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VANET supports data communications among nearby vehicles and between vehicles and nearby fixed 
infrastructure, generally represented as roadside entities. VANET turns every participating car into a 
wireless node, allowing cars to connect to each other and, in turn, create a network with a wide range. 
As cars fall out of the signal range and drop out of the network, other cars can join in, connecting 
vehicles to one another so that a mobile Internet is created.  

1.2 Project-specific Background 
Since Vehicle-to-Vehicle (V2V) communication is proposed as the communication paradigm for a 
number of traffic safety, traffic management, and infotainment applications, this project focuses on V2V 
communication. In V2V communication, the relatively low heights of the antennas on communicating 
entities imply that the optical line of sight (LOS) can easily be blocked by an obstruction, either static 
(e.g., buildings, hills) or mobile (other vehicles on the road). There exists a wide variety of experimental 
studies dealing with the propagation aspects of V2V communication. Many of these studies deal with 
static obstacles, often identified as the key factors affecting signal propagation (see [BaKr06] 
[ChCa05]). However, it is reasonable to expect that a significant portion of the V2V communication will 
be bound to the road surface, especially in highway environment, thus making the LOS between two 
communicating nodes susceptible to be interrupted by other vehicles. It has been shown in some papers 
that other non-communicating vehicles often block the LOS between the communicating vehicles, thus 
significantly attenuating the signal. This results in a significant reduction in the received power level and 
effective communication range [MeBo10] [BoVi11].  

In this assignment, more attention will be paid to the impact of the height of vehicles, when they are 
used as transmitter, receiver or obstacle. 

1.3 Problem Statement 
When one wants to study such applications, for instance using simulation, a very basic need is to have a 
realistic model for how electromagnetic waves propagate through the air. What percentage of 802.11-
packets will arrive when two cars are separated by a predefined distance? How do other cars, bridges, 
and buildings alongside the road influence propagation? Thus propagation effects when vehicles are 
communicating should be analyzed, e.g. reflection, diffraction effects. Current models either consider 
few effects or take all of these effects into account but with much high computation complexity. In order 
to evaluate the impact of vehicles as obstacles, a model needs to be used that accounts for vehicles as 
three-dimensional obstacles and take into account their impact on the electromagnetic wave propagation. 
In particular, realistic propagation models need to be used that can model certain propagation effects, 
such as reflection and diffraction effects. Such a model is proposed by Boban et al. in [BoVi11] and 
[BoMe11], which quantifies the effect of vehicles on LOS and consequently on the received power 
level. However, their performed simulation experiments are rather limited in scope, i.e., the road 
topology is based on the Portuguese highway A28 environment, where vehicle topology and vehicle 
density is defined in a deterministic manner. Moreover, the exact positions and dimensions of vehicles 
are provided by snapshots obtained from aerial photography, which can only represent specific cases 
from the road traffic data sets. 

1.4 Research Questions 
Motivated by above, this assignment uses in the simulation experiments a propagation model that can be 
applied in V2V communications scenarios, when the communication: 1) is using 802.11p Dedicated 
Short Range Communication (DSRC) standard, 2) consider vehicles as obstructions. Further more, this 
report extends the research work accomplished in [BoVi11] and [BoMe11], with extensive simulation 
studies in which (i) the effect of Large vehicles on V2V communication and (ii) the benefit of choosing 
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a Large vehicle as a next hop are investigated when different road topologies, vehicle densities, 
percentages of Large vehicles, transmission power, and DSRC data rates (i.e., modulation types and 
minimum sensitivity threshold) are used. The research questions that have to be answered by this 
assignment are: 

1) What is the impact of Large vehicles in V2V communication, when these are used as senders, 
obstacles or receivers? 

2) What is the impact of Large vehicles on multi-hop V2V communication, when these are selected 
as next hops? 

The network environment in simulation is determined according to the propagation model we choose. 
Then by defining several scenarios in the network environment, e.g. with different vehicle density and 
vehicle types, the research questions could be answered in analysis about simulation results. 

1.5 Outline of this report 
This report is organized as follows. Chapter 2 presents the simulation environment, simulation topology 
in our experiments, and describes the propagation model implemented in the simulation, including the 
implementation and verification. In Chapter 3, an introduction to the performance measurements in the 
experiments is given first. Then different scenarios in simulation are determined based on the research 
goal in this assignment. And the simulation results are obtained and analyzed. In the end, Chapter 4 
concludes the assignment and gives future work. 
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 Interfaces: Module and channel interfaces can be used as a placeholder where normally a module 
or channel type would be used, and the concrete module or channel type is determined at 
network setup time by a parameter. 

 Inheritance: Modules and channels can be subclassed. 
 Packages: The NED language features a Java-like package structure, to reduce the risk of name 

clashes between different models. 
 Inner types: Channel types and module types used locally by a compound module can be defined 

within the compound module, in order to reduce namespace pollution. 
 Metadata annotations: It is possible to annotate module or channel types, parameters, gates and 

submodules by adding properties. 
Reusability of models makes building certain models flexible. Also, the depth of module nesting is not 
limited, which allows the user to reflect the logical structure of the actual system in the model structure. 
In particular modules: 

 can communicate with message passing. Messages can contain arbitrarily complex data 
structures. 

 can send messages either directly to their destination or along a predefined path, through gates 
and connections. 

 can have parameters which are used for three main purposes: to customize module behaviour; to 
create flexible model topologies (where parameters can specify the number of modules, 
connection structure etc); and for module communication, as shared variables.  

 at the lowest level of the module hierarchy are to be provided by the user, and they contain the 
algorithms in the model.  

