+ e kv 4 emi2ke
which can be rewritten as

H(w) _ efikw (eikw +1 _|_efikw)
= e " (2cos(kw) +1).

Taking the absolute value of H(w) yields

|Hw)| = |e"™* (2cos(kw) + 1)
’e_““”| |2 cos(kw) + 1]
= |2cos(kw) + 1| (4.2)

Plotting the function (4.2) results in Figure 4.6. Repetitive behaviour in the time domain clearly gives
arch patterns in the frequency domain. This could explain the arch patterns in Figure 4.3: they could
be the result of the repeatedly sending of ARP requests. The notches seen in Figure 4.6 give information
about the frequency at which packets are retransmitted in the case of two retransmissions (3 packets in
total), as depicted in Figure 4.5. The places at which these notches occur can be calculated by solving
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Figure 4.6: The absolute value of the transfer function at different angular frequencies

Equation 4.2. To identify the related frequency, only the place of the first notch has to be solved:

2cos(kw)+1 = 0
1
hw) = —-
cos(kw) 5
2T
hw = —
“ 3
_ o
YT 3k
2w w
2 = — ith f = —
wf ok with f o
1
=5

When looking at Figure 4.3, it seems that the first notch appears at the frequency of 0.3 Hz. Substituting
this frequency in the equation above gives

03 =

~ 1.1 seconds

e

The Fourier transform therefore confirms what ethereal also showed: packets are retransmitted twice
spaced by an interval of about 1.1 seconds, which is confirmed by the slight “hump” in the transform at
the frequency of 1 Hz. The found arch — or rather notch — patterns clearly indicate a finite number of
retransmissions.

4.4 Result of ARP analysis

While analysing one specific packet trace with ARP traffic, first a way to investigate the periodicities
present was developed. Although it was just a wild attempt, plotting the time intervals between the
arrivals of two successive packets did show useful results. The plot of the Fourier transform showed a
frequency of 100 Hz (and harmonics) and plotting the time intervals between two packets showed a line
at 0.01 seconds, which coincides with the frequency that was found. Filtering out the packets which
were responsible for this line eventually gave information about the machine that was responsible for the
presence of a periodicity with a frequency of 100 Hz. Still, why was it 100 Hz? Since the documentation
about the ARP protocol does not say anything at all about packets being sent every 0.01 second (or
even on some other interval), the 100 Hz should be a feature of the machine itself and has nothing to do
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with the ARP protocol. The best guess then is, that it has something to do with the internal clock of
the router/machine or with the characteristics of a possible virus on the machine that could be causing
this periodicity.

Making a Fourier transform of the traffic caused by this machine resulted in a figure with interesting
characteristics. The arch pattern could be giving some more insight into how the machine actually
behaves. It was shown that the pattern is there because of the finite repeated sending of ARP requests
and that a retransmission period can be deducted from it, or — in a more easy way — can be confirmed
by it. In Section 4.1, the presence of a 1 Hz signal due to these retransmissions was already predicted.
When looking at Figure 4.3, a hump at 1 Hz (and its harmonics) does show up. This again confirms the
idea of a periodicity due to retransmission of ARP requests.

The analysis of ARP traffic gave some answers towards the research of periodicities in network traffic in
general, but it also posed new questions (like the “sidebands” in Figure 4.3). Unfortunately, after quite
some brainstorming about these sidebands, it is not clear what caused these sidebands to appear.
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Chapter 5

User Datagram Protocol

The second and last type of traffic that is researched in this thesis is User Datagram Protocol (UDP)
traffic, of which a short description was given in Section 2.2.4. As in the previous chapter, some pre-
dictions on what traffic could cause periodicities are made first. Secondly, differences between UDP and
ARP traffic, which call for another research approach, are discussed. The different approach that has
been used is described as well. After that, one packet trace from the repository is analysed in full detail
which gives more insight in how the results from Section 5.5, which cover several more packet traces, are
gathered. Finally, some conclusions are drawn with respect to periodicities in UDP traffic and the use
of a developed tool is evaluated in the last section of this chapter.

5.1 Possible periodicities in UDP

Although UDP traffic is not connection oriented and there is no connection that is being set up between
two hosts, it is still imaginable that two hosts interact with each other on a periodic basis. Earlier it was
mentioned that multimedia streams use the UDP protocol as the transport protocol. This is a typical
kind of traffic that is causing periodic behaviour in Internet traffic, since these streams consist of chunks
of data being sent at some specific rate. Protocols that facilitate the streaming of audio and/or video
should therefore cause periodicities. The Domain Name System (DNS) protocol that was mentioned
briefly in Section 2.2.5, is also a candidate cause for periodicities, since it has a task that is similar
to that of the Address Resolution Protocol (discussed in the previous chapter): mapping one kind of
address to another. In the case of DNS, this is a mapping from hostnames (e.g. www.utwente.nl) to IP
addresses and vice versa. Again, requests to resolve an address might not be answered in time, which
causes retransmissions of these requests, which in turn would cause periodicities. As a consequence,
DNS servers that have the task to respond to these requests will probably be sending out responses in
a periodic pattern, which makes them a cause of periodic traffic as well. These two possible causes (the
streams and the DNS traffic) are already enough reason to take on UDP traffic in this chapter, but other
protocols may of course also cause periodic behaviour within UDP traffic. A selection of well known
protocols that were found during the research as possible causes for periodicities are listed in Section 5.5.
Before going into detail about the causes of periodicities in UDP traffic, a definition of what such a
“cause” is should be given. In the rest of this thesis, the cause of a periodicity is defined as follows:

The cause of a periodicity is a collection of packets which show peaks (or other periodicity
related phenomena, like notches) in their frequency domain and have one or more of the
following header fields set to the same value:

e Source port

e Destination port

e Source IP address
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e Destination IP address

Returning to the example of DNS traffic: if a client periodically sends requests to a DNS server, these
packets share the same source IP address, destination IP address and destination port number and are
designated as a cause of periodic traffic. The responses from the DNS server are also packets that have
some header fields set to the same value and these responses will be separately considered as a cause of
a periodicity, although this traffic is induced by the original request traffic.

5.2 How to analyse UDP frequency spectra

One of the tough problems in analysing frequency spectra is finding a way to relate peaks and other
phenomena to specific traffic in the original (time domain) data. In the previous chapter, the rather
simple approach was:

1. Determine the most dominant frequency f.

2. Plot the time intervals between two successive packets in a packet trace, to see if some pattern
(such as the line in Figure 4.2) occurs at the time interval of % seconds.

3. Isolate the packets that constitute this pattern: these packets are a likely cause of the peak that
was seen in the frequency spectrum.

In this section, the differences between ARP traffic and UDP traffic are discussed, which give even more
reason to search for another way of identifying traffic that is responsible for peaks in the frequency
spectra of packet traces.

5.2.1 Differences with ARP traffic

Apart from the problems that the above mentioned approach already has as described in Section 4.2, the
differences between the ARP protocol and UDP protocol give reason to think about another approach
towards identifying periodicities. The foremost difference between ARP traffic and UDP traffic is the
quantity of it that is travelling the Internet. In the packet traces that were used for the research, the
traces that contained both ARP traffic and UDP traffic showed that quantities of both types of traffic is
in the proportion of 1 to 15 during the night and in the proportion of 1 to 250 during office hours. This
large amount of traffic immediately results in the plots with interval times between successive packets to
become hard to analyse with the human eye. Of course this does not mean that the method has to be
discarded immediately, but it does give a hint that an automated process should do the work.

Another difference is the purpose that both protocols serve. In Chapter 2, the operational difference was
already explained: the UDP protocol resides on the Transport Layer and the ARP protocol resides on the
Host-To-Network Layer. This is no problem in principle: traffic on different layers could well be analysed
in the same way. What does cause problems is that the functionality of UDP traffic is more diverse: ARP
traffic is all about requesting Ethernet addresses and sending/receiving a reply for that request, whereas
UDP traffic is used by other protocols with totally different functions. Plots that indicate time intervals
between two successive packets make reasonable sense if those packets are of the same type or application
protocol, but those plots are practically useless if those packets probably haven’t got anything to do with
each other. Even if packets are of the same type or application protocol, it could still be that one packet
belongs to a complete other process than the other.

The problems with the already used approach and the differences between the two researched protocols
plead for a new approach with at least the following two properties:

e Human interaction in the analysis of traffic should be reduced as much as possible. This will result
in more accurate results, as well as a speed advantage.

e The used approach should be able to handle the different types of UDP traffic, so that periodicities
can be assigned to particular services and protocols that are present on the Internet.
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In the next section, the method that was developed and used for the research of UDP traffic is described
in a quite general sense. Chapter 6 describes the technical details on how this method is implemented
in a “Periodicity Analysis Tool” (pat) that was used during the research.

5.2.2 Binary search algorithm

The method to find a possible cause for a periodicity utilises an algorithm that is widely used in all kinds
of fields: the binary search algorithm. A useful property of this algorithm is that with each step it takes,
the number of possible causes for a periodicity is reduced by half. To clarify this, a short example is
worked out here. A more detailed (and technical) description of this algorithm is given in Section 6.2.4.
To identify a likely cause of a periodicity, the following steps are taken.

1. Take a Fourier transform of all UDP traffic in a trace.
2. Determine the dominant frequency.
3. Perform a binary search algorithm:

(a) Divide the possible causes in two ranges/halves (further explained in the example below).
(b)
(c) Determine which half still contains the dominant frequency that was determined in step 2.
(d) Discard the other half and go back to step 3a with this half.

Take a Fourier transform of both halves.

With packet trace 1oc3-20031002-1700, step 1 of the method results in Figure 5.1, which shows that
the dominant frequency (step 2) is 100 Hz. In the next step, the traffic is divided in two halves. But
there are several options to cut the traffic in half:

e Port based: starting off with a range of port numbers, one half will contain the first half of this
range and the other half will contain the second half of this range.

e Address based: starting off with a range of IP addresses, one half will contain the first half of this
range and the other half will contain the second half of this range.

In this example it is assumed that some destination port number (e.g. all traffic to DNS servers, which
corresponds to destination port number 53) is causing periodic traffic with a frequency of 100 Hz. Possible
port numbers lie in the range of 0 through 65535. Dividing this in two halves will result in a part with
port numbers in the range of 0 through 32767 and a part with port numbers in the range of 32768
through 65535. Taking the Fourier transform of both parts results in Figure 5.2, where the upper half is
plotted in blue, and the lower half in black.

The figure clearly shows that the dominant frequency is still present in the lower half of port numbers
and not seen in the upper half. Therefore the upper half of port numbers can be thrown away and
another step in the binary search algorithm can be taken with the lower half. This means that the lower
half is again split in two ranges of port numbers: 0 through 16383 and 16384 through 32767. Again two
Fourier transforms are calculated, compared and a “winning” half is chosen in the same way as before.
Making the choice for such a winning half can be easy, but Figure 5.3 shows what could happen after
more reduction steps.

