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Multiferroic CoFe2O4-Pb(Zr,Ti)O3 Nanostructures
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Multiferroic CoFe2O4-Pb(Zr,Ti)O3 �lms were prepared on TiO2-terminated (001) Nb-doped
SrTiO3 substrates by using pulsed laser deposition (PLD). The �lms were epitaxial and exhibited
a large in-plane magnetic anisotropy and good ferroelectric properties. A decrease in the magneti-
zation around the ferroelectric Curie temperature indicated magnetoelectric coupling between the
magnetostrictive and the piezoelectric phases, which allows interconversion of energy stored in the
electric and the magnetic �elds and provides great potential for applications as next-generation
multi-functional devices.

PACS numbers: 72.80.Tm, 74.25.Ha, 75.80.+q, 77.65.-j
Keywords: Multiferroics, Magnetic anisotropy, Magnetostriction, Piezoelectrics

I. INTRODUCTION

Multiferroics are single-phase or composite materials
that can possess a spontaneous dielectric polarization as
a response to an applied magnetic �eld or a magnetiza-
tion induced by an external electric �eld. Such materials
have attracted signi�cant attention because of not only
their interesting magneto-electrical properties but also
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their wide applications in the �elds of transducers, sen-
sors and data storage [1{3].
A few single-phase multi�eroics, such as Cr2O3 and

BiFeO3 can be used only at low temperature due to their
low N�eel or Curie temperature [4{6]. By combining sepa-
rate ferromagnetic and ferroelectric phases, the compos-
ite o�ers more possibilities in applications thanks to its
multifunctionality [1, 2, 7, 8]. Recently, there has been
a revival of multiferroic composites [3, 9{11]. Among
them, magnetostrictive materials, for example Terfenol-
D and ferrites and piezoelectrics, for example BaTiO3
and Pb(Zr,Ti)O3 (PZT), are particularly interesting due
to their large magnetostriction, high piezoelectric prop-
erties and high Curie temperature. In these multifer-
roics, when the magnetostrictive parts are deformed un-
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Fig. 1. XRD pattern of a CoFe2O4 (280 nm)/PZT (1
�m)/CoFe2O4 (280 nm) �lm (CFO: CoFe2O4, STO: Nb-
doped SrTiO3 substrate).

der an applied magnetic �eld, the piezoelectric parts will
undergo a forced strain, resulting in an induced electric
polarization and vice versa.
In this article, we report the properties of epitax-

ial CoFe2O4/PZT multilayers directly grown on single-
crystal (001) Nb-doped SrTiO3 substrates by using
pulsed laser deposition (PLD). Large in-plane magnetic
anisotropy and good ferroelectric properties are obtained
without using bu�ered layers. For the �rst time, a de-
crease in magnetization around the ferroelectric Curie
temperature (TC(E)) was observed in this structure, in-
dicating magnetoelectric coupling between the magne-
tostrictive and the piezoelectric phases. The obtained
results will be explained based on the stress in the mul-
tilayered structure combined with the magnetostrictive
and piezoelectric properties.

II. EXPERIMENTS

Multiferroic CoFe2O4-PZT composites were grown
on single-crystal (001) Nb-doped SrTiO3 substrates by
means of PLD using a KrF excimer laser (� = 248 nm)
with a pulse duration of 25 ns. The CoFe2O4 target
was prepared from powder obtained by complexometric
synthesis [12] and the PZT target was prepared from
commercial powder (3N, TRS Ceramic USA). Before de-
position, the substrates were chemically treated and an-
nealed at 950 �C to obtain single TiO2 termination [13].
The deposition chamber was vacuumed to a back-

ground pressure of 5 � 10�6 mbar. The CoFe2O4 and
the PZT layers were grown at 600 �C in an oxygen envi-
ronment at ambient pressures of 0.05 mbar and 0.1 mbar.
The PLD system was operated at an energy density of
2.5 J/cm2 and a laser frequency of 5 Hz for CoFe2O4.
These values were 3.5 J/cm2 and 10 Hz, respectively,
for PZT. The target to substrate distance was �xed at

Fig. 2. AFM image of a CoFe2O4 (70 nm)/PZT (250
nm)/CoFe2O4 (70 nm) �lm.

60 mm for CoFe2O4 and 47 mm for PZT. After deposi-
tion, the �lms were quickly cooled down to room tem-
perature in 1 bar of oxygen. The �lm con�guration was
CoFe2O4/PZT/CoFe2O4 with di�erent thicknesses up to
280 nm for CoFe2O4 and 1 �m for PZT.
The crystallographic structure of the �lms was in-

vestigated using an X-ray di�ractometer (XRD) with
the Cu K� wavelength. The thickness of the �lms
was determined using cross-sectional scanning electron
microscopy and the surface morphology was analyzed
by using atomic force microscopy (AFM). The room-
temperature capacitance-voltage (C-V) measurements
were performed at a frequency of 10 kHz and with a
50 mV-amplitude ac signal by using a HP 4275A multi-
frequency LCR meter. The dielectric constant was calcu-
lated from the low-�eld capacitance. Magnetic hysteresis
loops were taken in-plane and perpendicular to the �lm
surface by using a VSM Oxford system at room temper-
ature in magnetic �elds from +2400 kA/m (+3 Tesla)
to {2400 kA/m ({3 Tesla). The thermomagnetic mea-
surement was carried out using a home made Faraday
balance in a magnetic �eld of 0.05 T.

