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Membrane separation of liquid-like droplets
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Abstract

Liquid (like) droplets may be separated from the continuous phase in which they are dispersed by employing a membrane. Because droplets
are deformable, the separation is not simply based on size; droplets may deform sufficiently to enter pores that are much smaller than the
droplets themselves. Such a deformation requires a certain critical pressure drop, �pc. Assuming the geometry of the droplet is determined
by a natural tendency for a minimum surface area, �pc can be shown to depend on the surface tension γ , the contact angle θ, and the ratio a of
the radii of droplet and pore, rd and rp, respectively. When 100% retention is required, �pc should not be exceeded and, hence, this pressure
drop corresponds to the highest attainable (critical) flux Nc. An almost linear increase is predicted for �pc with a. Despite the monotone
increase of �pc, the critical flux Nc shows a maximum at a ≈ −2/cos(θ). Hence, on the basis of a and θ an optimal membrane selection can
be made. In the absence of affinity (θ = π), the pore radius should be approximately two times larger then the initial droplet radius. When
affinity is not negligible, the pore radius required to maintain complete retention increases rapidly, i.e., the maximum critical flux decreases
and is observed at larger a. The largest change in maximum attainable Nc with the contact angle is observed at θ = 0.75 π.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the descriptions of separations involving membranes,
dynamic deformations of species to be separated are gener-
ally neglected. For separations based on differences in, e.g.,
mass or charge the assumption of invariable species geom-
etry is usually not a critical one. However, for separations
based on size, possible deformations of species can be ex-
pected to have a significant influence. In those cases, a suf-
ficiently large force may cause species to deform enough to
enter the pore and, consequently, a pore-size smaller than
the species of interest no longer guarantees complete reten-
tion. Examples of deformable species include certain large
molecules, organisms, cells, and droplets in emulsions [1–5].
Examples of corresponding membrane applications are plen-
tiful (e.g., [6–8]) and in many of these applications a very
high, preferably even complete, retention is required.
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Although the influence of species deformation on reten-
tion has not received much attention in membrane tech-
nology literature, there is abundant literature on a related
subject; micro-pipette aspiration of (living) cells [9–11].
Micro-pipette aspiration is considered to be a well-
established tool for determining the viscosity and cortical
tension of cells [9–11]. In descriptions of micro-pipette as-
piration, the focus is on kinetic deformation and recovery
behavior of a cell, while transport of the continuous phase
is not explicitly explored. Furthermore, affinity of cells for
the micro-pipette can be assumed absent. In the following,
we present a model for separation of liquid-like droplets,
taking into account the affinity of droplets for the membrane
material. We will focus our discussion on the maximum
pressure allowed to avoid aspiration of a deformable droplet
into a capillary and the maximum value of the flux of the
continuous phase.

2. Problem definition

We will consider the separation of a mixture of two liq-
uids, one of which (denoted by A) is dispersed in the other
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(denoted by B) in the form of droplets with radius rd. The
volume fraction of the droplets is much smaller than that of
the continuous phase and, hence, effects such as cake for-
mation of the deformable droplets [12] can be disregarded.
The droplets are to be (completely) retained by a membrane,
which is permeable for the continuous phase B. The mem-
brane is assumed to contain cylindrical pores with a distinct
pore radius rp. Transport of the continuous phase occurs via
laminar viscous flow and, hence, is pressure driven. The cor-
responding expression for the flux of the continuous phase is

N = npore
r2

p

8ηBL
�p (1)

where we used �p ≡ phigh − plow, npore is the number of
pores that are not sealed by a droplet, and L the membrane
thickness. Since the concentration of droplets is assumed to
be low, the blocking of pores by droplets will have a negli-
gible effect on the magnitude of the flux of the continuous
phase. The objective is to find a maximum value for the
flux N, while the droplets cannot fully enter the pore.

