
Bachelor Research Assignment

TCP synchronisation effect in
TCP New Reno

and
TCP Hybla

Author: Bert Baesjou
Date: 30/08/05

Supervisor: Geert Heijenk
University of Twente

Program: B.Sc.Telematics
Chair: DACS

Abbreviation list

ACK Acknowledgement
ARPAnet Advanced Research Project Agency-net
BSD Berkeley Software Design
CA Congestion Avoidance
DARPA Defence Advanced Research Project Agency
FOSS Free and Open Source Software
FTP File Transfer Protocol
IP Internet Protocol
ISI Information Sciences Institute
MSS Maximum Segment Size
MTU Maximum Transmission Unit
Ns2 Network Simulator 2
RED Random Early Drop
RFC Request For Comment
RTT Round Trip Time
SACK Selective Acknowledgement
SS Slow Start
Ssthresh Slow start threshold
TCL Tool Command Language
TCP Transmission Control Protocol

TCP synchronisation effects 2 Bert Baesjou

Abstract

Due to the nature of the TCP protocol, it is possible a number of flows are
synchronising with each other. This means that flows influence each other
in such a way that possibly one flow benefits from the synchronisation by
claiming a large share of capacity, while an other flow is not able to receive
a reasonable portion of the capacity. This problem is most likely to occur in
(simple) network simulations and possibly in actual networks with large
data transfers.

The synchronisation effect is caused by the relation between the round trip
time (RTT) of packets of certain flows and the moment when a new slot
comes available at a saturated DropTail queue (from which multiple flows
make use of). When a certain RTT is in sync with the time a slot comes
available at the queue, the flow having that RTT is able to be the first to fill
the available slot at that queue, leaving the other flow with a constantly
filled queue leading to starvation of these flow(s).

Both TCP New Reno and TCP Hybla (a TCP variant especially aimed at
adjusting RTT behaviour for wireless high RTT connections) were
researched and both suffer from the same synchronisation effect. With TCP
New Reno the synchronisation effect was mapped, and with TCP Hybla
some more extensive tests were done. This because TCP Hybla has some
RTT adjusting techniques embedded, which might have led to less
synchronisation effect. As it turned out, none of the adjustments were
sufficient enough to rule out the synchronisation effect.

A solution to the synchronisation effect could be inserting random packets
into the network. This packet insertion makes sure that it is hard for the
RTT to be exactly the same every time, thus not being able to come in sync
with the queue. An other solution is using other queueing schemes. It
seems like the RED queueing scheme is an effective solution due to its
more dynamic nature of queueing, creating variations in the RTT and more
fairness when dropping packets of flows. RED however is not widely
available in actual networks, so this would mainly be a solution for network
simulations.

TCP synchronisation effects 3 Bert Baesjou

TCP synchronisation effects 4 Bert Baesjou

Table of Contents
1 Introduction...7

1.1 Problem formulation...7
1.2 Research approach...7
1.3 Outline of this report..8

2 Introduction to NS2...9
2.1 Source code..9
2.2 TCL and C++ usage...9
2.3 Documentation and manuals..10
2.4 Support and maintenance...10
2.5 Conclusion..11

3 Introduction to TCP...13
3.1 “Standard” TCP operation..13

3.1.1 TCP congestion control procedure..13
3.1.2Fast Retransmit and Fast Recovery procedure............................15

3.2 TCP Friendly...15
3.3 TCP variant: TCP Hybla..17

3.3.1 The objective of TCP Hybla..17
3.3.2 Operation of TCP Hybla...18
3.3.3 Known issues with TCP Hybla...19
3.3.4 Current status of TCP Hybla..20

4 Setting up a simple network...21
4.1 Network layout and objectives...21
4.2 Configuration of the network/node parameters.................................22

5 TCP New Reno simulation results and analysis..24
5.1 Simulation results...24
5.2 Result analysis..26
5.3 Problem analysis...27
5.4 Solution...29
5.5 Conclusion TCP New Reno...29

6 TCP Hybla simulation results and analysis...31
6.1 The simulation network..31
6.2 Simulation results...31

6.2.1 Current RTT TCP Hybla operation...32
6.2.2 Smoothed RTT TCP Hybla operation...33
6.2.3 Minimum RTT TCP Hybla operation..34
6.2.4 Current RTT TCP Hybla operation with RED gateway................35

6.3 Conclusion TCP Hybla..36
7 Conclusion...39
References..41
Bibliography...41
Appendix 1 C++ code adjustments to ns2..43
Appendix 2 A short introduction to ns2 TCL...45
Appendix 3 TCL configuration file...47

TCP synchronisation effects 5 Bert Baesjou

TCP synchronisation effects 6 Bert Baesjou

1 Introduction

For the understanding and prediction of the behaviour of protocols and
data streams in networks, simulations are often used. Besides the financial
argument that networks can be tested without the need of having all the
equipment used in the actual network, one can also alter the parameters of
this network very fast. This allows one to run multiple simulations for
different setups by using scripts altering the parameters.

Downside of this approach is that a simulation is only a theoretical
representation of how the reality could be. Despite all the efforts to create
a simulator as close to reality as possible, it is almost impossible to create a
precise simulation of reality. While in the simulators protocols are
implemented as how they are described in references, in operating systems
implementations may have slight variations. Therefore there are always
differences between the results of the simulations and the performance of
the actual network.

This report is about a set of simulations which gave results other than
initially expected. As it turns out in the end, the exactness and precise
implementation of the algorithms gave strange but explainable results. The
probability of seeing the encountered behaviour in actual networks is low,
this is due to unpredictability, complicity and randomness of most
networks.

The simulation runs where done using the ns2 [1] network simulator. The
behaviour described in this report is specific for TCP and TCP based
protocols. Other protocols might show the same behaviour, but this is
outside the scope of this report.

1.1 Problem formulation

During simulation runs on TCP Hybla [2], a conceptual TCP variant aimed
at improving TCP performance for mobile and wireless devices,
inconsistencies were found with expectations. Aim of this report is to solve
the main research question: “What is the cause of synchronizing effect in
TCP flows and what can be done to prevent this effect to occur?”. This is
done by stating a number of objectives:

 State the intentions of using the ns2 simulator

 Describe the expected behaviour and the behaviour found in the
simulator

 Provide a plausible explanation of this behaviour

 Do research of simulation behaviour of both TCP New Reno and TCP
Hybla

1.2 Research approach

First a basis of theory is provided by papers about TCP [3], TCP Friendly
[7] and TCP Hybla [2]. These papers give a theoretical basis of what we

TCP synchronisation effects 7 Bert Baesjou

would expect from TCP and TCP Hybla.

Simulations will be done with the ns2 simulator version 2.27 with one
network setup, but changing parameters of the nodes and links. The theory
will be used as reference to compare the simulation results with what
would be expected based on the theory. Given these results there will be an
attempt to give an explanation to the differences found between the theory
and the simulation results. The tests and comparisons are done for both
normal TCP New Reno and TCP Hybla.

1.3 Outline of this report

The first part of the report will start with giving an introduction to ns2 in
chapter 2, after which an introduction into TCP and variants of TCP will be
given in chapter 3. In chapter 4 the network on which the simulation runs
were done will be described. The last part of the report, chapter 5 for TCP
and chapter 6 for TCP Hybla, discusses the simulation runs on the network
as described in chapter 4, the questions which arose from these simulations
and explanation of the simulation results. Finally in chapter 7, an overall
conclusion will be given.

TCP synchronisation effects 8 Bert Baesjou

2 Introduction to ns2

NS2 is a network simulator which is maintained at the Information
Sciences Institute (ISI) at the University of Southern California [1]. The ns2
project dates back to 1989 and at a certain point in 1995 DARPA started to
support the project. NS2 contains code from various researchers from all
over the world, working at corporations like Sun Microsystems and
universities. This chapter will give some basic information about ns2.

2.1 Source code

The ns2 project is released under the BSD “as-is” license. Due to the
project being under this license, the source code is distributed as well,
enabling for the user community to participate in the development of this
simulator. Downside of this model is that various parts of the code are
written by different people. These people might have written it for a special
project, leaving the code abandoned without any documentation when
finishing their project. If one would want to know more about such a piece
of code the original developer may be long gone, leaving only the
community to ask if someone would know anything about that specific part.
During this research it happened multiple times that there was no feedback
at all from the community.

