Data multicasting for the IJkdijk as a
large-scale sensor network

H.A. Noordzij

February 25, 2008

VOORWOORD

De eindopdracht van mijn Bachelor Telematica heb ik uitgevoerd bij TNO ICT
in Groningen. Met veel plezier heb ik gewerkt aan telematica vraagstukken
rondom de IJkdijk, een oerhollands project rondom dijken en watermanage-
ment.

Graag gebruik ik deze gelegenheid om de mensen die mij enorm geholpen
hebben tijdens het doen en vooral ook het voltooien van mijn bachelor op-
dracht, te bedanken:

e Prof. dr. R.J. Meijer, TNO, begeleider
e Dr. ir. A. Pras, UT, begeleider

Ook wil ik Peter en Kristian bedanken voor hun gouden tip om laarzen mee
te nemen naar altijd gezellige bezoekjes aan de IJkdijk.

Verder wil ik mijn ouders bedanken voor hun eindeloze geduld, en Erika
voor haar grenzeloze vertrouwen.

CONTENTS

1. Introduction e 5
1.1 IJkdijkContext. 5
1.1.1 DutchDikes 5

1.1.2 Sensor telecommunication 6

113 Testsetup 6

1.2 Problem description 6
1.3 Research questions 7
14 Researchapproach 8
1.5 Structure e e 8
1.6 Intended Audience 8
2. Survey of Sensornetworks 9
2.1 Introduction e 9
22 Tsunamidetection. 9
23 LOFAR e e 9
24 Seismicdatain ROADnet 11
25 NEES e 12
2.6 Creare RBNB Dataturbine 12
27 Summary 14
3. Streaming and Multicasting Data 15
3.1 Introduction 15
3.2 Multicast background and principles 15
321 Unicast e 15

322 Broadcast 15

323 Multicast e 17

3.3 Multicast Protocols 18
3.3.1 Multicastaddresses. 18

3.3.2 Internal Multicast Protocols 18

3.3.3 Border Multicast Protocols 19

3.4 Alternativestomulticast, 19
341 Proxy 19

342 Peer-to-peer 19

3.5 Streaming softwarein practise. 19
3.6 Microsoft Windows Media Streaming Software 20
361 Compression 21

362 Encryption.0 ... 21

3.6.3 Scalability 0 0. 21

3.64 Windows Medialnput 22

3.7 Multicast supportby ISPs 22

Contents 4

38 Summary 23

4. IJkdijk Monitoring Components, Off-the-shelf and custom build . . . 24
4.1 Introduction o 24
42 Luisterbuis o 24
4.3 Data Acquisition with National Instruments 24
43.1 Hardware Specifications 26

4.4 National Instruments Software 26
441 LabViewRealTime 27

45 LabView Communication 27
4.6 Application layer alternatives and considerations 27
4.7 Presentation layer alternatives and considerations 27
471 Basicdatatypes 28

472 Composed datatypes 28

473 Endianness 0. 28

4.8 Session layer alternatives and considerations 28
49 Transport layer alternatives and considerations 29
49.1 LabView Communcationtests 29

410 Results 31
410.1 Openendedness 31

4102 Easyofuse., 32

410.3 Scalability 0 oL 35

411 Summary 35

5 UPVN e 36
5.1 User Programmable Virtualized Networks 36
5.2 DataRouter, an UPVN application 36
521 Tokens e 36

522 PERL 37

523 Routedata, 37

524 Multicasto o oo 37

525 Datamanipulation 37

53 Summary 38

6. Conclusions and Recommendations 39
6.1 Researchquestions 39
6.2 Conclusions o 39
6.3 Recommendations 40
Bibliography 40
Appendix 42
A. Data Aqcuisition 43
A.l Theory of Data Acquisition 43
Al11 Samplingtheory 43

A12 Pulse Code Modulation 44

B. UPVN DataRouter README file 45

1. INTRODUCTION

1.1 IJkdijk Context

The Dutch IJkdijk is a testing facility in which dikes, sensor technology and sci-
entific models for dikes are tested [9]. This dike is located in a remote place, east
of Groningen, near the German border. The ‘Nederlandse Organisatie voor
toegepast-natuurwetenschappelijk onderzoek’ (TNO) is one of the major par-
ticipants in the Dutch IJkdijk project. Their main interest in this project is to
develop a market for research related to the ICT of huge sensor networks. One
of TNO'’s activities is the development of a sensor telecommunication system
that conveys data from sensors and actuators between dikes and WAN’s. As a
case for designing sensor telecommunication systems, the diverse and plentiful
dikes of Holland are very suitable.

g : ,

b 2 b [

Fig. 1.1: The IJkdijk

1.1.1 Dutch Dikes

In the Netherlands there are over 17.000 km of dikes. Monitoring these dikes
can improve safety and reduce construction costs. Currently, the trend is to
built dikes exceedingly solid, and therefore overly expensive. The dikes are
built robust in order to reduce the risks of a breach to near zero. However, by
equipping dikes with sensors, one is able to continuously monitor the stabil-
ity of the dikes and therefore be informed which dikes are in need of mainte-

1. Introduction 6

nance or reinforcement. In the long run, this will nonetheless reduce the costs
of both construction and maintenance whilst increasing safety. Monitoring all
the dikes requires an advanced data network; this is a challenge for the cur-
rently available telecommunications structures. Densly populated area’s are
well connected, both with connectivity by cables, as well as through the ether.
Unfortunately, most dikes are not so well connected. Moreover, today’s tele-
com networks only provide a best effort service. When sensors guard critical
systems and infrastructures, best effort might not be good enough. TNO is in
the process of developing a networking concept that enables networks to adapt
to specific application needs, such as guarantied bandwith and reliability. This
concept is known by the name User Programmable Virtual Networks (UPVN)
[5] and could prove to be very useful in this particular case.

1.1.2 Sensor telecommunication

TNO'’s expectation is that the IJkdijk case will result in a sensor telecommuni-
cation solution, suitable for high volume data streams. This solution should
also be applicable to other intelligent, large scale infrastructures. TNO’s ap-
proach to develop the IJkdijk telecommunication system is however practical,
therefore the development has started by creating a test setup and solving the
sensor telecommunication issues with this setup first.

1.1.3 Test setup

The test setup currently in use on the IJkdijk employs, amongst other sensors,
several microphones connected to a PC with LabView §4.3. Therefore, in this
case audio data will be streamed. In the ultimate case the sensor telecommu-
nication system has to deliver 340000 streams, a sensor in every 50 meters of
dike. However, the research question the current research addresses is whether
UPVN or an off the shelf solution (e.g. from a large software vendor) to stream
media should be used to broadcast the first data from the IJkdijk location.

1.2 Problem description

Monitoring all the Dutch dikes and analyzing the data from their future sensors
is a complicated problem. In this bachelor thesis, the focus is on the IJkdijk case,
altough the view will be broadenend to the Dutch case where relevant.

Since the IJkdijk is a testbed, the dikes will be equipped with various sen-
sors from various interested parties. The sensors that will be installed on
the short term are microphones, waterpressure sensors and a weather station.
TNO will provide facilites for telepresense. The idea is to provide a platform
on which sensor data can be streamed, stored and processed. The latter two are
relatively simple: this is a matter of providing enough resources. For stream-
ing, a solution is probably not trivial. Currently, we are unaware of a solution
that can stream sensor data out-of-the-box.

These are the options TNO is currently considering as streaming solutions:

1. National Instruments (NI) Data Acquistion systems and LabView soft-
ware

1. Introduction 7

2. Microsoft Windows Media Server
3. User Programmable Virtualized Networks
4. A combination of the above

NI LabView is a populair program for data acquisition and processing. It
is well known for its powerful graphical programming environment and ex-
tensive analysing abilities. It is expected that LabView can facilitate most of
the storage and processing needs on the IJkdijk. A topic of investigation is the
networking ablities of LabView and their applicability for streaming data.

Microsoft Windows Media Server is a software package providing all the
parts needed to stream audio and video, such as encoders, distribution servers,
decoders and a player. It is widely used for radio and television broadcast via
internet. A topic of investigation is the ability to stream sensor data instead of
audio and video.

A difficulty at this stage in the IJkdijk project is that it is not exactly known
what it is we are looking for. The expectation is that listening to a dike with
microphones will give us information about the condition of the dike. There
are threads that can be detected in a short timespan, like cracking sounds, or
the noises that digging ‘muskusratten’ (big rats) make. Then there is the chang-
ing of environmental sounds over time due to changing conditioning like the
wetness of the dike. Having some idea about what is going to be analyzed
is important for making a choise for e.g. samplerate, resolution and ways to
correlate this data to other information.