In order to obtain a maximum value for the flux, an ex-
pression is required for the pressure drop at which droplets
are on the brink of entering the pore; the critical pressure
drop �pc. This critical pressure drop can be related to the
ratio of the radii of droplets and pore

a ≡ rd

rp
(2)

Due to the deformability of the droplets they can enter
a pore even when a > 1, provided that a sufficiently large
force, i.e., pressure drop, is exerted to give rise to the required
change in geometry of the droplet. The extent of such as
pressure drop is directly related to the increase in surface
area of the droplet. Assuming a natural tendency towards a
minimum surface area, the geometry of a deformed droplet
will be as depicted in Fig. 1a.

Drury and Dembo [13] preformed a numerical simulation
study on the hydrodynamics of human neutrophils during
micro-pipette aspiration. They showed that for not too large

Fig. 1. Schematic representation of the deformation of a partly aspirated droplet when: (a) the contact angle is not exceeded and (b) the contact angle is
exceeded.

capillary numbers C = �p/�pc the shape of the neutrophils
is, at any given instant, indeed close to that corresponding
with minimum surface area. In our study, the capillary num-
bers do not exceed unity. Other assumptions for the droplet
shape may be possible. For instance, Park et al. [14] assumed
that the deformed shape does not correspond to a minimum
surface area. However, their chose does not seem physically
realistic, and leads to an expression for �pc that diverges
when a is not close unity.

When there is affinity of the droplet for the membrane
material, the angle between the droplet surface and mem-
brane material cannot surpass the contact angle, which can
be calculated from Young’s equation [15]

cos(θAM) = γBM − γAM

γAB
(3)

In Eq. (3), the subscripts A, B and M refer to the two liq-
uids and the solid material, respectively. Fig. 1b depicts an
example of a deformed droplet for which θ < π (180◦),
tacitly assuming that the shape is again determined by the
droplets tendency to achieve a minimum surface area.

3. Aspiration

The geometry of a partly aspirated droplet can be visual-
ized as being comprised of two partial spheres, as shown in
Fig. 1, one inside and one outside the pore. For each sphere,
the curvature of the surface is determined by the pressure
difference across the droplet surface, according to the well-
known Laplace equation r �p = 2γ [15]. Hence, the equi-
librium pressure drop �p (Pa) over the droplet required to
counter the increase in surface area is

�p = 2γ

(
1

r1
− 1

r2

)
(4)

where r2 and r1 are the radii (m) as depicted in Fig. 1, and
γ the surface tension (N m−1). Due to the conservation of
volume of the initial droplet, i.e.,

V0 = V1 + V2 (5)
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the values of r1 and r2 are interdependent. The initial volume
of the droplet is V0 = 4

3πr3
0. For the volume of the partial

droplets inside and outside the pore, the following integral
should be solved

Vi = π

∫ xE

x0

(r2
i − x2) dx (6)

with corresponding integral boundaries;

for V1 : x0 = −rp tan(θ), xE = −rp/cos(θ) (7)

for V2 : x0 = −r2,

xE =
√

r2
2 − r2

p, (or xE = −r2 cos(θ)

when the contact angle is reached) (8)

For each aspiration depth, the radius r1 is directly related
to rp and ρ, and the value of r2 follows from the conservation
of volume (Eq. (5)). Substitution of r1 and r2 in Eq. (4) yields
the value for the �p required to achieve the deformation
related to the aspiration depth. In Fig. 2, �p is plotted as
a function of the normalized aspiration depth ρ, defined as
the ratio of the aspiration depth z over the pore radius rp:

ρ ≡ z

rp
(9)

The behavior of �p with ρ is determined by two counter-
acting phenomena. The equilibrium pressure drop �p will
increase with ρ due to the decrease in r1, while �p will de-
crease with ρ due to the decrease in r2. For infinitely large
droplets, i.e., infinitely a, the latter phenomena is absent and
a monotone decrease of r1 with ρ is observed until the con-
tact angle θ is reached at

ρ = sin(θ) − 1

cos(θ)
(10)

Fig. 2. Equilibrium pressure difference as function of the normalized aspiration depth ρ. The dashed lines (– – –) correspond to Eq. (10).