Like almost any Free/Open Source Software (FOSS) project, there is a lack
of documentation. Not only does the source code often miss comments, but
also the documentation about the use of the program is lacking information
about a lot of parameters and functions. This seems to be a trend in
Academic contributed code, nice concepts are delivered with reasonable
code, but comprehensive documentation almost always lACK's. Even more
than with general FOSS projects.

This lack of documentation in combination with lack of community support
often means one has to find out how the program works by opening up the
source code. There are also a lot of (undocumented) options one can set,
making the simulator highly adjustable ad flexible. But it is almost
impossible to do a representative simulation without knowing what all the
options exactly do, because this often means that the source code has to be
looked into. This is not desirable way of operation for any program.

2.2 TCL and C++ usage

The simulator makes a distinction between two layers of code. One layer is
C++ and is the core of the simulator, it has the modules implementing the
protocols like TCP and IP, the actual simulator, queueing systems, etcetera
This could be called the framework which is the basis of this simulator.

On the other hand a TCL file is used for the more dynamic changing part of
the program, namely the configuration file of the actual network. Although
it is possible to write complete programs or scripts in this TCL file, the
main intent is small scripts an creation of objects from the core program.

TCP synchronisation effects 9 Bert Baesjou

There is an interface between the TCL and C++ to exchange values of
object parameters. The idea behind this setup is to have a fast
(precompiled) C++ core of the simulator and still be able to make and use
intelligent configuration files which are parsed and built run-time.
Appendix 2 will give an introduction into the basics of the TCL file used in
our simulations, the entire TCL file used for the simulations in this report is
given in appendix 3. Appendix 1 gives the code used to gain insight in the
development of the congestion window of individual flows, which was used
to create most of the figures in this report.

2.3 Documentation and manuals

For a solid introduction into ns2, the documentation and tutorials available
online are a nice place to start. But if one wants to do slightly more
complex things than the very simple examples found in the tutorials, the
documentation totally lACK's support. Of 90 parameters which could be set
for TCP alone (not talking about variant dependant parameters for for
example TCP New Reno), only 22 are described in documentation. The
variant dependant parameters are not even mentioned in the
documentation and may have sometimes, when in luck, a comment in the
default configuration file. This default configuration file is the file where all
of the parameters are set to default (and often “standard”) values.

There are a few websites trying to fill up some gaps in the documentation,
but these are not always up-to-date or complete due to a specific purpose of
these websites. These pages can best be found via search engines, because
links from the ns2 site are almost not provided. When being new to ns2 it is
best to have a contact which has experience in using ns2.

2.4 Support and maintenance

A final word about support an maintenance, as indicated previously in this
document, this is not top of the bill. How the code exactly is maintained is
not entirely clear to the outer world. ISI officially maintains it, but a few
errors in some makefiles are in the source code long after people on the
mailing list came with patches. ISI did not document for the public that
there was a patch for this problem, nor did they do a rebuild of that release
with the right makefiles.

From the community itself support is also very low. On an average one
could say that maybe one out of the ten questions on the mailing list gets a
reply. Answers were mostly given to the simple questions from which the
information could also be found in a first-timers tutorial. Questions more in-
depth were mostly left un-answered. This might be due to the issue that a
researcher or organization developing a certain piece of code for a specific
project and afterwards has no team offering support of some kind thus
leaving the code for what it is. On the other hand there might be
researchers working for a longer time with this simulator and knowing all
its strengths and weaknesses, leading to no need for those people to have

TCP synchronisation effects 10 Bert Baesjou

documentation or create it. When providing modules to ns2 it also seems
like no documentation is required by ISI to be taken into the main
distribution, leaving no pressure at all for code writers to provide
documentation.

2.5 Conclusion

NS2 is probably a great tool for doing research, especially when this
research takes up a longer period of time an many simulations. In such a
situation it is worth of digging into the source code an finding out how the
internals of the program exactly work. However for smaller research with
non sufficient knowledge of ns2, there are just too many options and “got to
knows” to be able to do simulations with conclusive results.

TCP synchronisation effects 11 Bert Baesjou

TCP synchronisation effects 12 Bert Baesjou

3 Introduction to TCP

The Transmission Control Protocol was created in the 1970s to make
connections across the Advanced Research Projects Agency-net (ARPAnet)
and to replace the Network Control Protocol. In 1978 the Internet Protocol
(IP) was added to TCP to take over the routing of messages, which resulted
in the TCP/IP protocol suite. In 1981 the RFC 793 [3], Transmission Control
Protocol, was published.

TCP is a communication protocol which is connection-oriented and has a
reliable delivery. The application layer sends a byte-stream to transport
layer, where TCP divides the stream into segments. TCP then sends this
segments to the Network layer, where IP handles the sending across the
network. To keep track of the packets and keep them in order on the other
side, TCP gives each packet a sequence number, which upon reception by
the receiving TCP module is acknowledged. If no acknowledgement is
received by the sending side within a reasonable time, the sender presumes
the packet is lost and resends the packet. With the usage of a checksum,
which is computed by the sender and included in the header of the TCP-
packet, the receiver checks if a packet is damaged by computing the
checksum and comparing its own with the one sent along with the packet.

3.1 “Standard” TCP operation

In RFC 2001 [9], four TCP algorithms are described (which at the time the
RFC was written were already implemented in most operating systems):
slow start, congestion avoidance, fast retransmit, and fast recovery. This
paragraph discusses those procedures. This paragraph is called
”Standard” TCP operation because the procedures discussed here are
almost standard and exactly the same for all TCP implementations and
variants. Most variants have alterations in specific parts of the “standard”
TCP operation, that meet specific needs. An example will be discussed in
paragraph 3.3 TCP variant: TCP Hybla.

3.1.1 TCP congestion control procedure

When a TCP connection between two nodes is established, the sender
probes for the available capacity of the link used. This is done by increasing
the congestion window (W), being the number of packets a TCP flow may
have in the network at any time. In the initial slow start (SS) phase this is
from an initial window (W0), which commonly is one or two times the
maximum segment size (MSS), from which the congestion window is
increased by one MSS per received non-duplicate acknowledgement (ACK).
At the time W reaches the slow start threshold (ssthresh), the sender
switches to the congestion avoidance phase (CA), during which the window
is increased by MSS/W bytes per non-duplicate ACK received. This rise
continues until the advertised window (the size of the buffer of the
receiver) is reached, or if the sender notices segment loss. In the latter
case the sender enters an other phase in which a recovery procedure is

TCP synchronisation effects 13 Bert Baesjou

started that is TCP version specific.

These rules can be expressed as formulas defining the window update
rules, the size of the window at a specific time and the transmission rate
[2].

The congestion window update rules can be expressed as a formula (1)
when we have an index 'i' which denotes the reception of the i-th ACK.

 W i 1={ W i1 SS

W i
1

W i

C A (1)

Rewriting this formula for the time domain gives more insight in the
performance of TCP. For the SS phase this results in a discrete exponential
increase with RTT, as the congestion window is doubled at every RTT. For
the CA phase the growth is one segment per RTT and therefore has a linear
increase with time. Denoting tγ the time at which the ssthresh,γ, is reached.
This gives

W  t ={ 2
t

R T T 0≤ t t  SS

t− t 
R T T

 t≥ t  C A
 (2)

where tγ = RTT log2 γ

From (2) it can be seen that the lower the RTT, the higher the congestion
window increase rate.

It is also possible to calculate the amount of data transmitted (Td(t)) by a
standard TCP source from the moment of transmission initialization. For
this formula the expression of the segment transmission rate is given (3)
(the amount of segments transmitted per second).