At the start of this bachelor assignment, May 2007, the first physical dike,
was completed at the IJkdijk location. This dike is is equipped with a luisterbuis
(a listening tube). This 50 meter long, horizontal tube has a microphone at
each end. With this we can listen to what is happening in and around the dike.
As stated before, dike monitoring is currently done without the assistance of
sensors. As a concequence, not much is known about observing dikes with the
help of sensors. One of the goals of the IJkdijk project is finding ways to do so.
There is good reason to believe that placing microphones in the dike will reveal
a great source of information about what is going on inside a dike. Geophone
(low frequency microphones) are invaluable for research and early warning
systems for volcano eruptions, earthquakes, etc. Furthermore, constructions
like bridges, can be equiped with highly sensitive sensor that can hear cracking
in bridge cables or steel components.

1.3 Research questions

The main question is: “How do we stream and multicast audio data from the 1Jkdijk
to several internet attached analysis systems?”
More refined questions are:

1. Are there compareable cases tot the IJkdijk case? If any, What are there
solutions?

2. What is the current state of the art in streaming and multicasting?

3. Can off the shelf (OTS) solutions, such as LabView or Windows Media be
deployed? If yes, how?

1. Introduction 8

4. Can User Programmable Virtual Networks (UPVN) be deployed? If yes
how?

5. What could be a suitable development path for TNO’s data acquisition
and data publishing setup?

1.4 Research approach

TNO provided National Instruments hardware and software as well as Win-
dows Media software. UPVN is a network infrastucture concept, of which
TNO has a rudementary prototype running. TNO has the desire to incorporate
these systems into the solutions developed for the IJkdijk case.

In order to answer the research questions, the following approach for this
assignment was chosen:

1. Perform a literature study to investigate the current state in streaming
and multicasting

2. Perform a literature study to investigate cases similar to the IJkdijk case
3. Create basic LabView application for audio acquisition

(a) Evaluate and demonstrate LabView communication facilities

(b) Compare and evaluate available streaming solutions
4. Build or adapt an UPVN prototype to fit the IJkdijk case

5. Formulate communications concept for the IJkdijk

1.5 Structure

In Chapter 2 a short survey of similar sensor networks is presented, with a
focus on distributing and managing sensor data. This chapter should answer
the first research question. Chapter 3 explores relevant networking technolo-
gies such as streaming and multicasting, which should provide us with a back-
ground for working on the second research question. In Chapter 4, the IJkdijk
context is further investigated, as to wether TS can be deployed. The prototype
is described in Chapter 5.

1.6 Intended Audience

This text assumes basic computer networking knowledge at the level of a com-
puter science bachelor or similar. The text targets people who work with the
measuring and telematics aspects of the IJkdijk.

2. SURVEY OF SENSOR NETWORKS

2.1 Introduction

In this chapter a short survey similar sensor networks is presented. The survey
is complete nor exhaustive, but does scetch the architecturale challanges for
sensor networks on a large scale.

Here we briefly scratch the surface of a few sensor network related projects
and inverstgate if and how they relate to the IJkdijk case. These sensor net-
works are a hot topic now days. The advances in wireless communication and
energy conservative miniature devices make the deployment of large-scale,
low power, low cost, sensor networks possible.[11] Dike monitoring as envi-
sioned for the Dutch case is also a very large scale sensor network. Therefore
an overview of sensor network cases that have something in common with our
case is at it’s place.

2.2 Tsunami detection

On 26th December 2004 a tsunami struck the unmonitored Indian Ocean and
caused the death of over 100,000 lives in 11 countries. Although a tsunami
warning system is already in place for the pacific ocean since 1965, only after
this event initiatives have been deployed to build such a system for the Indian
Ocean. Within 18 month the new system has been made operational.[10]
Tsunami detection systems deploys buoys with global positioning system
and satellite communication.[4] The data from the roughly 30 buoys is moni-
tored at special centers, currently in Japan and Hawaii. Tsunamis can be de-
tected within seconds after the wave passes the buoy. The effectiveness of the
warning system is however greatly depended on the local governments to act
upon those warnings. Tsunami detection is an example of one of the earli-
est technology assisted warning systems against environmental powers of de-
struction. However, the technology bears little resemblance to our problem.

2.3 LOFAR

LOFAR is an acronym for the LOw Frequency ARray. LOFAR is a very low
frequency radio telescope for astronomical observations. It is build as a dis-
tributed sensor network, with 160 stations distributed along five spiral arms.
These stations contain a few hunderd antennas. The first stage of the signal
processing takes place at the stations. Signals are then transported to a CEntral
Processing (CEP) facility for further processing. This CEP is an IBM Blue Gene
supercomputer at the RuG.[8]

2. Survey of Sensor networks

10

Fig. 2.1: Tsunami Detection Buoy

2. Survey of Sensor networks 11

Fig. 2.2: LOFAR

A total of 13,000 antennas produce a datastream of 2 Gbit/sec each. The
expected maximum data rate from all remote stations will be more than 26
Tbit/sec. In the initial fase of the project they connect the stations with 10 Gbit
ethernet. In a later fase they will upgrade to advanced WDM / OTDM data
transport technologies.[1]

Allough it might not be obvious at first glance, there are some similari-
ties with our case. First of all, broadband connections in rurals areas are re-
quired. Furthermore, the operation of the telescope is based on the streaming
of thousends of sensors, antenna’s connected to custom build DA converters.
As a comparision, the DA converters are 12 bit, the sample rate goes up to 200
Mhz. So the resolution is comparable to audio, the sample rate much higher.[3]

2.4 Seismic data in ROADnet

ROADnet stands for Real-time Observatories, Applications, and Data manage-
ment Network, a project form the University of California. According to their
website they are “building upon currently deployed autonomous field sensor
systems, including sensors that monitor fire and seismic hazards, changing lev-
els of environmental pollutants, water availability and quality, weather, ocean
conditions, soil properties, and the distribution and movement of wildlife.
ROADNet scientists are also developing the software tools to make this data
available in real-time to a variety of end-users, including researchers, poli-
cymakers, natural resource managers.” So their mission bears many resem-
blances to the IJkdijk.

They have build a framework based on Virtual Object Ring Buffers (VORB).
Various types of seismic and environmental sensors can be connected to their
ORBs. These ORBs will run identical software enabling the provision of real-
time or near real-time data streams/packets from any number of specified data
sources. The ORB receives said data via a specified port, expects data packets

2. Survey of Sensor networks 12

to be named a certain way, and doesnt care about the internal content of the
packets. The ORBs are then connected to VORBs, which can be queried via
an interface, which will then return a combination of metadata, real-time data
streams, database records, etc. from the VORB, depending on the request.[6]

2.5 NEES

The American Network for Earthquake Engineering Simulation(NEES) has a
large IT infrastructure to connect earthquake simulations sites throughtout the
USA. They have a lot of experience with teleprence on testsites. Interestingly
enough, much of their documentation and tools are available on the web, e.g.
clearly documented LabView DAQ code, a LabView control server, and exam-
ples of their usage of the Creare Dataturbine. Figure 2.3 shows the concept of a
dynamic data server, used for static data and streaming data. The next section
discusses DataTurbine in more detail.

Fig. 2.3: DataTurbine, Ring Buffered Network Bus concept

2.6 Creare RBNB Dataturbine

Creare Ring Buffered Network Bus (RBNB) DataTurbine, or DataTurbine in
short, is a software server that provides a buffered network data path between
suppliers and consumers of information. It stores all data and metadata in a
uniform way, so that it can easily be accessed. An example of the easy access
with the RDV viewr GUI is given in Figure 2.4.

2. Survey of Sensor networks 13

066 niagara.sdsc.edu: 3333 - RDV
Ele Control View Window Help &
|<>Beginning [Pause [BFlay —|End Playback rate: Time scale: (20.0 m| |

2007-03-15 11:15:29.568 PDT 33h 2007-03-15 14:34:01.416 PDT

1

- %

65,000,000
60,000,000
55,000,000
50,000,000
45,000,000
40,000,000
35,000,000
30,000,000
25,000,000
20,000,000
15,000,000
10,000,000

5,000,000

& () BCD clock

= [ReNBClient

= (= Window camera
[vicleo. jog

Metrics /SocketRate

— e i - = e
1416 1418 1420 1420 1424 1426 1428 1430 1432 143
Time

- X

3,000,000,000
2,750,008,000
2,500,008,000

1,750,000,000
1,500,000,000
1,250,000,000
1,000,000,000
750,000,000
500,000,000
250,000,000

Metrics/T otalM

1416 1418 1420 1422 1424 1425 1428 1430 1432 143
ime

‘Window camera/video, jpg
JPEG Images

Beging 2:32:55507 PM
Lasts 1 0m

297KB

[annoration]|~| | [supmit |

Fig. 2.4: DatTurbine RDV viewer

2. Survey of Sensor networks 14

2.7 Summary

TNO has the intention to develop expertise in the field of telepresense, but also
the desire to develop innovative network technologies. A lot can be learned
from similar cases, since common elements can be extracted from the aformen-
tioned cases. Most of them use a hierarchical setup. Data is stored and cached
close to the sensors, the caches are then connected to caches higher in the hi-
erarchy, closer to the interested user. The middleware software in use, such
as VORB and DataTurbine are either completely open source or at least well
documented. It is relatively easy to connect new types of sensors to the mid-
delware. Furthermore, while these middleware solutions do support realtime
or near realtime streaming, they partition their data into packets or chuncks,
making it more easy to handle them. It is easy to find example of cases which
use LabView for DAQ, as well as examples which build custom DAQ solutions,
tailered to their needs and their budgets.