Although the choice for a winner would clearly be the lower (black) side of the remaining plot number
range, it can not be denied that the higher (blue) side of the range is also contributing to the dominant
frequency of 100 Hz that was found earlier. This does not have to be a problem: proceeding with the
lower half will ultimately give a destination port number that is likely causing the periodicity. Traffic
with this destination port number can then be removed from the original packet trace, after which
another run of the tool can be done on the remaining traffic. This again includes a new search for a
dominant frequency. With one cause already cancelled out now, it is likely that the “blue peak” could
be the winner in one of the next runs. This process of determining a cause, removing this cause from
the original traffic and running the tool again on the remaining traffic can be repeated until all possible
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Figure 5.1: Fourier transform of the UDP traffic in 1loc3-20031002-1700.
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Figure 5.2: First step in the binary search algorithm for a destination port number.
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Figure 5.3: Tenth step in the binary search algorithm for a destination port number.

causes that are contributing to a periodicity are found; also the ones that were thrown away in previous
runs of the algorithm.
The log file (created by the tool) gives the following information about the step in Figure 5.3:

Processing bit 10...

Low peak (17408 packets) : 9012.32523

High peak (582 packets) : 302.89457

Low side wins with a relative difference of 2875.40%

It shows that the lower side contained about 30 times as many packets as the high side and that the
absolute value of its Fourier transform is also about 30 times bigger, which makes it the winner in this
step. This reveals a negative aspect of the tool: the choice for a winner is highly influenced by the
number of packets within the ranges that are examined. This has an immediate negative effect on the
ability to find periodicities. Suppose that packets causing some periodicity end up in one range, and
many more packets which show no sign of periodic behaviour at all (e.g. white noise) in the other. The
tool would probably designate the white noise as the cause of the periodicity, since its Fourier transform
may have a higher absolute value than the Fourier transform of the traffic that actually s causing the
periodicity. Further steps in the algorithm will be taken with the side containing the white noise, which
results in useless guesses about possible causes of the periodicity that was found in the first place. This
is not only a theoretical problem: the tool sometimes did get fooled by this effect.

It should also be kept in mind that the search for a responsible destination port was just based on
an assumption. The phenomenon seen in Figure 5.3 could also be caused by some source host that is
contacting several other machines with different port numbers on the Internet. If it is this source host
that is the actual cause of the periodicity, the binary search algorithm will of course work for a while,
but eventually the destination machines involved (or better: the destination port numbers) will end up
in the different halves that are examined in one step of the algorithm and a situation like the one in
Figure 5.3 is created. Therefore, it is important not to stick with one possible cause of a periodicity,
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but to try and see on which of the four possible causes mentioned earlier the binary search algorithm
gets its best results. The tool makes this possible by outputting PCAP files containing the traffic that is
believed to cause the periodicity. Fourier transforms of these packet traces can then show which packet
trace is the most likely cause.

5.3 A first packet trace examined

To get an idea on how the Periodicity Analysis Tool works, this section shows how one packet trace
is examined from start to end. The results given by the program are discussed, together with Fourier
transforms of the traffic that seemed to cause a periodicity.

Starting off with all the UDP traffic in packet trace 1oc1-20020626-0415, Figure 5.4 on page 41 is
generated by taking a Fourier transform. The transform shows some high absolute values at the frequency
of 100 Hz and harmonics of this frequency, which clearly indicates a periodicity present in the traffic. On
the following pages, this particular packet trace is examined for periodicities with help of the Periodicity
Analysis Tool. The frequency reported by the tool is given, a Fourier transform of the traffic that is
believed to cause the periodicity and a part of the traffic is printed as tcpdump output. These three
sources of information should give a clue about the actual cause of some periodicity.

A first run of the tool, shows that the dominant frequency in the trace is 99.996 Hz and that DNS traffic
(discussed in the next section) might be causing this periodicity. Looking at the output PCAP files of
the program, the likely cause of this periodicity proves to be traffic from a host with the (scrambled)
IP address 135.216.206.244 with port number 1025, which is sending packets to several DNS servers
on port 53. Taking this traffic apart from the trace and generating its Fourier transform results in
Figure 5.5. The most dominant (fundamental) frequencies are approximately 0.2, 2 and 100 Hz. A part
of the trace that was transformed in Figure 5.5 is given here:

03:19:55.645137 IP 135.216.206.244.1025
03:19:55.647696 IP 135.216.206.244.1025
03:19:55.662305 IP 135.216.206.244.1025
03:19:55.683275 IP 135.216.206.244.1025
03:19:55.712405 IP 135.216.206.244.1025
03:19:57.112675 IP 135.216.206.244.1025
03:19:59.663072 IP 135.216.206.244.1025
03:19:59.664180 IP 135.216.206.244.1025
03:19:59.665262 IP 135.216.206.244.1025
03:19:59.666344 IP 135.216.206.244.1025
03:19:59.702567 IP 135.216.206.244.1025
03:19:59.722470 IP 135.216.206.244.1025
03:20:01.132956 IP 135.216.206.244.1025
03:20:03.663191 IP 135.216.206.244.1025
03:20:03.664438 IP 135.216.206.244.1025

201.198.86.137.53: 43459[ |domain]
204.120.103.25.53: 63793[|domain]
201.198.86.137.53: 38827[|domain]
201.198.86.137.53: 16128[ |domain]
201.198.86.137.53: 8064[|domain]
209.41.168.247.53: 51087[ |domain]
209.52.65.20.53: 29815[ |domain]
209.52.65.20.53: 22705[ |domain]
209.52.65.20.53: 46230[ |domain]
209.52.65.20.53: 27947[|domain]
209.52.65.20.53: 64251[ |domain]
209.52.65.20.53: 60878[ |domain]
132.41.193.87.53: 63207[ |domain]
221.207.238.203.53: 16264[ |domain]
209.0.129.195.53: 40900[ |domain]

VVVV VYV VYV VYV YVYVYVYVYV

Several DNS servers are getting queries from one host. Some queries are transmitted only 1 ms apart
from each other, but some intervals are as large as 1.4 seconds. The information from this packet trace
is hard to relate to the peaks in Figure 5.5. In Section 5.5.2, an attempt is made to relate the found
periodicities to the specification of DNS, given in RFC 1035.

When some periodicity has been identified, the traffic that is believed to cause this periodicity is removed
from the original packet trace. On the traffic that remains after the filtering of the found periodicity,
another run of pat is done and other periodicities may be identified.

After filtering the packet trace in this example from all DNS traffic, the next dominant frequency found
is that of 16.000 Hz, which is caused by traffic from IP address 135.216.205.122 with port number 67,
sent to 135.216.202.135 with port number 68. These are the port numbers that are associated with the
Bootstrap Protocol (BOOTP), explained in Section 5.5.1. A Fourier transform of this traffic is shown in
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Figure 5.4: Fourier transform of all the UDP traffic in 10c1-20020626-0415 (183,251 packets).
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Figure 5.5: Fourier transform of DNS traffic from a specific host to several DNS servers (1,561 packets).
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Figure 5.6 The first peak seen in the figure is at the frequency of 2 Hz. The dominant frequency (about
16 Hz) that was determined by the tool was the frequency with the highest absolute value in the Fourier
transform, but it is a harmonic frequency of the actual frequency of the periodic traffic. This means that
the tool does not necessarily return the fundamental frequency of the periodicity, but may also report on
a more dominant harmonic frequency that is present. The pattern seen in the figure is further described
in Section 5.4.

The next dominant frequency in the packet trace is that of 1.640 Hz, and was caused by traffic between
to hosts with 1028 as the source port number and 1900 as the destination port number. Port number
1028 is not associated with any service or protocol and port number 1900 is associated with the Simple
Service Directory Protocol. The limited documentation available for this protocol made it impossible
to determine whether it could be this protocol that was actually running on that port, causing the
periodicity. Figure 5.7 shows the Fourier transform of this traffic. This plot shows a pattern that is
similar to the arch pattern found in Chapter 4. A peak is present around 1.6 Hz, but another, even
higher, peak can be seen at 2 Hz. Using this traffic as the input for tcpdump, the output has the
following pattern:

03:24:48.496588 IP 135.216.204.196.1028
03:24:48.496731 IP 135.216.204.196.1028
03:24:48.999182 IP 135.216.204.196.1028
03:24:48.999284 IP 135.216.204.196.1028
03:25:13.496892 IP 135.216.204.196.1028
03:25:13.496994 IP 135.216.204.196.1028
03:25:13.999464 IP 135.216.204.196.1028
03:25:13.999561 IP 135.216.204.196.1028
03:25:38.498163 IP 135.216.204.196.1028
03:25:38.498273 IP 135.216.204.196.1028
03:25:39.000187 IP 135.216.204.196.1028
03:25:39.000285 IP 135.216.204.196.1028

135.216.205.122.1900: UDP, length: 132
135.216.205.122.1900: UDP, length: 133
135.216.205.122.1900: UDP, length: 132
135.216.205.122.1900: UDP, length: 133
135.216.205.122.1900: UDP, length: 132
135.216.205.122.1900: UDP, length: 133
135.216.205.122.1900: UDP, length: 132
135.216.205.122.1900: UDP, length: 133
135.216.205.122.1900: UDP, length: 132
135.216.205.122.1900: UDP, length: 133
135.216.205.122.1900: UDP, length: 132
135.216.205.122.1900: UDP, length: 133

VV V V V YV V V VYV VYV

Every 25 seconds, the following event occurs: two packets are sent 0.0001 seconds apart from each other
and 0.5 seconds later another two packets are transmitted 0.0001 seconds apart from each other. The
frequency associated with the 0.0001 seconds interval is way beyond the Nyquist frequency and therefore
not visible in the picture: these two packets are just too close to each other to be separately noticed
when using a sampling period of 1 ms. As a result, only the frequencies associated with 0.5 seconds
(2 Hz) and 25 seconds (0.04 Hz) are visible in the figure. The 1.6 Hz frequency that was found earlier is
a harmonic frequency of the latter frequency. The notches at 1 Hz, 3 Hz, 5 Hz etc. are also caused by
the finite recurrence of two packets at an interval of 0.5 seconds, which will be explained in Section 5.4.

The next type of periodic traffic found in the trace is again BOOTP traffic, but this time it is broadcast
traffic to destination port 67, which is the port number of a BOOTP server. The frequency is now 16.000
Hz, which lies very close to the frequency that was found earlier for BOOTP traffic from a server to a
client. Plotting this broadcast traffic results in Figure 5.8, which is quite similar to Figure 5.6, where the
traffic from server to client was transformed. That traffic and this broadcast traffic are directly related to
each other: the packet traces showed that both periodicities were caused by the same IP addresses. The
first peak is seen at 2 Hz, so the tool again reported a harmonic frequency instead of the fundamental
frequency.