Bt =
W t 
RTT

 (3)

Td t= ∫
x=0

x= t

Bd ={2
t

RTT−1
ln 2

0≤tt SS

−1
ln 2


t−t

2

2∗RTT2

∗t−t

RTT
t≥t CA

 (4)

With this formula we can create the formula representing the amount of
data transmitted from the standard TCP source since the start of the
transmission Td(t) (4). It can be seen from this formula that the amount of
transmitted data is heavenly dependant on the RTT. The lower the RTT is,
the more data can be sent. This is logical because a lower RTT connection
in ideal situation is:

TCP synchronisation effects 14 Bert Baesjou

 Increasing the W on each received ACK, a connection with a lower RTT
is able to increase the W faster. This means that this connection is able
to reach the maximum of the available capacity of the communication
channel faster, thus being able to send at full rate earlier than the
connection with a higher RTT.

 Able to send more packets overall, even if the congestion windows are
even. This because the low RTT connection is able to send the next
stream of packets earlier than the high RTT connection. Per second the
low RTT connection is able to send more packets in this case.

Note that the formulas above are only valid for ideal communication
channels without loss. In other situations the formulas are valid until the
first loss occurs in the communication channel.

It must also be noted that there are some different flavours of TCP such as
Reno, New Reno, Tahoe, etcetera. The main differences in these versions
are mostly located in the loss recovery mechanism. This is discussed in the
next paragraph.

3.1.2Fast Retransmit and Fast Recovery procedure

In TCP New Reno a duplicate ACK is generated for packet n-1 for each
packet arriving when packet n is not yet received. After the reception of
three duplicate ACK's, the sender starts the Fast Retransmit and Fast
Recovery procedure. First segment n is retransmitted and next the sstresh
is updated to half of the the value of the W before the loss was detected.
The W is reduced to sstresh plus 3 MSS. Each additional duplicate ACK
increments the W by MSS and triggers the transmission of a new segment
if the current W exceeds the value of the W before loss was detected. When
a non-duplicate ACK is received there can be two consequences depending
on whether the ACK is only partial, or the ACK covers an entire window. If
the ACK is partial, the W is deflated to the amount of data acknowledged
and the recovery phase is not terminated. If the ACK confirms all the
packets, the recovery phase ends, the W is deflated to sstresh and the
transmission restarts in CA phase.

Other TCP protocols have (partially) other procedures in place, but are not
discussed here because they are outside the scope of this report.

3.2 TCP Friendly

An algorithm was developed to provide programs which are not using TCP
at the transport layer some “friendliness” in the network. The formula (5) is
derived by looking at the “normal” TCP behaviour[7]. This makes this
formula a mathematical approximation of how TCP theoretically should
perform.

Capacity share= 1.22∗MTU
RTT∗ Loss

 (5)

TCP synchronisation effects 15 Bert Baesjou

When having packets of size MTU (Maximum Transfer Unit) and a
particular RTT for a network which is dropping packets when the
connection congestion size increases to W packets. Next the TCP would cut
the congestion window in half after which the congestion window is
increased by one until it reaches W again. This means that in average the
congestion window in on ¾th of W. The maximum speed we can send at is
W*MTU/RTT. So we define S in bytes/second as the average speed (6).

S=0.75∗W∗MTU
RTT

 (6)

Because when a loss occurs the W is reduced to ½W and the again builds
up to a new W, the loss for a connection is 1 over all the possible window
sizes from ½W to W (7). This is almost 1 over ((3/8)W2), from which we can
derive the W.

Loss= 1
W /2W /21...W

Loss≈ 1
3/8W2

W≈ 8
3∗Loss

 (7)

We can fill this W in into (6) which gives us formula (5).

If we consider two flows, with both the same loss and MTU but different
RTT, we can calculate the theoretical share of each flow on the total
capacity. Because MTU and loss is constant and the same for both, they
eventually can be eliminated. As can be seen in (8) the share of the RTTx is
RTTy divided by RTTy plus RTTx.

Capacity share (%) Flowx=

1.22∗MTU
RTTX∗loss

1.22∗MTU
RTTX∗loss


1.22∗MTU
RTTY∗loss

∗100

Which can be rewritten as:

RTTx%=

1
RTTx

1
RTTx

 1
RTTy

∗100=
RTTy

RTTyRTTx

∗100

 (8)

To plot with this formula we take a RTTy fixed to 10 units of time, while
increasing the RTTx from 1 to 100 units of time (the exact unit is not
important because a ratio is calculated). Figure 1 shows the plot of TCP
friendly and thus the theoretical performance of two TCP flows on a link
versus the ratio between RTTx and RTTy.

TCP synchronisation effects 16 Bert Baesjou

Figure 1, Theoretical performance of two TCP flows.

As can be seen in the figure that even if the RTT of flow x is ten times
bigger, it still gets a reasonable amount of capacity and does not starve out.

3.3 TCP variant: TCP Hybla

In this report there is some special attention for TCP Hybla, this is due to
the original research assignment which was focused on researching the
behaviour of TCP Hybla. This chapter describes the operation of this
altered TCP protocol, based on the paper: “ TCP Hybla: a TCP enhancement
for heterogeneous networks” [2].

3.3.1 The objective of TCP Hybla

As the title of the paper indicates, the objective of TCP Hybla is to enhance
the TCP behaviour in heterogeneous networks, mainly focused on
preventing connections having a high latency being “punished” by this high
latency. In figure 1 it can be seen that when the RTT of normal TCP links
becomes higher, their capacity share on the network goes down.

This mainly has to do with the time it takes the node to increase W. On a
high latency link competing with a low latency link, the low latency link
builds up the W much faster after collisions, thus getting a larger share of
the overall capacity. When looking at the number of packets successfully
delivered at the receiving node, we are talking about goodput. Even in the
case when the W of the high latency link and the W of the low latency link
are exactly the same, the goodput of the high latency link is still lower. This

TCP synchronisation effects 17 Bert Baesjou

because you can have only W packets out in the network during a RTT, the
shorter the RTT, the more packets you send per second which in almost
always leads to a better goodput.

Objective of TCP Hybla is to provide a way where two channels, with the
same available connection capacity but different RTT's, are able to have the
same capacity share. We saw that the goodput is heavily dependant on the
RTT, TCP Hybla aims at filtering out the RTT an introducing a parameter
for regulating the W.

3.3.2 Operation of TCP Hybla

In paragraph 3.1 we saw how TCP basically operates. The idea of TCP
Hybla is to make the congestion window development independent of the
RTT, this is done by using a normalized RTT (ρ). This ρ is calculated by
dividing the RTT by a reference RTT (RTT0)(9).

= RTT
RTT0

 (9)

The RTT0 is the round trip time of a connection (the reference link) with a
lower RTT than the current connection (the TCP Hybla link). It is desired in
TCP Hybla to be able to compete with this low RTT connection goodput
wise.

To equalize the window growth with the reference link, the RTT variant
part of the equation in (2) is multiplied by the ρ. This results in an equation
where the congestion window growth is determined by the RTT0, giving the
connection the ability to grow its WH just as fast as the reference link. Next
this equation is multiplied by ρ to compensate for the fact that the window
can only update each RTT and not RTT0. Applying these rules result in the
formula given in (10).

W H  t ={  2


t
R T T = 2

t
R T T 0 0≤ t t  SS

 [ t− t 
R T T

]=[t− t 
R T T 0

] t≥ t  C A

 (10)

Now an WH(t) is achieved without any dependence on the RTT, when
rewriting this formula to congestion window update rules, the “normal”
TCP congestion window update rules (1) are replaced by (11).

Wi1
H ={W i

H2−1 SS

Wi
H

2

W i
H

CA
 (11)

Just as with normal TCP the transmission rate can be expressed by dividing
the WH(t) over the RTT, applying (10) to this gives (12) which shows that
the transmission rate has become independent of the RTT. Instead the RTT0

TCP synchronisation effects 18 Bert Baesjou

determines the transmission rate, which means the theoretical transmission
rate of the TCP Hybla link has become even with the reference link.
Theoretical because these formulas, just like the “normal” TCP formulas,
only apply on ideal communication channels without loss. In other
situations the formulas are valid until the first loss occurs in the
communication channel, which we will see later on in 3.3.3, is an issue
with TCP Hybla.