During simulation execution, simple modules appear to run in parallel, since they are implemented as 
co-routines (sometimes termed lightweight processes). To write simple modules, the user does not need 
to learn a new programming language, but he/she is assumed to have some knowledge of C++ 
programming. 

Therefore, an OMNeT++ model is combined by simple modules by using the NED language while the 
simple modules themselves are programmed in C++. The simulation system provides two components: 
simulation kernel containing the code that manages the simulation and the simulation class library; user 
interfaces. Graphical, animating user interfaces are highly useful for demonstration, while command-line 
user interfaces are best for batch execution. 

Thus, the way of how OMNeT++ is used is as follows. First, the NED files are compiled into C++ 
source code, using the NEDC compiler which is part of OMNeT++. Then all C++ sources are compiled 
and linked with the simulation kernel and a user interface to form a simulation executable. 

2.1.2 MiXiM 
MiXiM (a MiXed siMulator) is an OMNeT++ modelling framework created for mobile and fixed 
wireless networks, such as wireless sensor networks, body area networks, ad-hoc networks, vehicular 
networks, etc. [MiXiM]. MiXiM provides detailed models and protocols, as well as a supporting 
infrastructure. These can be divided into five groups [KöSw08]: 

 Environment models: in a simulation, only relevant parts of the real world should be reflected, 
such as obstacles that hinder wireless communication. 
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The vehicles are placed on the road based on: 

 number of vehicles on the road: depends on the vehicle density  
 inter-vehicle spacing: the distance between two adjacent vehicles moving on the same lane, see 

Figure 1. It is defined using an exponential distribution, see [BoVi11] 
 type of vehicles: two types of vehicles are distinguished, Large (or tall), and Small (or short) 

vehicles, see [BoVi11] 
 dimensions of vehicles: this represents the length, width and height of both Large and Small 

vehicles, see Table 1. These dimensions are random variables, but their values are set before 
placing the vehicles on the road. 

The vehicles are carrying transmitter/receiver antennas on their roofs, see [BoVi11]. In particular, each 
Small vehicle is carrying one antenna that is located on top of the vehicle and in the middle of the roof. 
Each Large vehicle is carrying two antennas on the roof, one in the front and another in the back of the 
vehicle, see [BoMe11]. The height of each antenna is set to 10 cm and the antenna gain is set to 3dBi. 

Table 1. Dimension of vehicles 

Type Parameters Estimate 
 

Small 
Width Mean: 175cm; Std. deviation: 8.3cm 
Height Mean: 150cm; Std. deviation: 8.4cm 
Length Mean: 500cm; Std. deviation: 100cm 

 
Large 

Width Mean: 250cm 
Height Mean: 335cm; Std. deviation: 8.4cm 
Length Mean: 1300cm; Std. deviation: 350cm 

 

After the vehicles are placed on the road, simulation experiments are run in the following way. During 
one simulation run all the vehicles placed on the road will be transmitting in a sequential order at 
different (2 seconds) time intervals. This means that during a time interval of 2 seconds only one vehicle 
is transmitting one beacon with a length of 3200 bits. The other vehicles will successfully receive the 
beacon only if the power of the received signal is higher than a minimum sensitivity threshold. The 
power of the received signal is measured at each receiving vehicle at the physical layer module 
incorporated in the OMNET++/MiXiM framework.  

2.3 Propagation Model 
As indicated in previous sections, our assignment is an extension research to [BoVi11] and [BoMe11]. 
The simulation experiments for evaluating the impact of Large vehicles in V2V communication in this 
assignment are based on the propagation model proposed in [BoVi11] (also used in [BoMe11]). Section 
2.3.1 firstly describes propagation effects in V2V communication.  Next, the reason that we use the 
propagation model in [BoVi11] is given in section 2.3.2, which also introduces the channel 
characteristics considered in the model. Then the detailed methodology for quantifying the impact of 
vehicles as obstacle on LOS and consequently on the received signal power in the propagation model is 
discussed in section 2.3.3. At last, the verification for the propagation model is given in section 2.3.4. 

2.3.1 Propagation Effects 
The simplest basic mechanism that governs the propagation of electromagnetic waves is free space 
propagation – in other words, one transmitting and one receiving antenna in free space. In a more 
realistic scenario, there are dielectric and conducting obstacles (Interacting Objects (IOs)). If these IOs 
have a smooth surface, waves are reflected and a part of the energy penetrates the IO (transmission). If 
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The basic models mentioned above consider too few propagation effects and the complexities of them 
are too low so that they are not suitable for a realistic vehicular communication. Thus, more complicated 
models are discussed as follows. 

Based on the approach of modeling the environment (geometrically or non-geometrically), and the 
distribution of objects in the environment (stochastic or deterministic), three main types of models were 
identified: non-geometrical stochastic models, geometry-based deterministic models, and geometry-
based stochastic models. The following gives an overview of these models. 

 Non-geometrical stochastic models, see e.g., [OtBu09][ChHe07][SeMa08]: 
These propagation models are based on an extensive series of measurements. Each measurement 
represents an average of a set of samples. For a certain environment, predications of the signal 
transmission can be obtained based on a series of results, which are linked to the environment 
and parameters of the measurement. This reduces computational cost significantly. However, 
these models are not realistic. They can only be used over parameter ranges included in the 
original measurement set; otherwise, the predications are not accurate. A more detailed channel 
model is required in order to increase the accuracy of this model.   