beyond which r1 no longer changes. From Fig. 2, it can
be seen that such a behavior is already observed for, e.g.,
a = 5. For θ=π (no affinity), �p increases with ρ until a
maximum value is reached at ρ ≈ 1, beyond which �p very
slowly decreases with further increasing ρ. For θ = 0.8π,
the maximum value of �p is reached at ρ ≈ 0.51 (the value
predicted by Eq. (10)). When a = 1.2, the decrease in r2
with ρ is not negligible and, for θ = π, the two counteracting
phenomena result in a maximum value of �p at ρ = 0.90.
Further increase of ρ is now accompanied by an apparent
decrease in �p. The latter maximum �p is about 5% higher
than the value at the ρ predicted by Eq. (10).

3.1. Critical pressure drop

The maximum value of �p observed in Fig. 2 corresponds
to the critical pressure drop �pc [16]. When the pressure
drop exceeds �pc complete aspiration of the droplet into the
capillary will occur. Calculation of �pc is rather strenuous
and for the analysis of micro-pipette aspiration of living cells
experiments it is commonly assumed that �pc is observed
at the value of ρ = 1 (e.g., [11]). Allowing for affinity
(θ ≤ π) the critical aspiration depth obeys Eq. (10). The
corresponding critical pressure drop can be calculated from

�pc = −2γ

(
cos(θ)

rp
+ 1

r2

)
(11)

When assuming r2 = r0, which is common for micro-pipette
aspiration, Eq. (11) simplifies to

rp�pc

2γ
= −

(
cos(θ) + 1

a

)
(12)

The actual value of r2 is calculated from the conservation
of volume. It can be shown that the critical pressure drop
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obeys

rp �pc

2γ
=

(
−cos(θ) − 1

f(a, θ)

)
(13)

The form of expression f(a,θ) depends on whether the an-
gle between the outer droplet and the surface (θ in Fig. 1b)
has reached the contact angle. An elegant solution for
Eq. (13) was presented by Nazzal and Wiesner [17],

f(a, θ) = 1

cos(θ)

×
(

2 − 3 cos(θ) + cos3(θ)

−4a3 cos3(θ) − 2 + 3sin(θ) − sin3(θ)

)−1/3

(14)

who assumed that the angle between the outer droplet and
the membrane always equals θ. Obviously, for small a and
large θ values this assumption is physically not plausible.

In Fig. 3, rp �pc/2γ is plotted as a function of a, for
various θ. The squares correspond to simulations in which
complete aspiration is assumed to occur when the maximum
value of �p is observed (as in Fig. 2). For the lines, trian-
gles and dots the critical aspiration depth is calculated from
Eq. (10). The continuous lines are solutions to Eq. (13),
while the dots correspond to the approximate solutions from
Eq. (12) and the triangles to the expression of Nazzal and
Wiesner (Eq. (14)). From the figure it is clear that the devia-
tions between the different solutions are negligible for larger
a and only small deviations are observed for small a. All so-
lutions based on Eq. (10) deviate less than 5% (for a = 1.2)
compared to the accurate solution, obtained using Eq. (13).

The behavior of rp �pc/2γ with a can be explained as fol-
lows. For θ = π and a = 1 the droplet just fits into the pore
and the critical pressure, �pc, is 0. If the droplet is slightly

Fig. 3. The line represent the left hand side of Eq. (13) as a function of a, for various θ. The dots and triangles are the results using, respectively,
Eqs. (12) and (14). The squares correspond to calculations without employing the approximating Eq. (10), i.e., using the actual critical aspiration depths.

larger than the pore, a larger value for the pressure differ-
ence is required to push it into the pore, i.e., �pc increases
with a. When the droplet radius is large compared to that
of the pore, the influence of r2 becomes negligible. Eq. (11)
reduces to the standard Laplace equation and an asymptotic
value is observed for rp �pc/2γ . For 1/2π < θ < π, Eq. (12)
predicts that the �pc is zero at a0 ≈ −1/cos(θ), thus a should
always be larger than a0. This is due to the enhanced affin-
ity of the droplets for the membrane material. Even when
the droplet radius is slightly larger than that of the pore, the
affinity causes the droplet to be aspirated, unless a negative
pressure drop is exerted. These negative values correspond
to negative values of the flux and are here for of no inter-
est in this study. The increase of �pc with a is less when
the affinity increases (i.e., −cos(θ) closer to zero), which is
expected since the enhanced affinity will make it easier for
the droplets to enter the pore.