3. STREAMING AND MULTICASTING DATA

3.1 Introduction

The focus of this assignment is on the continuous transport, or streaming, of
sensor data from the IJkdijk location to interested parties elsewhere. It is prob-
ably the case that the number of interested internet connected parties is more
than one.

In this case then, it is useful to deploy multicast as a way to distribute the
sensor data to those parties. However, deploying multicast is far from trivial.
In this chapter, multicast and streaming deployment is investigated in more
detail.

3.2 Multicast background and principles

3.2.1 Unicast

The most common way to send data from one host to another is unicast. A
single connection or path is setup between sender and receiver, possibly a two-
directional path. If a host, say ‘Server’, sends data to two hosts, say ‘computer
1" and ‘computer 2’ , it wil setup two connections. The Server now has to send
all data twice. When the data send to computer 1 and computer 2 is different,
than unicast is the best way to transfer data. It is clear however, that this so-
lution does not scale very well, the load on the Server is directly related to the
number of client computers. Furthermore, in many cases the same data trav-
els multiple times over the same network connection, where only one transfer
could have been sufficient. This is shows in figure 3.1. When the data send to
the different computers is identical, optimizations seem possible.

3.2.2 Broadcast

The most straightforward way to send the same data to multiple destinations
is broadcast. Well known examples are both cable and satallite television. The
television channels are all send to everyone with a cable connection or a satelite
dish, it is up to the user to make a selection, or tune in, to the desired channel.
This works well if there are many interested parties.

In a computer network, broadcast is also possible. However, while the ether
and the coax cable are regulated by either the government or the cable com-
pany, the computer network is the shared responsibility of the operators and
the users. The latter do not only receive data, as is the case with television,
but also send data. Computer networks, such as Local Area Networks (LAN),
are commonly devided into broadcast domains. These broadcast domains are
connected by routers, which form the barrier of a single broadcast domain.

3. Streaming and Multicasting Data 16

Server

Computer B

Computer Computer

==

“Computer

Compuiter

Fig. 3.1: unicast (source: surfnet.nl)

3. Streaming and Multicasting Data 17

Server

Computer

Compiter

Compuer

Fig. 3.2: multicast (source: surfnet.nl)

The broadcast domains can contain anywhere between one and a few thou-
sand hosts. When a Server sends identical data to all other computers in the
broadcast domain, then broadcast is a good options. However, when only a
few hosts are interested in the data, then it is a waist to send the data to all,
since the available capacity in a LAN is limited. In practise, broadcasts in a
LAN are only used for discovery and configuration processes, such as finding
a configuration server (e.g. a DHCP server) in a broadcast domain.

3.2.3 Multicast

Multicast is very interesting from the application developers point of view. The
distribution is very simple, all the complications are moved form the end-host
to the network.

The transport of identical information to a group of interested receivers is
known as multicast. Multicast aims at the most efficient delivery of the infor-
mation by sending the messages only once over each link in the network, by
creating copies only when the links to the destinations split, as is illustrated
in figure 3.2. The routers need to be more complex, since they now have to
create the optimal distribution path. They need to build a spanning tree to get
the packets to their destinations. In order to let the routers coordinate their ef-
fort towards creating the tree, several different protocols are needed. They are
discussed in the next session.

3. Streaming and Multicasting Data 18

3.3 Multicast Protocols

The most relevant form of multicast is IP multicast. Different types of multicast
exist, e.g. for ATM networks, but the focus here is IP multicast. The IP network
can distingish multicast traffic from normal unicast and broadcast traffic since
different address classes are used.

3.3.1 Multicast addresses

| Address range | Mask | Description \
224.0.0.0 224.0.0.255 224.0.0/24 | Local Network Control Block
224.0.1.0 224.0.1.255 224.0.1/24 | Internetwork Control Block
224.0.2.0 224.0.255.255 - Ad hoc Block

224.1.0.0 224.1.255.255 - Unassigned

224.2.0.0 224.2.255.255 224.2/16 | SDP/SAP Block

224.3.0.0 231.255.255.255 | - Unassigned

232.0.0.0 232.255.255.255 | 232/8 Source Specific Multicast Block
232.0.0.0 232.255.255.255 | 233/8 GLOP Block

234.0.0.0 238.255.255.255 | - Unassigned

239.0.0.0 239.255.255.255 | 239/8 Administratively Scoped Block

The table with multicast addresses raises several issues. First of all, when
building a multicast application, it is not so obvious what address to choose for
the multicast address. For application running in a single domain, the Ad hoc
block could be used. Two other interesting ranges are the Source Specific Mul-
ticast Block, which is discussed in the multicast protocol and the GLOP block.
The latter block is intended to be used for global multicast. Every autonomous
system (AS) has a 255 GLOB addresses of the format 232. AS.number.0.

3.3.2 Internal Multicast Protocols
Internet Group Management Protocol

The protocol used by receivers, or hosts, to join a multicast group is called the
Internet Group Management Protocol (IGMP). The most common version, ver-
sion 2, is specified in RFC 2236. The most recent version is version 3, specified
in RFC 3376. The first version only had a join message, which is send to the
nearest multicast router to request to join a multicast group. A timeout mech-
anism was used to discover the groups that are of no interest to the members.
The second version had al leave message added to the protocol. Version 3 is a
major revision of the protocol. It allows hosts to specify the list of hosts from
which they want to receive traffic from. Traffic from other hosts is blocked
inside the network.

Protocol Independent Multicast

There are many varitions on the Protocol Independent Multicast (PIM) proto-
col, such as PIM Sparse Mode (PIM-SM); PIM Dense Mode (PIM-DM); Bidirec-
tional PIM and PIM Source Specific Multicast (PIM-SSM). We focus on PIM-SM
and PIM-SSM, since they are most commonly used in real networks.

3. Streaming and Multicasting Data 19

PIM Sparse Mode (PIM-SM) explicitly builds shared trees rooted at a Ren-
dezvous Point (RP) per group, and optionally creates shortest-path trees per
source. PIM-SM can use any routing protocol to populate its multicast Rout-
ing Information Base (RIB). PIM-SM generally scales fairly well for wide-area
usage. The protocol is specified in REC 4601.

PIM Source Specific Multicast (PIM-SSM) builds trees that are rooted in just
one source, offering a more secure and scalable model for a limited amount
of applications (mostly broadcasting of content). In SSM, an IP datagram is
transmitted by a source S to an SSM destination address G, and receivers can
receive this datagram by subscribing to channel (S,G). specified in RFC 3569.

PIM-SSM in combination with IGMPv3 is very suitable for one-to-many
multicast, such as internet radio or the IJkdijk case. PIM-SM is more suitable
for many-to-many multicast, such as video conferencing.

3.3.3 Border Multicast Protocols

The aformentioned algorithms are designed to work in a single domain or in-
tranet. When multicast traffic crosses a network border, e.g. form one provider
to another, other protocols are required. The protocols which are in use to-
day are the Multiprotocol Border Gateway Protocol (MBGP) and the Multicast
Source Discovery Protocol (MSDP).

3.4 Alternatives to multicast

34.1 Proxy

In order to reduce bandwith usage, especially on the server, there are alterna-
tives to multicast. The use of a caching proxy is one of them. In this case, the
data that is streamed to multiple receivers, is copied and stored on a server in
between the server and some of the receivers. Often such a cache is placed at
an ISP or a company. The streamgate case at the end of this chapter is a clear
example.

3.4.2 Peer-to-peer

A relatively new technology, that surpasses multicast and proxies in popular-
ity, is peer-to-peer networking. Peer-to-peer turning into a powerfull technol-
ogy for broadcasting multimedia. It was not considered relevant for the IJkdijk
case in this stadium. This might change in the future.

3.5 Streaming software in practise

In this section, Microsoft Windows Media (WM) is introduced. WM includes
all the parts that are common for streaming software, such as encoders, distri-
bution servers, decoders and a player.