 Geometry-based deterministic models, see e.g., [BoVi11], [MaFü04], [LeBo11]:  
Deterministic propagation models are based on a fixed geometry (sufficient information about 
environment and road traffic) and are used to analyze particular situations. The electromagnetic 
field arriving at receiver results from the combination of all components: direct component, 
reflected components, diffracted components and scattered components. Usually the ray-tracing 
method is used to analyze the characteristics of these components. A highly realistic model, 
based on optical ray tracing was proposed in [MaFü04]. The model is compared against 
experimental measurements and showed a close agreement. However, the accuracy of the model 
is achieved at the expense of high computational complexity and location-specific modeling. 
There are simplified geometry-based deterministic models, see e.g., [BoVi11][LeBo11].  

 Geometry-based stochastic models, see e.g., [KaTu09], [ChWa09]: 
Geometry-based stochastic models are the combination of deterministic models and statistics of 
various parameters (information of environment).  The propagation model proposed in [KaTu09] 
distributes the vehicles as well as other objects at random locations and analyzes four distinct 
signal components: LOS, discrete components from mobile objects, discrete components from 
static objects, and diffuse scattering. The propagation model proposed in [ChWa09] presented a 
MIMO channel model that takes into account the LOS, single-bounced rays and double-bounced 
rays by employing a combined two-ring and ellipse propagation model. By properly defining the 
parameters, this propagation model can be used in various V2V environments with varying 
vehicle densities. 

Since any channel model is a compromise between simplicity and accuracy, the target of this research is 
to construct a propagation model that is simple enough to be tractable from an implementation point of 
view, yet still able to emulate the essential V2V channel characteristics, mainly diffraction caused by 
mobile obstacles. Thus a geometry-based deterministic model with computation reduction is suitable for 
the research presented in this report. Considering geometry-based deterministic models, the propagation 
model in [MaFü04] encompasses all objects in the analyzed environment (both static and mobile) and 
evaluates the signal behavior by analyzing the strongest propagation paths between the communicating 
pair. However, the realism of this model is achieved at the expense of high computational complexity 
and location-specific modeling. The propagation model proposed in [LeBo11] presents a semi-
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deterministic solution, which benefits from the advantages of both statistical and deterministic model. 
One parameter, bit error rate (BER), is used to show the quality of the communication link between two 
nodes. The search path is limited by ray tracing only to the direct path for the reason that the LOS path 
has the main impact on the received signal. However, LOS and non-LOS (NLOS) results are always 

either nearly perfect (∼100% of packets reach their destination) or poor (∼0% of packets reach their 
destination). This propagation model cannot accurately model the wave propagation between two 
vehicles, when another vehicle is located between them, i.e., obstacle. The research work proposed by 
Boban et al. in [BoVi11] derive a simplified geometry-based deterministic propagation model, in which 
the effect of vehicles as obstacles on signal/wave propagation is isolated and quantified while the effect 
of other static obstacles (i.e., buildings, overpasses, etc.) is not considered. The research work in 
[BoVi11] focuses on vehicles as obstacles by systematically quantifying their impact on LOS and 
consequently on the received signal power. Although the propagation model calculates attenuation due 
to vehicles for each communicating pair separately, it is still computationally efficient. Based on these 
facts, i.e., realistic features, reduced computation, and concentration on mobile obstacles, we decided to 
enhance, implement and use the propagation model proposed in [BoVi11].  

2.3.3 Model Implementation 
This section gives a detailed description to the methodology used in the propagation model, see 
[BoVi11]. In [BoVi11], the aerial imagery is used to obtain road information of the Portuguese highway 
A28, including the exact position and length of vehicles. To ensure satisfactory accuracy, the width and 
height are determined from a Portuguese highway data set. Subsequently, the authors of [BoVi11] 
derived a way to analyze all possible connections between vehicles within a given range, by calculating 
LOS probability and received power level, as a two-step approach. Firstly, for LOS probability, the 
model determines the existence or non-existence of LOS based on the number and dimensions of 
vehicles potentially obstructing the direct path between vehicles designated as transmitter (Tx) and 
receiver (Rx). Secondly, for the received power level, the impact of obstacles can be represented by 
signal attenuation. The attenuation on a radio link increases if one or more vehicles intersect the Fresnel 
ellipsoid corresponding to 60% of the radius of the first Fresnel zone, independent of their positions on 
the Tx-Rx link. This increase in attenuation is due to the diffraction of the electromagnetic waves. To 
model vehicles obstructing the LOS, we use the knife-edge attenuation model, see [ITU-R07]. When 
there are no vehicles obstructing the LOS between Tx and Rx, we use free space path loss model. If only 
one obstacle is located between Tx and Rx, then the single knife-edge model described in ITU-R 
recommendation [ITU-R07] is used. For the case that more than one vehicles (i.e., more than one 
obstacles) are located between Tx and Rx, the multiple knife-edge model with the cascaded cylinder 
method, proposed in [ITU-R07], is used. 

2.3.3.1 LOS Probability 
The proposed model in [BoVi11] calculates the (non-) existence of the LOS for each link (i.e., between 
all communicating pairs) in a deterministic fashion, based on the dimensions of the vehicles and their 
locations. [BoVi11] derives the expressions for the microscopic (i.e., per-link and per-node) and 
macroscopic (i.e., system-wide) probability of LOS. It has to be noted that, from the electromagnetic 
wave propagation perspective, the LOS is not guaranteed with the existence of the visual sight line 
between the Tx and Rx. It is also required that the Fresnel ellipsoid is free of obstructions. Any obstacle 
that obstructs the Fresnel ellipsoid might affect the transmitted signal. As the distance between the 
transmitter and receiver increases, the diameter of the Fresnel ellipsoid increases accordingly. Besides 
the distance between the Tx and Rx, the Fresnel ellipsoid diameter is also a function of the wavelength. 
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where p(hi) and p(hj) are the probability density functions for the transmitter and receiver antenna 
heights with respect to the road, respectively. 