B H  t = W H  t 
R T T

={ 2
1

R T T 0

R T T O

0≤ t  t  SS

1
R T T 0

[t− t 
R T T 0

] t≥ t  C A

 (12)

Td t = ∫
x=0

x= t

Bd  { 2
t

RTT0−1
ln 2

0≤tt SS

−1
ln 2


t−t

2

2∗RTT0
2

∗t−t

RTT0

t≥t CA

 (13)

When we now fill (12) into Td(t) to get the number of segments sent since
the start of transmission, it can be seen in (13) that the RTT is no longer
present en only the RTT0 remains. Thus giving the same performance as the
competing TCP flow.

Finally, the initial value of the initial congestion window and the slow start
threshold must all be multiplied by ρ .

Loss recovery

To deal better with loss recovery on lines with a longer RTT, TCP Hybla
adopted the selective ACK (SACK) option [RFC 2018]. With the SACK
option the sender sends an ACK for each packet received, allowing the
sender to recover more than one packet per RTT. This option is currently
widely spread and available in most TCP implementations and is also often
turned on by default in the most operating systems.

3.3.3 Known issues with TCP Hybla

TCP Hybla is mostly a theoretically protocol, thus needing more testing and
having some known downsides. The most common problems with TCP
Hybla are described below.

 Choosing of the right RTT0, when this variable is wrongly determined it
could jeapordize the fairness of capacity sharing. The TCP Hybla
connection could be far more aggressive in taking capacity. Especially
when there are multiple connections with multiple round trip times, it is
almost impossible to find a RTT0 which is not aggressive against any of
the the flows.

TCP synchronisation effects 19 Bert Baesjou

 Calculating the current RTT is also an issue. If the network congests at a
certain point, the RTT goes up meaning that the ρ also becomes higher.
This leads to a more aggressive TCP Hybla connection, congesting the
network even more. The effective goodput goes of TCP Hybla degrades
instead of improving it (which was the initial objective of TCP Hybla).

 Due to the larger congestion windows adopted by TCP Hybla with a
relative long RTT, there might be a chance that the network becomes
congested when suddenly the TCP Hybla connection sends an entire
window (bursting) after receiving an ACK. After this sending there might
be a time where there is nothing to send until the next ACK is received. A
possible solution for this problem could be spreading the entire window
over the RTT.

3.3.4 Current status of TCP Hybla

As creator of TCP Hybla. the University of Bologna is mainly working on
TCP Hybla. They have made a Linux 2.6 kernel implementation [4] and
have submitted papers for numerous conferences.

TCP Hybla is also available as ns2 module, which was made by Assed
Jehangir at the University of Twente. This module allows one to test the
properties and performance of TCP Hybla.

TCP synchronisation effects 20 Bert Baesjou

4 Setting up a simple network

This chapter describes in detail the network simulated along with the
configuration file used. As one will see in this chapter, the network is a very
simple one. This is done to make problem analysis as simple as possible.
The network for the original assignment in researching TCP Hybla
consisted of far more nodes, but the essence (and results) was the same.

4.1 Network layout and objectives

The first basics of the network is to create a bottleneck, forcing data
streams to adapt to a congesting network. We also want to be able to have
competing flows from different hosts. The most simple set-up with these
requirements is the network stated in figure 2. The first two hosts (node 0
and 1) are the sending nodes, these connect to the first router (node 2).
This router connects to a second router (node 3) via a relatively very low
capacity link, after which the second router connects to receiving hosts
(node 4 and 5).

Figure 2, Layout of the simulation network

By giving the links from the senders to the first router a 100 megabit speed
and the link from the first to the second router a capacity of 100 kilobit a
bottleneck is created.

Delay is also introduced in the network, which is an important parameter
for our simulations because the delay at the links has a large impact on the
RTT. The RTT is the time it takes the packets to get processed in the
network, meaning the total sum of delays on links and processing times at
the different nodes. To investigate the behaviour of data streams in the
network with different delays, one path (via which a data stream is routed)
is chosen with a fixed delay in the links, namely the path from node 0 to
node 4, while the other path from node 1 to 5 has a delay which is set to a
specific value at the start of each simulation run. During the simulation the
variable delay does not change, for example a simulation is done where the
variable delay is set to 20 ms giving an overall delay in the path from node
1 to node 5 of 41 ms (20 ms + 1 ms + 20 ms). This value of 20 ms does not
change during the entire simulation run. Next a simulation can be done for

TCP synchronisation effects 21 Bert Baesjou

21 ms of delay after which the performance of those two simulations can be
compared.

4.2 Configuration of the network/node parameters

This paragraph will give an overview of the parameters of the nodes and
the network elements, as set in the simulations. The parameters are set in
the TCL configuration file given in appendix 3. An other note is that TCP
has many (almost 90) parameters which can manually be set in ns2. All
parameters have some default values initialized when no value is given in
the TCL file. Some parameters set the specifics of generic TCP behaviour
such as segment size and advertised window, while others set what kind of
TCP implementation should be simulated. Only the important TCP
parameters for the simulations of this network are given in table 1,
assuming the default values of the other (sometimes undocumented)
parameters to be reasonable for these simulations. The values given here
are used in all the simulations done with ns2.

The queues at the gateway nodes operate as DropTail queues, first come,
first served. When the queue is full, the next packet to arrive is dropped
until a new slot is vacant. Queue sizes were all chosen with a length of 10
packets.

All connections used in the simulations use the TCP SACK option, but no
significant differences in performance were seen in simulation results of
runs with and without SACK.

TCP synchronisation effects 22 Bert Baesjou

NS2 parameter Value Description
WindowOption_ 1 This setting defines the type of window update rules of

the TCP connection. From 8 different available
implementations in ns2, this one does exactly as defined
in paragraph 3.1.

ttl_ 64 Time To Live set to 64 ms which is default value for
most (UNIX) systems.

use-scheduler Calendar

{default}

Type of scheduler for ns2, Calendar is default scheduler

window_ 20
{default}

Maximum advertised window

packetSize_ 1000

{default}

Size in Bytes of the packet

tcpip_base_hdr_size_ 40

{default}

Size of the header of the TCP/IP packet

ssthresh_ 0

{default}

Slow start threshold initially zero, but is set to window_
on startup op the ns2 simulator by default.

cwnd_ 0

{default}

This number is updated by 1 by the simulator, when
initiating a connection.

p_algo_ 0,1 or 2 TCP Hybla specific, sets the algorithm used to calculate
the RTT. 0 current, 1 smoothed, 2 minimum.

r_rtt_ Competing
RTT

TCP Hybla specific, sets the reference RTT to the RTT
of the competing network link.

queue-limit 10 Number of packets (of any size) which can be held in
the queue.

duplex-link - We used only duplex-links in the simulations

DropTail - All queues are DropTail

Agent/TCPSink/Sac
k1

- All connections are using the SACK option.

Table 1, important ns2 setting for the simulation network

As said before, the entire TCL file with some more explanation about Tcl
can be found in appendices (TCL file in appendix 3 and short explanation of
TCL in appendix 2).

TCP synchronisation effects 23 Bert Baesjou

5 TCP New Reno simulation results and analysis

In previous chapters we have seen the configuration of the network at
hand. The objective of this chapter is to provide some output of simulations
and to discuss these results. This chapter will start with some results from
different simulations, after which the results are discussed more in depth.

5.1 Simulation results

In the starting simulation we have a queue of 10 packets. We have two
flows:

 Flow 1, starting at 0 seconds, this uses the link with the variable delay

 Flow 2, starting at 20 seconds, this flow uses the fixed delay link

Flow 2 is started after 20 seconds to ensure that flow 1 is in CA phase.

Variable delay set to 15 ms:

When doing simulations with the variable delay set to 15 ms, the flows
behave like expected, a reasonable fair distribution of throughput is
reached. This can be seen in figure 3 which shows how throughput is fairly
distributed. After flow 2 starts after 20 seconds, flow 1 adapts by
decreasing its congestion window. Both flows sync because they both have
to deal with the queue reaching its limits at the same time.

Figure 3, congestion window development for variable delay set to 15 ms

Each simulation also calculated the throughput for each of the flows and
within this simulation both flows got around 50% of the available capacity.