Microsoft Windows Media(WM) is chosen as media solution to investigate
as a part this assignment, because it was available at TNO and is relatively
easy to deploy. Other options to evaluate could be Realplayer and their He-
lix server, or combination of several open source alternatives. In later chap-
ters, examples of integration which several open source applications are given.

3. Streaming and Multicasting Data 20

Currently, YouTube is the even more well known streaming application. It is
however based on Adobe/Macromedia Flash and it uses HTTP as an under-
laying protocol to transfer the stream. While this is suitable for transferring
stored multimedia, it is less suitable for realtime streaming, such as radio or
sensordata.

3.6 Microsoft Windows Media Streaming Software

Windows Media software consists of these parts:
e Audio/Video Capture
e Audio/Video Encoder
e Audio/Video Distributor
e Audio/Video Decoder/Player

In figure 3.3 a possible setup as scetched by Microsoft is shown.

Windows
Media

Encoder
. :::::H“x
(_j/\ Connection URL: —Multicast
ﬁ_}‘% http://servername: port — stream \\ Enld utS:]‘Br
ar —= clien
o . = http://IPaddress:paort ‘_\‘\\ﬁ\\\\\'\'
Digital video @
Multicast-enabled
router
Unicast rollover Eﬁi End user
URL: ramns://Serverl/TV2 = {client)

Serverl

o
Publishing [EfRl End user
point narme: TWZ2 URL: mms://Serverl/Ty2 L] {client)

Fig. 3.3: Windows Media

There are several reasons why it could be usefull to use Windows Media or
similar software in the IJkdijk case:

e Compression
e Encryption
e Scalability:

— Multicast
- Proxy/Cache

3. Streaming and Multicasting Data 21

3.6.1 Compression

Data compression is the process of encoding information in such a way that
it requires less storage, often expressed in bits. Interesting examples of com-
pression in the session layer are audio MP3 compression in e.g. internet radio
or zip compression of webpages in HTTP transfers. The first closely resembles
our situation of streaming seismic audio data. The second is very common, but
not so interesting for the IJkdijk case.

MP3 and similar compression algorithms can reduce the bitrate of CD qual-
ity audio of about 700 KByte/sec to 192 Kbyte/sec or less. However, this com-
pression has its price. The biggest problem is the ‘loss of quality”: the decom-
pressed signal is not identical to the original signal, some frequencies are lost.
Other problems are the extra processing power requirerd to compress the sig-
nal, and to a lesser extend, to decompress the signal. Furthermore, an extra
delay is introduced, since MP3 compression works best on larger blocks of
samples, these blocks need to be buffered first, thereby causing extra latency.

The fact that lossy compression, such as MP3 compression, removes infor-
mation from the original signal makes it unusable for most scientific measure-
ments, such as those planned for the IJkdijk. When analyzing signals, it must
always be clear (as clear as possible) whether or not the results are related to
the events measured or introduced by the compression.

An alternative to lossy compression is lossless compression. Zip, a popu-
lar algorithm for file and website compression, is an example of lossless com-
pression, however the zip algorihm is very ineffective for reducing audio files.
Effective lossless algorithms do exist for compressing audio, e.g. FLAC, Mi-
crosoft WM lossless, and others. However, the compression rate is highly de-
pendant on the nature of the originial signal. Moderately complex signals, e.g.
music, can roughly be decreased by a factor two, so a CD quality stream would
on average become 350 KByte/sec. How well various types of sensor data can
be compressed is an interesting topic for further research.

3.6.2 Encryption

Encryption is the process of encoding data in order to prevent unauthorized
parties to access that data. Encryption is particularly interesting for secret or
copyrighted data. At this stage it is not a priority for the IJkdijk case.

3.6.3 Scalability

Scalability, the ability to handle growing amounts of work in an efficient man-
ner, is an important criterion for comparing multimedia streaming solutions.
To cope with this demand, there are several approaches: use multicast or us
proxies.

Multicast can be enabled on WM, however it is only available when WM is
installed on the more expensive Windows server editions: Enterprise Edition
and Datacenter Edition. When this requirement is met, it is very simple to
enable multicast for a stream. WM has support for both IGMP version 2 and 3.

An interesting feature of WM is the proxy/cache function. A WM installa-
tion can be configured to function as a proxy. An example of the WM proxy
follows in the next section.

3. Streaming and Multicasting Data 22

Parameter Soundcard DAQ Dedicated DAQ

Input Range + 400 mV wide, variable range, e.g.
£ImVupto+24V

Input Impendance | 600 2 - 47 k€2 1 MQto10 MQ

Input Frequency 4+ 200 Hz to 20 kHz Direct current, miliHz to
200+ kHz

Tab. 3.1: Comparisson Soundcard DAQ and dedicated DAQ

3.6.4 Windows Media Input

The aformentioned features of WM could be useful for the IJkdijk case. So
how can we deploy WM on the IJkdijk? Experimenting with WM and reading
the documentation [2] revealed that there are three ways to insert data into
Windows Media:

e Multimedia files
e Soundcard
e DirectShow filter

Using files is not very useful, since we are interested in the steaming of re-
altime data. Input via a soundcard could be used for the luisterbuis, one of the
sensors on the IJkdijk. A soundcard is however not useable as a generic DAQ
card, as is shown in comparisson table 3.1. The soundcard is unusable in the
lower frequency range, which is exactly what we are interested in when listen-
ing to the luisterbuis, which captures vibrations from 1 kHz to the sub 1 Hz
range. Furthermore, a soundcard is unusuable for all sensors but mirophones.
Geophones, water presure sensors, etc. cannot be samples with a soundcard.
This leaves the DirectShow filter as the only viable option. This filter basically
is the API by which programmers can insert their own components into the
WM framework. It could be used to inject data acquired by LabView into WM.
However, building a DirectShow filter requires substantial knowledge of the
WM framework and Windows COM programming. Therefore, this option is
not futher investigated.

3.7 Multicast support by ISPs

The Dutch broadcast organisation (NPO) deployed a proxy based solution to
distribute its online content to the customers of the biggest five Dutch con-
sumer providers. The construction is known by the name streamgate[7]. Those
providers do not have multicast enabled on their (consumer) customer net-
work. The most popular content is not only stored at the NPO servers in Hil-
versum, but also on caching servers located at those providers. This illustrated
in figure 3.4. Advantages are the decreased costs for bandwith for NPO and
the lower load on interconnects (at an internet exchange). Disadvantage is the
effort required to install and configure the servers at the ISPs.

3. Streaming and Multicasting Data

23

Streamgate working

2. For customers of

participating ISP’s,
distribution is handled
by the ISP itself. @
1. Streamgate checks whether @
a visitor is allowed to access CUSTO,LS,’;’;
the stream. A DRM key is 3. Distribution for
generated. other visitors is
~ @ handled by the
e S &] R | —] primary default
= S = servers operated
= = s — by PO-IS.
coNOS STREAMEATE 1| I1sSPB cusron:nsgag / //
sg 4. In case the number of y
5 Just ¢ Visitors exceed the capacity f/

stream
one cor
viewer.
amount
datatrafi

of the primary default
server, traffic is redirected
to the secondary default
servers. Only this type of
traffic generates variable
costs for NOS

DEFAULT
SERVER(S)

Fig. 3.4: Streamgate setup

3.8 Summary

&
&

OTHER
VISITORS

In the IJkdijk case, where many streams have to be streamed to a few analyzer
systems, multicast would be very effective in reducing the bandwith usage.

4. JJKDIJK MONITORING COMPONENTS, OFF-THE-SHELF
AND CUSTOM BUILD

4.1 Introduction

In this section, the major components of the IJkdijk are described. These are:
the dike itself; the sensors in it; the hardware to sample the sensors and the
software to process and transport the samples. The dike itself needs no fur-
ther introduction, so first the most interesting sensor is discussed: the listening
tube(luisterbuis). Secondly, the sample theory and sample hardware are dis-
cussed. In the third and forth section several commercial off-the-self sofware
solutions for data acquisition are presented.

4.2 Luisterbuis

The IJkdijk is equiped with a listening tube, or luisterbuis in Dutch. This luis-
terbuis is a horizontal drilled tube, with a microphone on each end, thus mak-
ing it possible to listen to the dike. The microphone, just before it is installed
at the end of the luisterbuis, is more or less visible in figure 4.1(t is covered by
blue isolation). The grey box is part of the amplifier. The signal is amplified
and send over to a measurement station, about 100 meters further. The luis-
terbuis itself is the horizonatal gray tube in figure 4.2. For this assignment, the
input form the luisterbuis is sampled. The sampling of other sources can be
achieved in a similar fashion.