The average probability of LOS for a given vehicle i, P(LOS)i, and all its Ni neighbors is defined as 

ܲሺܱܵܮሻ௜ ൌ
ଵ

ே೔
∗ ∑ ܲሺܱܵܮሻ௜௝

ே೔
௝ୀଵ                  (7) 

To determine the system-wide ratio of LOS paths blocked by other vehicles, we average P(LOS)i over 
all Nv vehicles in the system, yielding 

ܲሺܱܵܮሻതതതതതതതതതത ൌ
ଵ

ேೡ
∗ ∑ ܲሺܱܵܮሻ௜

ேೡ
௜ୀଵ                 (8) 

2.3.3.2 Signal Attenuation 
The attenuation on a radio link increases if one or more vehicles intersect the ellipsoid corresponding to 
60% of the radius of the first Fresnel zone, independent of their positions on the Tx-Rx link (Figure 8). 
This increase in attenuation is due to the diffraction of the electromagnetic waves. The additional 
attenuation due to diffraction depends on a variety of factors: the obstruction level, the carrier frequency, 
the electrical characteristics, the shape of the obstacles, and the amount of obstructions in the path 
between transmitter and receiver. To model vehicles obstructing the LOS, we use the knife-edge 
attenuation model. It is reasonable to expect that more than one vehicle can be located between 
transmitter (Tx) and receiver (Rx). Thus, we employ the multiple knife-edge model described in ITU-R 
recommendation [ITU-R07]. When there are no vehicles obstructing the LOS between the Tx and Rx, 
we use the free space path loss model [WirelessComm.11]. 

1) Single Knife Edge 
The simplest obstacle model is the knife-edge model, which is a reference case for more complex 
obstacle models (e.g., cylinder and convex obstacles). Since the frequency of DSRC radios is 5.9 GHz, 
the knife-edge model theoretically presents an adequate approximation for the obstacles at hand 
(vehicles). The prerequisite for the applicability of the model, namely a significantly smaller wavelength 
than the size of the obstacles [ITU-R07], is fulfilled (the wavelength of the DSRC is approximately 5 
cm, which is significantly smaller than the size of the vehicles). The obstacle is seen as a semi-infinite 
perfectly absorbing plane that is placed perpendicular to the radio link between the Tx and Rx. Based on 
the Huygens principle, the electric field is the sum of Huygens sources located in the plane above the 
obstruction and can be computed by solving the Fresnel integrals. According to [ITU-R07], in the 
extremely idealized case, all the geometrical parameters are combined together in a single dimensionless 
parameter normally denoted by v, which may assume a variety of equivalent forms according to the 
geometrical parameters selected. A good approximation for the additional attenuation (in dB) due to a 
single knife-edge obstacle Ask can be obtained using the following equation [ITU-R07]: 

௦௞ܣ ൌ 	 ቊ
6.9 ൅ 20 ∗ logଵ଴ ቂඥሺݒ െ 	0.1ሻଶ ൅ 1	൅ ݒ	 െ 0.1ቃ ; ݒ	ݎ݋݂ ൐ 	െ0.7

0; ݁ݏ݅ݓݎ݄݁ݐ݋
            (9) 

where ݒ ൌ 	√2 ∗ ௙ݎ/ܪ , H is the difference between the height of the obstacle and the height of the 
straight line that connects Tx and Rx, and rf is the Fresnel ellipsoid radius. According to Fresnel zone 

geometry, r_f could be expressed as: ݎ௙ ൌ 	ට
ఒ∗ௗଵ∗ௗଶ

ௗଵାௗଶ
	 ; d1 is the distance between transmitter and 

obstacle, and d2 is the distance between obstacle and receiver. H can be expressed as: ܪ ൌ ݄ூை െ ்݄௑ െ
ሺ݄ோ௑ െ ்݄௑ሻ ∗

ௗଵ

ௗଵାௗଶ
. 
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2) Multiple Knife Edge 
The extension of the single knife-edge obstacle case to the multiple knife-edge is not straightforward. 
All of the existing methods in the literature are empirical and the results vary from optimistic to 
pessimistic approximations. The Epstein-Petterson method [EpPe53] presents a more optimistic view, 
whereas the Deygout [De66] and Giovanelli [Gi84] are more pessimistic approximations of the real 
world. Usually, the pessimistic methods are employed when it is desirable to guarantee that the system 
will be functional with very high probability. On the other hand, the more optimistic methods are used 
when analyzing the effect of interfering sources in the communications between transmitter and 
receiver. To calculate the additional attenuation due to vehicles, we employ the ITUR method [ITU-
R07], which can be seen as a modified version of the Epstein-Patterson method, where correcting factors 
are added to the attenuation in order to better approximate reality. 

To calculate additional attenuation due to multiple vehicels, the report is using ITU-R method from 
[ITU-R07], which can be seen as a modified version of Epstein-Patterson method.  