Traffic sent from the SNMP (Simple Network Management Protocol, see Section 5.5.7) port of one host
to the SNMP trap port of another is the next kind of traffic, that was found as a likely cause of a
periodicity. The analysis tool reported a frequency of 1 Hz, and taking the Fourier transform of the
responsible traffic resulted in Figure 5.9. Although this figure seems to have some none random pattern
in its Fourier transform, it is not as easily analysed as the other transforms seen so far. One possibility
is this traffic is random and that the noise beyond the Nyquist frequency is “folded back” (aliased),
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Figure 5.6: Fourier transform of BOOTP traffic from one server to one client (2587 packets).
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Figure 5.7: Fourier transform of traffic to port number 1900 (144 packets).
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Figure 5.8: Fourier transform of BOOTP broadcast traffic (1377 packets).
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Figure 5.9: Fourier transform of SNMP trap traffic (130 packets).
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which seems to create a pattern. Noise effects could be reduced by implementing a low pass filter so that
frequencies beyond the Nyquist frequency are filtered out in advance.

The Samba protocol, operating on ports 137 to 139, also causes periodic behaviour. In Figure 5.10, the
Fourier transform of traffic from one host’s port 137 to another host’s port 137 is shown.
The packet trace that was transformed shows an interesting pattern:

03:29:17.625347 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:19.127770 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:20.629490 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:26.638486 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:28.140552 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:29.642542 TP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:35.651276 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:37.153658 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:38.655573 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:44.664301 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:46.166656 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:47.669103 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:53.678279 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:55.180606 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]
03:29:56.681734 IP 135.216.4.148.137 > 135.216.205.36.137: [|SMB]

After the first packet, the second is sent after 1.5 seconds. The interval between the second and the
third packet is 1.5 seconds. The interval between the third and fourth packet is 6 seconds. From the
fourth packet on, this pattern repeats itself: two intervals of 1.5 seconds are followed by one of 6 seconds.
The length of one pattern is 9 seconds. The corresponding frequency for this is 1/9 ~ 0.11 Hz, which
explains the peak seen just to the right of 10~! Hz. The period of 1.5 seconds corresponds to a frequency
of 0.67 Hz, which is also showing up in the figure. Notches are also present in the figure, which will be
discussed in Section 5.4.

Figure 5.11 shows the transform of the traffic that is responsible for the next found periodicity of 100.000
Hz. It is all traffic originating from one host, with source port 1864. According to the TANA list of well
known port numbers, this port number is used by “Paradym 317!. For this particular program, no
standards or specifications are freely available so the found periodicity can not be clearly related to this
program. Furthermore, the fact that TANA has registered this port number for this program, does not
mean that all traffic sent to or from this port must have something to do with that program.
Remarkable is that the peaks in this figure are relatively strong compared to the peaks that were found
in the earlier stages of the analysis but did not show up as dominant frequencies earlier. This might be
another shortcoming of the algorithms used in the tool or it might just be inherent to the data that has
been used.

The Time protocol, which operates on port 37, is the next cause of a periodicity at the reported frequency
of 1.613 Hz. The tool reported that the possible cause of this periodicity could be traffic that is sent to
one specific Time server. Figure 5.12 shows the Fourier transform of that traffic. The first peak is seen
around 0.3 Hz. The following peaks all seem to be harmonic frequencies. The output PCAP file which
was generated by the tool, with all the traffic to port 37 on the (scrambled) IP address 135.216.4.228,
shows nothing special at first:

03:15:01.300364 IP 135.216.181.21.1024
03:15:01.318269 IP 135.216.181.27.1024
03:15:01.462261 IP 135.216.181.28.1024
03:15:01.463355 IP 135.216.181.30.1024
03:15:01.464054 IP 135.216.181.17.1024

135.216.4.228.37: UDP, length:
135.216.4.228.37: UDP, length:
135.216.4.228.37: UDP, length:
135.216.4.228.37: UDP, length:
135.216.4.228.37: UDP, length:

V V. V V V
O O O OO

Ihttp://www.synapsesystem.com/paradym31.html
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Figure 5.10: Fourier transform of Samba traffic on port 137 (222 packets).
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Figure 5.11: Fourier transform of traffic from port number 1864 (1612 packets).
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03:15:01.532930 IP 135.216.181.3.1024 > 135.216.4.228.37: UDP, length: O
03:15:01.678443 IP 135.216.181.22.1024 > 135.216.4.228.37: UDP, length: 0
03:15:01.828883 IP 135.216.181.26.1024 > 135.216.4.228.37: UDP, length: 0
03:15:01.865782 IP 135.216.181.50.1024 > 135.216.4.228.37: UDP, length: 0
03:15:01.912787 IP 135.216.181.46.1024 > 135.216.4.228.37: UDP, length: 0
03:15:02.081956 IP 135.216.181.35.1024 > 135.216.4.228.37: UDP, length: 0
03:15:02.116289 IP 135.216.181.37.1024 > 135.216.4.228.37: UDP, length: 0
03:15:02.143719 IP 135.216.181.20.1024 > 135.216.4.228.37: UDP, length: 0
These are all different hosts sending packets to the same Time server, but with completely unrelated

time stamps. However, when this trace is divided per source host, the packet traces per host all show
the same pattern:

03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:

15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:

01.
04.
07.
10.
13.
16.
19.
23.
26.
29.
32.

300364
446701
501419
600876
747398
802028
902252
049271
129488
230975
349692

IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP

135.
135.
135.
135.
135.
135.
135.
135.
135.
135.
135.

216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.

181.
181.
181.
181.
181.
181.
181.
181.
181.
181.
181.

21.
21.
21.
21.
21.
21.
21.
21.
21.
21.
21.

1024
1024
1024
1024
1024
1024
1024
1024
1024
1024
1024

VV VYV V VYV YV VVYV

135.
135.
135.
135.
135.
135.
135.
135.
135.
135.
135.

216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.

IS N NG SO N N O N N N

.228.
.228.
.228.
.228.
.228.
.228.
.228.
.228.
.228.
.228.
.228.

37: UDP,
37: UDP,
37: UDP,
37: UDP,
37: UDP,
37: UDP,
37: UDP,
37: UDP,
37: UDP,
37: UDP,
37: UDP,

length:
length:
length:
length:
length:
length:
length:
length:
length:
length:
length:

[eNeNeNoNoNeNeNoNoNoNo]

This clearly indicates that every host is sending packets to the Time server, at a rate of 1 packet per 3
seconds. This immediately explains the frequency of 0.33 Hz.

The next frequency that is reported by the tool as a dominant frequency is 32.000 Hz. The output PCAP
most of the time, the traffic is sent in the following pattern:

file showed that the

03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:

15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:

17.
19.
21.
23.
25.
27.
29.
31.
33.
35.
37.

603375
603517
603432
603467
603495
603528
603554
603586
603652
603636
603678

IP
IP
IP
IP
IP
IP
IP
IP
IP
IP
IP

135.
135.
135.
135.
135.
135.
135.
135.
135.
135.
135.

216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.

201.
201.
201.
201.
201.
201.
201.
201.
201.
201.
201.

137.
137.
137.
137.
137.
137.
137.
137.
137.
137.
137.

3334
3334
3334
3334
3334
3334
3334
3334
3334
3334
3334

VV V V V YV YV VVYVYV

39.
39.
39.
39.
39.
39.
39.
39.
39.
39.
39.

152.
152.
152.
152.
152.
152.
152.
152.
152.
152.
152.

218.
218.
218.
218.
218.
218.
218.
218.
218.
218.
218.

84.
84.
84.
84.
84.
84.
84.
84.
84.
84.
84.

1025:
1025:
1025:
1025:
1025:
1025:
1025:
1025:
1025:
1025:
1025:

UDP,
UDP,
UDP,
UDP,
UDP,
UDP,
UDP,
UDP,
UDP,
UDP,
UDP,

length:
length:
length:
length:
length:
length:
length:
length:
length:
length:
length:

58
58
58
58
58
58
58
58
58
58
58

At a quite accurate rate of two packets per second, packets are sent from host to another, corresponding
to a frequency of 0.5 Hz, which actually is the first peak seen in Figure 5.13. The port number 3334
corresponds to the web casting service of DirecTV. In Section 5.1, the presence of periodicities as a result
of multimedia streams was already seen as as a possible outcome. If the traffic above is indeed originating

from a web casting service, the assumption made about multimedia streams is now confirmed.

The previous causes of periodicities were all related to a well known protocol, or at least to some fixed
port number. The following traffic that was found by the analysis tool (at 6.545 Hz), does show peaks
in its Fourier transform which confirms the periodic activity, but the traffic is sent from different port
numbers on the same host:

03:18:43.863520 IP 135.216.206.199.1136 > 135.216.185.14.39213:
03:18:43.864060 IP 135.216.206.199.1137 > 135.216.185.14.39213:
03:18:45.085559 IP 135.216.206.199.1138 > 135.216.185.14.39213:
03:18:46.307050 IP 135.216.206.199.1139 > 135.216.185.14.39213:

UDP, length:
UDP, length:
UDP, length:
UDP, length:

268
112
824
268
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Figure 5.12: Fourier transform of Time traffic (11983 packets).

0 .

-4 -3 -2 -1 0 1 2
10 1a 10 10 10 10 10
Freguency
rHz}

Figure 5.13: Fourier transform of DirecTV traffic (582 packets).
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03:18:46.307593 IP 135.216.206.199.1140
03:18:48.139957 IP 135.216.206.199.1141
03:18:48.750559 IP 135.216.206.199.1142
03:18:48.751113 IP 135.216.206.199.1143
03:18:51.194069 IP 135.216.206.199.1144
03:18:51.195032 IP 135.216.206.199.1145
03:18:51.195301 IP 135.216.206.199.1146

135.216.185.14.39213: UDP, length: 112
135.216.185.14.39213: UDP, length: 824
135.216.185.14.39213: UDP, length: 268
135.216.185.14.39213: UDP, length: 112
135.216.185.14.39213: UDP, length: 268
135.216.185.14.39213: UDP, length: 824
135.216.185.14.39213: UDP, length: 112

V V V V V V VvV

The host with scrambled IP address 135.216.206.199 is firing away packets from successive port num-
bers. The reason for this traffic is unclear: packets are sent at a rate that is not constant and the
destination port (39213) is not related to any well known protocol or service. If it were the other way
around, one could suspect some kind of port scanning activity going on, but examining the original
packet trace for traffic from 135.216.185.14 to 135.216.206.199 shows no packets at all. Perhaps this
machine is infected with some kind of virus or worm which causes it to send out rubbish. Figure 5.14
shows the Fourier transform of this “scan’-like traffic. From the complete packet trace (of which a small
part is shown above) it seems that packets are sent in groups of two or three packets at a time, with an
interval of 2.5 seconds. This corresponds to a frequency of 0.4 Hz, which is shown in the figure. Because
the source of this traffic is using successive port numbers, no specific protocol or service can be assigned
to this periodicity.