4.3 Data Acquisition with National Instruments

Data acquisition, see appendix A, is the sampling of the real world to generate
data that can be manipulated by a computer. Data acquisition or DAQ in short,
typically involves acquisition of signals and waveforms, e.g. sound or temper-
ature, and processing these signals to obtain desired information. Most DAQ
is done with special DAQ interface boards. For the IJkdijk case, TNO choose
the following hardware:

4. IJkdijk Monitoring Components, Off-the-shelf and custom build 25

Fig. 4.2: Luisterbuis exposed, after a succesfull test

4. IJkdijk Monitoring Components, Off-the-shelf and custom build 26

4.3.1 Hardware Specifications

Component Function
National Instruments | Robust casing, PC with: 1.5 GHz
Controller Celeron, 30 Gbyte hardrive, 1 Gbit eth-

ernet, USB, serial
NI 4461 PXI, a high-end | 2 Input, 2 Output, 24 bit, 204.8kS/s, £

ADC card 42V to £ 316 mV, -20 to 30 dB in 10 dB
increments

1 multi purpose card 16 analog in, 2 analog out, 6 digital in,
4 digital out

The Controller is a dual boot with Windows XP and a Realtime OS (Phar-
Lap). Furthermore, LabView is installed on the Windows partiton. LabView
a graphical programming language, very populair for DAQ and analyzation
tasks. It is also possible to use other languages for both of these tasks, like
ANSI C, MatLab, VB.NET and others. The NI 4461 PXI provides us with 92
kHz alias-free bandwidth, antialiasing and anti-imaging protection filters.

4.4 National Instruments Software

For more than 20 years, NI delivers both hardware and software for data ac-
quistion and data processing purposes. They are the market leader in data ac-
quistion. In this section follows a brief introduction of their software options.
The most versatile and popular NI software is LabView, which is a graphical
development environment. An alternative to LabView is LabWindows/CVL
This integrated development environment combines ANSI C with NI exten-
sions to combine, perhaps already existing, ANSI C code with NI hardware,
analysis and user interfaces. A third option is Measurement Studio. It is an ad-
dition to Microsoft Visual Studio, which also provides instrument control and
analysis tools. Other software which was biefly evaluated during this assign-
ment was DIAdem, a program for managing, analyzing and reporting stored
data.

Fig. 4.3: National Instruments Data Acquisition System

4. IJkdijk Monitoring Components, Off-the-shelf and custom build 27

4.4.1 LabView RealTime

In order to run the Realtime OS, the system must boot into the Realtime OS, and
can be programmed by deploying an adapted LabView program form another
system running LabView, in the same network subnet. The LabView perfor-
mance of LabView Realtime is the same as LabView running on Windows XP,
it is completely dependant on the hardware. It is however realtime, meaning
that the timing of the loops and measurements is guaranteed. An advantage is
that the running program cannot be interrupted by processes that do run in the
background on windows XP (like a indexing server, virusscanner, etc.). A dis-
advantage is that developing for LabView Realtime is more cumbersome, since
after every change, it needs to be redeployed into the target realtime system.

4.5 LabView Communication

A major goal of this assignment is to demonstrate the communication facilities
of LabView. As it turns out, there are many. We give an overview, ordened to
their counterparts in the upper layers of the OSI stack.

[Layer | Function | LabView Ecquivalent |
Application Network process to appli- | FTP, SMTP, CGI, Remote
cation control, VI Server
Presentation Data representation Waveform or array, float
or integer, compression,
etc.
Session Setup a session between | Authentication, permis-
hosts sions, DataSocket/SVE
manager
Transport End-to-end connections | TCP, UDP, DataSocket,
and reliability SVE

4.6 Application layer alternatives and considerations

LabView has the ability to send results by FTP, SMPT, etc. However this is
not so useful for realtime streaming. The VI server can be interesting for some
cases. It exports the LabView GUI (the graphs, charts and controls) to a web-
server. The GUI can than be monitored and even manipulated remotely by the
use of a webbrowser. This obviously has its applications, but it is no realtime
streaming.

4.7 Presentation layer alternatives and considerations

The function of this layer is to format the data to be sent across a network. By
formatting the data, it can seamlessly be used across different platforms and
applications. Encryption, compression and conversion from and to network
format also take place here.

The issues concerning the presentation side of streaming solution are mainly
how to format the data. There are serveral options to format and store the data
captured by a LabView acquisition system.

4. IJkdijk Monitoring Components, Off-the-shelf and custom build 28

The LabView dataformats are clearly described, a summary follows in the
next session.

4.7.1 Basic datatypes
First, there are the basic datatypes:

e LabView string. Custom string format, prefixed by string length, ASCI
encoded

o Integers, 16, 32, 64, always signed

¢ Floating points, single (32), double (64) and extended (depends on un-
derlying system) precision

4.7.2 Composed datatypes

The basic types can be concatenated and combined in various ways:

1. Array
2. LabView Waveform

3. Custom data types, composed of fixed combination of basic datatypes

The array speaks for itself. The LabView waveform is a simple extension to
an array, it includes a timestamp and a delta t. The timestamp is the time the
first sample is measured, the delta t the time between consequetive sampes,
also known as the inverse of the sampling frequency. Furthermore, LabView
enables the programmer to compose his or her own data types. Not only is it
very easy to combine datatypes into new types, it is also clearly documented
how this is actually stored and transmitted. This makes it possible to use this
feature to transfer data to other application written in a different programming
language, e.g. it matches the struct in C.

4.7.3 Endianness

LabView stores all its data in a big-endian fashion, which is the way to store
multi-byte data on PowerPc. This implies that the most significant byte is
stored first. Intel x86 store data little-endian, so when transfering LabView
data to an application running on a x86 processer, the endianess needs to be
reversed.

4.8 Session layer alternatives and considerations

The Session layer traditionally deals with authentication and permissions. Only
authorized users should be able to access the system. When using the TCP or
UDP sockets in LabView, the only way to regulate access is via a firewall. For
DataSocket, the Shared Variable Engine and the VI Server, there are adminis-
tration tools to regulate access based on ip addresses. Access based on other
credentials is not provided by NI.

4. IJkdijk Monitoring Components, Off-the-shelf and custom build 29

ms
Pz, EO0 0 Ta[True ~p
1z6] 4N 3 =
i L t @"waveform "
Function = Ep=
[$functon) : K

| @ Functian |5, -
Analog Wim
1Chan NSamp

(= B
I

Fig. 4.4: LabView DAQ code example

4.9 Transport layer alternatives and considerations

The various ways of transporting the data itself is discussed in the following
sections.

4.9.1 LabView Communcation tests

In order to evaluate the various ways LabView can communicate over the net-
work, a number of testprograms were created. All program consist of at least
two loops:

[Loop | Function \
DAQ Data Acquisition
Network | Distribution of Data

For simplicity we choose to make the DAQ Loop a fire-and-forget loop. The pa-
rameters, such as which channels loop rate, sample rate, resolution and buffer-
size are set and never changed at runtime.

For the Network loop there are multiple options, as presented by NI:

| Protocol | Speed | Loss | Ease | Security |
TCP Fast Lossless Difficult | -
UDP Very fast Lossy Moderate | -
DS Fast Lossy/Lossless* | Easy +
VI Server Slow™* Lossless Moderate | +

* For the DataSocket, both buffered and unbuffered reads and writes are
available. When using buffered reads, there is no loss, unless there is a buffer
overflow. This could be detected by the application, if it choses to implement
a detection mechanism. ** The VI Server is only useful for monitoring and
inspecting the results of analysation. It cannot be used for real streaming,.

4. IJkdijk Monitoring Components, Off-the-shelf and custom build 30

DataSocket

National Instruments (NI) DataSocket is a layer on top of TCP/IP which deals
with typing and describing the information to be exchanged. The big advan-
tage over TCP is there is no need to setup a TCP server socket and manage the
individual TPC sessions. This makes it a lot faster to develop and later change
applications. The biggest disadvantage is that the DataSocket libraries are only
available to National Instrument programs and the protocol itself is not doc-
umented. Although DataSocket is fully supported in the current version of
LabView, according to NI it is superseded by the Shared Variables Engine.

M True 't
..
_______ i = ZA s

Dbz Task Name ;
¢ 16channels [~fm]

..... v

[#érite the data ko the server onky when it is updated

T¥].

Fig. 4.5: DataSocket Server

Fig. 4.6: DataSocket Client

Shared Variables

The Shared Variable Engine (SVE) is the NI software construction to work with
shared Variables. The SVE is build upon NI-PSP, which is a publish and sub-

4. IJkdijk Monitoring Components, Off-the-shelf and custom build 31

scribe protocol.

The function and performance is similar to Datasocket, it is however even
easier to work with. The idea is that any global variable in LabView code can
be adapted to a Shared Variable, which is made available to other instances
of LabView. SVE simplifies the process of making an existing application dis-
trubuted by simply converting the releven variables. These variables can be
used to represent the acquired data but also for control. Unfortunately, the
only configuration that worked, was with a combination of running LabView
Realtime and a second of instance of LabView on another computer. The re-
quirement of using LabView Realtime is not documented, perhaps there are
alternatives, but none were found during this assignment.