3.2. Flux

Although �pc always increases with a, the behavior of
the flux of the continuous phase N is less straightforward,
given that it is proportional to the critical pressure multiplied
with r2

p

N ∼ r2
p �pc (15)

From Fig. 3, the dependency of the flux on a can easily be
predicted. For a ≤ a0, the flux, N, is zero because no pressure
drop can be exerted. When a is slightly increased, a pressure
drop can be applied on the droplet without pushing it into the
pore and thus an increase in the flux is expected. For a large
value of a, rp �pc reaches an asymptotic value of −cos(�).
The value of the flux is equal to the product of the pore
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Fig. 4. Trend of the flux versus a calculated for various θ. Continuous line: solution to Eq. (13); triangles: expression of Nazzal and Wiesner; dots:
Eq. (12). Y-axis scaled with respect to 4/r0, so that the Nc(max) predicted by Eq. (11) equals unity for θ=π.

radius and this asymptotic value and, hence, a decrease of the
flux with a is expected. The initial increase and subsequent
decrease of the flux with a requires a maximum in its value.
The value of a at which this maximum is observed (amax)
can be approximated by substitution of Eq. (12) in Eq. (15)
and subsequent differentiation

amax ≈ −2

cos(θ)
(16)

The corresponding maximum (or optimal) value of Nc is
proportional to

Nc(max) ∼
(

r2
p

�pc

2γ

)
c

= r0 cos2(θ)

4
(17)

In Fig. 4, the shape of Nc versus a is depicted, as pre-
dicted from the various solutions for �pc discussed in this
paper. The different solutions are in agreement, where only
for small a deviations are visible in the graph. From the fig-
ure it is clear that indeed at a particular amax a maximum
is observed for N. For θ = π, the figure shows a maximum
in the value of the flux when the droplets are approximately
2.07 times larger than the pore (Eq. (16) predicts a value
of 2). This would be the optimal choice for our objective; a
maximum value for the flux of the continuous phase, com-
bined with complete retention of the droplets.

The decrease of r2
p �pc in the case of enhanced affinity

is clearly visible in the figure. The zero value of the flux re-
quires droplets that are larger than the pores. The maximum
value of the flux is observed at a larger ratio of the droplet
and pore sizes, as predicted by amax ≈ −2/cos(θ). The value
of maximum flux reduces with increase in affinity, especially
for contact angles θ close to 0.75π (since (∂Nc(max)/∂θ) ∼
sin θ cos θ).

While for contact angles close to π, the maximum critical
flux is only slightly influenced by a change in θ.

4. Conclusions

When a critical pressure drop �pc is exceeded, liquid-like
droplets will enter a capillary. The value of �pc depends
on the surface tension, the affinity of the droplet for the
capillary, and the ratio a of the radii of the initial droplet
and capillary. An almost linear increase is observed for �pc
with a. The product rp �pc increases with a until a stationary
value (≈−cos(θ)) is reached. The flux of the continuous
phase, corresponding to �pc, shows a maximum at amax ≈
−2/cos(θ). The highest value of this optimal flux, and the
corresponding lowest value of amax (∼2.07), are observed
when affinity of the droplets for the membrane material is
negligible (θ = π). When affinity is not negligible a smaller
pore is required to retain the droplets (amax increases) and the
value of the optimal flux decreases accordingly. The largest
sensitivity of the optimal flux with changing θ is observed
at θ = 0.75π, while for θ = π the change in optimal flux is
small with changing contact angle.
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