The next frequency found by the tool is 32.010 Hz, which is confirmed by Figure 5.15: it shows a peak
next to 30 Hz. The related packet trace shows traffic originating from port 800, and sent to machines
with port 2049. The part which seems responsible for the mentioned frequency is:

03:28:13.114675 IP 135.216.194.68.800
03:28:13.115027 IP 135.216.194.68.800
03:28:13.116613 IP 135.216.194.68.800
03:28:13.116967 IP 135.216.194.68.800
03:28:13.117317 IP 135.216.194.68.800
03:28:13.117669 IP 135.216.194.68.800
03:28:13.144947 TP 135.216.194.68.800
03:28:13.145236 IP 135.216.194.68.800
03:28:13.145651 IP 135.216.194.68.800
03:28:13.146003 IP 135.216.194.68.800
03:28:13.147590 IP 135.216.194.68.800
03:28:13.147942 IP 135.216.194.68.800
03:28:13.148293 TP 135.216.194.68.800
03:28:13.148647 IP 135.216.194.68.800
03:28:13.174644 IP 135.216.194.68.800
03:28:13.174996 IP 135.216.194.68.800
03:28:13.175348 IP 135.216.194.68.800
03:28:13.175699 IP 135.216.194.68.800
03:28:13.177218 TP 135.216.194.68.800
03:28:13.177571 IP 135.216.194.68.800
03:28:13.177922 IP 135.216.194.68.800

135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216
135.216.207.22.2049: UDP, length: 4216

VVVVVVVVVYVVVVYVYVVVYVYVYVYV

Groups of around 8 packets are sent with an interval of around 0.03 seconds, which corresponds to the
found frequency. The port number 800 is associated with the “MDBS” protocol or service and the port
number 2049 is associated with the Networked File System (NF'S). The MDBS protocol seemed to have
no documentation available and it is therefore impossible to explain the periodicity with respect to that
protocol. The Networked File System protocol is a widely used protocol and could theoretically be the
cause of this periodicity (see details in Section 5.5.3).

The traffic that still remained in the packet trace after the removal of these periodicities, showed no more
significant periodic activity (see Figure 5.16) and the analysis of this packet trace is considered done.
From the original 183251 packets in the trace, 9431 remained.
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Figure 5.15: Fourier transform of traffic from port 800 to port 2049 (724 packets).
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Figure 5.16: Fourier transform of the traffic remaining after the removal of periodicities (9431 packets).
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5.4 Common patterns in UDP frequency spectra

Most of the patterns that showed in the frequency spectra of traffic that seemed responsible for the
presence of a periodicity, were series of notches and/or a series of sharp peaks. When examining the
traffic data in the time domain, it became clear that most of the time, the traffic has the (time domain)
form depicted in Figure 5.17. A group op n packets is sent every T seconds. The packets within each

1
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-
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Figure 5.17: Common time domain pattern of periodic traffic.

group are sent T}, seconds apart from each other. This behaviour can be simulated in MATLAB with the
code from Listing 5.1. The total time of the simulation is 900 seconds, since this corresponds with the 15
minute length of the packet traces. The rest of the variables can be set to any (realistic) value. Taking
the Fourier transform of the signal built in the example gives Figure 5.18.

This shows that a repeating signal of 1 packet at a time at a frequency of 1 Hz causes a peak to show up
at this frequency and all the harmonics of this frequency. The Fourier transforms shown in the previous
sections — as well as in Chapter 4 — are not noise free. Adding phase noise to the signal in this example
gives Figure 5.19. The same pattern is still showing, but this time the peaks more to the right of
the plot are decreasing in their absolute value. Whether there is noise present or not: a series of peaks
(at some fundamental frequency and harmonic frequencies) indicates a that a strong infinitely repeating
signal is present.

The presence of notchesin a Fourier transform was already discussed in Section 4.3: a finite number
of retransmissions causes these notches to appear. Combining these two phenomena (both the infinite
repeating of a signal and a finite number of retransmissions) results in a signal seen earlier in Figure 5.17.
groups of a finite amount of packets get sent at a fixed mutual interval. In turn these groups are infinitely
repeated at a fixed interval.

Simulating this behaviour with a number of 2 packets sent at a time (spaced with 0.01 seconds) at an
interval of 1 second, results in Figure 5.20. Now both peaks and notches show up in a clear way. The
figure also shows resemblance to the BOOTP figures seen in Section 5.3. This shows that the repeatedly
sending of groups of packets, which are very close to eachother results in a Fourier transform showing
peaks at the frequency of the sending of groups of packets and that notches are created by the frequency
within such a group.

The difference between the last simulation and the BOOTP figures are the arches which are running
through the peaks. In all three simulations so far, T, = 1 was chosen, which is a divider of the whole
time period of 900 seconds. If T, = 1.007 is chosen, the total time period can not be divided in a
round number of intervals. Leaving n = 2 and T, = 0.01, Figure 5.21 is the result, which shows the
abovementioned effect.

5.5 Analysis of UDP spectra

In Section 5.3 one packet trace was thoroughly analysed. This section shows the results that were
gathered by examining other packet traces with the tool. Per protocol or service that was believed to
cause a periodicity, the frequency that was associated with it is given. If necessary, a short functional
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Figure 5.19: Fourier transform of a signal with n =1 and T, = 1 (with noise).
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Figure 5.20: Fourier transform of a signal with n =2, T, = 1 and 7}, = 0.01.
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Figure 5.21: Fourier transform of a signal with n = 2, T, = 1.007 and 7;, = 0.01.



CHAPTER 5. USER DATAGRAM PROTOCOL 95

% Total time
Tend = 900;

% Sampling interval (seconds)
5 |t = 0.001;

% Period of time between groups of packets (seconds)
Tg = 1;

10 | % Period of time between two packets of one group (seconds)
Tp = 1;

% Number of packet within one group
n=1;
15
% Add phase noise (1 for yes, 0 for no);
noise = 0;

% Calculation of the signal
20 |ind=1:Tg/t:Tend/t;
f=zeros(1,2/22);

% Add phase noise to groups

ind = ind + noise*rand(1l,length(ind))=*2;

25

% Create packets in groups

for i = 0:n-1
f(floor(ind+i*Tp/t))=1;

end

30

% Build the signal

f(floor(ind)) = 1;

Listing 5.1: MATLAB code to recreate common patterns of periodic traffic.

description of the protocol is given. Finally, an effort is done to explain this exact frequency, based on
the standard (e.g. an RFC) in which this particular protocol is described.

5.5.1 Bootstrap Protocol

The Bootstrap Protocol (BOOTP), which is defined in RFC 951, makes it possible for booting hosts to
configure their network settings themselves without user intervention. When a host boots, it will send
out (broadcast) a BOOTREQUEST message to port 67, which is the standard port for a BOOTP server.
If such a server exists on the network, it will reply with a BOOTREPLY message, which contains the
configuration information for the client. The RFC of the BOOTP protocols mentions that a successful
“BOQTP procedure” only takes a single packet exchange. Since a single packet exchange can not be the
cause of a periodicity, the periodic behaviour caused by the BOOTP protocol should be the result of some
error. The only error that can occur is that a host sends out its BOOTREQUEST message, but does not
receive a BOOTREPLY message. According to the RFC, timeouts are used to retransmit requests until
a reply is received. This is exactly what will cause periodic traffic, if requests keep getting unanswered.
The definition of the BOOTP protocol does not give any information about the time interval that should
be chosen for the timeout, so no specific frequency can be assigned to this protocol.
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5.5.2 Domain Name System

In Section 2.2.5, the Domain Name System was already mentioned as the translator between hostnames
and TP addresses. In this chapter the focus is more on how protocols and services do their work and
how this could result in period traffic. A lot of protocols and services work with a request and reply
system. For DNS, this is true as well. When a host needs a translation from a hostname to an IP
address or the other way around, it sends a query to a DNS server (port 53), which then replies with
the correct translation. Since this discussion is about DNS over UDP, which can result in the loss of
packets, a retransmission strategy should again be used. RFC 1035 does not give a specification on the
retransmission strategy that should be used, but does give the following recommendations for it:

e The client should try other servers and server addresses before repeating a query to a specific
address of a server.

e The retransmission interval should be based on prior statistics if possible. Too aggressive retrans-
mission can easily slow responses for the community at large. Depending on how well connected
the client is to its expected servers, the minimum retransmission interval should be 2-5 seconds.

If these recommendations are implemented, the Domain Name System will cause periodicities with
frequencies ranging from 0.2 to 0.5 Hz. Returning to the previous section were DNS was causing a
periodicity, these two recommendations seem to be implemented by the client which was sending the
queries: multiple DNS servers are contacted and the frequency of 0.2 Hz is showing up in the Fourier
transform. It is, however, still not clear what is causing the higher frequencies to show up in the transform
on page 41.

5.5.3 Network File System

The Network File System (NFS), described in RFC 3035, is a distributed file system protocol. The main
idea behind this protocol is to make files available for other hosts (called clients) on the network. These
clients can then “mount” these file systems and perform operations on it as if it were a local file system.
The whole operation of the protocol relies on commands (e.g. OPEN and CLOSE commands) sent from
a client to a server over either TCP or UDP. The possible cause of periodicities within the NF'S protocol is
again the retransmission of these commands if no reply is received upon them. The protocol specification
does not give a (recommendation for) a fixed retransmission period, so the frequency that was found in
the previous section can not be confirmed by the specification. Another reason for periodicities caused
by the NFS protocol could be the streaming of some file from a mounted Network File System.

5.5.4 (Network) Time Protocol

The Time protocol (port 37, RFC 868) and the more sophisticated Network Time Protocol (port 123,
RFC 1305) both have the same function: supplying the possibility to synchronise internal clocks of
multiple hosts. The client sends a request to a time server and receives a reply with information which
enables the client to synchronise its clock to the server’s clock. Again one might expect periodicities
because of the following reasons

e A client sends a request but does not receive a reply and will retransmit requests until it does
receive a reply.

e A client regularly wants to synchronise its clock with the time server, which causes requests to be
sent every few minutes, hours or days. In this case periods of hours and days can not be detected:
the packet traces only contain 15 minutes of traffic.

The client again decides the retransmission interval, so no fixed frequency can be associated with this
protocol.
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5.5.5 Real-time Transport Protocol

In sections 2.2.4 and 5.1, the streaming of multimedia was already considered as a popular application on
top of the UDP protocol, which could also cause periodic behaviour. Some packet traces indeed showed
the RTP protocol as a cause of periodicities. The Fourier transforms of RTP traffic shows a lot of peaks,
which do not seem related to each other (see Figure 5.22). In this section, an effort is done to explain
why there is no clear pattern between these peaks.
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Figure 5.22: Fourier transform of RTP traffic (multiple streams).

When streaming multimedia files, a client requests a file from a certain server. The server then sends
the file to the client by segmenting the file. These segments are then encapsulated with special headers.
The Real-time Transport Protocol (RTP) is a standard protocol capable of encapsulating such segments
and is used by applications like QuickTime and RealPlayer. RFC 3550, which gives a specification of the
RTP protocol and the related RTCP protocol (Real-time Transport Control Protocol), has the following
information about the periodic traffic that these two protocols are causing:

e Several clients can request the same multimedia file at the same time. To keep track of the amount
of clients that are still present and the reception quality of those clients, these clients periodically
send out so-called reception reports through the RTCP protocol.

e RTP-packets (which contain the actual stream) encapsulate the segments of data that should be
sent to the client(s). It is possible that these segments are sent out periodically as well.