III. RESULTS AND DISCUSSION

Figure 1 illustrates the typical XRD pattern of the
CoFe2O4 (280 nm)/PZT (1 �m)/CoFe2O4 (280 nm) �lm.
Analyses revealed that the CoFe2O4/PZT �lms were epi-
taxial based on the presence of two sets of (00l) peaks
contributed by the CoFe2O4 and the PZT layers. AFM
images of the �rst CoFe2O4 layer showed a very smooth
surface (rms = 0.5 nm) following the terrace of the sub-
strate. However, when the PZT layer was deposited, a
rough surface with rms = 2.5 nm was observed (see Fig-
ure 2).
The C-V characteristics of the CoFe2O4/PZT �lms

showed a well-de�ned buttery shape, which indicates
their ferroelectric behavior, as presented in Figure 3
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Fig. 3. C-V curve of a CoFe2O4 (280 nm)/PZT (1
�m)/CoFe2O4 (280 nm) �lm.

Fig. 4. Magnetic hysteresis loops of a CoFe2O4 (280
nm)/PZT (1 �m)/CoFe2O4 (280 nm) �lm.

for the �lm having a con�guration of CoFe2O4 (280
nm)/PZT (1 �m)/CoFe2O4 (280 nm). The dielectric
constant, derived from the capacitance value at zero ap-
plied voltage, is around 800. This dielectric constant is
close to that of bulk PZT. The leakage current of the
CoFe2O4/PZT �lms measured at an applied voltage of
30 V and a frequency of 10 kHz was low, in the range of
10�4 A/cm2.
The in-plane and perpendicular magnetic hysteresis

loops of the CoFe2O4 (280 nm)/PZT (1 �m)/CoFe2O4
(280 nm) �lm are represented in Figure 4. The �lm ex-
hibits a large in-plane magnetic anisotropy with a coer-
civity of 200 kA/m. This magnetic anisotropy can be
explained in terms of the stress in the �lm, which orig-
inates from the lattice mismatch between the CoFe2O4
layer and the substrate and between the CoFe2O4 layers
and the PZT layer. Since the lattice parameter of cubic
CoFe2O4 is 8.39 �A, layers grown on a Nb-doped SrTiO3
substrate (a = b = c = 3.91 �A) and a PZT layer (a = b

= 4.03 �A, c = 4.14 �A) are under compression in the �lm

Fig. 5. Temperature dependence of the in-plane magne-
tization of a CoFe2O4 (280 nm)/PZT (1 �m)/CoFe2O4 (280
nm) �lm.

plane. Due to the negative magnetostriction, a strong
in-plane stress anisotropy will be induced.
Figure 5 shows the temperature dependence of the in-

plane magnetisation of the CoFe2O4 (280 nm)/PZT (1
�m)/CoFe2O4 (280 nm) �lm. The magnetic phase is
clearly seen to exhibit an ordering temperature of about
530 �C. In addition, an anomaly in the in-plane mag-
netisation curve is observed at 369 �C, close to the PZT
Curie temperature (TC(E) = 360 { 390 �C) and can
be understood as a magnetoelectric coupling between
the magnetostrictive and the piezoelectric parts in this
two-phase nanostructure. At temperatures higher than
TC(E), CoFe2O4 is compressed in plane due to the lat-
tice mismatch with cubic PZT. For temperatures below
TC(E), the tetragonal distortion in the PZT lattice fur-
ther increases this deformation in the CoFe2O4 layers
and results in a decrease in the magnetization as the
temperature passes through TC(E). This e�ect cannot
be observed in thinner CoFe2O4/PZT �lms as a conse-
quence of the in-plane piezo-deformation being clamped
by the substrate, thus preventing any deformation in the
magnetic layers.

IV. CONCLUSION

Epitaxial multilayered CoFe2O4/PZT multiferroics
have been successfully grown on a Nb-doped SrTiO3 sub-
strate. The two-phase nanostructures have a large in-
plane magnetic anisotropy, reasonable ferroelectric prop-
erties and especially, good magnetostrictive-piezoelectric
coupling. Previously, this coupling could only be ob-
served in bonding laminated or nanostructured compos-
ites. The result obtained in multilayered nanostructure
facilitates the interconversion of energy stored in the elec-
tric and the magnetic �elds and provides great poten-
tial for practical applications. It opens a novel approach
to prepare multilayered multiferroics for applications in
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Micro-Electro-Mechanical Systems (MEMS) and Nano-
Electro-Mechanical Systems (NEMS).
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