TCP synchronisation effects 24 Bert Baesjou

This fairness in sharing of capacity is exactly how we would expect TCP to
behave in this situation. The observant reader would however argue that
the ratio between the delays is about 1:3 (5 ms : 15 ms) and thus one could
claim that the appropriate capacity share should be around 75% for the
flow with 5 ms delay and 25% for the flow with 15 ms delay (see figure 1).
However, the total RTT should be taken into account when comparing
ratios, the total RTT includes processing time at queues and nodes. As can
be seen further on in paragraph 5.2, just the queue at node 2 alone takes
830 ms to process. Therefore the total ratio between the actual RTT's
becomes close to 1:1 and therefore an equal capacity share is what would
be expected.

Variable delay set to 21 ms:

When doing simulations with the delay set to 21 ms the output is totally
different and seemingly unexpected, as can be seen in figure 4. It can be
seen that flow 2 is not able to initiate a normal congestion window
behaviour and that flow 1 dominates the link. Remind that flow 1 actually
has a larger delay, which is normally a bad thing for flow 1, but still is able
to get almost all the throughput on the link.

Figure 4, congestion window development for variable delay set to 21 ms

When looking at the goodput data, flow 1 has around 99% goodput, while
flow 2 has around 1% goodput. This is not the output what we normally
would expect from TCP, since the protocol was designed to distribute the
capacity of a link reasonably fair amongst flows.

TCP synchronisation effects 25 Bert Baesjou

Results for multiple variable delays

To have a better understanding of the problem we look into the results of
simulations along a wide range of variable delays. Figure 5 describes the
utilization of the available capacity (on the bottleneck link) against the
variable delay for flow 1.

Figure 5, utilization of capacity with a queue of 10 packets

What we see is a repeating pattern. Every 20 ms a period of around 6 or 7
ms the performance of flow 2 drops significantly. This is totally not what
was expected on forehand from TCP, the idea behind TCP is to balance the
load between flows in a fair way approximating TCP friendly (figure 1).

5.2 Result analysis

When the variable delay is set to a higher value at the start of a simulation
run, the overall performance of flow 2 increases. This because the RTT of
flow 2 is two times the link latency of 5 ms + 1 ms + 5 ms (two times
because the ACK has to be send back trough the same link thus having the
same delay), plus the time to wait in the queue at the first router, which is
the bottleneck of the network (other queues in the routers have practically
no queueing and processing time in the simulation). The queue takes 83 ms
to set each packet of 1040 bytes on the 100 kb/s line. With a filled queue of
10 packets this means that when a packets gets in the queue it takes 830
ms before this packet gets on the bottleneck line. Since we send as much
data as possible so the queue is most of the time filled, this means the total
RTT of flow 2 is always around 852 ms.

TCP synchronisation effects 26 Bert Baesjou

Flow 1 however got a variable delay, which is competitive better in the
beginning when its RTT is still low, but this delay is clearly affecting the
performance when it becomes higher and higher. If we would use TCP
Friendly as a sort of reference for how the flows should look like, it would
look like figure 6.

Figure 6, TCP Friendly for simulation network

In this figure we use a fixed RTT for Flow 2 while the RTT for Flow 1 varies.
The bandwidth distribution is calculated by setting the MTU and the Loss
as a fixed value.

We have seen in formula (8) that the segment size and Loss do not matter
for our calculations and is only the RTT part of variance in our figure.

As we can see figure 5 and 6 have in common that Flow 2 eventually gets
the overhand and thus Flow 1 decreases. In the basic both pictures look
like each other, but the actual performance of the flow is quite different
from that of the mathematical reference.

5.3 Problem analysis

The effect we see in figure 5 is described in [8] and is called the Traffic
Phase Effect. Basically it comes down to synchronisation in the network.

In networks where we have periodic sources, which is often the case in
simulation networks, it could be that window flow control protocols have a
periodic cycle equal to the connection RTT. Especially DropTail gateways in

TCP synchronisation effects 27 Bert Baesjou

a network with strong periodic traffic can have a systematic discrimination
against certain flows. The explanation is as follows: in figure 7 we see a
simple network with periodic (bulk) traffic.

Figure 7, Periodic traffic

For a connection the number of outstanding packets is controlled by the
rate ACK's arrive back at the source. When an ACK is received the next
packet is immediately sent. This RTT can be called the traffic “period”. In
case of bulk traffic, which is a constant stream of packets of the same size,
this period is always the same + the time it takes to process queues in
gateways.

Queues in gateways decrement by one if the entire packet is sent and
increment by one on arrival of the next packet at the queue. Since bulk
traffic would always try to optimise the use of capacity, this queue is always
filled or has one vacancy. This vacancy is available until the next bulk
packet arrives. If we would now have a node trying to send some (telnet)
packets (while the bulk connection was sending) it has to arrive after the
slot came available but before the next bulk packet arrives, leaving the
queue to drop the next bulk packet. If it however reaches the queue to late,
the telnet packet would be lost.

In our simulation setup we have two nodes trying to send bulk (FTP)
packets. The phenomenon we see in figure 6 between 20 and 27 ms of
variable delay can be explained by the Traffic Phase Effect. When we
assume the queue to be constantly filled Flow 2 has a fixed RTT2 of 852 ms
(14). Flow 1 however has a RTT1 (variable delay) based on the delay chosen
between the sending/receiving nodes and the gateways. If we would choose
this delay 20 ms, the RTT1 (20) would be 912 ms (15).

RTT2=2∗5ms1ms5 ms830ms=852ms (14)

RTT1 20=2∗20ms1 ms20ms 830ms=912ms (15)

When a packet of Flow 1 passed (getting enqueued and finally dequeued to
be send) the queue (which took him 830 ms of his RTT1 (20)), it takes 82 ms
to: have the packet delivered (1 ms + 20 ms), let the sink send an ACK to
the sender (+ 20 ms +1 ms +20 ms) and have Flow 1 delivering the next
packet to the queue of the gateway (+ 20 ms = 82 ms). But in the simulator
this is not strictly 82 ms but a few milliseconds more due to the fact that it
takes (even empty) queues always some time to set a packet on a link. The
main factor here is the bottleneck queue at node 3, where it takes the ACK
packet 3 ms to be set entirely on the link to node 2. Remember that the
bottleneck queue at node 2 takes 83 ms to send one packet, therefore at

TCP synchronisation effects 28 Bert Baesjou

FTP
Source

SinkGateway

this point this node 2 opened up a vacancy just a few milliseconds ago.
Flow 2 only has a very small probability to line up in the queue with a slot
that is only available for a few milliseconds. Therefore flow 1 “steals”
almost all the available capacity in this case.

More generic for our case, when the delay is a little bit longer than the
multiple of 83 ms (the time the queue can set one packet on the line), there
is a large possibility this flow “wins” in competition for the queue. This
because when the new packet arrives at the queue, a packet has just been
sent. This multiple of 83 ms is reached each multiple of the 20 ms variable
delay (since 2*(20+1+20) = 82 plus a little bit extra delay).

5.4 Solution

A number of solutions are named for preventing this from happening in
simulation networks, but they all come down to introducing randomness
into the network.

One solution is to include some nodes sending random dummy data into the
network. Downside of this dummy data is that it is random and therefore
hard to predict what the effects on simulation results are, or how to take
the randomness of this dummy data in the appropriate way into account.
Taking averages of multiple simulation results could be a solution in such
cases.

The other is changing the queue types at the bottleneck link. An in [8]
suggested Random Drop policy is not sufficient to decrease the
synchronisation effect. But also suggested by [8] is the use of the Random
Early Drop (RED) scheme, however further study is needed according to
this paper. In the next chapter there will be some promising simulation
results for a TCP Hybla connection using a RED scheme.

It is possible (but not very) that this synchronisation takes place in an
actual network, when this happens often the previously discussed solutions
could be applied. Note that these solutions are intended mainly for
simulation purposes, generating for example extra dummy traffic into an
actual network to have better performance of this network is probably not
something one would pursue.

5.5 Conclusion TCP New Reno

When doing network simulations with any simulator, it is important to
check if the results are part of TCP/IP biases. When dealing with larger
simulation networks there might also be a smaller chance the
synchronisation effect occurs, this because there probably is more
randomness introduced in those networks. Some nodes in those networks
might provide (automatically without knowing or intention) the same
function as the dummy data needed to solve the problem in networks where
synchronisation occurs. Downside of larger simulations is that there are
more factors to keep track of while analysing simulation results, especially
when one is interested in only a specific part of the results.