So in real-time streaming applications, the RTCP messages are more likely to cause periodic traffic
than the RTP messages containing the stream itself. The RFC specifies how the RTCP transmission
interval should be calculated in sections 6.2 and 6.3.1. Unfortunately, this transmission interval (and
therefore also the frequency) is not fixed: if reception reports from clients would be sent out at a constant
rate, the amount of control traffic would grow linearly with the amount of clients. The RFC mentions
more factors that influence the RTCP transmission interval, which make it even more difficult to state
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something about a specific frequency (range) that could be related to RT(C)P traffic. This also explains
the amount of (unrelated) peaks in Figure 5.22.

5.5.6 Samba

Samba? is a software suite that runs on Unix systems. Its goal is to integrate Unix systems in a Windows
environment. Probably the most used feature of the Samba suite is the sharing and accessing files on
a network. Although “Samba” is the name of Unix software, it is more widely used as a synonym for
the protocol it implements: the Server Message Block (SMB) protocol, which is the protocol that is also
used between two Windows machines for sharing files and printers. The SMB protocol also works with
a request and reply paradigm: a client that wants to access files shared by a server, communicates with
that server with certain commands (e.g. open and close) to which a server responds. In that sense, the
idea of Samba is quite the same as that of the Network File System, described in Section 5.5.3. For this
reason, one might expect the same type of periodicities in Samba traffic as in NFS traffic.

5.5.7 Simple Network Management Protocol

The Simple Network Management Protocol also showed periodic behaviour in some packet traces. The
protocol is described in RFC 1157 and was developed to facilitate management of network devices (e.g.
routers, switches). SNMP is another request/reply protocol that uses two types of request messages.
One type is a request to get status information about a device: the traffic load on that specific device for
example. The other type is a request message to set certain parameters in the device. These messages
should not be causing periodicities at all, but in the previous section SNMP traffic did show periodic
activity. The destination port number that was associated with the traffic, already showed that it were
so-called SNMP “traps” that were causing the periodic behaviour. Traps have nothing to do with the
above mentioned “get” and “set” requests that are sent by a managing device, but get sent by the managed
device unsolicited in case of an error or some other important event. So the periodicity found earlier was
probably caused by a device that was repeatedly reporting errors to a managing device. Unfortunately,
the payload of packets in the packet trace is not available, so it can not be confirmed what the actual trap
message was. Neither can a specific frequency be assigned to SNMP trap traffic, since the transmission
interval of the traps depend on the origin of the trap.

5.5.8 Online games

The last type of traffic that is worth mentioning is caused by (real-time) online games. A lot of traffic that
showed periodic behaviour was traffic sent from/to ports beyond port number 25000. When searching
for applications related to those port numbers, mostly titles of popular games that can be played online
show up (e.g. Quake III, HalfLife). Typical fundamental frequencies that were associated with this
traffic lie in the range of 10 Hz to 100 Hz, which means that these hosts sent information to each other
with transmission intervals between 10 and 100 ms. It is imaginable that this is information about the
status of the players in the game: their location within the game, the weapon they’re carrying etc. This
is all information that has to be updated regularly in order to keep the game real-time. Online games
are therefore a very plausible cause of periodicities.

5.6 Result of UDP analysis

5.6.1 Causes of periodicities

The most natural cause of periodic traffic is real-time traffic, like the streaming of multimedia and
the exchange of information by online games. The synchronising of clocks through time protocols also
caused periodicities to show up. These are types of traffic that show periodic behaviour simply because

2h'ctp ://www.samba.org
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of their nature and function. However, periodicities are also caused by traffic that does not have these
characteristics.

Many UDP protocols implement the request/reply paradigm: a client sends a request which should be
replied upon by a server. If no reply is received, the client sends it request again until it receives a reply.
These retransmissions of requests result in periodic traffic, which was also the case with the DNS traffic.
Another cause of periodic behaviour was SNMP trap traffic, probably caused by a failing network device
which repeatedly reported the failure. Abnormal behaviour of certain machines, like the “scan”like
traffic seen in Section 5.3, was also detected as periodic behaviour by the periodicity analysis tool. One
conclusion therefore is that many periodicities in UDP traffic are caused by error-like behaviour: replies
not being received (in time), error-reporting machines and hosts sending out packets that probably have
no function at all (perhaps caused by viruses or worms).

5.6.2 Evaluation of the analysis tool

The analysis of UDP traffic relied heavily on the Periodicity Analysis Tool (Chapter 6). In the course of
the research on UDP traffic, some advantages and disadvantages of the tool became clear. The advantages
of the tool:

e Dominant frequencies were discovered accurately most of the time. In some cases, the reported
frequency was not the fundamental frequency of the periodicity, or the reported frequency disap-
peared (or became non dominant) in the Fourier transform of the traffic that was believed to be
responsible for the periodicity.

e The binary search algorithm proved to be quite a fast and accurate algorithm to relate a certain
frequency to specific traffic, although the influence of the number of packets on the calculated
Fourier transforms’ absolute values could cause disturbances.

e Performing binary searches on both source and destination addresses/ports sometimes made it
more easy to pinpoint the traffic that was responsible for a periodicity: sometimes the output
PCAP file created by the binary search on a responsible source address was exactly the same as
the output PCAP file created by the binary search on a responsible destination address, which
confirmed quite strongly that these two hosts were responsible for the found periodicity.

e Output PCAP files with likely causes of a periodicity were written automatically by the tool. These
PCAP files could then be used as a good starting point for further examination.

Disadvantages of the tool - one of which is already discussed in Section 5.2.2 - are:

e Strong periodicities caused by small amounts of traffic probably did not get discovered if there was
much more “white noise” traffic disguising it.

e After one run (i.e. the identification of one dominant frequency and its possible causes) of the tool,
user intervention was still needed to pick out the most likely cause of the periodicity by manually
examining the output PCAP files.

e The dominant frequencies that are reported by the tool are always correct, but it would be more
convenient if the tool could decide whether or not it is a fundamental or a harmonic frequency.

The first disadvantage can be overcome by considering another possible algorithm instead of the binary
search algorithm to find the traffic that is causing some periodicity or by defining another calculation
to compare two Fourier transforms so that the influence by the number of packets is cancelled out. The
second disadvantage can be overcome by extending the tool: Fourier transforms of all output files can
be made and compared to each other to determine the most likely cause of the periodicity. The winning
output file can then be further examined by the tool to get more detailed information about the cause
of the periodicity. For example: in Section 5.3, a periodicity was found caused by traffic sent to one
specific time server. The output file associated with it did not show any obvious periodic behaviour until
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the output file was further split per source host. If the tool could do this automatically that would be
a big advantage. The problem with fundamental/harmonic frequencies is a lot harder to solve: every
time a dominant frequency is determined, the tool should have some kind of means to check whether it
is an integer multiple of a lower (less dominant) frequency. To do this, the tool could inventory the first
couple of dominant frequencies to see if they are related in some way and if this is the case, choose the
lowest frequency as the fundamental frequency.



Chapter 6

Periodicity Analysis Tool

The approach to identify the traffic causing a certain periodicity that was described in Section 4.2 was
no longer helpful in the research on periodicities in UDP traffic. The amount of UDP traffic in a trace
is much bigger, which causes figures like Figure 4.2 to be much more crowded with dots. In that figure,
it was possible to see a line at an interval of 0.01 seconds with the naked eye. In a figure with a higher
density of dots, these lines are not easily seen, or not seen at all. Subsequently, it is not possible to
determine which packets are associated with this line and the hunt for the cause of a periodicity is forced
to stop. Moreover, plotting several figures and drawing conclusions about them just by looking takes a
lot of time.

To overcome these problems, a tool was developed in C++ to identify the traffic causing a certain
periodicity in UDP (and TCP!) traffic, without human intervention. This way, more detailed information
can be extracted from a packet trace and time is saved. This “Periodicity Analysis Tool”, which carries
the name pat, is capable of the following:

e Accepting a packet trace from the traffic repository as input.
e Determining a dominant periodicity with a certain frequency in that packet trace.

e Associating traffic with a common property as the cause of this periodicity. Possible common
properties are: the same source port, destination port, source IP address or destination IP address.

e Generating output files which split the traffic that seems responsible for the periodicity from the
other traffic.

The main challenge with the development of this tool was to make it as efficient and fast as possible. Only
useful information must be extracted from the packet trace and Fourier transforms should be carried out
as fast as possible. In this chapter, the Periodicity Analysis Tool is described together with some code
listings, to show some implementation details.

6.1 Program usage

The program is designed as a pure command line application and should be used with the following
arguments:

pat udp|tcp type trace_file

The first argument tells pat whether it should handle UDP or TCP traffic. The type argument should
be a number ranging from 1 to 15, indicating the desired output. This number should be the sum of one
or more of the following values:

1The analysis of TCP traffic is not discussed in this thesis, but the tool can handle this.
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Source port
Destination port
Source IP address
Destination IP address

= N = o

Notice that each of these values is an exact power of 2, which means that every number from 1 to 15
has its own unique sum of these values associated with it. The given number will in fact be decomposed
by pat as a sum of these values. For each value that is in the decomposition, a binary search algorithm
(discussed in Section 6.2.4 is performed on the field that is represented by that value. Output files created
by the program, which are discussed in Section 6.2.5, also depend on this second argument.

The final argument is the packet trace file (in PCAP format) that is to be analysed. To clarify the use of
the periodicity analysis tool, consider the following example: suppose the trace file trace.pcap should
be analysed to find periodic UDP traffic, caused by packets with the same destination port or packets
originating from the same source IP address. The following command should be executed to give the
desired output:

pat udp 6 trace.pcap

The first and third argument speak for themselves, but the second argument probably needs further
explanation. When the number 6 is decomposed as a sum of the values given above, the only possible
sum is 4 + 2, which means that a binary search on “destination port” and ”source IP address” will be
done.

6.2 Program structure

After the parsing of the command line arguments, the program will follow the flow diagram from Fig-
ure 6.1. The example given in the previous section is illustrated in the diagram with a grey line. In the
following sections, the functionality of each (rectangular) block and its implementation is explained.

6.2.1 Inventorying the packets

First, the relevant packets from the packet trace that was given at the command line are inventoried.
This means that only the packets within the packet trace that are of importance in the execution of
the program end up in the inventory, e.g. if TCP traffic should be searched for periodic activity, UDP
packets will not end up in the repository.

Reading the packet trace is done with the help of the PCAP library? libpcap, which is also used by
programs like tcpdump and ethereal. This library provides functions to read and write packet traces.
Together with the C-struct definitions for protocol headers and accompanying functions and variables
that are provided by C+-+32, it is possible to extract the header information that was discussed in
Chapter 2 from the packets in the packet trace. Per packet, the following information is stored:

e Time stamp
e Source IP address

Destination IP address

Source port
e Destination port

e Contribution to the real part of a Fourier transform

2The PCAP library is available at http://www.tcpdump.org/
3To see which C++ libraries are used in the program, the reader is encouraged to take a look in the source of pat,
which is available together with this thesis.
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Figure 6.1: Flow diagram for the pat program.

e Contribution to the imaginary part of a Fourier transform

To store this information, a new C-struct is introduced in the program to represent a packet in the
packet trace (see Listing 6.1).

