

System Reliability with Formal Methods

Introduction

With the insistent increasing in the design complexity of integrated circuits, it is becoming apparent that full verification of large circuit designs can be a challenging task [1]. Verification is especially important in the context of space exploration, where hardware needs to be hardened for radiation harsh environments, and development cycles are expensive.

Recently, there is a move towards property driven hardware design methodologies and tools. However, the use of these methods for increasing the reliability of hardware against the effects of radiation is little explored.

Expected outcome

- Evaluation of literature with methods for increasing system reliability with formal methods.
- Setup of environment for Formal Verification [2].
- Formally evaluate a RISC-V processor using this setup.

Requirements

- Interest in embedded systems, dependable computing and/or formal methods.
- Programming experience in Python.
- Familiarity with HDL and FPGA design.

Contact

Marco Ottavi (m.ottavi@utwente.nl)

Bruno Endres Forlin (b.endresforlin@utwente.nl)

Tijmen Smit (t.t.smit@utwente.nl)

References

1. W. Hu, L. Wu, Y. Tai, J. Tan and J. Zhang, "A Unified Formal Model for Proving Security and Reliability Properties," 2020 IEEE 29th Asian Test Symposium (ATS), Penang, Malaysia, 2020, pp. 1-6, doi: 10.1109/ATS49688.2020.9301533.
2. <https://fvm.us.es/doc/main/index.html>