TCP synchronisation effects 29 Bert Baesjou

In practical the chance of this effect ever occurring on real networks is
small, because the behaviour of most actual networks is more random.
Nodes sending from different TCP implementations for different kind of
applications to different parts of the network, create a sort of “natural”
randomness. However, especially with large file transfers this behaviour is
actually possible in networks.

TCP synchronisation effects 30 Bert Baesjou

6 TCP Hybla simulation results and analysis

It is suggested in [8] that an adjusted protocol without a dependency on the
RTT could be a way to decrease the impact of the synchronisation problem
we saw in the previous chapter. Since TCP Hybla is such a protocol, this
chapter shows results of simulations done with one TCP New Reno
competing with one TCP Hybla flow. It also shows promising simulations
with TCP Hybla and TCP New Reno in combination with a RED gateway.

6.1 The simulation network

Basically the network used in these simulations is the same as the network
in the previous chapters. Because TCP Hybla is created to enhance the
performance of “slow” (high RTT) links, we choose the link with the
variable delay as the one using TCP Hybla for its connection. The fixed RTT
link just stays using TCP New Reno.

But a small alteration had to be made to ensure the validity of the
measurements, this alteration is the capacity of the bottleneck link.
Remember that the determining factor in TCP Hybla is the ρ, this ρ is
determined by dividing the current RTT by the RTT0. The RTT0 is the RTT of
the link which is competed with (in our case the fixed link). At each
collection of a new RTT, the ρ is recalculated.

In previous chapters the RTT of the link with variable delay was around the
852 ms (with a queue size of 10 at the router and a variable delay of 20)
and the fixed link had a RTT of 830. This would mean that ρ would almost
always be around 1 (16). Because a ρ of 1 results in normal TCP New Reno
behaviour, it would create no different results as the previous simulations.

100 kb /s=
RTT
RTT0

=912
852

≈1,07 (16)

Therefore the capacity of the bottleneck link is set to 1000 kb/s (instead of
100 kb/s). This means that one packet takes 8 ms to get dequeued at the
router on the bottleneck link. Theoretically the delay at the queue has a
maximum of 80 ms, thus giving a maximum RTT to the variable link of 162
ms and a RTT0 of the fixed link of 102 ms. Now ρ becomes (17).

100 kb /s=
RTT
RTT0

=162
102

≈1,59 (17)

These values are much more representative for simulations with TCP
Hybla. For the results of the simulations this change has no effect, since
synchronisation effects have to do with the moment of a packet leaving the
critical queue and the arrival of the next packet from the same sender. The
time spent in the buffer of the queue is irrelevant.

6.2 Simulation results

We want TCP Hybla to compete with the fixed link, so we set our reference

TCP synchronisation effects 31 Bert Baesjou

RTT0 to the RTT of the fixed link, RTT0 = 22ms + (8ms * queue length). For
a queue of 10, this will mean RTT0 would become 102ms.

6.2.1 Current RTT TCP Hybla operation

In this first paragraph the ρ is calculated with the last measured RTT. In
the next paragraphs it can be seen that there are also other ways to
determine ρ, namely smoothed RTT and minimum RTT which are discussed
in paragraph 6.2.2 and paragraph 6.2.3.

Results of simulations with a maximum queue of 10 packets are given in
figure 8.

Figure 8, utilization of capacity with a queue of 10 packets

It can be seen that there is still a synchronisation issue, although the figure
looks some different. Due to the more variable behaviour of TCP Hybla, the
queue is filled in a more random way. Since randomness is a “cure” for the
synchronisation problem of flows, synchronisation is slightly less evident in
these results. However, there is not enough randomness to ensure that no
synchronisation is happening. At for example variable delay is 3 ms and 26
ms, this extremely happens for the Hybla link. For a variable delay of 23 ms
this is the case for the New Reno link. Blocks of periods where the
synchronisation effect is occurring can be seen clearly between 16 and 30
ms and between 43 and 63 ms. After 65 ms of variable delay, the ρ value
grows to large for normal operation.

At for example 70 ms the RTT becomes 262 ms and with a RTT0 of 102 the

TCP synchronisation effects 32 Bert Baesjou

ρ becomes 3,5. With such a large value of , the slow start phase becomesρ
very aggressive with an increase of W = 11 (18).

Wincrease={ 2−1=23.5=11 SS
2

W i

=3.52

Wi

=12.25
W i

CA
 (18)

So in the first window, eleven packets are sent flooding the queue
immediately, leading to multiple packet drops and thus multiple time-outs
on packets. The flow is unable to start up normal behaviour.

With an increasing queue size, the behaviour becomes better, but
synchronisation can still be observed. This all has to do with the fact that
the queue length itself has no influence on the synchronisation effect.

As conclusion we can say that the synchronisation affects the results of the
simulation is such a way that a conclusive statement about TCP Hybla
cannot be made except for the part that a very large ρ cripples TCP Hybla
at a certain point.

6.2.2 Smoothed RTT TCP Hybla operation

In smoothed operation the smoothed RTT is used. This is a RTT partly
based on the current, and partly on previous RTTs. The idea is to not let the
TCP Hybla algorithm overreact on temporarily variations of the RTT. This
formula is given in (19) in which α usually has the value of 0.125.

RTTsmoothed=1−∗RTTprevioussmoothed∗RTTcurrently measured (19)

It can be seen that in case of a spike in the RTTcurrently measured, only one eighth
of this measurement is taken into the RTTsmoothed while the previously
smoothed RTT is taken into account for most of the part. In this way the
RTT increases only significantly if multiple subsequent high RTT's are
measured. The idea behind using RTTsmoothed in TCP Hybla is not to let TCP
Hybla over react to possible minor changes in the network. In case of a
single high RTT, normal TCP Hybla would create a high ρ and a (larger)
increase of the congestion window. This overreacted increase could
overload the network, leading to a real problem. RTTsmoothed should prevent
this problem.

In figure 9 the simulation results can be observed.

TCP synchronisation effects 33 Bert Baesjou

Figure 9, utilization of capacity with a queue of 10 packets

It can be seen, that the graph of the performance is a little bit smoother
than TCP Hybla using the current RTT (and thus a little bit better
performance), but the synchronisation effect is still very much present.
When the queue size grows to 30 packets the overall performance gets
better, but synchronisation is still present.

6.2.3 Minimum RTT TCP Hybla operation

Minimum RTT is a principle where the minimum value of the RTT ever
measured in the connection is taken as the overall RTT. If a lower value
would occur this would be taken as the RTT. There are however some
downsides to this principle.

 In TCP the first packet of a connection is to set up the connection and is
just 40 Bytes. This RTT is therefore always smaller than that of any
normal 1040 Bytes packet, links are just faster in processing such a
packet. It could also occur that in routing schemes where there are
queues for different packet sizes, this packet gets in a queue for the
small packets and is processed in favour of the larger packets.

 In our simulation set-up the TCP Hybla flow starts sending without any
other flow running. This means the first packet finds an empty queue,
giving it a very low RTT which is not representative for the RTT at the
moment when the queue is filled.

 In general, a quiet moment in the network would set the minimum RTT to

TCP synchronisation effects 34 Bert Baesjou

a low value, which does not represent the RTT when a network becomes
saturated. This would lead to a too aggressive TCP Hybla operation.

Therefore TCP Hybla using minimum RTT for ρ calculation is discarded.

6.2.4 Current RTT TCP Hybla operation with RED gateway

In this paragraph we consider TCP Hybla with the use of a RED gateway at
the bottleneck link. According to [8] this should be promising.

Basically a RED gateway computes an average size of a queue using a
weighted exponential running average. When a certain threshold is
exceeded by the queue size, a random packet is chosen and dropped. Next
the threshold is increased, after which the threshold slowly decreases to
the previous value. The chosen packet n is determined by the interval 1 to
range. The nth packet to arrive at the queue is now dropped. The range is
set by the congestion rate, at high congestion the value of range is low
while in low congestion this value is high. This way the drop probability of a
certain flow is proportional to the average share of packets on this queue.

