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Abstract

Due to the nature of the TCP protocol, it is possible a number of flows are 
synchronising with each other. This means that flows influence each other 
in such a way that possibly one flow benefits from the synchronisation by 
claiming a large share of capacity, while an other flow is not able to receive 
a reasonable portion of the capacity. This problem is most likely to occur in 
(simple)  network simulations and possibly in actual  networks with large 
data transfers.

The synchronisation effect is caused by the relation between the round trip 
time (RTT) of packets of certain flows and the moment when a new slot 
comes available at a saturated DropTail queue (from which multiple flows 
make use of). When a certain RTT is in sync with the time a slot comes 
available at the queue, the flow having that RTT is able to be the first to fill 
the available slot at that queue, leaving the other flow with a constantly 
filled queue leading to starvation of these flow(s).

Both TCP New Reno and TCP Hybla (a TCP variant  especially  aimed at 
adjusting  RTT  behaviour  for  wireless  high  RTT  connections)  were 
researched and both suffer from the same synchronisation effect. With TCP 
New Reno the synchronisation effect  was  mapped,  and with TCP Hybla 
some more extensive tests were done. This because TCP Hybla has some 
RTT  adjusting  techniques  embedded,  which  might  have  led  to  less 
synchronisation  effect.  As  it  turned  out,  none  of  the  adjustments  were 
sufficient enough to rule out the synchronisation effect.

A solution to the synchronisation effect could be inserting random packets 
into the network. This packet insertion makes sure that it is hard for the 
RTT to be exactly the same every time, thus not being able to come in sync 
with  the  queue.  An  other  solution  is  using  other  queueing  schemes.  It 
seems like the RED queueing scheme is  an effective solution due to its 
more dynamic nature of queueing, creating variations in the RTT and more 
fairness  when  dropping  packets  of  flows.  RED  however  is  not  widely 
available in actual networks, so this would mainly be a solution for network 
simulations.
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1 Introduction

For the understanding and prediction of  the behaviour of protocols  and 
data streams in networks, simulations are often used. Besides the financial 
argument that networks can be tested without the need of having all the 
equipment used in the actual network, one can also alter the parameters of 
this  network  very  fast.  This  allows  one  to  run  multiple  simulations  for 
different setups  by using scripts altering the parameters.

Downside  of  this  approach  is  that  a  simulation  is  only  a  theoretical 
representation of how the reality could be. Despite all the efforts to create 
a simulator as close to reality as possible, it is almost impossible to create a 
precise  simulation  of  reality.  While  in  the  simulators  protocols  are 
implemented as how they are described in references, in operating systems 
implementations may have slight  variations.  Therefore  there  are  always 
differences between the results of the simulations and the performance of 
the actual network.

This  report  is  about  a  set  of  simulations which gave results  other  than 
initially  expected.  As it  turns out  in  the end,  the exactness and precise 
implementation of the algorithms gave strange but explainable results. The 
probability of seeing the encountered behaviour in actual networks is low, 
this  is  due  to  unpredictability,  complicity  and  randomness  of  most 
networks.

The simulation runs where done using the ns2 [1] network simulator. The 
behaviour  described  in  this  report  is  specific  for  TCP  and  TCP  based 
protocols.  Other  protocols  might  show  the  same  behaviour,  but  this  is 
outside the scope of this report.

1.1 Problem formulation

During simulation runs on TCP Hybla [2], a conceptual TCP variant aimed 
at  improving  TCP  performance  for  mobile  and  wireless  devices, 
inconsistencies were found with expectations. Aim of this report is to solve 
the main research question: “What is the cause of synchronizing effect in 
TCP flows and what can be done to prevent this effect to occur?”. This is 
done by stating a number of objectives:

 State the intentions of using the ns2 simulator

 Describe  the  expected  behaviour  and  the  behaviour  found  in  the 
simulator

 Provide a plausible explanation of this behaviour

 Do research of simulation behaviour of  both TCP New Reno and TCP 
Hybla

1.2 Research approach

First a basis of theory is provided by papers about TCP [3], TCP Friendly 
[7] and  TCP Hybla [2]. These papers give a theoretical basis of what we 
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would expect from TCP and TCP Hybla.

Simulations  will  be  done  with  the  ns2  simulator  version  2.27  with  one 
network setup, but changing parameters of the nodes and links. The theory 
will  be  used  as  reference  to  compare  the  simulation  results  with  what 
would be expected based on the theory. Given these results there will be an 
attempt to give an explanation to the differences found between the theory 
and the simulation results. The tests and comparisons are done for both 
normal TCP New Reno and TCP Hybla.

1.3 Outline of this report

The first part of the report will start with giving an introduction to ns2 in 
chapter 2, after which an introduction into TCP and variants of TCP will be 
given in chapter 3. In chapter 4 the network on which the simulation runs 
were done will be described. The last part of the report, chapter 5 for TCP 
and chapter 6 for TCP Hybla, discusses the simulation runs on the network 
as described in chapter 4, the questions which arose from these simulations 
and explanation of the simulation results. Finally in chapter 7, an overall 
conclusion  will be given.
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2 Introduction to ns2

NS2  is  a  network  simulator  which  is  maintained  at  the  Information 
Sciences Institute (ISI) at the University of Southern California [1]. The ns2 
project dates back to 1989 and at a certain point in 1995 DARPA started to 
support the project. NS2 contains code from various researchers from all 
over  the  world,  working  at  corporations  like  Sun  Microsystems  and 
universities. This chapter will give some basic information about ns2.

2.1 Source code

The  ns2  project  is  released  under  the  BSD  “as-is”  license.  Due  to  the 
project  being under  this  license,  the source code is  distributed as  well, 
enabling for the user community to participate in the development of this 
simulator.  Downside of this model is that various parts of the code are 
written by different people. These people might have written it for a special 
project,  leaving  the  code  abandoned  without  any  documentation  when 
finishing their project. If one would want to know more about such a piece 
of  code  the  original  developer  may  be  long  gone,  leaving  only  the 
community to ask if someone would know anything about that specific part. 
During this research it happened multiple times that there was no feedback 
at all from the community.

Like almost any Free/Open Source Software (FOSS) project, there is a lack 
of documentation. Not only does the source code often miss comments, but 
also the documentation about the use of the program is lacking information 
about  a  lot  of  parameters  and  functions.   This  seems to  be  a  trend in 
Academic contributed code,  nice concepts are delivered with reasonable 
code, but comprehensive documentation almost always lACK's. Even more 
than with general FOSS projects.

This lack of documentation in combination with lack of community support 
often means one has to find out how the program works by opening up the 
source code. There are also a lot of (undocumented) options one can set, 
making  the  simulator  highly  adjustable  ad  flexible.  But  it  is  almost 
impossible to do a representative simulation without knowing what all the 
options exactly do, because this often means that the source code has to be 
looked into. This is not desirable way of operation for any program.

2.2 TCL and C++ usage

The simulator makes a distinction between two layers of code. One layer is 
C++ and is the core of the simulator, it has the modules implementing the 
protocols like TCP and IP, the actual simulator, queueing systems, etcetera 
This could be called the framework which is the basis of this simulator.

On the other hand a TCL file is used for the more dynamic changing part of 
the program, namely the configuration file of the actual network. Although 
it is possible to write complete programs or scripts in this TCL file,  the 
main intent is small scripts an creation of objects from the core program. 
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There is  an interface between the TCL and C++ to exchange values of 
object  parameters.  The  idea  behind  this  setup  is  to  have  a  fast 
(precompiled) C++ core of the simulator and still be able to make and use 
intelligent  configuration  files  which  are  parsed  and  built  run-time. 
Appendix 2 will give an introduction into the basics of the TCL file used in 
our simulations, the entire TCL file used for the simulations in this report is 
given in appendix 3. Appendix 1 gives the code used to gain insight in the 
development of the congestion window of individual flows, which was used 
to create most of the figures in this report.

