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SOFC-anodes, proof for a finite-length type Gerischer impedance?
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Abstract

The impedance of a symmetric cell with Ni/Ti-doped YSZ cermet anodes was measured as function of ambient (PH2
, PH2O) and temperature.

The impedances showed identical shapes with a minor dispersive contribution in the high frequency region and a dominating dispersion down to
0.01 Hz. The characteristic shape of this dispersion was clearly in between a finite-length Warburg (FLW) and a Gerischer impedance. Analysis of
the dispersion in the Bode representation, after subtraction of the high frequency contribution, showed a clear relation with the Gerischer
impedance. Assuming a finite-length constraint led to quite reasonable modelling of the data. The parameter set of this finite-length Gerischer
showed a consistent dependence on PH2

, PH2O. A qualitative interpretation of this modified Gerischer is presented.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Analysis of the impedance spectra of porous SOFC-electrodes
is often quite complicated. The relation between the so-called
equivalent circuit elements and actual physical transport and
transfer processes remains often vague. Exceptions are the
perovskite-type cobaltate–ferrite cathodes, which can bemodelled
with a Gerischer impedance [1]. The Gerischer response has been
derived for a CEC type electrochemical reaction in a liquid
electrolyte [2,3]. But the actual proof of the existence of this
Gerischer impedance was only observed much later and for non-
aqueous systems [4]. The most direct derivation of the simplified
Gerischer expression is by incorporating a ‘sink’ term in Fick's
second law, i.e. a local concentration change results in a, non-
Faradaic, side reaction that affects the concentration, e.g. (see also
Ref. [5]):

dcðx; tÞ
dt

¼ eD d2cðx; tÞ
dx2

−kdcðx; tÞ ð1Þ

where c(x,t) is the concentration variation (excess concentration
above the equilibrium concentration) and k is the reaction rate
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under the assumption that the concentration of the reaction product
can be considered constant. For semi-infinite diffusion with a side
reaction the frequency domain solution of both Fick laws then
follows as [5]:

ZðxÞ ¼ Z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieDdðk þ jxÞ
q ð2Þ

One interpretation [1] is the competition between surface and
bulk diffusion, which is coupled through the surface oxygen
exchange process, see Fig. 1A. But also slow adsorption coupled
with surface diffusion can yield a Gerischer response [6], see
Fig. 1B.

Recently a ‘fractal’ Gerischer response was observed for
chromate–titanate based porous SOFC-anodes [7]. The remark-
able property of theGerischer impedance is that it is based on semi-
infinite diffusion, but results in a finite dc-value. In [5] a finite-
length expression for a Gerischer was derived:

ZðxÞ ¼ Z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ jxÞdeDq tanh L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ jxÞ=eDq� �

ð3Þ

which reduces to the original Gerischer expression when it can be
assumed that D~≪L2 ·k. Current results on symmetric cells with
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Fig. 1. Schematics of electrode reactions that can lead to a Gerischer response.
A) The ‘ALS’ model [1], B) slow adsorption coupled to surface diffusion
(Atangulov and Murygin [6]).
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active porous Ti-doped YSZ/Ni anode layers seem to indicate the
need for a finite-length Gerischer expression.
Fig. 2. Electrode impedances for a symmetric cell as function of PH2
O. Electrode

area is 1.27 cm2 for each electrode.
2. Experimental procedure

Symmetrical cells were prepared by EMPA [8] using dry-
pressed NiO/YSZ cermet pellets as support. The active anode
layer of a NiO/18% Ti-doped YSZ was added by spray
deposition, followed by deposition of the YSZ electrolyte layer.
By sintering two half cells together symmetrical cells were
obtained with an electrode area of 1.27 cm2. For further details
see Ref. [8]. The cell impedance was measured with a Solartron
1255 FRA, coupled to a 1287 Electrochemical Interface, as
function of PH2

/PH2O. The temperature dependence will be
presented in a separate paper [8]. Impedance data were validated
with a Kramers–Kronig test procedure [9]. Initial data analysis
was performed with the ‘Equivalent Circuit’ program [10],
followed by a semi-graphical optimisation analysis with the
Microsoft Excel™ spreadsheet program.

3. Results and discussion

3.1. Analysis and modelling procedure

An example of the cell impedance for several PH2
values at

800 °C is presented in Fig. 2. Initial data analysis indicated a
simple high frequency dispersion (CPE parallel to a small
resistance), but the dominant low frequency dispersion could not
be resolved satisfactorily with standard dispersive elements.
Neither the finite-length Warburg (FLW) nor the Gerischer (even
in a double-fractal form [7]) could approximate the measured
dispersion adequately. For a more detailed analysis the high
frequency section (∼100 to 10 kHz) was modelled with a R(RQ)
Q sub-circuit. Here the circuit description code developed by [10]
is followed. Subsequently the R(RQ) dispersion is subtracted
from the data and the reduced data set is analysed using a
spreadsheet program. The Bode plot of Fig. 3 presents a typical
example of the resulting low frequency dispersion.