TCP

Building a protocol and control in LabView. On the website of NEES 2.5 the
LabView code is available for their LabView server. It can accept and manage
connections and can parse the data. This is not ideal, see Figures 4.7, 4.8 and
4.9.

TCP is very useful to inject data into DataTurbine via their TCPproxy. A
possible disadvantage is that the LabView timestamp gets lost in this process.
DataTurbine uses the arrival time as timestamp by default. Apparently, there
is an ActiveX component for LabView to inject data into DataTurbine, which
overcomes this problem. The details of this solution are however not investi-
gated during this assignment.

UDP

UDP is practical for continuously streaming data, where some of the data can
be missed. LabView treats UDP also as a stream. An UDP socket is simple to
use in LabView, very similar to the DataSocket interface. The only downside is
that handling packetloss becomes the responsibility of the programmer. There
are multiple ways to detect packetloss. One option is to send both the samples
and their timestamps, so two channels/arrays, one for the samle, the other for
the value. Another option is to add an index to each send packet. Comparing
the index of the last received packet which the index of the previously recieved
packet reveals the loss of one or more packets. It is up to the application and
its developers to act upon the detection of loss of information.

4.10 Results

After three months of experimenting with LabView, a streaming solution that
fits all criteria was not discovered. Appertantly there is no silver bullet. TNO
wants to provide the infrastructure for other parties who will collaborate on
the IJkdijk

4.10.1 Open endedness

Both TCP and UDP are clear winners when it commes to open endedness. Via
TCP and UDP interfaces it is possible to interact with other application, written

4. IJkdijk Monitoring Components, Off-the-shelf and custom build 32

in a language of choise. With Datasocket and Shared Variables this is simply
not possible.

Connecting to a TCP or UDP socket is one thing, interpreting the data is an-
other. Building a protocol is not so easy in LabView. A more fruitful approach
is to adapt other application to read LabView data. LabView datastructures are
straightforward and clearly documented.

The alternatives ordened according to their open endedness:

1. UDP

2. TCP

3. DataSocket

4. Shared Variable

UDP and TCP are very similar when it comes to open endedness. UDP is
slightly more easy to use in adapative environments since it does not require
sessions. It is easy to extend and UDP application to support Multicast or to
integrate it with peer-to-peer or UPVN networking. Furthermore, since UDP
applications must be able to handle packetloss, its requirements for the quality
of the network can be lower.

Both the DataSocket and the Shared Variables are not very usefull from an
open endedness perspective. They are only available for NI products.

4.10.2 Easy of use

The easy of use is a very subjective measure. Still, we would like metrics to
compare the different options. A metric could be the time needed to build.
Another metric is the effort required to adapt an application to a specific need.
Yet another metric, a measurable one, is code size. In LabView however, there
are no lines of code. Interesingly, the number of Virtual Instruments (VI) (the
icons in the figures) can be seen as a sort of equivalent to lines of code.

Here we order the options according to the number of VI's required to
stream DAQ data to another location:

1. DataSocket

2. UDP

3. TCP

4. Shared Variable

Both DataSocket and UDP are straightforwared to use. They require only
basic LabView knowledge and their respective examples are easy to under-
stand.

The TCP server socket is not so easy to use, as is demonstrated with the
example code in Figures 4.7, 4.8 and 4.9.

The Shared Variable requires a LabView RealTime target and another com-
puter running LabView in order to test with Shared Variables and real acquisi-
tioned data. In other words, two computers, one of them running the RealTime
OS, are needed. This is considered very big obstacle toward the deployment of
Shared Variables.

4. IJkdijk Monitoring Components, Off-the-shelf and custom build 33

onnection kimed out]
(2

[
E

(Connection timed out |

b

@

[}

Inner While Loop - Listen Far cannection at the part specified, The Errar to Warning. vi subvl is used to
lturn the: time out error to & warning, Loop stops once a connection is determined.

Set Port number,

Check if there is a local or
remate stop request.

Mote: The Error bo Warning.viis used in this VI to set time out errors and End of Connection errors as warnings. In a vI where you

would wank these errors to occur and stop your application or perform some ather task based on the error you would not use this
[SubT,

Fig. 4.7: TCP sever part 1

Ta[False ~]

M[False_~]

Conm

DAQ Assiskank
data

—gdaa W
=

Inner Case Structure - True Case Sends a "we're done" indication and then waits For "all received" response. IF it has not received it in 60 seconds, it gives up. If the

luser hits the stop button in the listen loop, the Cannection Timed Out error will Flow through this part of the case and be deared. False Case sends the data selected
From the Function contral on the Front panel.

Fig. 4.8: TCP sever part 2

4. IJkdijk Monitoring Components, Off-the-shelf and custom build

34

Connection is nob connecked |
Connection closed + l‘@b

-

[False ~}]

seconds, it gives up. Ifthe |[Convert a possible Connection Closed errar Fram the client to a warning. Close the
w2 sends the data selected |[client connection {if it existed) and stop the server if requested or an error in the

listener occured.

(Check For errors
and reset Skop
button to False,

Fig. 4.9: TCP sever part 3

Method VI's project| control| RT
struc- | target
tures re-

quired

TCP 7 - 6 -

ubP 3 - 1 -

DS 3 - 1 -

SVE 1 v 1 \%

4. IJkdijk Monitoring Components, Off-the-shelf and custom build 35

4.10.3 Scalability

With the available hardware there were no bottlenecks to stream all the sam-
pled data (400.000 samples/S) to another location, by the means of TCP, UDP
and Datasocket. The tests were inconclusive for Shared Variables. It seems that
the performance of Shared Variables has greatly been improved in a newer ver-
sion of LabView, namely version 8.5.

1. UDP

2. DataSocket

3. Shared Variable
4. TCP

UDP is on top of the list since it is a lightweight transport protocol, sup-
port multicast and is easy to proxy/forward. DataSocket has a slightly higher
overhead since it is based on TCP. A strong point is that the DataSocket Server
can run anywhere. The same point applies to the SVE, the performance of the
LabView 8.2 implementaion is poor however. The TPC server socket is lowest
on the list, since it required that all the load is on the LabView box which is
also reponsible for the DAQ.

4.11 Summary

For the IJkdijk realtime streaming scenario, four options remain: TCP; UDP;
Datasocket and the Shared Variable Engine (SVE). The advantages of TCP and
UDP are flexibility and open endedness. The disadvantages are that the details
of managing sessions need to be resolved by the LabView programmer. These
details are handled by DataSocket and SVE. However, the later two are only
available for application build with NI software.

For cases where there is streaming to LabView stations is required, DataSocket
is advised. The DataSocket Server should not run on the IJkdijk, but on system
in a well connected place.

For streaming to other software, both UDP and TCP have their uses. UDP
is used in the UPVN prototype described in the next section. It should be used
in the cases were some packetloss can be tolerated. Care should be taken to
detect this packetloss in the application, either by using a seperate channel
for timestamps or by indexing each packet and calculate the elapsed time by
inspecting the received index with the previously received index.

TCP should be used when packetloss cannot be tolerated. It is adviced
to build a LabVew TCP client, which then connects to TCP server, this server
should be developed with a suitable tool.

For all realtime streaming options, transferring a LabView Waveform or an
one dimensional array of waveform is suitable.

5. UPVN

5.1 User Programmable Virtualized Networks

The goal of User Programmable Virtualized Networks (UPVN) is to enables
programmers to program a network. The network components, such as routers,
switches, interconnects and even the hosts connected to the network, should be
programmable as a whole.

Currently, configuration is the domain of network operators. They define
topology, type of service and other parameters. The configuation must be ap-
plied to each component individually, often by the means of a command line
interface. Adding a service, such as IP Multicast implies a lot of work. An
UPVN program can work as a template, create the program once, then deploy
it simultaneously on all relevant network components.

User Programmable Virtualized Networks (UPVN) is a network concept
which abstracts the network in such a way that an application programmer
can add services to the network. With the use of tokens, which are added to
packets, it is possible to build a practical security and AAA framework, see
Section 2.3 of [5].

UPVN research is about how to add services to he network by program-
ming it. Currently, when a new service is required e.g. resource reservation, a
new protocol has to be developed, described, implemented, accepted and de-
ployed. Current research is investigating ways to enable network components
and the network as a whole to adapt there functionality on-the-fly. Results of
the UPVN research are described here[5].

5.2 DataRouter, an UPVN application

At TNOs lab, an early UPVN test setup is available for experimentation. It
consist of ten FreeBSD systems, which are all connected to to or three of the
others systems, in order to enable different network topologies between the
hosts.