2.3 Documentation and manuals

For a solid introduction into ns2, the documentation and tutorials available 
online  are  a  nice  place  to  start.  But  if  one  wants  to  do  slightly  more 
complex things than the very simple examples found in the tutorials, the 
documentation totally lACK's support.  Of 90 parameters which could be set 
for  TCP  alone  (not  talking  about  variant  dependant  parameters  for  for 
example  TCP New Reno),  only  22  are  described  in  documentation.  The 
variant  dependant  parameters  are  not  even  mentioned  in  the 
documentation and may have sometimes, when in luck, a comment in the 
default configuration file. This default configuration file is the file where all 
of the parameters are set to default (and often “standard”) values.

There are a few websites trying to fill up some gaps in the documentation, 
but these are not always up-to-date or complete due to a specific purpose of 
these websites. These pages can best be found via search engines, because 
links from the ns2 site are almost not provided. When being new to ns2 it is 
best to have a contact which has experience in using ns2.

2.4 Support and maintenance

A final word about support an maintenance, as indicated previously in this 
document, this is not top of the bill. How the code exactly is maintained is 
not entirely clear to the outer world. ISI officially maintains it, but a few 
errors in some makefiles are in the source code long after people on the 
mailing list came with patches.  ISI did not document for the public that 
there was a patch for this problem, nor did they do a rebuild of that release 
with the right makefiles.

From the community itself  support is  also very low.  On an average one 
could say that maybe one out of the ten questions on the mailing list gets a 
reply. Answers were mostly given to the simple questions from which the 
information could also be found in a first-timers tutorial. Questions more in-
depth were mostly left un-answered. This might be due to the issue that a 
researcher or organization developing a certain piece of code for a specific 
project  and afterwards has  no team offering support  of  some kind thus 
leaving  the  code  for  what  it  is.  On  the  other  hand  there  might  be 
researchers working for a longer time with this simulator and knowing all 
its strengths and weaknesses, leading to no need for those people to have 
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documentation or create it. When providing modules to ns2 it also seems 
like  no  documentation  is  required  by  ISI  to  be  taken  into  the  main 
distribution,  leaving  no  pressure  at  all  for  code  writers  to  provide 
documentation.

2.5 Conclusion

NS2  is  probably  a  great  tool  for  doing  research,  especially  when  this 
research takes up a longer period of time an many simulations. In such a 
situation it is worth of digging into the source code an finding out how the 
internals of the program exactly work. However for smaller research with 
non sufficient knowledge of ns2, there are just too many options and “got to 
knows” to be able to do simulations with conclusive results.
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3 Introduction to TCP

The  Transmission  Control  Protocol  was  created  in  the  1970s  to  make 
connections across the Advanced Research Projects Agency-net (ARPAnet) 
and to replace the Network Control Protocol. In 1978 the Internet Protocol 
(IP) was added to TCP to take over the routing of messages, which resulted 
in the TCP/IP protocol suite. In 1981 the RFC 793 [3], Transmission Control 
Protocol, was published. 

TCP is a communication protocol which is connection-oriented and has a 
reliable delivery.  The application layer  sends a  byte-stream to transport 
layer, where TCP divides the stream into segments. TCP then sends this 
segments to the Network layer, where IP handles the sending across the 
network. To keep track of the packets and keep them in order on the other 
side, TCP gives each packet a sequence number, which upon reception by 
the  receiving  TCP  module  is  acknowledged.  If  no  acknowledgement  is 
received by the sending side within a reasonable time, the sender presumes 
the packet is lost and resends the packet. With the usage of a checksum, 
which is computed by the sender and included in the header of the TCP-
packet,  the  receiver  checks  if  a  packet  is  damaged  by  computing  the 
checksum and comparing its own with the one sent along with the packet.

3.1 “Standard” TCP operation

In RFC 2001 [9], four TCP algorithms are described (which at the time the 
RFC was written were already implemented in most operating systems): 
slow start, congestion avoidance, fast retransmit, and fast recovery.  This 
paragraph  discusses  those  procedures.  This  paragraph  is  called 
”Standard” TCP operation  because the procedures discussed here are 
almost  standard and exactly  the  same for  all  TCP implementations  and 
variants. Most variants have alterations in specific parts of the “standard” 
TCP operation, that meet specific needs. An example will be discussed in 
paragraph 3.3 TCP variant: TCP Hybla.

3.1.1 TCP congestion control procedure

When  a  TCP  connection  between  two  nodes  is  established,  the  sender 
probes for the available capacity of the link used. This is done by increasing 
the congestion window (W), being the number of packets a TCP flow may 
have in the network at any time. In the initial slow start (SS) phase this is 
from an  initial  window  (W0),  which  commonly  is  one  or  two  times  the 
maximum  segment  size  (MSS),  from  which  the  congestion  window  is 
increased by one MSS per received non-duplicate acknowledgement (ACK). 
At  the  time  W  reaches  the  slow  start  threshold  (ssthresh),  the  sender 
switches to the congestion avoidance phase (CA), during which the window 
is  increased by MSS/W bytes per  non-duplicate ACK received.  This  rise 
continues  until  the  advertised  window  (the  size  of  the  buffer  of  the 
receiver) is reached, or if  the sender notices segment loss. In the latter 
case the sender enters an other phase in which a recovery procedure is 
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started that is TCP version specific.

These  rules  can  be  expressed  as  formulas  defining  the  window update 
rules, the size of the window at a specific time and the transmission rate 
[2].

The congestion window update rules can be expressed as a formula (1) 
when we have an index 'i' which denotes the reception of the i-th ACK.

  W i 1={ W i1 SS

W i
1

W i

C A                                   (1)

Rewriting  this  formula  for  the  time  domain  gives  more  insight  in  the 
performance of TCP. For the SS phase this results in a discrete exponential 
increase with RTT, as the congestion window is doubled at every RTT. For 
the CA phase the growth is one segment per RTT and therefore has a linear 
increase with time. Denoting tγ the time at which the ssthresh,γ, is reached. 
This gives

W  t ={ 2
t

R T T 0≤ t t  SS

t− t 
R T T

 t≥ t  C A
                      (2)

where tγ = RTT log2  γ

From (2) it can be seen that the lower the RTT, the higher the congestion 
window increase rate.

It is also possible to calculate the amount of data transmitted (Td(t)) by a 
standard TCP source from the moment of transmission initialization. For 
this formula the expression of the segment transmission rate is given (3) 
(the amount of segments transmitted per second).

Bt =
W t 
RTT

                                                  (3)

Td t= ∫
x=0

x= t

Bd ={2
t

RTT−1
ln 2

0≤tt SS

−1
ln 2


t−t

2

2∗RTT2

∗t−t

RTT
t≥t CA

            (4)

With this formula we can create the formula representing the amount of 
data  transmitted  from  the  standard  TCP  source  since  the  start  of  the 
transmission Td(t) (4). It can be seen from this formula that the amount of 
transmitted data is heavenly dependant on the RTT. The lower the RTT is, 
the more data can be sent. This is logical because a lower RTT connection 
in ideal situation is:
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 Increasing the W on each received ACK, a connection with a lower RTT 
is able to increase the W faster. This means that this connection is able 
to reach the maximum of the available capacity of the communication 
channel  faster,  thus  being  able  to  send  at  full  rate  earlier  than  the 
connection with a higher RTT.

 Able to send more packets overall, even if the congestion windows are 
even.  This  because the  low RTT connection  is  able  to  send the  next 
stream of packets earlier than the high RTT connection. Per second the 
low RTT connection is able to send more packets in this case.