The first field in the struct is a time stamp, measured in seconds with a precision up to a microsecond?.
From Figure 2.5 it is clear that IP addresses take up 32 bits. To store these values, the struct should make
use of a data type that also uses (at least) 32 bits. On the machine that was used for the development of
pat, unsigned long integers in C++ also take up 32 bits, which is enough for the storage of IP addresses.
Both UDP and TCP packets (Figures 2.3 and 2.4) have port number fields that take up 16 bits. For this,
the struct should of course make use of a data type that uses (at least) 16 bits. In this case, unsigned
short integers take up the same amount of bits and therefore can represent port numbers. Finally, there
are fields which store the real and imaginary contributions to a Fourier transform for a certain frequency.
This is explained later on.

Since the tool is only designed to handle UDP and TCP traffic, which are protocols that both use the
IP protocol as the lower level protocol, the Type field of the Ethernet header should be set to the IP
protocol. In Listing 6.2, this field is checked for its value. The variable data is a pointer to the raw
packet data, provided by the libpcap library. By casting this data to a C-struct that represents an
Ethernet header, it is possible to extract the value of the Type field in the actual Ethernet header of

4When creating a packet trace with the libpcap library, this is the maximum precision that is given to the time stamp,
but it might not be that accurate.
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struct Packet {
double timestamp;
unsigned long int src_addr;
unsigned long int dst_addr;
5 unsigned short int src_port;
unsigned short int dst_port;
double real;
double imag;

}s

Listing 6.1: Packet C-struct used for the packet inventory.

// Define the Ethernet header in the packet
struct ether_header * ether_hdr = (struct ether_header =*) data;

// Determine the type of Ethernet packet
5 |unsigned int ethertype = ntohs(ehter_hdr->ether_type);

// Only IP packets are of interest
if (ethertype == ETHERTYPE_IP) {

10 |}

Listing 6.2: Checking whether the packet is an IP packet.

the packet. If the value is equal to the standard protocol type code for IP packets (which is predefined
in ETHERTYPE_IP), the next step in the inventorying process is taken. If this is not the case, the next
packet from the given packet trace is processed.

At the command line, the user specified whether UDP or TCP traffic should be examined. This means
that either UDP or TCP packets should end up in the inventory. Listing 6.3 shows how this is accom-
plished. Now that it is known that the packet is in fact an IP packet, the raw data that is “behind” the
Ethernet header can be cast to a struct that defines an IP header. Line number 3 in the listing shows that
this done by casting the raw data that starts after ETHER_HDR_LEN bits to the IP header struct. Now the
source and destination address can easily be extracted from the IP header and stored in the inventory.
The ip_p field in the IP header struct represents the Protocol field in Figure 2.3. The Internet Assigned
Numbers Authority keeps a list with possible values for this field. A value of 6 indicates that the upper
layer protocol was the Transmission Control Protocol and a value of 17 the User Datagram Protocol. In
both cases, the data which is behind both the Ethernet and IP header is cast to the appropriate header
struct and the source and destination port numbers can be extracted and stored in the inventory. When
a packet meets all the requirements to be stored in the inventory, the time stamp of the packet gets set
by using the data provided by the libpcap library.

6.2.2 Finding the dominant frequency

After all the (relevant) packets have been inventoried, the frequency spectrum of this data set can be
calculated. The first step in this process is converting the data in the inventory to a time series. How
this is done is already explained in Section 3.3. Up next is the actual discrete Fourier transform. The
fftw3 library® provides functionality to perform Fourier transforms with the Fast Fourier Transform
algorithm. In Listing 6.4, a piece of code from the function that is responsible for finding the dominant
frequency is shown. The variable out is a two dimensional array that contains the complex values of

5The £ftw3 library is available at http://www.fftw.org/.
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// Define the IP header in the packet and assign values to the
// address fields in the inventory.
struct ip * ip_hdr = (struct ip *) (data + ETHER_HDR_LEN);

s | // Set the source and destination IP address in the
// inventory.

packet_inv[packetcount].src_addr
packet_inv[packetcount].dst_addr

ip_hdr->ip_src.s_addr;
ip_hdr->ip_dst.s_addr;

10 | // The packet is a TCP packet
if (ip_hdr->ip_p == 6 && proto == 6) {

// Define the TCP header in the packet and assign values

// to the port number fields in the inventory

15 struct tcphdr * tcp_hdr = (struct tcphdr %) (data + ETHER_HDR_LEN +
(ip_hdr->ip_hl=4);

packet_inv[packetcount].src_port = tcp_hdr->th_sport;

packet_inv[packetcount].src_port = tcp_hdr->th_sport;

packetcount++;

}
20 | // The packet is a UDP packet
else if (ip_hdr->ip_p == 17 && proto == 17) {

// Define the UDP header in the packet and assign values

// to the port number fields in the inventory

25 struct udphdr * udp_hdr = (struct udphdr %) (data + ETHER_HDR_LEN +
(ip_hdr->ip_hl=4);

packet_inv[packetcount].src_port

packet_inv[packetcount].src_port

packetcount++;

udp_hdr->uh_sport;
udp_hdr->uh_sport;

Listing 6.3: Determining the transport protocol.

the Fourier transform of the time series that was created from the data in the inventory. The variable
out[i][0] contains the real part of the transform at index i and out[i][1] contains the imaginary
part. Equation (3.21) showed how to calculate the frequency corresponding to a certain index v in a
Fourier transform. Rewriting this equation gives

v = fAIN (6.1)

where f is the frequency, At the sampling period and N the number of samples. This is used for
determining the index which represents a frequency of 1 Hz on line 6. Adding 0.5 on this line is for
rounding purposes: casting a value to an integer automatically “floors” a value. By adding 0.5 before the
casting to an integer, the value will be rounded as one would expect: to the nearest integer. Starting
from this index, the rest of the spectrum (up to the Nyquist frequency) is searched for a maximum.
In the end, the variable peakindex will contain the value of the index that represents the dominant
frequency. In other words, if the Fourier transform is defined as X[v], the following should hold for the
calculated “peak index” p:

p = argmax | X [v]| = arg max /R(X[v])2 + (X[v])2

VE[vs,Ve] VE[Vs,Ve]
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// Initialize the peak value to be zero
double peakvalue = 0;

// The search is started at the peak index which is associated with a
s | // frequency of 1 Hz.
int peakindex = (int)(1.0+*FFT_LENGTH*INTERVAL + 0.5);

// The search can be stopped at the index which represents the Nyquist
// frequency, since the rest is an exact copy of the values that were
1w | // seen so far.
for (int i = peakindex; i < FFT_LENGTH/2+1; i++) {

double abs = sqrt(out[i][O]*out[i][0]+out[i][1]*out[i][1]);

if (abs > peakvalue) {

peakvalue = abs;

15 peakindex = i;

20

return 1.0+*peakindex/FFT_LENGTH/INTERVAL;

Listing 6.4: Determining the index in the Fourier vector with the highest absolute value.

in which vy is the index corresponding to a frequency of 1 Hz and v, the index corresponding to the
Nyquist frequency. The choice for the “minimal search frequency” of 1 Hz was made because of the tail
running upwards from 1 Hz to the left in most Fourier transforms of network traffic (see Figure 5.1 for
example). Not using this minimal frequency would cause some point in that tail to be appointed as
the dominant frequency, which hardly ever makes any sense. Subsequently, the corresponding frequency
(using Equation (3.21)) is calculated, returned and used in the following block of the flow diagram:
calculating the contributions to the discrete Fourier transform per packet. The precision of this calculated
frequency depends on both the chosen sampling period At and the number of samples N used for the
transform. When considering the equation
v
I= N

again, the frequencies associated with a certain index v lie ﬁ apart from each other. The tool uses a
sampling period of 1 millisecond and the number of samples N is 222. This means that the calculated
frequencies are spaced at intervals of

1
10-3 . 222
which makes the reported frequencies accurate to the first three decimals.

~ (0.00023842Hz

6.2.3 Calculating the Fourier contributions

In sections 3.1.3 and 3.1.4 two types of Fourier transforms were stated. The continuous transform

X(w) = /oo z(t)e tdt (6.2)

and the discrete transform
N7
X[ = Z x[n]e_"'%ﬂ”" (v=0,1,...,N=1) (6.3)

n=0

—
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The only part of the Fourier transform that is of concern now, is the value of the transform at the
frequency which was found in the previous section. So for the further calculations of the program, it is
not necessary to calculate the full Fourier transform. Although it seems attractive to use Equation (6.3)
for this reason, since it can give the Fourier transform for only one index v by just summing terms
instead of integrating (which can be a tough job numerically), it will be shown below that the integral in
Equation (6.2) can be reduced to something that can be calculated easily without numerically integrating.
The information available now is the (dominant) frequency f from the previous section and the packet
inventory (with a time stamp for each packet). In Section 3.3, traffic was modelled as a function of time
in the following way:

(6.4)

1 if ¢t is the time stamp of a packet
x(t) = :
0 otherwise

A better notation for Equation (6.4) is to define a delta function for each packet in the traffic. A packet
with time stamp s would contribute (¢t — s) to the “traffic function” x(¢), since

5(ts){1 ift=s (6.5)

0 otherwise

and this is exactly what is meant in Equation (6.4). Summing these delta functions for all packets gives
a good definition for the (continuous) traffic function z(t):

N-1
z(t) = > 8(t—s(n)) (6.6)
n=0

where s(n) is the time stamp s belonging to the packet in the inventory with index n. Substituting
Equation (6.6) in Equation (6.2) yields

0o N—1

Xw) = /_ > 6(t— s(n))e” " dt
ey
_ Zefzws(n)
n=0

N-1
= Z cos(ws(n)) — isin(ws(n)) (6.7)
n=0

This shows that finding the Fourier transform for one point w only needs w itself and the time stamps
of all the packets. Using the relation between the angular frequency w and the frequency f in hertz
(w = 27rf), Equation (6.7) can be written in a form that gives the Fourier transform as a function of the
frequency f, denoted by X (f):

N-1
X(f) = Z cos(2mfs(n)) —isin(2m fs(n)) (6.8)

n=0

The big advantage of using the continuous transform, which resulted in Equation (6.8) over using the
discrete transform is that the time stamp of the packet can be used directly. No discretisation in time
has to be done in advance of the calculations. The binary search algorithm described in Section 6.2.4,
makes use of this one point Fourier transform. To save calculation time, the real part

cos(2m fs(n))

and imaginary part
sin(27 fs(n))

of the Fourier transform per packet are stored in the inventory (see Listing 6.5).
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for (int i = 0; i < packetcount; i++) {
packet_inv[i].real = cos(2.0+«M_PIxfreq+packet_inv[i].timestamp);
packet_inv[i].imag = sin(2.0+«M_PIxfreq+packet_inv[i].timestamp);

Listing 6.5: Assigning the real and imaginary part for a Fourier transform to a packet.

