

GRASPING FORCE AND SLIP FEEDBACK THROUGH VIBROTACTILE STIMULATION TO BE USED IN MYOELECTRIC FOREARM PROSTHESES

Heidi Witteveen¹, Hans Rietman^{2,3}, Peter Veltink¹

Biomedical Signals and Systems, MIRA institute, University of Twente, Enschede, The Netherlands ² Roessingh Research and Development, Enschede, The Netherlands ³ Biomechanical Engineering, MIRA institute, University of Twente, Enschede, The Netherlands

- Lack of sensory feedback in myoelectric forearm prostheses results in: K
 - difficulties in object handling K
 - high mental burden on visual system ×.
 - no subconscious control of the prosthesis ×
 - Vibrotactile stimulation can be a non-invasive, simple and relatively low-cost solution
- How do different stimulation methods, providing grasping force and slip feedback, affect grasping performance? K

Table 1: Overview of the variables used in the experiments

Methods

Introduction

Force	Virtual Satur	Force	Slip	
control	virtual Setup	Feed	The e	
	lightestheaviest# objects# objectsId </td <td rowspan="2">C2 tactor</td> <td>Amplitude</td> <td>- 40</td>	C2 tactor	Amplitude	- 40
			Pulse frequency	- by
				- wit
variable	visual weight info can		Position	- thr
rain	he blocked	coin motors		

- experimental task, for 15 healthy subjects, was to hold
- virtual objects of 8 different weights,
- controlling grasping force through mouse scrolling,
- th feedback about grasping **force** or **slip** movement,
- rough a single C2 tactor or an array of 8 coin motors,

K

varying the **amplitude**, **pulse frequency** or **position**

time needed to perform the task Outcome parameters : 🔌

performance = percentage correct (if applied force = required force) force levels

Results

Discussion

- Grasping force and slip feedback both K significantly increase the performance of the grasping tasks (see fig. 1)
- Duration of tasks significantly longer K compared to non-feedback, but no differences between methods (see fig. 2)
- No differences in performance and K duration between modulation techniques for grasping force feedback
- Blocking visual feedback about object K weights did not decrease performance when slip feedback was provided
 - Frequency modulation was not successful

to provide slip feedback

Slip feedback does not require preliminary object information (weight or roughness)

- further investigation on slip detection and the time needed to react is required ×.
- Both coin motors and C2 tactor can be used to succesfully provide grasping force or slip feedback K
 - applicability in prosthesis socket becomes important
- Further evaluation with amputee patients and combination with EMG control is necessary K

UNIVERSITY OF TWENTE.

h.j.b.witteveen@utwente.nl Contact: +31 (0)53 489 2766