Note  that  the  formulas  above  are  only  valid  for  ideal  communication 
channels without loss. In other situations the formulas are valid until the 
first loss occurs in the communication channel.

It must also be noted that there are some different flavours of TCP such as 
Reno, New Reno, Tahoe, etcetera. The main differences in these versions 
are mostly located in the loss recovery mechanism. This is discussed in the 
next paragraph.

3.1.2Fast Retransmit and Fast Recovery procedure

In TCP New Reno a duplicate ACK is generated for packet n-1 for each 
packet arriving when packet n is not yet received. After the reception of 
three  duplicate  ACK's,  the  sender  starts  the  Fast  Retransmit  and  Fast 
Recovery procedure. First segment n is retransmitted and next the sstresh 
is updated to half of the the value of the W before the loss was detected. 
The W is reduced to sstresh plus 3 MSS. Each additional duplicate ACK 
increments the W by MSS and triggers the transmission of a new segment 
if the current W exceeds the value of the W before loss was detected. When 
a non-duplicate ACK is received there can be two consequences depending 
on whether the ACK is only partial, or the ACK covers an entire window. If 
the ACK is partial, the W is deflated to the amount of data acknowledged 
and  the  recovery  phase  is  not  terminated.  If  the  ACK  confirms  all  the 
packets,  the  recovery  phase ends,  the W is  deflated to  sstresh and the 
transmission restarts in CA phase.

Other TCP protocols have (partially) other procedures in place, but are not 
discussed here because they are outside the scope of this report.

3.2 TCP Friendly

An algorithm was developed to provide programs which are not using TCP 
at the transport layer some “friendliness” in the network. The formula (5) is 
derived  by  looking  at  the  “normal”  TCP  behaviour[7].  This  makes  this 
formula  a  mathematical  approximation  of  how TCP  theoretically  should 
perform.

Capacity share= 1.22∗MTU
RTT∗ Loss

                               (5)
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When  having  packets  of  size  MTU  (Maximum  Transfer  Unit)  and  a 
particular  RTT  for  a  network  which  is  dropping  packets  when  the 
connection congestion size increases to W packets. Next the TCP would cut 
the  congestion  window  in  half  after  which  the  congestion  window  is 
increased by one until it reaches W again. This means that in average the 
congestion window in on ¾th of W. The maximum speed we can send at is 
W*MTU/RTT. So we define S in bytes/second as the average speed (6).

S=0.75∗W∗MTU
RTT

                                         (6)

Because when a loss occurs the W is reduced to ½W and the again builds 
up to a new W, the loss for a connection is 1 over all the possible window 
sizes from ½W to W (7). This is almost 1 over ((3/8)W2), from which we can 
derive the W.

Loss= 1
W /2W /21...W

Loss≈ 1
3/8W2

W≈ 8
3∗Loss

                                 (7)

We can fill this W in into (6) which gives us formula (5).

If we consider two flows, with both the same loss and MTU but different 
RTT,  we  can  calculate  the  theoretical  share  of  each  flow  on  the  total 
capacity. Because MTU and loss is constant and the same for both, they 
eventually can be eliminated.  As can be seen in (8) the share of the RTTx is 
RTTy divided by RTTy plus RTTx.

Capacity share (%) Flowx=

1.22∗MTU
RTTX∗loss

1.22∗MTU
RTTX∗loss


1.22∗MTU
RTTY∗loss

∗100

Which can be rewritten as:

RTTx%=

1
RTTx

1
RTTx

 1
RTTy

∗100=
RTTy

RTTyRTTx

∗100

        (8)

To plot with this formula we take a RTTy fixed to 10 units of time, while 
increasing  the  RTTx from 1  to  100  units  of  time  (the  exact  unit  is  not 
important because a ratio is calculated). Figure 1 shows the plot of TCP 
friendly and thus the theoretical performance of two TCP flows on a link 
versus the ratio between RTTx and RTTy.

TCP synchronisation effects 16 Bert Baesjou



Figure 1, Theoretical performance of two TCP flows.

As can be seen in the figure that even if the RTT of flow x is ten times 
bigger, it still gets a reasonable amount of capacity and does not starve out.

3.3 TCP variant: TCP Hybla

In this report there is some special attention for TCP Hybla, this is due to 
the original  research assignment  which was focused on researching the 
behaviour  of  TCP  Hybla.  This  chapter  describes  the  operation  of  this 
altered TCP protocol, based on the paper: “ TCP Hybla: a TCP enhancement 
for heterogeneous networks” [2].

3.3.1 The objective of TCP Hybla

As the title of the paper indicates, the objective of TCP Hybla is to enhance 
the  TCP  behaviour  in  heterogeneous  networks,  mainly  focused  on 
preventing connections having a high latency being “punished” by this high 
latency. In figure 1 it can be seen that when the RTT of normal TCP links 
becomes higher, their capacity share on the network goes down. 

This mainly has to do with the time it takes the node to increase W. On a 
high latency link competing with a low latency link, the low latency link 
builds up the W much faster after collisions, thus getting a larger share of 
the overall capacity. When looking at the number of packets successfully 
delivered at the receiving node, we are talking about goodput. Even in the 
case when the W of the high latency link and the W of the low latency link 
are exactly the same, the goodput of the high latency link is still lower. This 
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because you can have only W packets out in the network during a RTT, the 
shorter the RTT, the more packets you send per second which in almost 
always leads to a better goodput.

Objective of TCP Hybla is to provide a way where two channels, with the 
same available connection capacity but different RTT's, are able to have the 
same capacity share. We saw that the goodput is heavily dependant on the 
RTT, TCP Hybla aims at filtering out the RTT an introducing a parameter 
for regulating the W.

3.3.2 Operation of TCP Hybla

In paragraph  3.1 we saw how TCP basically  operates.  The idea of  TCP 
Hybla is to make the congestion window development independent of the 
RTT, this is done by using a normalized RTT (ρ). This  ρ is calculated by 
dividing the RTT by a reference RTT (RTT0)(9).

= RTT
RTT0

                                                  (9)

The RTT0 is the round trip time of a connection (the reference link) with a 
lower RTT than the current connection (the TCP Hybla link). It is desired in 
TCP Hybla to be able to compete with this low RTT connection goodput 
wise. 

To equalize the window growth with the reference link, the RTT variant 
part of the equation in (2) is multiplied by the ρ. This results in an equation 
where the congestion window growth is determined by the RTT0, giving the 
connection the ability to grow its WH just as fast as the reference link. Next 
this equation is multiplied by ρ to compensate for the fact that the window 
can only update each RTT and not RTT0. Applying these rules result in the 
formula given in (10).

W H  t ={  2


t
R T T = 2

t
R T T 0 0≤ t t  SS

 [ t− t 
R T T

]=[ t− t 
R T T 0

] t≥ t  C A

             (10)

Now  an  WH(t)  is  achieved  without  any  dependence  on  the  RTT,  when 
rewriting this  formula to congestion window update rules,  the “normal” 
TCP congestion window update rules (1) are replaced by (11).

Wi1
H ={W i

H2−1 SS

Wi
H

2

W i
H

CA
                            (11)

Just as with normal TCP the transmission rate can be expressed by dividing 
the  WH(t) over the RTT, applying (10) to this gives (12) which shows that 
the transmission rate has become independent of the RTT. Instead the RTT0 
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determines the transmission rate, which means the theoretical transmission 
rate  of  the  TCP  Hybla  link  has  become  even  with  the  reference  link. 
Theoretical because these formulas, just like the “normal” TCP formulas, 
only  apply  on  ideal  communication  channels  without  loss. In  other 
situations  the  formulas  are  valid  until  the  first  loss  occurs  in  the 
communication channel, which we will  see later on in  3.3.3,  is an issue 
with TCP Hybla.