For this assignment a simple datarouter was implemented to run on the
UPVN setup. The idea is that LabView will stream some data into the UPVN
network, which will then route it to several other hosts, running LabView or
another application. The route or routes the streams will follow through the
network can be programmed.

5.2.1 Tokens

The current state of the UPVN prototype is not yet suitable to do routing on ba-
sis of tokens on the IP layer. Therefore, we implemented a router that forwards

5. UPVN 37

on basis of tokens in UDD, the transport layer. When token routing is imple-
mented on the IP layer, we can delegate the routing to routing logic UPVN
provides.

522 PERL

In order to create a rapid prototype, which can run on diverse hardware and
software, the PERL programming language was chosen. Advantages of PERL
are: portability; no need to recompile since it is a scripting language and pow-
erful means to handle pattern matching. Disadvantages are speed, readability
of the code and, as is discovered during the prototyping, weak support for
SOAP (no assistance in creating WSDL descriptions). The README of the ap-
plication is included as appendix B.

5.2.3 Route data

The datarouter operates on UDP datagrams, possibly tagged with a token. For
this implementation, a four byte token at the beginning of the datagram pay-
load is used. Either the application producing the datagram inserts the token,
or the data router does so, based on the source IP address. The datarouter
keeps a routing table. The table matches tokens to destionation IP address.
By setting these tables on datarouters running on several, internet connected
hosts, an overlay network can be build.

The performance will never be very high. Since the datarouter is currently
an application, not a kernel extension, it runs in userspace. One of the implica-
tions is that packets need to be copied back and forward in memory, which is
not efficient.

5.2.4 Multicast

An interesting feature of this approach is the easy to create multicast paths.
Since the destination (or next hop) can be set on each of the intermediate hosts,
it is also possible to set multiple destinations. Since the UDP packets are state-
less, it can be received by multiple hosts.

5.2.5 Data manipulation

Another interesting application is the (conditional) manipulation of data. Con-
sider a toplogy where some links are saturated or otherwise limited in capacity.
If multicast is used, the bandwith use is the same for each link in the multicast
tree. If the bandwith is insufficient on one link, there is packetloss for every
receiver behind the link. One possibility is to reduce the bandwith needed
by compressing the data. This then impacts all the receivers of the multicast
stream, also the ones which do have sufficent bandwith.

With this UPVN setup it is also possible to do the compression only for the
links where it is really needed. In this case, the data send by LabView was as
simple as possible: an array of 32 bit floats. The datarouter was extended so
that it cannot only forward but also send the packets through an application
filter. In order to keeps things as simple as possible, the packet is placed in a
file, the file is processed by an application which places its results in another

5. UPVN 38

file, which is then read by the datarouter and forwarder to its next destination.
While there are better ways to do interprocess communication, this seemed the
most pragmatic start. The result is that it is possible to filter the array of floats
through SOX, “the swiss army knife of sound processing programs”. SOX is an
open source command line tool to process sound. One of its capabilities is to
resample. So, in a case where there is insufficient bandwith on a specific link,
UPVN can then resample to a lower rate, on the last hop before the constrained
link.

5.3 Summary

While UPVN is in an early stage of development, some of the ideas seem to
fit on the IJkdijk case. It is possible to use UPVN concepts in combination
which Data Acquisition with LabView. A simple prototype was developed to
illustrate some of the possibilities.

6. CONCLUSIONS AND RECOMMENDATIONS

Here we present the conclusions of the research.

6.1 Research questions

The main question is: “How do we stream and multicast audio data from the Ifkdijk
to several internet attached analysis systems?”
More refined questions are:

1.

Are there compareable cases tot the IJkdijk case? If any, What are there
solutions?

. What is the current state of the art in streaming and multicasting?

. Can off the shelf (OTS) solutions, such as LabView or Windows Media be

deployed? If yes, how?

. Can User Programmable Virtual Networks (UPVN) be deployed? If yes

how?

. What could be a suitable development path for TNO’s data acquisition

and data publishing setup?

(a)

(@)

(b)

(@)

6.2 Conclusions

Similar cases dealing with the distribution of seismic data use a hier-
archical setup. A top node is discovering data sources. Data sources
discover sensors. The sensor data is then stored in ring buffers.
TCP/IP (the internet) and a custom transfer protocol are commonly
in use. Interfaces deploy both websites and web services. The net-
work infrastructure is treated as a commodity; its either already in
place or it’s bought and installed. See section §2.7

IP Multicast is commonly enabled on backbone networks, educa-
tional networks and inside corporate networks. It is not common on
the network of ISP’s for home users, nor is it commonly enabled on
the borders of corporate networks. §3.1

IP Multicasting is not widely used in a multi domain setup. Since
the IJkdijk setup is a multi domain one, IP multicast is not a suitable
solution. See §3.1

A National Instruments Data Acquisition system (DAQ) is a suitable
COTS DAQ alternative for the IJkdijk setup, since it provides all the

6. Conclusions and Recommendations 40

sensor reading and networking facilities required to stream the data
from a few sensors to a few remote analyzers, see section §4.10 .

(b) TCP, UDP and DataSocket are all viable solutions to stream sensor-
data. Which one to use, depends on the exact requirements, see
§4.10

(c) MS Media is not a suitable COTS DAQ alternative for the IJkdijk
setup, since it requires a soundcard as input device, see section §3.6.4

(d) Combining NI DAQ with a COTS streaming solution like MS Media,
since it requires a custom converter/interface, which is relatively
complicated to build, see section §3.6.4

(a) The token based routing and QOS networking, such as proposed
in research UPVN’s, provide interesting concepts for designing an
IJkdijk network setup. A simple prototype was build, demonstrat-
ing UPVN principles applied to audio streams, see §5.2

(b) Building a simple streaming multicast application in UPVN is sim-
ple and straightforward. It is unclear wether or not UPVN can assist
in the management of a very large number of streams, see §5.2.4

. Streaming data with LabView to a few internet attached analysis systems
can start as soon as an internet connection is available at the IJkdijk loca-
tion.

6.3 Recommendations

Study the effect of lossy compression on scientific measurement data.

Evaluate The National Instruments LabView Datalogging and Supervi-
sory Control (DSC) Module.

Evaluate The National Instruments LabView Shared Variable Engine ver-
sion 8.5.

Evaluate DataTurbine.

BIBLIOGRAPHY

[1] Jaap D. Bregman, Gideon W. Kant, and Haitao Ou. Multi-terabit routing
in the lofar signal and data transport networks. Experimental Astronomy,
17,2004.

[2] Tricia Gill and Bill Birney. Microsoft Windows Media Resource Kit. 2003.

[3] Andr Gunst, Kjeld van der Schaaf, and Mark Bentum. Core station-1, the
first lofar station. Arxiv preprint astro-ph, 2006.

[4] Teruyuki Kato, YukihiroTerada, Masao Kinoshita, Hideshi Kakimoto, Hi-
roshi Isshiki, Masakatsu Matsuishi, Takayuki Tanno, Akira Yokoyama,
and TakayukiTanno. Real-time observation of tsunami by rtk-gps. Earth-
PlanetsSpace, 52:841-845, 2000.

[5] Robert]. Meijer, Rudolf J. Strijkers, Leon Gommans, and Cees de Laat.
User programmable virtualized networks. e-Science2006, 2006.

[6] Arcot Rajasekar, Frank Vernon, Todd Hansen, Kent Lindquist, and John
Orcutt. Virtual object ring buffer: A framework for real-time data grid. In
HDPC Conference, 2004.

[71 SURFnet/NPO. www.surfnet.nl/info/attachment.db?190406.

[8] Kjeld van der Schaaf, Chris Broekema, Ger van Diepen, and Ellen van
Meijeren. The lofar central processing facility architecture. Experimental
Astronomy, 17:43-58, 2004.

[9] Wikipedia. Ijkdijk. Website, July 2007.
[10] Wikipedia. Indian ocean tsunami warning system. Website, July 2007.

[11] Ning Xu. A survey of sensor network applications. Communications Mag-
azine, IEEE, 2002.

APPENDIX

A. DATA AQCUISITION

The scope of this document is to evaulate the possible ways to transport data
from the IJkdijk location to involved parties on different places over the world.
In order to do so, a clear understanding of the data to be transported is needed.
As a start we distingish two types of data, as shown in table A.

A.1 Theory of Data Acquisition

In a sense, audio and video are sensor data too. Most sensors are electrical,
their output is a voltage, which changes when the measured quantity changes.
In the current fase of the IJkdijk project, TNO wants to know the suitability of
LabView as well as Windows Media for acquisition of audio, video and other
sensor data.