According to [ITU-R07], two methods, Cascaded cylinder method and Cascaded knife edge method, are 
recommended for diffraction over irregular terrain which forms one or more obstacles to LOS 
propagation. The first one uses string analysis to find obstructions (several string points could be 
regarded as one obstruction), and assumes that each obstruction can be represented by a cylinder. 
Moreover, the second one corresponds to an empirical solution based on the supposition of knife-edge 
obstacles plus a correction to compensate for the higher loss due to a radius of curvature different from 
zero. The second one is based on the Deygout method limited to a maximum of 3 edges. As we have 
much more than 3 edges in some cases of the simulation, we decide to use cascaded cylinder method for 
the situation with multiple vehicles as obstacles.  

In cascaded cylinder method, each vehicle as obstacle has a profile that contains height above sea level, 
distance from Tx, and distance to Rx. The first step is to perform a “stretched string” analysis of the 
profile. This identifies the sample points which would be touched by a string stretched over the profile 
from transmitter to receiver. For samples at spacings of 250 m or less any group of string points which 
are consecutive profile samples, other than the transmitter or receiver, should be treated as one 
obstruction. Figure 9 illustrates the geometry for an obstruction consisting of more than one string point. 
The following points are indicated by: 

 w: closest string point or terminal on the transmitter side of the obstruction which is not part of 
the obstruct; 

 x: string point forming part of the obstruction which is closest to the transmitter 
 y: string point forming part of the obstruction which is closest to the receiver 
 z: closest string point or terminal on the receiver side of the obstruction which is not part of the 

obstruction 
 v: vertex point made by the intersection of incident rays above the obstruction.  

The letters w, x, y and z will also be indices to the arrays of profile distance and height samples. For an 
obstruction consisting of an isolated string point, x and y will have the same value, and will refer to a 
profile point which coincides with the vertex. Note that for cascaded cylinders, points y and z for one 
cylinder are points w and x for the next, etc. 
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Appendix 2 in [ITU-R07] gives a method for calculating L’’ for each LOS section of the path between 
obstructions. 

The correction factor, CN, is calculated using: 

ேܥ ൌ ሺ ௔ܲ/ ௕ܲሻ଴.ହ             (11) 

where: 

௔ܲ ൌ ଶሻ௜ሿݏଵෑሾሺݏ ቌݏଵ ൅	෍ൣሺݏଶሻ௝൧

ே

௝ୀଵ

ቍ																			ሺ12ሻ

ே

௜ୀଵ

 

௕ܲ ൌ ሺݏଵሻଵሺݏଶሻேෑሾሺݏଵሻ௜ ൅ ሺݏଶሻ௜ሿ																									ሺ13ሻ

ே

௜ୀଵ

 

and the suffices to round brackets indicate individual cylinders. 

2.3.4 Model Verification 
As shown in [ITU-R07], the calculation for cascaded cylinder method is much more complicated than 
single knife-edge model. In single knife-edge model, all geometrical parameters are combined together 
into a single dimensionless parameter (normally denoted by v), and a good approximation for the 
additional attenuation (vs. v) can be obtained. However, in multiple cylinder method, no such single 
parameter can present all aspects that influence the attenuation. After ‘string analysis’ and modeling 
each obstruction as one cylinder, the diffraction loss for the path with multiple obstacles between Tx and 
Rx is computed as the sum of three terms: 1) the sum of diffraction losses over the cylinders (using 
rounded obstacle calculation), 2) the sum of sub-path diffraction between cylinders (and between 
cylinders and adjacent terminals), and 3) a correction term.  

For single knife-edge model, we define three vehicles in simulator and vary their positions and height to 
achieve multiple cases with different values for v. The results showing the same trend of additional 
attenuation vs. v as the approximation in [ITU-R07] indicate the correction of implementation of single 
knife-edge model. For cascaded cylinder model, we define several cases to verify the calculation of the 
three terms in diffraction loss separately, since no approximation is provided as reference in [ITU-R07]. 
The case that multiple vehicles exist as one cylinder (vehicles as obstacles within 250m can be regarded 
as one obstruction/cylinder) between Tx/Rx and the vertex of the cylinder verifies the rounded obstacle 
method and the sub-path loss calculation. In other cases, more vehicles as potential obstacles between 
transmitter and receiver are defined, thus more cylinders exist between Tx and Rx. By defining different 
locations for vehicles as obstacle, we can obtain distinct positions for cylinders, thus verify calculation 
of both sub-path loss and correction factor. As to the method for finding vehicles as obstacles, we have 
verified for one lane and multiple lanes. Both showed the correction of implementation.  

2.4 Conclusion 
In this chapter, we have introduced simulation environment and simulation topology. Based on these, 
different scenarios can be defined in our experiments, which are described in Chapter 3. Besides, the 
methodology of the obstacle-aware propagation model has been given to quantify the impact of vehicles 
as obstacles, and the verification of the model indicates the correction of the implementation in our 
simulation. Based on these, different performance measurements are defined in Chapter 3. The 
experiments results for different scenarios and corresponding analysis are also shown in Chapter 3. 
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3. Experiment, Results and Analysis 
The static parameters used in the simulated topology, such as road information, dimension of vehicles, 
antenna height are given in Section 2.2. However, different than [BoVi11], the percentage of Large 
vehicles, vehicles densities, transmission power, and DSRC data rates (i.e., modulation type and 
minimum sensitivity threshold) are varied to obtain different simulation scenarios.  

In order to guarantee a high statistical accuracy of the obtained results, multiple runs have been 
performed and double sided 90% confidence intervals have been calculated. Several graphs are 
depicting in addition to the average values also the confidence intervals in the form of upper and lower 
bars around their associated average values. For all performed experiments, the calculated confidence 
intervals are lower than the ±5 % of the shown calculated mean values. 