B H  t = W H  t 
R T T

={ 2
1

R T T 0

R T T O

0≤ t  t  SS

1
R T T 0

[ t− t 
R T T 0

] t≥ t  C A

            (12)
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
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2

∗t−t

RTT0
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    (13)

When we now fill (12) into Td(t) to get the number of segments sent since 
the start of transmission, it can be seen in (13) that the RTT is no longer 
present en only the RTT0 remains. Thus giving the same performance as the 
competing TCP flow.

Finally, the initial value of the initial congestion window and the slow start 
threshold must all be multiplied by ρ .

Loss recovery

To deal better with loss recovery on lines with a longer RTT, TCP Hybla 
adopted  the  selective  ACK  (SACK)  option  [RFC  2018].  With  the  SACK 
option the sender sends an ACK for each packet  received,  allowing the 
sender to recover more than one packet per RTT. This option is currently 
widely spread and available in most TCP implementations and is also often 
turned on by default in the most operating systems.

3.3.3 Known issues with TCP Hybla

TCP Hybla is mostly a theoretically protocol, thus needing more testing and 
having  some  known  downsides.  The  most  common  problems  with  TCP 
Hybla are described below.

 Choosing of the right RTT0, when this variable is wrongly determined it 
could  jeapordize  the  fairness  of  capacity  sharing.  The  TCP  Hybla 
connection could be far more aggressive in taking capacity. Especially 
when there are multiple connections with multiple round trip times, it is 
almost impossible to find a RTT0 which is not aggressive against any of 
the the flows.
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 Calculating the current RTT is also an issue. If the network congests at a 
certain point, the RTT goes up meaning that the ρ also becomes higher. 
This leads to a more aggressive TCP Hybla connection, congesting the 
network even more. The effective goodput goes of TCP Hybla degrades 
instead of improving it (which was the initial objective of TCP Hybla).

 Due to  the  larger  congestion  windows adopted by  TCP Hybla  with  a 
relative long RTT, there might be a chance that the network becomes 
congested  when  suddenly  the  TCP  Hybla  connection  sends  an  entire 
window (bursting) after receiving an ACK. After this sending there might 
be a time where there is nothing to send until the next ACK is received. A 
possible solution for this problem could be spreading the entire window 
over the RTT.

3.3.4 Current status of TCP Hybla

As creator of TCP Hybla. the University of Bologna is mainly working on 
TCP Hybla.  They have made a Linux 2.6 kernel  implementation [4]  and 
have submitted papers for numerous conferences.

TCP Hybla  is  also  available  as  ns2  module,  which  was  made  by  Assed 
Jehangir at the University of Twente. This module allows one to test the 
properties and performance of TCP Hybla.
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4 Setting up a simple network

This  chapter  describes  in  detail  the  network  simulated  along  with  the 
configuration file used. As one will see in this chapter, the network is a very 
simple one. This is done to make problem analysis as simple as possible. 
The  network  for  the  original  assignment  in  researching  TCP  Hybla 
consisted of far more nodes, but the essence (and results) was the same.

4.1 Network layout and objectives

The  first  basics  of  the  network  is  to  create  a  bottleneck,  forcing  data 
streams to adapt to a congesting network. We also want to be able to have 
competing flows from different hosts. The most simple set-up with these 
requirements is the network stated in figure 2. The first two hosts (node 0 
and 1) are the sending nodes, these connect to the first router (node 2). 
This router connects to a second router (node 3) via a relatively very low 
capacity  link,  after  which the second router connects to receiving hosts 
(node 4 and 5).

Figure 2, Layout of the simulation network

By giving the links from the senders to the first router a 100 megabit speed 
and the link from the first to the second router a capacity of 100 kilobit a 
bottleneck is created.

Delay is also introduced in the network, which is an important parameter 
for our simulations because the delay at the links has a large impact on the 
RTT.  The RTT is  the  time it  takes  the  packets  to  get  processed in  the 
network, meaning the total sum of delays on links and processing times at 
the different nodes.  To investigate the behaviour of data streams in the 
network with different delays, one path (via which a data stream is routed) 
is chosen with a fixed delay in the links, namely the path from node 0 to 
node 4, while the other path from node 1 to 5 has a delay which is set to a 
specific value at the start of each simulation run. During the simulation the 
variable delay does not change, for example a simulation is done where the 
variable delay is set to 20 ms giving an overall delay in the path from node 
1 to node 5 of 41 ms (20 ms + 1 ms + 20 ms). This value of 20 ms does not 
change during the entire simulation run. Next a simulation can be done for 
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21 ms of delay after which the performance of those two simulations can be 
compared.

4.2 Configuration of the network/node parameters

This paragraph will give an overview of the parameters of the nodes and 
the network elements, as set in the simulations. The parameters are set in 
the TCL configuration file given in appendix 3. An other note is that TCP 
has many (almost 90) parameters which can manually be set in ns2.  All 
parameters have some default values initialized when no value is given in 
the TCL file. Some parameters set the specifics of generic TCP behaviour 
such as segment size and advertised window, while others set what kind of 
TCP  implementation  should  be  simulated.  Only  the  important  TCP 
parameters  for  the  simulations  of  this  network  are  given  in  table  1, 
assuming  the  default  values  of  the  other  (sometimes  undocumented) 
parameters  to be reasonable for these simulations. The values given here 
are used in all the simulations done with ns2.

The queues at the gateway nodes operate as DropTail queues, first come, 
first served. When the queue is full, the next packet to arrive is dropped 
until a new slot is vacant. Queue sizes were all chosen with a length of 10 
packets. 

All connections used in the simulations use the TCP SACK option, but no 
significant differences in performance were seen in simulation results of 
runs with and without SACK. 
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NS2 parameter Value Description
WindowOption_ 1 This setting defines the type of window update rules of 

the  TCP  connection.  From  8  different  available 
implementations in ns2, this one does exactly as defined 
in paragraph 3.1.

ttl_ 64 Time To Live set to 64 ms which is  default value for 
most (UNIX) systems.

use-scheduler Calendar

{default}

Type of scheduler for ns2, Calendar is default scheduler

window_ 20 
{default}

Maximum advertised window

packetSize_ 1000

{default}

Size in Bytes of the packet

tcpip_base_hdr_size_ 40

{default}

Size of the header of the TCP/IP packet

ssthresh_ 0

{default}

Slow start threshold initially zero, but is set to window_ 
on startup op the ns2 simulator by default.

cwnd_ 0

{default}

This  number is  updated by 1 by the simulator,  when 
initiating a connection. 

p_algo_ 0,1 or 2 TCP Hybla specific, sets the algorithm used to calculate 
the RTT. 0 current, 1 smoothed, 2 minimum.

r_rtt_ Competing 
RTT

TCP Hybla specific, sets the reference RTT to the RTT 
of the competing network link.

queue-limit 10 Number of packets (of any size) which can be held in 
the queue.

duplex-link - We used only duplex-links in the simulations

DropTail - All queues are DropTail

Agent/TCPSink/Sac
k1

- All connections are using the SACK option.

Table 1, important ns2 setting for the simulation network

As said before, the entire TCL file with some more explanation about Tcl 
can be found in appendices (TCL file in appendix 3 and short explanation of 
TCL in appendix 2).
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5 TCP New Reno simulation results and analysis

In  previous  chapters  we  have  seen  the  configuration  of  the  network  at 
hand. The objective of this chapter is to provide some output of simulations 
and to discuss these results. This chapter will start with some results from 
different simulations, after which the results are discussed more in depth.

5.1 Simulation results

In the starting simulation we have a queue of 10 packets. We have two 
flows:

 Flow 1, starting at 0 seconds, this uses the link with the variable delay

 Flow 2, starting at 20 seconds, this flow uses the fixed delay link

Flow 2 is started after 20 seconds to ensure that flow 1 is in CA phase.

