

Using data to improve the quality of education

University of Twente Education day October 27, 2016

Kim Schildkamp & Cindy Poortman UNIVERSITEIT TWENTE.

datateams

Data-based decision making

- The use of data to improve education (Schildkamp & Kuiper, 2010)
 - Systematically collecting
 - Analyzing and interpreting data
 - Using this information to improve education

True or false?

• Boys are better in mathematics than girls

datateams

False!

- Research in 86 countries
 - Mainly in Western countries: boys slightly better
 - However, caused by social and cultural factors
 - In most countries no differences
 - In some countries girls better
- Girls do **not** perform worse in mathematics
- Sources: Kane & Mertz (2012), Everett & Madora (2011), Stoet & Geary (2012), Wei et al (2012)

True or false?

 Students have different learning styles to which you need to adapt your instruction

datateams

False!

- No scientific evidence
- No effects if teachers take into account different learning styles
- It is a waste of time and effort to adapt instruction to learning styles
- Sources: Coffield et al (2004), Corbelis (2012), Geake (2008), Hattie (2009)

True or false?

Data-based decision making can lead to increased student achievement

datateams

True!

- Data can pinpoint strengths and weaknesses of your education
- Based on data improve weaknesses
 - Combination with experience
- Improved education for students
- Increased student achievement
- Sources: Campbell & Levin (2009), Carlson et al (2011); McNaughton et al (2012), Poortman & Schildkamp (2016)

Step 1: Problem definition

- Identify a current problem in the school
 - School-wide or subject-specific
- Prove that you have a problem
 - Collect data on current situation and desired situation
 - Three cohorts/years
- Example:
 - Current situation: '25% of our students is failing module x'
 - Desired situation: 'Next year no more than 15% of our students is failing, the year after that no more than 10%.'

Assignment step 1 problem definition

- In groups of 3/4
- Think of a problem with a certain course or module you would like to address
- Why do you think this is a problem?
- How can you confirm that this is a problem?
- 5 minutes

datateams

Step 2: Formulating hypothesis

- Brainstorm possible causes
 - Ask colleagues for input
 - Make a list
- Choose a hypothesis
 - Based on criteria, such as: what can we influence as teachers? Which hypothesis do a lot of colleagues believe to be true? What is, according to the literature, a possible cause?
- Formulate a hypothesis
 - Concrete
 - Measurable

Assignment step 2 hypotheses

- In groups of 2-4
- Think of a problem with a certain course or module you would like to address
- Write down possible causes of this problem
- Try to make these possible causes measurable
- 5 minutes

Step 3: Data collection

- Available data
- Existing instruments
- Quantitative and qualitative

- Examples:
 - Student achievement data
 - Surveys: module evaluation, motivation
 - Classroom observations
 - Student interviews, teacher interviews

datateams

Step 4: Data quality check

- Reliability and validity of the data
- Crucial step: not all available data are reliable and/or valid!
- Examples:
 - Only few students have filled out the survey
 - Validity problems with survey
 - Data of one year only
 - Missing data

Step 5: Data analysis

- Qualitative and quantitative
- From simple to complex
- Extra support: course data analysis
- Examples:
 - Mean, standard deviation
 - Percentages
 - Comparing two groups: t-test
 - Qualitative analyses of interviews and observations

datateams

Step 6: Interpretation and conclusions

- Is our hypothesis rejected or confirmed?
 - Rejected: go back/ further to step 2
 - Accepted: continue with step 7
- Example of 32 data teams:
 - 33 hypotheses: accepted
 - 45 hypotheses: rejected
 - 13 (qualitative) research questions
 - 13 hypotheses: no conclusion due to limitations of the dataset

Assignment step 4 to 6

- Problem: 29% of students is failing module x.
- Hypothesis: failing students are less motivated than students that pass.
- Complete steps 4-5-6 (10 minutes):
 - Quality of the data (step 4)
 - Data analysis (step 5)
 - Interpretation and conclusion (step 6)

datateams

Results assignment step 4-5-6

- Quality:
 - Insufficient
 - "I am motivated to attend the lectures"
 - Different people will have different definitions for motivation
 - Validity issue
- Hypothesis cannot be accepted
- Back to step 3: Collect new data on motivation

Step 7: Implementing measures

- Develop an action plan:
 - Smart goals
 - Task division and deadlines
 - Means
- Monitoring progress: how, who, which data?

datateams

Step 8: Evaluation (process)

- Process evaluation
 - Have the measures been implemented the way we want?
 - Have the measures been implemented by everyone?
- Example process evaluation:
 - Measure: start every lecture with a short repetition of the topics in module x that students find difficult in the form of a quiz
 - Interview students: this is boring, start to detest quizzes!
 - Adjust measures: repeat quiz less frequently

Step 8: Evaluation (effect)

- Effect evaluation:
 - Has the problem been solved?
 - Did we reach our goal as stated in step 1?

- Example effect evaluation:
 - Did our measure(s) results in increased achievement for module x?
 - Check: Next year no more than 15% of our students is failing

datateams

Research results

- How do data teams function?
- What are the effects of data teams?
- Results are based on three studies conducted in the Netherlands (Schildkamp, Handelzalts, & Poortman, 2015; Schildkamp & Poortman, 2015; Hubers, Schildkamp, Poortman, & Pieters, 2016) and one study in Sweden (Schildkamp, Smit, & Blossing, 2016)

Data team functioning

- Difficult to make a measurable hypothesis
- Several rounds of hypotheses: first hypotheses often wrong
- Often external attribution: problem is caused by primary schools, by policy etc.
- However, this is necessary: need to create trust; practice with the eight step procedure; learning starts when you make mistakes; shows the importance of data
- From external to internal attribution

*	datateams
Effects	
Effects level	Instrument(s)
Level 1: satisfaction	Satisfied about support, process and progress'good'; 'fun'
Level 2: knowledge, skills, attitudes	 Knowledge and skills increased significantly 'learnt how to use calculations in Excel'; what + how of qualitative analysis; 'you really need evidence'
Level 3: use of learning	 Data use for instruction: e.g., prepare students better for particular exam questions (explanation and practice)
Level 4: student achievement	 Seven out of thirteen schools solved problem: Significant increase in student achievement

Conclusion and discussion

- Data teams knowledge and skills: from 'intuition-based decision making' to 'data-based decision making'
- Change in school culture: "You want to take decisions based on assumptions, that is not the way we work here anymore"
- Support schools in solving problems and reaching goals
- Increased student learning

Thank you for your attention!

- For the Dutch speaking people:
- Zie ook het boek: 'De datateam® methode: een concrete aanpak voor onderwijsverbetering'
 - een toelichting op datagebruik
 - een hoofdstuk per stap
 - casussen met nog meer voorbeelden
 - aandacht voor inbedding in de organisatie
- More information: www.datateams.nl
- Contact: <u>c.l.poortman@utwente.nl</u> or <u>k.schildkamp@utwente.nl</u>