Before further analysis, the reduced data set was tested for
Kramers–Kronig compatibility [9]. The results, as shown in
Fig. 3, indicate high quality data. The imaginary part is charac-
terized by a high frequency slope slightly larger than −0.5, while
the low frequency slope is somewhat lower than 1. The real part
tends to a constant value for ω→0. The high frequency slope is
identical to the imaginary one. Although the observed shape
suggests a Gerischer, even the double-fractal Gerischer [7] result-
ed in a poor match (see Fig. 4). Assuming that conditions could
lead to a finite-length effect, i.e D~ in the order of, or larger than
L2 ·k, the finite-length Gerischer expression (Eq. (3)), is tested
here. Because the Bode plot slopes (Fig. 3) deviate from 1 (n) and
−0.5 (α) a double-fractal expression was developed for Eq. (3):

ZFFLGðxÞ ¼
Z0tanh L½k þ ðjxÞn�a=

ffiffiffiffieDp� �
ffiffiffiffieDp
½k þ ðjxÞn�a

ð4Þ

The fractal expression in the argument can be developed as
follows:

½k þ ðjxÞn�a ¼ k þ xncos
nk
2

þ jxnsin
nk
2

h ia
¼ ½aþ jb�a ð5Þ

with:

ðaþ jbÞa ¼ cos ad tan−1
b
a

� �� �
þ jsin ad tan−1

b
a

� �� �	 

� ða2 þ b2Þa=2 ð6Þ

This results in a separated real and imaginary part for the tanh
argument, p+ jq. The tanh function can then also be separated into
a real and imaginary part:

tanh½pþ jq� ¼ sinhð2pÞ þ jsinð2qÞ
coshð2pÞ þ cosð2qÞ ð7Þ

Subsequent combination of all these functions in the spreadsheet
program allows the simulation of the double-fractal finite-length
Gerischer function. In order to fit the FFL-Gerischer to the data set
the n and á exponents were obtained from the slopes of the Bode
representation (Fig. 3) and kept fixed in the fitting procedure.
Although the match between model and data is still not optimal, it
is a far better match than the modelling with the double-fractal
Gerischer, as can be seen from Fig. 4, or the finite-lengthWarburg
(FLW, not shown).



Fig. 5. Key parameters of the FFL-Gerischer at 800 °C, presented as function of
the local PO2

. Closed symbols: function of PH2
at PH2O=2.3 kPa, open symbols:

function of PH2O at PH2
=81 kPa. The PO2

is derived from the relation: PO2
=

(PH2O / (PH2
×10− (2.958−13022/T)))2, where pressures are in atm [11].

Fig. 3. Bode representation of the low frequency dispersion, after subtraction of
the high frequency R(RQ) contribution. Data: (•), Kramers–Kronig transform:
(○). The residuals between the data and K–K transform are also presented (□,
⋄, right hand axis).
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3.2. Parameter dependence on PH2
and PH2O

The impedances were measured as function of PH2
and PH2O.

This combination constitutes the local PO2
, which is the key

parameter for the electrochemical properties of the Ti-doped YSZ.
The equivalentPO2

was calculated using thermodynamic data from
[11]. The adjustable parameters of the FFL-Gerischer model are
presented in Fig. 5 as function of this equivalent PO2

. This helps in
distinguishing between surface adsorption and bulk effects. From
Fig. 5 it seems that the reaction rate, k, is controlled by the Ti–YSZ
bulk properties. An increase with increasing PO2

is rather
unexpected. One tentative explanation could be that the reaction
rate k relates to the transfer of adsorbed oxygen species to the Ti–
YSZ grain interior, e.g.:

OH−
ad þ V••

O ⇄Hþ
ad þ O�

O ð8Þ
The concentration of free vacancies is likely to decrease with
decreasing PO2

through the increase in TiZr′ centres that can form
immobile [TiZr–VO]

• complexes (in analogy with [6]). The
contribution of oxygen (vacancy) transport through the Ti–YSZ
Fig. 4. Comparison between actual data set (high frequency contribution
removed), the fractal-finite-length Gerischer and a simple fractal Gerischer
response.
grains is not significant, regarding the high dopant concentration.
Hence it is assumed that surface diffusion to a triple phase
boundary site is the dominant electrode process. The exchange of
oxygen with the bulk, according to a scheme similar to Eq. (8),
under influence of the ac-perturbation, is sufficient condition for
the existence of a Gerischer response. An interesting parameter is
the L=

ffiffiffiffieDp
combination with an observed value of ∼1–3 s1/2.

Assuming L to be in the order of the thickness of the active layer
(∼20 μm) this leads to a D~-value in the order of 10−6 cm2·s−1,
which seems quite reasonable for surface diffusion. Based on the
‘finite-length conditions’ the reaction rate should then be in the
range k ∼0.25 s−1, as observed in Fig. 5. In case the Gerischer
mechanism involves bulk diffusion, then a much shorter diffusion
length, in the order of the grain size, should be assumed.

4. Conclusions

Careful impedance analysis, using a reduced data set, results
in strong support for the existence of a finite-length Gerischer.
Resulting fit parameters show consistent trends as function of
the ambient PH2

and PH2O. A tentative interpretation of the PO2

dependence of the reaction constant, k, seems to point to the
formation of immobile [TiZr–VO]

• complexes.
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