Variable delay set to 15 ms:

When doing simulations with the variable  delay set to 15 ms,  the flows 
behave  like  expected,  a  reasonable  fair  distribution  of  throughput  is 
reached. This can be seen in figure 3 which shows how throughput is fairly 
distributed.  After  flow  2  starts  after  20  seconds,  flow  1  adapts  by 
decreasing its congestion window. Both flows sync because they both have 
to deal with the queue reaching its limits at the same time.

Figure 3, congestion window development for variable delay set to 15 ms

Each simulation also calculated the throughput for each of the flows and 
within this simulation both flows got around 50% of the available capacity. 
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This fairness in sharing of capacity is exactly how we would expect TCP to 
behave in this situation. The observant reader would however argue that 
the ratio between the delays is about 1:3 (5 ms : 15 ms) and thus one could 
claim that the appropriate capacity share should be around 75% for the 
flow with 5 ms delay and 25% for the flow with 15 ms delay (see figure 1). 
However,  the  total  RTT  should  be  taken  into  account  when  comparing 
ratios, the total RTT includes processing time at queues and nodes. As can 
be seen further on in paragraph 5.2, just the queue at node 2 alone takes 
830  ms  to  process.  Therefore  the  total  ratio  between  the  actual  RTT's 
becomes close to 1:1 and therefore an equal capacity share is what would 
be expected.

Variable delay set to 21 ms:

When doing simulations with the delay set to 21 ms the output is totally 
different and seemingly unexpected, as can be seen in figure 4. It can be 
seen  that  flow  2  is  not  able  to  initiate  a  normal  congestion  window 
behaviour and that flow 1 dominates the link. Remind that flow 1 actually 
has a larger delay, which is normally a bad thing for flow 1, but still is able 
to get almost all the throughput on the link. 

Figure 4, congestion window development for variable delay set to 21 ms

When looking at the goodput data, flow 1 has around 99% goodput, while 
flow 2 has around 1% goodput. This is not the output what we normally 
would expect from TCP, since the protocol was designed to distribute the 
capacity of a link reasonably fair amongst flows.
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Results for multiple variable delays

To have a better understanding of the problem we look into the results  of 
simulations along a wide range of variable delays. Figure 5 describes the 
utilization  of  the  available  capacity  (on the  bottleneck  link)  against  the 
variable delay for flow 1.

Figure 5, utilization of capacity with a queue of 10 packets

What we see is a repeating pattern. Every 20 ms a period of around 6 or 7 
ms the performance of flow 2 drops significantly. This is totally not what 
was expected on forehand from TCP, the idea behind TCP is to balance the 
load between flows in a fair way approximating TCP friendly (figure 1).

5.2 Result analysis

When the variable delay is set to a higher value at the start of a simulation 
run, the overall performance of flow 2 increases. This because the RTT of 
flow 2 is two times the link latency  of 5 ms + 1 ms + 5 ms (two times 
because the ACK has to be send back trough the same link thus having the 
same delay), plus the time to wait in the queue at the first router, which is 
the bottleneck of the network (other queues in the routers have practically 
no queueing and processing time in the simulation). The queue takes 83 ms 
to set each packet of 1040 bytes on the 100 kb/s line. With a filled queue of 
10 packets this means that when a packets gets in the queue it takes 830 
ms before this packet gets on the bottleneck line. Since we send as much 
data as possible so the queue is most of the time filled, this means the total 
RTT of flow 2 is always around 852 ms.
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Flow 1 however got a variable delay, which is competitive better in the 
beginning when its RTT is still low, but this delay is clearly affecting the 
performance when it  becomes higher  and higher.  If  we would  use TCP 
Friendly as a sort of reference for how the flows should look like, it would 
look like figure 6.

Figure 6, TCP Friendly for simulation network

In this figure we use a fixed RTT for Flow 2 while the RTT for Flow 1 varies. 
The bandwidth distribution is calculated by setting the MTU and the Loss 
as a fixed value. 

We have seen in formula (8) that the segment size and Loss do not matter 
for our calculations and is only the RTT part of variance in our figure.

As we can see figure 5 and 6 have in common that Flow 2 eventually gets 
the overhand and thus Flow 1 decreases. In the basic both pictures look 
like each other, but the actual performance of the flow is quite different 
from that of the mathematical reference.

5.3 Problem analysis

The effect we see in figure 5 is described in [8] and is called the Traffic 
Phase Effect. Basically it comes down to synchronisation in the network.

In networks where we have periodic sources, which is often the case in 
simulation networks, it could be that window flow control protocols have a 
periodic cycle equal to the connection RTT. Especially DropTail gateways in 
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a network with strong periodic traffic can have a systematic discrimination 
against certain flows. The explanation is as follows: in figure 7 we see a 
simple network with periodic (bulk) traffic.

Figure 7, Periodic traffic

For a connection the number of outstanding packets is controlled by the 
rate ACK's arrive back at the source. When an ACK is received the next 
packet is immediately sent. This RTT can be called the traffic “period”. In 
case of bulk traffic, which is a constant stream of packets of the same size, 
this period is always the same + the time it takes to process queues in 
gateways. 

Queues  in  gateways  decrement  by  one if  the  entire  packet  is  sent  and 
increment by one on arrival of the next packet at the queue. Since bulk 
traffic would always try to optimise the use of capacity, this queue is always 
filled  or  has  one vacancy.  This  vacancy  is  available  until  the  next  bulk 
packet arrives. If we would now have a node trying to send some (telnet) 
packets (while the bulk connection was sending) it has to arrive after the 
slot  came available  but before the next bulk packet arrives,  leaving the 
queue to drop the next bulk packet. If it however reaches the queue to late, 
the telnet packet would be lost.

In  our  simulation  setup  we  have  two  nodes  trying  to  send  bulk  (FTP) 
packets.  The phenomenon we see in figure 6 between 20 and 27 ms of 
variable  delay  can  be  explained  by  the  Traffic  Phase  Effect.  When  we 
assume the queue to be constantly filled Flow 2 has a fixed RTT2 of 852 ms 
(14).  Flow 1  however  has  a  RTT1  (variable  delay) based  on the  delay  chosen 
between the sending/receiving nodes and the gateways. If we would choose 
this delay 20 ms, the RTT1 (20) would be 912 ms (15). 

RTT2=2∗5ms1ms5 ms830ms=852ms                        (14)

RTT1 20=2∗20ms1 ms20ms 830ms=912ms                (15)

When a packet of Flow 1 passed (getting enqueued and finally dequeued to 
be send) the queue (which took him 830 ms of his RTT1 (20)), it takes 82 ms 
to: have the packet delivered (1 ms + 20 ms), let the sink send an ACK to 
the sender (+ 20 ms +1 ms +20 ms) and have Flow 1 delivering the next 
packet to the queue of the gateway (+ 20 ms = 82 ms). But in the simulator 
this is not strictly 82 ms but a few milliseconds more due to the fact that it 
takes (even empty) queues always some time to set a packet on a link. The 
main factor here is the bottleneck queue at node 3, where it takes the ACK 
packet 3 ms to be set entirely on the link to node 2. Remember that the 
bottleneck queue at node 2 takes 83 ms to send one packet, therefore at 
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this point this node 2 opened up a vacancy just a few milliseconds ago. 
Flow 2 only has a very small probability to line up in the queue with a slot 
that  is  only  available  for  a  few  milliseconds.  Therefore  flow  1  “steals” 
almost all the available capacity in this case.