6.2.4 Binary search algorithm

The main goal of the periodicity analysis tool is to ascribe the presence of a certain periodicity in a packet
trace to traffic with either the same source or destination port number or the same source or destination
IP address. A rather straightforward procedure to do this is calculating Fourier transforms for all possible
source ports/addresses and destination ports/addresses and see for which port or address the (absolute)
value of the Fourier transform at a certain frequency is the highest. That port or address would then
be the most apparent cause of that periodicity. This would work, but searching for a responsible port
would take 2'¢ (a port number is a 16 bit number) Fourier transforms and another 2'¢ — 1 comparison
operations. For a responsible address this would be 232 Fourier transforms and 232 — 1 comparison
operations. This is far from efficient and calls for a more intelligent approach. Instead of discarding
possible causes (ports/addresses) one by one, it would be convenient if groups of possible causes could
be discarded at the same time. In this section, such a method is described.

Using the fact that source ports and IP addresses are sequences of bits, a “binary search algorithm”
can be easily implemented. As an example, suppose that in some packet trace, a dominant frequency
is found and the question is whether it is traffic with a specific source port that caused this periodic
behaviour. A binary search algorithm is then started to find a responsible source port. The main idea of
this algorithm is to reconstruct the port number that is the most likely cause of the periodic behaviour.
In other words, a 16 bit number has to be constructed in some way.

Starting with the most left bit, a choice has to be made between a 0 and a 1, based on a certain
condition or calculation. When the first bit is set, the second bit has to be chosen, again based on a
certain condition or calculation. This process is continued until a 0 or 1 is assigned to all 16 bits. For
each choice made, the range of possible port numbers decreases by half (see Figure 6.2). The algorithm

(0-65535)
Qe T
(0-32767) (32768-65535)
00 e AT 10, e,
(0-16383) (16384-32767) (32768-49151) (49152-65535)

/\/\/\/\

Figure 6.2: Tree with choices when constructing a 16 bit number.

starts off with the complete inventory that was built up in the previous sections. At this point, all source
port numbers are still considered as a possible cause for the dominant frequency that was found before.
The algorithm then divides the packets in two groups: one group where the source port numbers are
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in the lower half (0-32767) of the range and a group where the source port numbers are on the upper
half (32768-65535). For both “traffic groups”, the absolute value of Equation (6.8) is then calculated.
The group for which the highest absolute value is calculated will most likely contain the port number
responsible for the periodicity and will be further examined. The other group is no longer relevant. E.g.,
if the lower side has the highest absolute value, the bit that is considered is set to 0 and a choice for the
next bit will be made in the same way: the “winning” group is divided in two traffic groups (source ports
0-16383 and 16384-32767), Fourier transforms are calculated and the side with the highest absolute value
wins. After 16 iterations, all bits for the source port number are set, which means that only one possible
source port is left. This port number is then assigned to be the port number that is most likely causing
the periodic behaviour. Determining a responsible IP address (either source or destination) makes use of
the same algorithm, only then 32 steps are done. With the use of this algorithm, the number of Fourier
transforms that has to be calculated while determining a responsible port is only 32 (sixteen steps, with
each step calculating two Fourier transforms) instead of 216 and for a responsible address this is only
64 instead of 232. Listing 6.6 on page 71 shows the most important part of the implementation of this
algorithm.

The variable step is the index of the bit in the number that is constructed and totalsteps is the total
number of bits for which a choice should be made, i.e. its value is 16 for port numbers and 32 for IP
addresses. The variables lowpoint, splitpoint and highpoint keep track of the range that is still
“active” in the search. They store the first possible value, the last possible value and the value at which
the range is split in half. Their initial values are assigned earlier in the code (not shown) and depend on
whether a search is done for a port number or an IP address. At the place of ..., packetvalue gets its
value, which is extracted from the C-struct which represents the packet which is then considered. This
depends on which of the four possible causes mentioned before is examined. The rest of the code should
be fairly self explanatory.

6.2.5 Writing PCAP files

After the binary search algorithm finishes its job, two output files are generated. One file will be packet
trace which contains traffic from the repository which is probably causing the periodicity. It should be
noted that not all of the traffic in this trace file is part of the cause. Suppose that in the example above
a certain host is causing a periodicity with its traffic that is originating from port 139. If pat indeed
finds source port number 139 as the most likely cause of a periodicity, it writes all traffic in the inventory
with source port 139 to this first output file. So not only the traffic from that certain host is written,
but also some “noise traffic” from other hosts. Of course, to filter out this noise, the first output file can
be examined for a periodicity caused by some source IP address with pat, which would probably find
the host that was responsible for the periodicity in the first place.

The other output file contains the traffic that was not deemed responsible for the periodic behaviour
with the frequency found earlier. Obviously, this does not mean that this remaining traffic does not
contain any periodicities at all. Running the tool over this output file can again find periodicities and
their possible causes.

6.3 Program output

Besides the PCAP files that are written during the execution of the program, some other output is
generated as well. While the programming is running, it keeps the user informed with on-screen output
on what it is doing at that moment and (intermediate) results. A typical on-screen output of pat (using
the example mentioned earlier) is:

$ ./pat udp 6 loc1l-20020626-0415
Finding dominant frequency...done

Dominant frequency: 99.996090 Hz
Total number of packets: 183118
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Finding a possible responsible destination port...done
Destination port: 53
Writing PCAP-files...done

Finding a possible responsible source address...done
Source address: 135.216.206.10
Writing PCAP-files...done

Log written to pat.log

This output clearly shows that the program follows the diagram in Figure 6.1. One thing is still to be
discussed. During the execution, a log file is kept under the name pat.log. This file contains detailed
information which gives more insight in the decisions that were made during the binary search algorithm.
For every step that is made in the binary search algorithm, the following information is written to the
log file:

e Bit position of the port number or address that is processed
e Number of packets in the lower half

e Number of packets in the upper half

e Absolute value of the Fourier transform of the lower half

e Absolute value of the Fourier transform of the upper half

e Relative difference between these two absolute values

This makes it possible to track back decisions that were made by the program that could have been
somewhat unfortunate. For example, it could happen that the relative difference between two calculated
absolute values is fairly small. The program would still choose the half with the highest value, although
the port or address that is the dominant cause of the periodicity might just as well be in the other half.
The other “noise” traffic present in the inventory disturbs the absolute values of both halves and this
disturbance could be in favour of the wrong half. Subsequently, the program will only process this wrong
half and never find the most dominant cause of the periodicity. With the help of the log file however, it
is possible to see whether such an event occurred. If it did occur, another run of the program (on one the
output PCAP file with the traffic that was marked not responsible for the periodicity) can still reveal
the originally dominant cause that was thrown away at first.
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// The binary search
while (step < totalsteps) {
// The totals of real and imaginary contributions
// are declared and set to 0
5 double totalreallow = 0, totalimaglow = 0, totalrealhigh = 0,
totalimaghigh = 0;

for (int i = 0; i < packetcount; i++) {
10
// Split the packet to the appropriate side
if (packetvalue > splitpoint && packetvalue <= highpoint) {
totalrealhigh += packet_inv[i].real;
totalimaghigh += packet_inv[i].imag;
15 }
else if (packetvalue >= lowpoint && packetvalue <= splitpoint) {
totalreallow += packet_inv[i].real;
totalimaglow += packet_inv[i].imag;

20 }

// Calculate the absolute values of the 1-point DFT of the low

// and high side.

double lowpeak =
sqrt(totalreallow*totalreallow+totalimaglow=totalimaglow);

25 double highpeak =

sqrt(totalrealhigh*totalrealhigh+totalimaghigh+*totalimaghigh);

// Determine which side wins and adjust the start, end, and

// splitpoint.

if (lowpeak > highpeak) {

30 highpoint = splitpoint;

splitpoint = splitpoint - (splitpoint - lowpoint + 1)/2;

}
else {
lowpoint = splitpoint+1;
35 splitpoint= splitpoint + (highpoint-splitpoint)/2;
}
step++;

Listing 6.6: Binary search algorithm.
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Chapter 7

Conclusions

In Chapters 4 and 5, the last sections already dealt with the results of the analysis of ARP and UDP
traffic. In this chapter, these are briefly summarised to answer the questions posed in Section 1.1.

7.1 How can short-term periodicities be detected?

The first approach to identify periodicities, described in Section 4.2, which made use of the information
about time intervals between two packets in a trace did give some results. It is not a very safe way to
relate specific traffic to a found periodicity: it only makes sense when these time intervals are measured
for packets that are in a same stream of traffic. This means that for a proper result with this method,
all streams in a trace should be considered separately, which takes too much time.

Using Fourier transforms in combination with a binary search algorithm worked much better and faster:
a complete packet trace could be examined at once without having to examine every seperate stream
and the algorithm was easier implemented than the earlier mentioned method. The developed tool also
was a helpful addition in the research of short-term periodicities. It was shown that the following could
be deducted from a plot of a Fourier transform:

e Peaks at some fundamental frequency and harmonic frequencies indicate a strong infinitely repeat-
ing signal throughout a packet trace.

e Notches indicate that a finite number of retransmissions is done at a non-fixed interval. The mutual
interval between retransmission is fixed.

e The presence of both peaks and notches indicate that groups of packets are sent at some fixed
interval (see Figure 5.17).

7.2 What kind of traffic is causing short-term periodicities

In the analysis of UDP traffic, the following causes for short-term periodicities were found.

e The streaming of multimedia files: the Real-time Transport (Control) Protocol and some file system
protocols (SMB, NFS) indicated this.

e Regular transmission of packets to exchange or synchronise information: the updating of clocks
with the Network Time Protocol and the exchange of information during online gaming are good
examples for this.

e Retransmission of (unanswered) packets: the DNS and BOOTP traffic discussed in Section 5.3
showed such behaviour.
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e Erroneous behaviour of a host: a worm infected machine for example. The machine that was
sending out packets from successive ports (see page 47) could be such a machine.

For ARP traffic, only the last two bullets apply as possible causes for short-term periodicities.

7.3 How much of the traffic is periodic?

In Section 5.3 9431 of the originally present 183251 packets remained after the removal of periodic
traffic!, which would indicate a “periodicity percentage” of 95%. This seems to justify the conclusion
that 95% of UDP traffic is periodic, but it does not: other traces show completeley different percentages,
ranging from 7% to 97%. First of all, these percentages are not that accurate: when a periodicity was
found in some protocol or service, all traffic from this protocol or service was filtered from the original
packet trace and not only the part that was causing the periodicity. DNS traffic, for example, is not
periodic by itself, but if some periodicity was found in a part of DNS traffic all DNS traffic is filtered
out and seen as periodic traffic. This has a huge impact on the accuracy of periodicity percentages.
Sometimes the tool reported traffic that was causing periodic behaviour, which was not confirmed by
the Fourier transform of that traffic (see Figure 5.9): non-periodic traffic then would also be counted as
periodic traffic. Furthermore, the examination of packet traces began by filtering out traffic that was
already noticed as periodic traffic in several other traces, to avoid running into results that were already
known before encountering new results. The length of the used packet traces (15 minutes) also makes
it hard (or even impossible) to say something about the amount of periodic traffic in general, especially
because the packet traces were captured at fixed times and did not cover a complete 24-hour cycle of a
day. Moreover, these packet traces were captured at four different locations, each having its own special
characteristic traffic. A sensible percentage of periodic traffic in Internet traffic in general can only be
given by examining many packet traces without filtering out the traffic that was found to be periodic in
other traces. Also, 24-hour periods or even 7-day periods should be considered to get an accurate view
of the average amount of periodic traffic. Finally, more locations should be considered.