3.1 Performance Measurements 
Four performance metrics are defined in order to investigate (i) the effect of Large vehicles on V2V 
communication and (ii) the benefit of choosing a Large vehicle as a next hop are investigated when 
different vehicle densities, percentages of Large vehicles, transmission power, DSRC data rates (i.e., 
modulation types and minimum sensitivity threshold) are used.  

1. Average LOS Probability 

The Average LOS Probability 
__________

)(LOSP  is defined as the average probability that each vehicle in the 
system can have a LOS to its neighbors in an observed range. In this simulation study, an observed 
range is a circular coverage area with a transmitting vehicle as center. Note however, that the observed 
range does not depend on the radio coverage area of a transmitter. The calculation method for average 
LOS probability has already been introduced in section 2.3.3.1. 

2. Received Power Level 
The Received Power Level is defined as the average value of the received powers at all the receiver 
vehicles under study (e.g., all Large or all Small vehicles in the system). This average value is expressed 
in dBm. The received power at each receiver is calculated by subtracting the signal attenuation, 
calculated by the propagation model (see section 2.3.3.2), from the transmitted power. 

3. Packet Success Rate vs. Transmission Range 
The Packet Success Rate (PSR) is defined as the ratio of the successful received beacons by all vehicles 
(under study), divided by the total number of beacons sent by all vehicles (under study), within a 
predefined transmission range. A transmission range is defined by the radio coverage area of a 
transmitter. Note that the transmission range is different than the observed range, used for average LOS 
probability, due to the fact that the latter does not depend on the radio coverage area of a transmitter. 

A beacon is successfully received if the received power is higher than a minimum sensitivity threshold. 
The minimum sensitivity thresholds defined for IEEE 802.11p are listed in Table 3. As can be seen in 
Table 3, each data rate requires a certain modulation type and a minimum sensitivity threshold. In our 
experiment, several DSRC data rates are considered. 
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3.3.2 Received Power Level 
In this set of experiments the received power level measure is investigated. Four types of experiments 
are performed.  

The goal of the first type of experiments is to investigate the received power level experienced when the 
four different transmission/reception types are used. In this type of experiments the received power level 
versus the distance from Rx to Tx (within a range of 1000 m) for the 4 transmission/reception types is 
investigated, see Figure 13. This is accomplished for Scenario 2, shown in Table 4, when the vehicle 
density is set to 7.9 veh/km/lane, 15% Large vehicles, and the transmission power is set to 63mW. 

From this type of experiment it can be concluded that: 

1. all the received power level values associated with the Large-Large transmission/reception type 
are higher than all the received power level values associated with all other 
transmission/reception types 

2. all the received power level values associated with the Small-Small transmission/reception type 
are lower than all the received power level values associated with all other 
transmission/reception types  

3. all the received power level values associated with the Large-Small transmission/reception type 
are higher than all the received power level values associated with the Small-Large 
transmission/reception types  

4. for an observed distance equal to 750m: 
 received power level values for Small-Large type are approximately 3dB higher than the 

values for Small-Small-type 
 received power level values for Large-Small type are approximately 3dB higher than the 

values for Small-Large-type 
 received power level values for Large-Large type are approximately 3dB higher than the 

values for Large-Small-type 
The goal of the second type of experiments is to investigate the received power level for each 
transmission/reception type when different vehicle densities are used. In particular, in this type of 
experiments the received power level versus the distance from Rx to Tx (within a range of 1000 m) for 
the 4 transmission/reception types is investigated, see Figure 14. This is accomplished for Scenario 2, 
shown in Table 4, when the vehicle density is set to 17.5 veh/km/lane, instead of 7.9 veh/km/lane, 15% 
Large vehicles, and the transmission power is set to 63mW. 

From this type of experiment it can be concluded that: 

1. the received power level conclusions 1, 2 and 3 associated with the first type of experiments 
described in this section hold also for this type of experiment.  

2. for an observed distance equal to 750m, the received power level conclusion 4 associated with 
the first type of experiments described in this section is similar for this type of experiment. The 
difference is that now, due to the larger vehicle density, the received power level values 
associated with the various transmission/reception types, differ between each other 
approximately 5dB, instead of 3dB. 

The goal of the third type of experiments is to investigate the received power level for each 
transmission/reception type when different Large vehicle percentages are used. In this type of 
experiments the received power level versus the distance from Rx to Tx (within a range of 1000 m) for 
the 4 transmission/reception types is investigated, see Figure 15. This is accomplished for Scenario 4, 
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shown in Table 4, when the vehicle density is set to 7.9 veh/km/lane, 50% Large vehicles, and the 
transmission power is set to 63mW. 

From this type of experiment it can be concluded that: 

1. the received power level conclusions 1, 2 and 3 associated with the first type of experiments 
described in this section hold also for this type of experiment 

2. for an observed distance equal to 750m:  
 received power level values for Small-Large type are approximately 3dB higher than the 

values for Small-Small-type 
 received power level values for Large-Small type are approximately 10dB higher than the 

values for Small-Large-type 
 received power level values for Large-Large type are approximately 2dB higher than the 

values for Large-Small-type 
When comparing the received power levels for Small-Large and Large-Small transmission/reception 
types, see Figure 15, it can be seen that if the obstacle is closer located to Tx, then the Small-Large type 
will have more additional attenuation, thus a lower received power. The fact that the received power 
difference between the two transmission/reception types becomes larger when increasing the Large 
vehicle percentage, suggests that obstacles are on the average closer to the sender (Tx).  