More generic for our case, when the delay is a little bit longer than the 
multiple of 83 ms (the time the queue can set one packet on the line), there 
is a large possibility  this flow “wins” in competition for the queue.  This 
because when the new packet arrives at the queue, a packet has just been 
sent. This multiple of 83 ms is reached each multiple of the 20 ms variable 
delay (since 2*(20+1+20) = 82 plus a little bit extra delay).

5.4 Solution

A number of solutions are named for preventing this from happening in 
simulation networks,  but they all  come down to introducing randomness 
into the network. 

One solution is to include some nodes sending random dummy data into the 
network. Downside of this dummy data is that it is random and therefore 
hard to predict what the effects on simulation results are, or how to take 
the randomness of this dummy data in the appropriate way into account. 
Taking averages of multiple simulation results could be a solution in such 
cases. 

The other is changing the queue types at the bottleneck link.  An in [8] 
suggested  Random  Drop  policy  is  not  sufficient  to  decrease  the 
synchronisation effect. But also suggested by [8] is the use of the Random 
Early Drop (RED) scheme, however further study is needed according to 
this paper.  In the next chapter there will  be some promising simulation 
results for a TCP Hybla connection using a RED scheme.

It  is  possible  (but  not  very)  that  this  synchronisation takes  place  in  an 
actual network, when this happens often the previously discussed solutions 
could  be  applied.  Note  that  these  solutions  are  intended  mainly  for 
simulation purposes, generating for example extra dummy traffic into an 
actual network to have better performance of this network is probably not 
something one would pursue.

5.5 Conclusion TCP New Reno

When  doing  network  simulations  with  any  simulator,  it  is  important  to 
check if the results are part of TCP/IP biases. When dealing with larger 
simulation  networks  there  might  also  be  a  smaller  chance  the 
synchronisation  effect  occurs,  this  because  there  probably  is  more 
randomness introduced in those networks. Some nodes in those networks 
might  provide  (automatically  without  knowing  or  intention)  the  same 
function as the dummy data needed to solve the problem in networks where 
synchronisation occurs.  Downside of larger simulations is that there are 
more factors to keep track of while analysing simulation results, especially 
when one is interested in only a specific part of the results.
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In practical  the chance of this effect ever occurring on real networks is 
small,  because  the  behaviour  of  most  actual  networks  is  more  random. 
Nodes sending from different  TCP implementations for  different  kind of 
applications to different parts of  the network,  create a sort  of “natural” 
randomness. However, especially with large file transfers this behaviour is 
actually possible in networks.
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6 TCP Hybla simulation results and analysis

It is suggested in [8] that an adjusted protocol without a dependency on the 
RTT could be a way to decrease the impact of the synchronisation problem 
we saw in the previous chapter. Since TCP Hybla is such a protocol, this 
chapter  shows  results  of  simulations  done  with  one  TCP  New  Reno 
competing with one TCP Hybla flow. It also shows promising simulations 
with TCP Hybla and TCP New Reno in combination with a RED gateway.

6.1 The simulation network

Basically the network used in these simulations is the same as the network 
in the previous chapters.  Because TCP Hybla is  created to enhance the 
performance  of  “slow”  (high  RTT)  links,  we  choose  the  link  with  the 
variable delay as the one using TCP Hybla for its connection. The fixed RTT 
link just stays using TCP New Reno.

But  a  small  alteration  had  to  be  made  to  ensure  the  validity  of  the 
measurements,  this  alteration  is  the  capacity  of  the  bottleneck  link. 
Remember that  the determining factor  in TCP Hybla  is  the  ρ,  this  ρ is 
determined by dividing the current RTT by the RTT0. The RTT0 is the RTT of 
the  link  which  is  competed  with  (in  our  case  the  fixed  link).  At   each 
collection of a new RTT, the ρ is recalculated.

In previous chapters the RTT of the link with variable delay was around the 
852 ms (with a queue size of 10 at the router and a variable delay of 20) 
and the fixed link had a RTT of 830. This would mean that ρ would almost 
always be around 1 (16). Because a  ρ of 1 results in normal TCP New Reno 
behaviour, it would create no different results as the previous simulations.

100 kb /s=
RTT
RTT0

=912
852

≈1,07                                 (16)

Therefore the capacity of the bottleneck link is set to 1000 kb/s (instead of 
100 kb/s). This means that one packet takes 8 ms to get dequeued at the 
router on the bottleneck link. Theoretically the delay at the queue has a 
maximum of 80 ms, thus giving a maximum RTT to the variable link of 162 
ms and a RTT0 of the fixed link of 102 ms. Now ρ becomes (17).

100 kb /s=
RTT
RTT0

=162
102

≈1,59                                 (17)

These  values  are  much  more  representative  for  simulations  with  TCP 
Hybla. For the results of the simulations this change has no effect, since 
synchronisation effects have to do with the moment of a packet leaving the 
critical queue and the arrival of the next packet from the same sender. The 
time spent in the buffer of the queue is irrelevant.

6.2 Simulation results

We want TCP Hybla to compete with the fixed link, so we set our reference 
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RTT0 to the RTT of the fixed link, RTT0 = 22ms + (8ms * queue length). For 
a queue of 10, this will mean RTT0 would become 102ms. 

6.2.1 Current RTT TCP Hybla operation

In this first paragraph the  ρ is calculated with the last measured RTT. In 
the  next  paragraphs  it  can  be  seen  that  there  are  also  other  ways  to 
determine ρ, namely smoothed RTT and minimum RTT which are discussed 
in paragraph 6.2.2 and paragraph 6.2.3.

Results of simulations with a maximum queue of 10 packets are given in 
figure 8.

Figure 8, utilization of capacity with a queue of 10 packets

It can be seen that there is still a synchronisation issue, although the figure 
looks some different. Due to the more variable behaviour of TCP Hybla, the 
queue is filled in a more random way. Since randomness is a “cure” for the 
synchronisation problem of flows, synchronisation is slightly less evident in 
these results. However, there is not enough randomness to ensure that no 
synchronisation is happening. At for example variable delay is 3 ms and 26 
ms, this extremely happens for the Hybla link. For a variable delay of 23 ms 
this  is  the  case  for  the  New  Reno  link.  Blocks  of  periods  where  the 
synchronisation effect is occurring can be seen clearly between 16 and 30 
ms and between 43 and 63 ms. After 65 ms of variable delay, the ρ value 
grows to large for normal operation. 

At for example 70 ms the RTT becomes 262 ms and with a RTT0 of 102 the 
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ρ becomes 3,5. With such a large value of , the slow start phase becomesρ  
very aggressive with an increase of W = 11 (18).

Wincrease={ 2−1=23.5=11 SS
2

W i

=3.52

Wi

=12.25
W i

CA
                             (18)

So  in  the  first  window,  eleven  packets  are  sent  flooding  the  queue 
immediately, leading to multiple packet drops and thus multiple time-outs 
on packets. The flow is unable to start up normal behaviour.

With  an  increasing  queue  size,  the  behaviour  becomes  better,  but 
synchronisation can still be observed. This all has to do with the fact that 
the queue length itself has no influence on the synchronisation effect.

As conclusion we can say that the synchronisation affects the results of the 
simulation is  such  a  way  that  a  conclusive  statement  about  TCP Hybla 
cannot be made except for the part that a very large ρ cripples TCP Hybla 
at a certain point.

6.2.2 Smoothed RTT TCP Hybla operation

In  smoothed operation the  smoothed RTT is  used.  This  is  a  RTT partly 
based on the current, and partly on previous RTTs. The idea is to not let the 
TCP Hybla algorithm overreact on temporarily variations of the RTT.  This 
formula is given in (19) in which α usually has the value of 0.125.