Data acquisition is the sampling of the real world to generate data that can
be manipulated by a computer. Data acquisition or DAQ in short, typically
involves acquisition of signals and waveforms, e.g. sound or temperature, and
processing these signals to obtain desired information. Most DAQ is done with
special DAQ interface boards.

A.1.1 Sampling theory

Sampling is the measuring of the voltage at fixed point in time. Uniform sam-
pling is measuring the voltage at a relugar interval. The time between each
measurement is often specified as sampling interval, Delta t, At or dt. The
inverse of the sampling interval is the sampling rate or f,. Given a uniform
sampling rate of f;, the highest frequency that can be represented is f?

So according to the Nyquist sampling theorem refTomasi the sampling rate
should be at least twice the maximum frequency component of the signal of
interest. In other words, the maximum frequency of the input signal should
be less than or equal to half of the sampling rate. These frequencies above the
Nyquist frequency may then alias into the appropriate frequency range and
thus give erroneous results.

Data Characterization Examples

Sensor data, unprocessed | Water pressure, geophone, seismometers,
displacement, wind, rain

Multimedia, processed audio, video

Tab. A.1: TJkdijk Data

A. Data Aqcuisition 44

'I'ransitmnl Band

s 5

= =1 'I—I"'II

8 8 |

5 AN

C I |

7 Frequency e = Frequency
a. ldeal Anti-alias Filter b. Practical Anti-alias Filter

Fig. A.1: Anti-Alias filters (source National Instruments)

To preven this from happening, a low-pass filter is used to limit the signal.
This filter is an anti-alias filter. Unfortunally, there is no perfect low-pass filter.
Ideally it should fuction as a brick wall for frequencies higher than the desired
input frequencies. A.1 shows the difference between a perfect and a more re-
alistic anti-alias filter. Note the transition band, the frequencies between the
desired cut-off frequency f; and the actual cut-off frequency fs.

With digital filters it is possible to filter the remains of the high frequen-
cies that pass through the analogue anti-alias filter. However, for this to work
correctly, we need to select a sample rate such that % is after the transition
band. A 33 % ratio for the transitionband is simple and cheap, e.g. phones
use 8 kHz sampling for a 3 kHz passband. a 10 % ratio is tougher but realiz-
able. CD’s use 44.1 kHz for a 20 kHz passband. Surprisingly, the reason that
it is 44.1 kHz and not 44 kHz has nothing to do with the requirements for a
anti-alias filter. The explanation is that 44,100 is a multiple of 60 (American
television field rate), 50(European television field rate), 30(American television
frame rate) and 25(European television frame rate).

A.1.2 Pulse Code Modulation

Pulse Code Modulation or PCM is a digital representation of an analogue sig-
nal. The conversion between analogue and digital is performed by a Digital-
to-Analogue converter (DA-converter). The performance and quality of a DA-
converter is expressed in it’s bitrate and sample rate. For audio the number
of bits per sample, values between 8 and 24 bits are common, for samplerates
8 kHz to 96kHz. When storing or streaming this data, the bitrate is impor-
tant. This is the number of bits multiplied by the samplerate. For example: CD
quality audio is 2 channels, 16 bits, 44.1 KHz, this makes 2 x 16 x 44100 = 1.411
Mbit/s =176 Kbyte/s.

B. UPVN DATAROUTER README FILE

== Forward Interface
This is the documentation of fi.pl, the Forward Interface for the UDP datarouter.
== Dependancies perl SOAP::Lite fi.pl datarouter.pl
== Start the Forward Interface

$./fi.pl [portnumber]
Contact to SOAP server at http://edge.ict.tno.nl:1080/

The default SOAP port is 1080. When running without superuser privi-
leges, the portnumber must be higher then 1023.
The datarouter itself is started by a SOAP call. Example in Perl:

#!/usr/bin/perl -w

use SOAP::Lite;

my S$soap = SOAP::Lite
—> uri(‘http://localhost/UDPForwarder’)
-> proxy ("http://localhost:1080");

my S$result = $soap->start(’1235");

unless (Sresult->fault) {
print S$result->result();
} else {
print join ’, ',
Sresult—->faultcode,
Sresult->faultstring,
Sresult->faultdetail;

The parameter of start is the UDP port where the forwarder wil operate on.
The destination port is configured by the token rules. When running without
superuser privileges, the portnumber must be higher then 1023.

== Configuration By default, the UDP forward daemon will drop all pack-
ets. Only when a there is an approriate token rule, it will forward to the desti-
nation from that rule.

Get the current rules, newline separated: —

$result = $soap->getIPRules();
$iprules = $result->result();

Sresult = $soap->getTokenRules();
Stokenrules = S$result->result();

On the ingress nodes, there should be 1 or more IP rules. The format of the
rule is: “ipaddress: 4-char-token”:

B. UPVN DataRouter README file 46

Sresult = $soap->lockTable();

$secret = $result->result();

$soap->addIPRule ($secret, 7139.63.89.23: rood’);
$result = $soap->unlockTable ($secret);

On all nodes, there should be 1 or more token rules. The format of the rule
is: ”4-char-token: bool-strip-token ipaddress port ipaddress port ...” When the
bool is non zero, the token will be stripped before sending to the destination.
It is possible to add multiple ip/port tuples. When adding a rule for a token
already in place, the old one will be overwritten. It is possible to avoid this by
requisting the current tokens first and then pick another token.

Sresult = $soap->lockTable();

Ssecret = $result->result();

Stokerule = 'rood: 0 139.63.89.35 1235 139.63.89.36 1235';
Sresult = $soap->addTokenRule ($secret, S$tokenrule);
Sresult = $soap->unlockTable ($secret);

It’s only possible to remove all rules, possibly adding some of the removed
rules afterwards:

Sresult = $soap->lockTable();

Ssecret = $result->result();
Sresult = $soap->clearTokenRules ($secret);
Sresult = $soap->clearIPRules ($secret);
Sresult = $soap->unlockTable ($secret);

== Transactions

A transaction is a safe modifaction of the network. The goal is to maintain a
safe state for the network as a whole. When adding a new path to the network,
this should be added to all relevant nodes or none.

Transactions are currently implemented by the means of a lockTable and an
unlockTable soapinvocation on all relevant nodes. When it is not possible to
obtain all requisted locks, they should all be released. This is the responsibility
of the application that want’s to add a path.

in short, a succesfull transaction:

$nodel->lockTable ()

#save secretl, check result, ok
$node2->lockTable ()

#save secret2, check result, ok
$nodel->addTokenRule ($secretl, S$Stokenrulel);
$nodel->addTokenRule ($secret2, S$Stokenrule2);
$nodel->unlockTable ($secretl)
Snode2->unlockTable ($secret?2)

in short, an unsuccesfull transaction:

$nodel->lockTable ()

#save secretl, check result, ok

$node2->lockTable ()

#check result, not ok

$nodel->unlockTable ($Ssecretl)

#report failure, try again after some time, so another application
#can complete or cancel it’s transaction.

	Introduction
	IJkdijk Context
	Dutch Dikes
	Sensor telecommunication
	Test setup

	Problem description
	Research questions
	Research approach
	Structure
	Intended Audience

	Survey of Sensor networks
	Introduction
	Tsunami detection
	LOFAR
	Seismic data in ROADnet
	NEES
	Creare RBNB Dataturbine
	Summary

	Streaming and Multicasting Data
	Introduction
	Multicast background and principles
	Unicast
	Broadcast
	Multicast

	Multicast Protocols
	Multicast addresses
	Internal Multicast Protocols
	Internet Group Management Protocol
	Protocol Independent Multicast

	Border Multicast Protocols

	Alternatives to multicast
	Proxy
	Peer-to-peer

	Streaming software in practise
	Microsoft Windows Media Streaming Software
	Compression
	Encryption
	Scalability
	Windows Media Input

	Multicast support by ISPs
	Summary

	IJkdijk Monitoring Components, Off-the-shelf and custom build
	Introduction
	Luisterbuis
	Data Acquisition with National Instruments
	Hardware Specifications

	National Instruments Software
	LabView RealTime

	LabView Communication
	Application layer alternatives and considerations
	Presentation layer alternatives and considerations
	Basic datatypes
	Composed datatypes
	Endianness

	Session layer alternatives and considerations
	Transport layer alternatives and considerations
	LabView Communcation tests
	DataSocket
	Shared Variables
	TCP
	UDP

	Results
	Open endedness
	Easy of use
	Scalability

	Summary

	UPVN
	User Programmable Virtualized Networks
	DataRouter, an UPVN application
	Tokens
	PERL
	Route data
	Multicast
	Data manipulation

	Summary

	Conclusions and Recommendations
	Research questions
	Conclusions
	Recommendations

	Bibliography
	Appendix
	Data Aqcuisition
	Theory of Data Acquisition
	Sampling theory
	Pulse Code Modulation

	UPVN DataRouter README file