7.4 What periods are commonly found?

Many protocols and applications that operate on top of the UDP protocol should not show any specific
periodic pattern by nature. For the protocols that do exhibit periodic behaviour it can be quite easily
explained where this behaviour comes from, but the frequencies associated with this behaviour are not
fixed most of the time. The only convincing fixed frequency that was discovered during the research was
the frequency range that could be associated with DNS: 0.2 Hz to 0.5 Hz, since this is specified by the
RFC of this protocol. Other periods that where found are probably due to things like internal clocks
of devices (like the 100 Hz peaks that were found regularly) and because the retransmission intervals
of packets are mostly determined autonomously by devices (like the synchronisation interval with NTP
servers).

1The tool can be run over and over till the complete packet trace is empty, which would make every trace 100% periodic.
The moment at which the tool should stop finding periodicities — since it no longer makes sense after some runs — can not
be clearly defined. This also has an influence on the percentage of traffic that was found to be periodic.
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Recommendations

Some problems that occurred during the research could not be dealt with immediately. This is the case
with both the analysis of traffic and the analysis tool that was developed. Therefore, this final chapter
summarises what can still be done to achieve more and better results, which in turn should give a better
answer to the questions stated in Chapter 1.

8.1 Traffic analysis

The analysis of ARP and UDP traffic already gave some information about short-term periodicities in
Internet traffic, but there is still a lot left to research and explain:

e Traffic on top of the connection oriented transport protocol was not examined for periodicities,
although this should give some nice results. Since TCP is connection oriented and reliable, the
sessions that two hosts set up will probably cause a high amount of periodic traffic on the Internet,
due to retransmissions of lost packets and round trip times (i.e. the time between sending a packet
and receiving the acknowledgement that it has been received, see Section 2.2.3).

e In some frequency spectra, dominant frequencies (either fundamental or harmonic) were accom-
panied by sidebands, which hint towards modulation-like behaviour. Perhaps the explanation of
these sidebands helps with the identification and explanation of periodicities.

e A packet trace was converted to a time series by counting the number of packets within a certain
time interval. Another approach that could be tried out is to count the size of these packets within
a certain time interval and use that as a basis for a time series.

8.2 Periodicity Analysis Tool

Although the tool helped a lot in determining causes of periodicities, its functionality can be extended
and/or improved by considering the following:

e The tool now only identifies the possible cause of one periodicity per run. The user still has to
examine the output files of one run manually to determine the actual cause of a periodicity. After
that, the user can use on of these output files as the new input for another run of the tool. It would
be better if the tool could make these decisions on its own, so that its output after one run would
be information about all possible periodicities in a packet trace.

e Only already stored packet traces can be processed by the tool. Perhaps it is possible to extend
this to live traffic. This could be done by using a sliding window algorithm, i.e. by constantly
buffering the last several minutes of traffic and determining periodicities in these minutes.
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e The binary search method did quite a good job, but the results could get much better if the amount

of traffic in both halves that are considered during a step of the algorithm is taken into account.
This would partly overcome the problem seen in Section 5.2.2.

In addition to the previous point, the “white noise problem” is also caused by something else: a
dominant frequency found by the tool is now based on only one criterion: the Fourier transform
at that frequency should have the highest absolute value of the complete frequency spectrum.
However, the Fourier transform of white noise (which has no dominant frequency at all) will
also have a maximum absolute value somewhere. So at least one additional criterion should be
considered when searching for a dominant frequency. This could be, for example, that the relative
difference between this “peak” and the rest of the frequency spectrum should be bigger than some
predefined value.

The influence of noise could also be reduced by implementing a low pass filter, which prevents
frequencies higher than the (chosen) Nyquist frequency to show up aliased in the transforms.



Bibliography

(1]

2]
3]

4]

[5]

[6]

7]

18]

19]

[10]
[11]

[12]
[13]
[14]

[15]
[16]

R. N. Bracewell. The Fourier Transform And Its Applications. McGraw-Hill Companies, Inc., third
edition, 2000.

E. O. Brigham. The Fast Fourier Transform. Prentice-Hall, Inc., 1974.

C. Cheng, H. Kung, and K. Tan. Use of spectral analysis in defense against dos attacks. In IEFE
GLOBECOM Global Telecommunications Conference, pages 2143-2148, 2002.

J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex fourier series.
Mathematics of Computation, 19:297-301, April 1965.

D. Donnelly and B. Rust. The Fast Fourier Transform for Experimentalists, Part I: Concepts.
Computing in Science & Engineering, 7:80-88, March/April 2005.

A. C. Gilbert, Y. Joo, and N. McKeown. Congestion control and periodic behavior. In IEEFE
LANMAN Workshop, 2001.

J. F. James. A Student’s Guide to Fourier Transforms. Cambridge University Press, second edition,
2002.

E. W. Kamen and B. S. Heck. Fundamentals of Signals and Systems. Prentice-Hall, Inc., second
edition, 2000.

J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down Approach Featuring The Internet.
Addison Wesley Longman, Inc., 2001.

H. Kwakernaak and G. Meinsma. Time Series Analysis and System Identification, 2004.

L. L. Peterson and B. S. Davis. Computer Networks: A Systems Approach. Morgan Kaufmann,
second edition, 2000.

R. W. Ramirez. The FFT, Fundamentals and Concepts. Prentice-Hall, Inc., 1985.
C. Runge. Zeit fiir Math und Physik, 48:433, 1903.

M. S. Squillante, D. D. Yao, and L. Zhang. Internet traffic: Periodicity, tail behavior and perform-
ance implications. In System Performance FEvaluation: Methodologies and Applications. CRC Press,
1999.

A. S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., third edition, 1996.

R. van de Meent. M2C Measurement Data Repository, December 2003. M2C Deliverable D1.5.



IT



Index

A
address
Ethernet, see Ethernet address
1P, see IP address
MAC, see Ethernet address
Address Resolution Protocol, see ARP
amplitude, 12, 13
angular frequency, 16
application layer, 4
application protocol, 4
arch pattern, 31
ARP, 8, 27
module, 8
request, 28
spectrum, 28
table, 8, 27
traffic, 27

B

binary search algorithm, 37, 68

BOOTP, 40, 42, 52, 55

Bootstrap Protocol (BOOTP), see BOOTP

C

common patterns, 52
complex conjugate, 19
conclusions, 73
connection oriented, 5
connection-less, 6
Cooley, J.W., 20

D
decomposition, 12
DFT, 18
N-point, 19
DirecTV, 47
Discrete Fourier Transform, see DF'T
DNS, 35, 40, 56
Domain Name System, see DNS

E

Ethernet
address, 8, 23, 28, 36

frame, 8, 9
header, 9
Euler’s identity, 19

Euler, L., 14

F

Fast Fourier Transform, 20
FFT, 20
savings, 21

folding frequency, see Nyquist frequency

Fourier
analysis, 11
plot of transform, 25
series, 16
transforms, 11
Fourier, J.B.J., 13
frequency, 12
angular, 16
discretised, 19
folding, 20
fundamental, 15, 42
harmonic, 15, 42
Nyquist, see Nyquist frequency
frequency domain, 11
resolution, 23
frequency leakage, 21
frequency sidebands, 29
frequency spectrum
ARP, 28
notch(es), see notch(es)
peak(s), see peak(s)
UDP, 40

G

games, H8
Gauss, C.F., 20

H

handshake, 5

harmonic frequency, 15, 42
harmonics, 15, 28
host-to-network layer, 4, 8, 36
hostname, 7

11



HyperText Transfer Protocol (HTTP), 4

|
TANA, 6
input signal, 31
Internet, 3
definition, 3
Internet Assigned Numbers Authority, see IANA
Internet layer, 4, 8
Internet Protocol, see IP
introduction, 1
1P, 7
address, 7, 8, 23, 35, 37, 56
header, 7, 64
packet, 7, 64

L

layer(s), 4
application, 4
host-to-network, 4, 8
Internet, 4, 8
lower level, 4
principles, 4
transport, 4, 36
underlying, 5

leakage, 21

low pass filter, 45, 76

M
MAC address, see Ethernet address
modulation, 29

N

Network Time Protocol (NTP), 56
Networked File System (NFS), see NFS
NFS, 49, 56

notch(es), 31, 42, 52

NTP, 56

Nyquist frequency, 20, 26, 42, 45

O

online games, 58
outline, 2
output signal, 31

P

packet inventory, 62

packet trace, 23, 37
information, 23

pat, 37, 59, 61-70
capabilities, 61
evaluation, 59
flow diagram, 63
output, 69

structure, 62
usage, 61
patterns, 52
PCAP, 23, 69
peak(s), 19, 28, 52
period, 1
periodicities, 1
ARP, 27
cause(s), 58
definition, 35
common patterns, 52
short-term, 1
UDP, 35
Periodicity Analaysis Tool, see pat
phase, 12
problem description, 1
protocol(s), 3-8, 55-58
application, see application protocol
reliability, 5
transport, see transport protocol

R
real-time, 58
Real-time Transport Control Protocol (RTCP), 57
Real-time Transport Protocol (RTCP), 57
recommendations, 75
repository, 23
request /reply paradigm, 59
research approach, 2
resolution, 23
results
ARP, 32
UDP, 58
retransmissions, 5, 32
ARP, 27
RFC (Request For Comments), 4
router, 7
Runge, C., 20

S
Samba, 45, 58
sampling
definition, 18
period, 18
sampling period, 26
sidebands, 29
signal, 11
decomposition, 12
input, 31
output, 31
Simple Network Management Protocol (SNMP), see
SNMP
sinusoid, 12

v



SNMP, 42, 58
stream(ing), 6, 35
multimedia, 7, 47, 58

T
TCP, 5
header, 6
packet, 6
TCP/IP reference model, 4
TCP/IP suite, 3
time domain, 11
time interval, 28
time out, 27
Time protocol, 45, 56
time series, 20, 25
stretching, 26
traffic
ARP, 27
function of time, 25
load, 1
repository, 23
UDP, 35
transfer function, 31
Transmission Control Protocol, see TCP
transport layer, 4, 36
transport protocol, 5
Tukey, J.W., 20

U
UDP, 5, 6, 35
header, 6
packet, 6
User Datagram Protocol, see UDP

\%\%

white noise, 39, 76

window(s), 21
Hamming, 21

windowing, 21

Z
zero padding, 23, 26



VI