RTTsmoothed=1−∗RTTprevioussmoothed∗RTTcurrently measured          (19)

It can be seen that in case of a spike in the RTTcurrently measured, only one eighth 
of  this  measurement  is  taken  into  the  RTTsmoothed  while  the  previously 
smoothed RTT is taken into account for most of the part. In this way the 
RTT  increases  only  significantly  if  multiple  subsequent  high  RTT's  are 
measured. The idea behind using RTTsmoothed in TCP Hybla is not to let TCP 
Hybla over react to possible minor changes in the network. In case of a 
single high RTT, normal TCP Hybla would create a high  ρ and a (larger) 
increase  of  the  congestion  window.  This  overreacted  increase  could 
overload the network, leading to a real problem. RTTsmoothed should prevent 
this problem.

In figure 9 the simulation results can be observed.
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Figure 9, utilization of capacity with a queue of 10 packets

It can be seen, that the graph of the performance is a little bit smoother 
than  TCP  Hybla  using  the  current  RTT  (and  thus  a  little  bit  better 
performance),  but  the  synchronisation  effect  is  still  very  much present. 
When the queue size grows to 30 packets the overall  performance gets 
better, but synchronisation is still present. 

6.2.3 Minimum RTT TCP Hybla operation

Minimum RTT is  a principle where the minimum value of  the RTT ever 
measured in the connection is taken as the overall RTT. If a lower value 
would  occur  this  would  be  taken  as  the  RTT.  There  are  however  some 
downsides to this principle.

 In TCP the first packet of a connection is to set up the connection and is 
just  40  Bytes.  This  RTT is  therefore  always  smaller  than  that  of  any 
normal  1040  Bytes  packet,  links  are  just  faster  in  processing such  a 
packet.  It  could  also  occur  that  in  routing  schemes  where  there  are 
queues for  different  packet  sizes,  this  packet  gets in a  queue for  the 
small packets and is processed in favour of the larger packets.

 In our simulation set-up the TCP Hybla flow starts sending without any 
other flow running. This means the first packet finds an empty queue, 
giving it a very low RTT which is not representative for the RTT at the 
moment when the queue is filled.

 In general, a quiet moment in the network would set the minimum RTT to 
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a low value, which does not represent the RTT when a network becomes 
saturated. This would lead to a too aggressive TCP Hybla operation.

Therefore TCP Hybla using minimum RTT for ρ calculation is discarded.

6.2.4 Current RTT TCP Hybla operation with RED gateway

In this paragraph we consider TCP Hybla with the use of a RED gateway at 
the bottleneck link. According to [8] this should be promising.

Basically  a  RED gateway computes  an average size of  a  queue using a 
weighted  exponential  running  average.  When  a  certain  threshold  is 
exceeded by the queue size, a random packet is chosen and dropped. Next 
the threshold is increased, after which the threshold slowly decreases to 
the previous value. The chosen packet n is determined by the interval 1 to 
range. The nth packet to arrive at the queue is now dropped. The range is 
set by the congestion rate, at high congestion the value of  range is low 
while in low congestion this value is high. This way the drop probability of a 
certain flow is proportional to the average share of packets on this queue.

The simulation results are showed in figure 10.

Figure 10,  utilization of capacity with a queue of 10 packets

As can be seen in this figure, the synchronisation is still an issue, but a little 
less than in the initial simulations. 

But  when  applying  a  queue  size  of  20  it  seems  like  there  is  no 
synchronisation effect. Results of simulations are more like how one would 
expect from the theory. Results can be seen in figure 11.
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Figure 11,  utilization of capacity with a queue of 20 packets

In some more test runs between queue sizes of 10 and 20 packets, it seems 
like  when  the  queue  size  becomes  13  or  larger,  there  is  no  more 
synchronisation effect. Probably RED does not work very well for smaller 
queues due to the fact that the flexibility of RED depends on the queue size.

But the utilization of capacity is  still  not evenly distributed as what the 
theory would let us expect. This is due to the bursty nature of TCP Hybla, 
the entire window is sent at once, creating an overflow at the queue. This 
makes  the  queue  dropping  multiple  packets  from  the  window.  Thus 
spreading the sending of the packets in one window among the entire RTT, 
could increase the performance of TCP Hybla to the a more evenly share of 
the network capacity. 

The effect of Hybla getting too aggressive when the  ρ becomes to large, 
also is far less noticeable.  This is because RED is better able to handle 
bursty traffic in larger queue sizes.

6.3 Conclusion TCP Hybla

As conclusion for TCP Hybla it can be said that non of the standard options 
of the TCP Hybla protocol helps against the synchronisation effect. This is 
also due to the nature of this effect. The effect has to do with the absence 
of  randomness  in  the  network  resulting  in  a  static  RTT  between  the 
departure of a packet at a queue and the arrival of the next at the same 
queue.
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When bringing some randomness in the gateway by introducing the RED 
queueing scheme, results become more satisfying. RED has as downside 
that  it  is  not widely  spread in the real  world.  Therefore for  simulations 
where a real world scenario have to be simulated, using RED is not  an 
option. 
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7 Conclusion

In  this  paper  we  saw  a  synchronisation  effect  occurring  in  the  TCP 
protocol. The theory behind the effect is simple, in our situation two flows 
compete with each other for a place in a saturated queue. While competing, 
one of the flows has such a round trip time that most packets of that flow 
arrive just after a spot opens up in the queue. In this way, the other flow is 
not able to get packets into the queue, which leads to starvation of this 
flow.

The synchronisation effect seen is however not likely to occur in read life 
networks,  this  due  to  more  random  traffic  on  actual  networks  and 
implementation differences between operating systems. However in very 
homogeneous network with large data flows, this behaviour could occur.

In simulation environments however, the synchronisation effect could occur 
quite  easily.  One  should  make  sure  that  readings  from simulations  say 
something about the behaviour of the issue at hand in stead of how a (TCP) 
protocol behaves in a certain environment. Our simulations were severely 
influenced by the synchronisation effect  and therefore  were not  able  to 
make  a  contribution  to  the  original  research,  which  was  gaining  more 
insight into TCP Hybla.

This report shows that there is almost no difference in performance of TCP 
New Reno and TCP Hybla. This due to the fact that the synchronisation 
effect mainly has to do with variation in RTT's and the randomness of the 
network.  Some improvements can be registered for  using TCP Hybla  in 
combination with smoothing of the RTT, but these improvements are mainly 
making TCP Hybla less aggressive and thus improving performance.

There are a number of ways described in [8] to prevent synchronisation, 
including  introducing  randomness  in  the  network  by  introducing  nodes, 
sending random data or changing the type of queues from DropTail to other 
such as Random Drop or Random Early Detection gateways.  We have seen 
in simulations that RED gateways with a queue size large enough rules out 
the synchronisation effect, however RED gateways are not very common in 
actual deployed networks. This report also only made some assumptions 
why  RED only  worked  after  a  certain  point,  a  more  detailed  research 
should give more insights into why RED started only to work after a certain 
point. 

There is also a downside to introducing randomness in network simulations, 
results of simulations might be harder to analyse and reproduce due to the 
more random behaviour. A possible solution is taking the average of the 
results of multiple simulations.

Since  the  synchronisation  effect  can  take  place  in  the  most  simple 
networks,  a  more  general  approach  of  how  to  build  decent  simulation 
networks would not be misplaced in the manual of any network simulator 
(thus also on the website of ns2).
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Appendix 1  C++ code adjustments to ns2
Alterations  were  done  in  the  file:  $NSHOMEDIR/ns-2.27/tcp/tcp.cc  and 
$NSHOMEDIR/ns-2.27/tcp/tcp.h  ,  the main class  of  the TCP part  of  the 
simulator.  These  alterations  provided  the  possibility  to  watch  the 
development of the congestion window.