The goal of the fourth type of experiments is to investigate the received power level for each 
transmission/reception type when different transmission powers are used. In this type of experiments the 
received power level versus the distance from Rx to Tx (within a range of 1000 m) for the 4 
transmission/reception types is investigated, see Figure 16. This is accomplished for Scenario 2, shown 
in Table 4, when the vehicle density is set to 7.9 veh/km/lane, 15% Large vehicles, but the transmission 
power is set to 1996mW (33dBm).  

From this type of experiment it can be concluded that: 

1. the received power levels for all the 4 transmission/reception types have been improved by 
approximately 14dB, when using 1996mW (33dBm) transmission power instead of 63mW 
(18dBm) 

2. the received power level conclusions 1, 2 and 3 associated with the first type of experiments 
described in this section hold also for this type of experiment  

3. for an observed distance equal to 750m:  
 received power level values for Small-Large type are approximately 3dB higher than the 

values for Small-Small-type 
 received power level values for Large-Small type are approximately 3dB higher than the 

values for Small-Large-type 
 received power level values for Large-Large type are approximately 3dB higher than the 

values for Large-Small-type 
It should be noticed that Figure 16 is using a different limitation for x axis, for the reason that received 
power level has been improved. 
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 PSR values for Large-Small type are approximately 0.05 higher than the values for Small-
Large-type 

 PSR values for Large-Large type are approximately 0.04 higher than the values for Large-
Small-type 

The goal of the third type of experiments is to investigate the PSR for each transmission/reception type 
when different vehicle densities are used. In particular, in this type of experiments the PSR versus the 
transmission range for the 4 transmission/reception types is investigated, see Figure 19. This is 
accomplished for Scenario 2, shown in Table 4, when the vehicle density is set to 17.5 veh/km/lane, 
instead of 7.9 veh/km/lane, 15% Large vehicles, and the transmission power is set to 63mW. 

From this type of experiment it can be concluded that: 

1. the PSR conclusions 1, 2 and 3 associated with the second type of experiments described in this 
section hold also for this type of experiment  

2. as the vehicle density increases, all the PSR values decrease 
3. for a transmission range equal to 750m: 

 PSR values for Small-Large type are approximately 0.08 higher than the values for Small-
Small-type.  

 PSR values for Large-Small type are approximately 0.07 higher than the values for Small-
Large-type 

 PSR values for Large-Large type are approximately 0.06 higher than the values for Large-
Small-type 

The goal of the fourth type of experiments is to investigate the PSR for each transmission/reception type 
when different Large vehicle percentages are used. In this type of experiments the PSR versus the 
transmission range for the 4 transmission/reception types is investigated, see Figure 20. This is 
accomplished for Scenario 4, shown in Table 4, when the vehicle density is set to 7.9 veh/km/lane, 50% 
Large vehicles, and the transmission power is set to 63mW. 

From this type of experiment it can be concluded that: 

1. the PSR conclusions 1, 2 and 3 associated with the second type of experiments described in this 
section hold also for this type of experiment. 

2. as the Large vehicle percentage increases, all the PSR values decrease 
3. for an transmission range equal to 750m:  

 PSR values for Small-Large type are approximately 0.07 higher than the values for Small-
Small-type 

 PSR values for Large-Small type are approximately 0.14 higher than the values for Small-
Large-type 

 PSR values for Large-Large type are approximately 0.04 higher than the values for Large-
Small-type 

The goal of the fifth type of experiments is to investigate the PSR for each transmission/reception type 
when different transmission powers are used. In this type of experiments the PSR versus the 
transmission range for the 4 transmission/reception types is investigated, see Figure 21. This is 
accomplished for Scenario 4, shown in Table 4, when the vehicle density is set to 7.9 veh/km/lane, 15% 
Large vehicles, and the transmission power is set to 1996mW. 

From this type of experiment it can be concluded that: 
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The conclusions on the Ratio of Large vehicles selected as best next hop that are derived by the 
simulation results depicted in Figure 22, are similar to the ones derived in [BoMe11]. However, slight 
differences can be observed. For example, in [BoMe11] is showed that when 15% Large vehicles on the 
road are used, then across all sensitivity thresholds Large vehicles are selected as best next hop between 
30%~45% of the time. In our simulation experiments and for the same parameter values, Large vehicles 
are selected as best next hop between 25%~60% of the time, see Figure 22.  

Furthermore, the statistical accuracy of the results presented in [BoMe11] is much lower than the results 
that we show in Figure 22, since the calculated confidence intervals for all the performed experiments 
presented in this report are lower than the ±5 % of the shown calculated mean values. 

In the second type of experiments the Ratio of Large vehicles selected as best next hop is investigated 
when the percentage of Large vehicles and the data rate are varied. This is accomplished for Scenario 5, 
shown in Table 5, when (1) the vehicle density is set to 11 veh/km/lane (i.e., 75m inter-vehicle spacing 
mean), (2) the percentage of the Large vehicles on the road is varied from 5% to 50%, (3) the DSRC 
data rates are varied from 3Mbps to 27Mbps and (4) the transmission power is fixed at 10dBm (10dBm). 