The simulation results are showed in figure 10.

Figure 10, utilization of capacity with a queue of 10 packets

As can be seen in this figure, the synchronisation is still an issue, but a little
less than in the initial simulations.

But when applying a queue size of 20 it seems like there is no
synchronisation effect. Results of simulations are more like how one would
expect from the theory. Results can be seen in figure 11.

TCP synchronisation effects 35 Bert Baesjou

Figure 11, utilization of capacity with a queue of 20 packets

In some more test runs between queue sizes of 10 and 20 packets, it seems
like when the queue size becomes 13 or larger, there is no more
synchronisation effect. Probably RED does not work very well for smaller
queues due to the fact that the flexibility of RED depends on the queue size.

But the utilization of capacity is still not evenly distributed as what the
theory would let us expect. This is due to the bursty nature of TCP Hybla,
the entire window is sent at once, creating an overflow at the queue. This
makes the queue dropping multiple packets from the window. Thus
spreading the sending of the packets in one window among the entire RTT,
could increase the performance of TCP Hybla to the a more evenly share of
the network capacity.

The effect of Hybla getting too aggressive when the ρ becomes to large,
also is far less noticeable. This is because RED is better able to handle
bursty traffic in larger queue sizes.

6.3 Conclusion TCP Hybla

As conclusion for TCP Hybla it can be said that non of the standard options
of the TCP Hybla protocol helps against the synchronisation effect. This is
also due to the nature of this effect. The effect has to do with the absence
of randomness in the network resulting in a static RTT between the
departure of a packet at a queue and the arrival of the next at the same
queue.

TCP synchronisation effects 36 Bert Baesjou

When bringing some randomness in the gateway by introducing the RED
queueing scheme, results become more satisfying. RED has as downside
that it is not widely spread in the real world. Therefore for simulations
where a real world scenario have to be simulated, using RED is not an
option.

TCP synchronisation effects 37 Bert Baesjou

TCP synchronisation effects 38 Bert Baesjou

7 Conclusion

In this paper we saw a synchronisation effect occurring in the TCP
protocol. The theory behind the effect is simple, in our situation two flows
compete with each other for a place in a saturated queue. While competing,
one of the flows has such a round trip time that most packets of that flow
arrive just after a spot opens up in the queue. In this way, the other flow is
not able to get packets into the queue, which leads to starvation of this
flow.

The synchronisation effect seen is however not likely to occur in read life
networks, this due to more random traffic on actual networks and
implementation differences between operating systems. However in very
homogeneous network with large data flows, this behaviour could occur.

In simulation environments however, the synchronisation effect could occur
quite easily. One should make sure that readings from simulations say
something about the behaviour of the issue at hand in stead of how a (TCP)
protocol behaves in a certain environment. Our simulations were severely
influenced by the synchronisation effect and therefore were not able to
make a contribution to the original research, which was gaining more
insight into TCP Hybla.

This report shows that there is almost no difference in performance of TCP
New Reno and TCP Hybla. This due to the fact that the synchronisation
effect mainly has to do with variation in RTT's and the randomness of the
network. Some improvements can be registered for using TCP Hybla in
combination with smoothing of the RTT, but these improvements are mainly
making TCP Hybla less aggressive and thus improving performance.

There are a number of ways described in [8] to prevent synchronisation,
including introducing randomness in the network by introducing nodes,
sending random data or changing the type of queues from DropTail to other
such as Random Drop or Random Early Detection gateways. We have seen
in simulations that RED gateways with a queue size large enough rules out
the synchronisation effect, however RED gateways are not very common in
actual deployed networks. This report also only made some assumptions
why RED only worked after a certain point, a more detailed research
should give more insights into why RED started only to work after a certain
point.

There is also a downside to introducing randomness in network simulations,
results of simulations might be harder to analyse and reproduce due to the
more random behaviour. A possible solution is taking the average of the
results of multiple simulations.

Since the synchronisation effect can take place in the most simple
networks, a more general approach of how to build decent simulation
networks would not be misplaced in the manual of any network simulator
(thus also on the website of ns2).

TCP synchronisation effects 39 Bert Baesjou

TCP synchronisation effects 40 Bert Baesjou

References
[1] The Network Simulator – ns – 2, Information Sciences Institute, Marina
del Rey, 09/19/2004,
http://www.isi.edu/nsnam/ns/
[2] Carlo Caini and Rosario Firrincieli, International journal of satellite
communications and networking, Volume 22, Issue 5, pages 547-566, 31
August 2004, TCP Hybla: a TCP enhancement for heterogeneous networks,
http://www3.interscience.wiley.com/cgi-bin/fulltext/109604907/ABSTRACT
[3] Defense Advanced Research Projects Agency, Transmission Control
Protocol, Arlington, September 1981,
ftp://ftp.rfc-editor.org/in-notes/rfc793.txt
[4] Daniele Lacamera, Implementazione del Protocollo TCP-Hybla su Kernel
Linux, Bologna, 27 July 2004,
http://www.danielinux.net/projects/tesi.pdf
[5] Jae Chung and Mark Claypool, NS by Example,
http://nile.wpi.edu/NS/
[6] Trace file formats,
http://k-lug.org/~griswold/NS2/ns2-trace-formats.html
[7] Jamshid Mahdavi & Sally Floyd, TCP-Friendly Unicast Rate-Based Flow
Control, 01/1997,
http://www.psc.edu/networking/papers/tcp_friendly.html
[8] Sally Floyd and Van Jacobson, Traffic Phase Effects in Packet-Switched
Gateways, Lawrence Berkeley Laboratory, Berkeley, 26-42,
http://portal.acm.org/citation.cfm?id=122419.122421
[9] Network Working Group, TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms, January 1997,
http://www.faqs.org/rfcs/rfc2001.html

Bibliography
Jochen Schiller, Mobile Communication, second edition, Addison Wesley,
Harlow, 2003

TCP synchronisation effects 41 Bert Baesjou

http://www.isi.edu/nsnam/ns/
http://www.faqs.org/rfcs/rfc2001.html
http://portal.acm.org/citation.cfm?id=122419.122421
http://www.psc.edu/networking/papers/tcp_friendly.html
http://k-lug.org/~griswold/NS2/ns2-trace-formats.html
http://nile.wpi.edu/NS/
http://www.danielinux.net/projects/tesi.pdf
ftp://ftp.rfc-editor.org/in-notes/rfc793.txt
http://www3.interscience.wiley.com/cgi-bin/fulltext/109604907/ABSTRACT

TCP synchronisation effects 42 Bert Baesjou

Appendix 1 C++ code adjustments to ns2
Alterations were done in the file: $NSHOMEDIR/ns-2.27/tcp/tcp.cc and
$NSHOMEDIR/ns-2.27/tcp/tcp.h , the main class of the TCP part of the
simulator. These alterations provided the possibility to watch the
development of the congestion window.

The header file tcp.h only added the following lines to the class TcpAgent.

 int other_;
 FILE *ffp;
If one suspects that the integer other_ has something to do with the
parameter other_ in the TCL configuration file, one can be said to be right.
These two are bound to each other in the tcp.cc file.
The other file, tcp.cc, has the following additions

 bind("other_", &other_);
 delay_bind_init_one("other_");
 if (delay_bind(varName, localName, "other_", &other_ , tracer)) return TCL_OK;
Here the other_ parameter from the TCL configuration file is bound to the
other_ variable in the C++ class.

FILE *ffp;
char str1[50] = "Window_growth_flow_";
char *str2 = new char[10];
sprintf(str2,"%d",other_);
strcat(str1,str2);
if ((ffp = fopen(str1,"a")) == NULL){

fprintf(stderr,"Cannot open file.\n");
exit(2);

}
 fprintf(ffp,"%f %f\n",Scheduler::instance().clock(),(double)cwnd_);

fclose(ffp);
The code above is inserted in the function: void TcpAgent::opencwnd() .
This function is called whenever an ACK is received for a not already
acknowledged packet. The inserted extra code creates a file called
Window_growth_flow_{other_} (each flow gets its own file) and prints the
clock time and the size of the congestion window (W).