The header file tcp.h only added the following lines to the class TcpAgent.

  int other_;
 FILE *ffp;
If  one  suspects  that  the  integer  other_  has  something  to  do  with  the 
parameter other_ in the TCL configuration file, one can be said to be right. 
These two are bound to each other in the tcp.cc file.
The other file, tcp.cc, has the following additions

   bind("other_", &other_);
   delay_bind_init_one("other_");
   if (delay_bind(varName, localName, "other_", &other_ , tracer)) return TCL_OK;
Here the other_ parameter from the TCL configuration file is bound to the 
other_ variable in the C++ class.

FILE *ffp;
char str1[50] = "Window_growth_flow_";
char *str2 = new char[10];
sprintf(str2,"%d",other_);
strcat(str1,str2);
if ((ffp = fopen(str1,"a")) == NULL){

fprintf(stderr,"Cannot open file.\n");
exit(2);

}
            fprintf(ffp,"%f %f\n",Scheduler::instance().clock(),(double)cwnd_);

fclose(ffp);
The code above is inserted in the function: void TcpAgent::opencwnd()  . 
This  function  is  called  whenever  an  ACK is  received  for  a  not  already 
acknowledged  packet.  The  inserted  extra  code  creates  a  file  called 
Window_growth_flow_{other_} (each flow gets its own file) and prints the 
clock time and the size of the congestion window (W).

TCP synchronisation effects 43 Bert Baesjou



TCP synchronisation effects 44 Bert Baesjou



Appendix 2  A short introduction to ns2 TCL
This appendix gives a short overview of the most TCL syntax used in the 
configuration  file  issued  in  appendix  3.  See  [5]  for  a  more  elaborate 
overview of TCL configuration files.

set START 0
This statement sets the value of variable $START to 0
set ns [new Simulator]
Creates a new simulator object.
set n0 [$ns node]
Create  a  new 'node',  which can be  a  router,  host,  hub,  etcetera  in  the 
simulation.
$ns duplex-link $n0 $n2 100Mb 5ms DropTail
Attaches node $n0 with node $n2 with a duplex link of 100Mbit per second 
an a delay of 5 milliseconds. The sending queue at $n0 will be a drop tail 
queue.
$ns queue-limit $n2 $n3 12
This means that the number of packets in the queue of sender $n2 on the 
port to $n3 will have a maximum capacity of 12.
set tcp [new Agent/TCP/Newreno]
Creation of a new TCP New Reno object.
$tcp set windowOption_ 1
Changes a parameter (windowOption in this case) from the default value 
(every parameter of an object has a pre-defined default value) to 1.
$ns attach-agent $n0 $tcp
Attaches a node ($n0) to a certain type of sending protocol used.
set sink [new Agent/TCPSink/Sack1]
Creates  a  sink  object,  this  object  only  receives  packets  and  generates 
ACK's.
$ns attach-agent $4 $sink
The sink is attached to a certain node.
$ns connect $tcp $sink
The source and destination are here coupled to each other. The flow will 
find its own way trough the network.
$ns at 20 “$ftp start”
Starts  the flow $ftp after 20 seconds from the moment the simulator is 
started.
$ns at $END “finish”
Runs a predefined finish procedure in which files are finalized, memories 
are flushed, etcetera.
$ns run
Always the final code, if the parser reaches this part it starts running the 
simulator. If one would issue this code on the first line of the script it could 
be that not all objects are filled and parameter are set, which could give 
buggy results.
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Appendix 3  TCL configuration file
Class TraceApp -superclass Application
#This application helps us to calculate the goodput

TraceApp instproc init {args} {
        $self instvar bytes_
        $self set bytes_ 0
        eval $self next $args
        puts "in init"
}

TraceApp instproc recv {byte} {
        global ns
        $self instvar bytes_
        #puts "Dbyte added to totals $byte"
        set bytes_ [expr $bytes_ + $byte]
        #puts "RD [$ns now] $bytes_"
        return bytes_
}

TraceApp instproc get_bytes {} {
        $self instvar bytes_
        return $bytes_
}

TraceApp instproc reset {} {
        $self instvar bytes_
        set bytes_ 0
}

set START 0.0
set END 200.0
set RCVST 20.0
set LAT [lindex $argv 0] ;#use values from stdin
set QUEUE [lindex $argv 1]
set RRTT [lindex $argv 2]
#Setting the variables of TCP/Hybla
#Agent/TCP/Hybla set p_ $P ;#used to set p_ to static value
Agent/TCP/Hybla set p_algo_ 0  ;# 0 uses current RTT, 1 uses smoothed RTT, 2 uses 
minimum RTT.
Agent/TCP/Hybla set r_rtt_ $RRTT ;#Reference RTT which is the competing RTT

set ns [new Simulator]
$ns use-scheduler Calendar ;# different schedulers Heap, List, Callendar, real time

#Define a 'finish' procedure
proc finish {} {
        global ns file1 file2 file3 file4 ftp ftp1 START END recv_application 
recv_application1 RCVST
        $ns flush-trace
        set rate [expr ([$recv_application get_bytes]*8) / (10000*($END - $RCVST))]
        set rate1 [expr ([$recv_application1 get_bytes]*8) / (10000*($END - $RCVST))]
        puts "Goodput link 0 (Hybla): $rate kb/s with totally [$recv_application 
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get_bytes] bytes send"
        puts "Goodput link 1 (Reno): $rate1 kb/s with totally [$recv_application1 
get_bytes] bytes send" 
        set effective [expr (($rate+$rate1)*100)/1000]
        puts $file4 "$rate"
        puts $file4 "$rate1"
        close $file4
        puts "Effective $effective %"
        exit 0
}

#Create six nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]

#Create links between the nodes
$ns duplex-link $n0 $n2 100Mb 5ms DropTail
$ns duplex-link $n1 $n2 100Mb $LAT DropTail ;#20ms DropTail
$ns duplex-link $n2 $n3 1000kb 1ms DropTail
$ns duplex-link $n3 $n4 100Mb 5ms DropTail
$ns duplex-link $n3 $n5 100Mb $LAT DropTail ;#20ms DropTail

$ns queue-limit $n2 $n3 $QUEUE

#Setup a TCP connection
set tcp [new Agent/TCP/Newreno]
$tcp set windowOption_ 1;# Set the TCP behaviour to most default
$tcp set other_ 1;#for internal use, see appendix 1
$tcp set ttl_ 64 ;# simulate *NIX like environment
$ns attach-agent $n0 $tcp
set sink [new Agent/TCPSink/Sack1] ;#receiving node
$ns attach-agent $n4 $sink

set recv_application1 [new TraceApp] ;# create new Tracing Application
$recv_application1 attach-agent $sink

$ns connect $tcp $sink

#Setup a FTP over TCP connection
set ftp [new Application/FTP] ;#The data we send over the link
$ftp attach-agent $tcp

#Setup a TCP connection
set tcp1 [new Agent/TCP/Hybla] ;#use [new Agent/TCP/Newreno] here for newreno 
network
$tcp1 set windowOption_ 1
$tcp1 set ttl_ 64

$tcp1 set bvar_ 0 ;#Same use as other_ variable
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$ns attach-agent $n1 $tcp1
set sink1 [new Agent/TCPSink/Sack1]
$ns attach-agent $n5 $sink1

set recv_application [new TraceApp]
$recv_application attach-agent $sink1

$ns connect $tcp1 $sink1
$tcp1 set fid_ 2

#Setup a FTP over UDP connection
set ftp1 [new Application/FTP]
$ftp1 attach-agent $tcp1

#starting the application
$ns at $RCVST "$recv_application start" ;#start the trace application
$ns at $RCVST "$recv_application1 start"
$ns at 0 "$ftp1 start"
$ns at 20 "$ftp start"
$ns at $END "$ftp stop"
$ns at $END "$ftp1 stop"

$ns at $END "finish"
$ns run
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