The results for this type of experiments are shown in Figure 23. The lower surface represents the same 
reference plane as in Figure 22. The upper surface represents the results of our simulation experiments. 
Note that Large vehicles still consistently provide a larger number of new (second hop) neighbors to the 
vehicle in question, across different Large vehicle ratios and minimum sensitivity thresholds (i.e., DSRC 
data rates). Besides, the minimum sensitivity threshold of -95dBm still exhibited the highest rate of 
Large vehicles that are selected as best next hop to relay packets. However, the highest rate values in 
figure 23 are about 0.08 larger than the ones in figure 22. We can conclude that, when increasing vehicle 
density from 7.9 veh/km/lane to 11 veh/km/lane, Large vehicles are more likely to be selected as best 
next hop to relay packets, and more benefits can be seen for lower sensitivity thresholds. When 15% 
Large vehicles on the road are used, now in figure 23 across all sensitivity thresholds Large vehicles are 
selected as best next hop between 30%~70% of the time. 

In the third type of experiments the Ratio of Large vehicles selected as best next hop is investigated 
when the percentage of Large vehicles and the data rate are varied. This is accomplished for Scenario 5, 
shown in Table 5, when (1) the vehicle density is set to 7.9 veh/km/lane (i.e., 125m inter-vehicle spacing 
mean), (2) the percentage of the Large vehicles on the road is varied from 5% to 50%, (3) the DSRC 
data rates are varied from 3Mbps to 27Mbps and (4) the transmission power is fixed at 18dBm (63mW). 

The results for this type of experiments are shown in Figure 24. The lower surface represents the same 
reference plane as in Figure 22. The upper surface represents the results of our simulation experiments. 
Note that Large vehicles still consistently provide a larger number of new (second hop) neighbors to the 
vehicle in question, across different Large vehicle ratios and minimum sensitivity thresholds (i.e., DSRC 
data rates). Besides, the minimum sensitivity threshold of -95dBm still exhibited the highest rate of 
Large vehicles that are selected as best next hop to relay packets. However, the highest rate values in 
figure 24 are slightly larger than the ones in figure 22. Across the minimum sensitivity threshold -
70dBm to -85dBm, the rate values in figure 24 are about 0.1 larger than the ones in figure 22. We can 
conclude from the two figures that, when increasing transmission power from 10dBm to 63dBm, Large 
vehicles are more likely to be selected as best next hop to relay packets, and more benefits can be seen 
for lower sensitivity thresholds. When 15% Large vehicles on the road are used, now in figure 23 across 
all sensitivity thresholds Large vehicles are selected as best next hop between 30%~65% of the time. 
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3.5 Conclusion 
In this chapter, the experiments regarded to the two research question in this assignment are performed 
to 1) evaluate the impact of Large vehicles used as transmitter, receiver or obstacles, when varying 
vehicle density, Large vehicle percentage and transmission power; 2) evaluate the impact of Large 
vehicles used as next hop to relay packets. 

We can conclude that for the first research question, either increasing vehicle density (decrease inter-
vehicle spacing), or increasing percentage of Large vehicles, or decreasing transmission power, can 
cause a decrease in the results of average LOS probability, received power level and packet success rate. 
Almost all cases in the simulation experiments suggest that 1) Large-Large transmission/reception type 
performs consistently and significantly better than other transmission/reception types, 2) Small-Small 
transmission/reception type performs the worst among the 4 transmission/reception types, 3) Large-
Small transmission/reception type performs better than Small-Large transmission/reception type, as the 
obstacles are located closer to the sender. Besides, for the second research question, as we can see from 
results in Section 3.4, Large vehicles always have a higher rate of selected as best next hops to relay 
packets. The minimum sensitivity threshold of -95dBm always exhibited the highest rate of Large 
vehicles that are selected as best next hop to relay packets. Either increasing vehicle density (decrease 
inter-vehicle spacing), or increasing transmission power, can lead to a slightly increase in the rate values 
of Large vehicles selected as best next hop to relay packets, and more benefits can be observed for lower 
sensitivity thresholds. 
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4. Conclusion and Future Work 

4.1 Conclusions 
In this article we have presented an extended evaluation of the impact of Large vehicles on V2V 
communication, based on the model presented in [BoVi11]. In particular, this report extends the 
research work presented in [BoVi11], [BoMe11], with extensive simulation studies in which (i) the 
effect of Large vehicles on V2V communication and (ii) the benefit of choosing a Large vehicle as a 
next hop are investigated when different vehicle densities, percentages of Large vehicles, transmission 
power, DSRC data rates (i.e., modulation types and minimum sensitivity threshold) are used.  

Based on our results, we conclude that for realistic situations (i.e., inter-vehicle spacing mean smaller 
than 250m, Large vehicles percentage larger than 5%) the communication links that are using Large 
vehicles as transmitter and/or receiver perform consistently and significantly better than the 
communication links that use Small vehicles, from the point of average LOS probability, received power 
level and packet success rate. Either increasing vehicle density or increasing the percentage of Large 
vehicles could cause a decrease in the average values of these performance metrics. However, the 
differences between the performance metrics associated with each the four transmission/reception types 
(Small-Small, Small-Large, Large-Small and Large-Large) become larger. The simulation experiments 
on the Ratio of Large vehicles selected as best next hop show that under most situations, Large vehicles 
are significantly better relay candidates than Small vehicles. The lower the minimum sensitivity 
threshold, the higher the rate of Large vehicles selected as best next hop to relay packets. Either 
increasing vehicle density (decrease inter-vehicle spacing), or increasing transmission power, can lead to 
an increase in the rate values of Large vehicles selected as best next hop to relay packets, and more 
benefits can be observed for lower sensitivity thresholds. 

4.2 Future Work 
As future work, we will use the model presented in this report and focus on the investigation of VANET 
multi-hop and geo-cast communication algorithms and protocols, when (1) the effect of Large vehicles 
on the V2V communication and (2) the benefit of choosing a Large vehicle as a next hop are taken into 
account. 
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