TCP synchronisation effects 43 Bert Baesjou

TCP synchronisation effects 44 Bert Baesjou

Appendix 2 A short introduction to ns2 TCL
This appendix gives a short overview of the most TCL syntax used in the
configuration file issued in appendix 3. See [5] for a more elaborate
overview of TCL configuration files.

set START 0
This statement sets the value of variable $START to 0
set ns [new Simulator]
Creates a new simulator object.
set n0 [$ns node]
Create a new 'node', which can be a router, host, hub, etcetera in the
simulation.
$ns duplex-link $n0 $n2 100Mb 5ms DropTail
Attaches node $n0 with node $n2 with a duplex link of 100Mbit per second
an a delay of 5 milliseconds. The sending queue at $n0 will be a drop tail
queue.
$ns queue-limit $n2 $n3 12
This means that the number of packets in the queue of sender $n2 on the
port to $n3 will have a maximum capacity of 12.
set tcp [new Agent/TCP/Newreno]
Creation of a new TCP New Reno object.
$tcp set windowOption_ 1
Changes a parameter (windowOption in this case) from the default value
(every parameter of an object has a pre-defined default value) to 1.
$ns attach-agent $n0 $tcp
Attaches a node ($n0) to a certain type of sending protocol used.
set sink [new Agent/TCPSink/Sack1]
Creates a sink object, this object only receives packets and generates
ACK's.
$ns attach-agent $4 $sink
The sink is attached to a certain node.
$ns connect $tcp $sink
The source and destination are here coupled to each other. The flow will
find its own way trough the network.
$ns at 20 “$ftp start”
Starts the flow $ftp after 20 seconds from the moment the simulator is
started.
$ns at $END “finish”
Runs a predefined finish procedure in which files are finalized, memories
are flushed, etcetera.
$ns run
Always the final code, if the parser reaches this part it starts running the
simulator. If one would issue this code on the first line of the script it could
be that not all objects are filled and parameter are set, which could give
buggy results.

TCP synchronisation effects 45 Bert Baesjou

TCP synchronisation effects 46 Bert Baesjou

Appendix 3 TCL configuration file
Class TraceApp -superclass Application
#This application helps us to calculate the goodput

TraceApp instproc init {args} {
 $self instvar bytes_
 $self set bytes_ 0
 eval $self next $args
 puts "in init"
}

TraceApp instproc recv {byte} {
 global ns
 $self instvar bytes_
 #puts "Dbyte added to totals $byte"
 set bytes_ [expr $bytes_ + $byte]
 #puts "RD [$ns now] $bytes_"
 return bytes_
}

TraceApp instproc get_bytes {} {
 $self instvar bytes_
 return $bytes_
}

TraceApp instproc reset {} {
 $self instvar bytes_
 set bytes_ 0
}

set START 0.0
set END 200.0
set RCVST 20.0
set LAT [lindex $argv 0] ;#use values from stdin
set QUEUE [lindex $argv 1]
set RRTT [lindex $argv 2]
#Setting the variables of TCP/Hybla
#Agent/TCP/Hybla set p_ $P ;#used to set p_ to static value
Agent/TCP/Hybla set p_algo_ 0 ;# 0 uses current RTT, 1 uses smoothed RTT, 2 uses
minimum RTT.
Agent/TCP/Hybla set r_rtt_ $RRTT ;#Reference RTT which is the competing RTT

set ns [new Simulator]
$ns use-scheduler Calendar ;# different schedulers Heap, List, Callendar, real time

#Define a 'finish' procedure
proc finish {} {
 global ns file1 file2 file3 file4 ftp ftp1 START END recv_application
recv_application1 RCVST
 $ns flush-trace
 set rate [expr ([$recv_application get_bytes]*8) / (10000*($END - $RCVST))]
 set rate1 [expr ([$recv_application1 get_bytes]*8) / (10000*($END - $RCVST))]
 puts "Goodput link 0 (Hybla): $rate kb/s with totally [$recv_application

TCP synchronisation effects 47 Bert Baesjou

get_bytes] bytes send"
 puts "Goodput link 1 (Reno): $rate1 kb/s with totally [$recv_application1
get_bytes] bytes send"
 set effective [expr (($rate+$rate1)*100)/1000]
 puts $file4 "$rate"
 puts $file4 "$rate1"
 close $file4
 puts "Effective $effective %"
 exit 0
}

#Create six nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]

#Create links between the nodes
$ns duplex-link $n0 $n2 100Mb 5ms DropTail
$ns duplex-link $n1 $n2 100Mb $LAT DropTail ;#20ms DropTail
$ns duplex-link $n2 $n3 1000kb 1ms DropTail
$ns duplex-link $n3 $n4 100Mb 5ms DropTail
$ns duplex-link $n3 $n5 100Mb $LAT DropTail ;#20ms DropTail

$ns queue-limit $n2 $n3 $QUEUE

#Setup a TCP connection
set tcp [new Agent/TCP/Newreno]
$tcp set windowOption_ 1;# Set the TCP behaviour to most default
$tcp set other_ 1;#for internal use, see appendix 1
$tcp set ttl_ 64 ;# simulate *NIX like environment
$ns attach-agent $n0 $tcp
set sink [new Agent/TCPSink/Sack1] ;#receiving node
$ns attach-agent $n4 $sink

set recv_application1 [new TraceApp] ;# create new Tracing Application
$recv_application1 attach-agent $sink

$ns connect $tcp $sink

#Setup a FTP over TCP connection
set ftp [new Application/FTP] ;#The data we send over the link
$ftp attach-agent $tcp

#Setup a TCP connection
set tcp1 [new Agent/TCP/Hybla] ;#use [new Agent/TCP/Newreno] here for newreno
network
$tcp1 set windowOption_ 1
$tcp1 set ttl_ 64

$tcp1 set bvar_ 0 ;#Same use as other_ variable

TCP synchronisation effects 48 Bert Baesjou

$ns attach-agent $n1 $tcp1
set sink1 [new Agent/TCPSink/Sack1]
$ns attach-agent $n5 $sink1

set recv_application [new TraceApp]
$recv_application attach-agent $sink1

$ns connect $tcp1 $sink1
$tcp1 set fid_ 2

#Setup a FTP over UDP connection
set ftp1 [new Application/FTP]
$ftp1 attach-agent $tcp1

#starting the application
$ns at $RCVST "$recv_application start" ;#start the trace application
$ns at $RCVST "$recv_application1 start"
$ns at 0 "$ftp1 start"
$ns at 20 "$ftp start"
$ns at $END "$ftp stop"
$ns at $END "$ftp1 stop"

$ns at $END "finish"
$ns run

TCP synchronisation effects 49 Bert Baesjou

	1 Introduction
	1.1 Problem formulation
	1.2 Research approach
	1.3 Outline of this report

	2 Introduction to ns2
	2.1 Source code
	2.2 TCL and C++ usage
	2.3 Documentation and manuals
	2.4 Support and maintenance
	2.5 Conclusion

	3 Introduction to TCP
	3.1 “Standard” TCP operation
	3.1.1 TCP congestion control procedure
	3.1.2Fast Retransmit and Fast Recovery procedure

	3.2 TCP Friendly
	3.3 TCP variant: TCP Hybla
	3.3.1 The objective of TCP Hybla
	3.3.2 Operation of TCP Hybla
	3.3.3 Known issues with TCP Hybla
	3.3.4 Current status of TCP Hybla

	4 Setting up a simple network
	4.1 Network layout and objectives
	4.2 Configuration of the network/node parameters

	5 TCP New Reno simulation results and analysis
	5.1 Simulation results
	5.2 Result analysis
	5.3 Problem analysis
	5.4 Solution
	5.5 Conclusion TCP New Reno

	6 TCP Hybla simulation results and analysis
	6.1 The simulation network
	6.2 Simulation results
	6.2.1 Current RTT TCP Hybla operation
	6.2.2 Smoothed RTT TCP Hybla operation
	6.2.3 Minimum RTT TCP Hybla operation
	6.2.4 Current RTT TCP Hybla operation with RED gateway

	6.3 Conclusion TCP Hybla

	7 Conclusion

