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The superconductor MgBwith a transition temperature of 39 K, has significant potential for future
electronics. An essential step is the achievement of Josephson circuits, of which the superconducting
quantum interference devid&QUID) is the most important. Here, we report Josephson quantum
interference in superconducting MgBin films. Modulation voltages of up to 3@V are observed

in an all-MgB, SQUID, based on focused-ion-beam patterned nanobridges. These bridges, with a
length scale<100nm, have outstanding critical current densities of 10f A/lcm? at 4.2 K.

© 2001 American Institute of Physic§DOI: 10.1063/1.1407864

Following the research of Nagamatstial! of super-  but with increasing transport current the Lorentz force acting
conductivity at a temperature of 39 K in magnesium di-on the vortex will overcome this pinning. Consequently, for
boride, numerous groups have started to investigate MgBbias currents exceeding the critical currépt the vortices
due to its great potential for large current and electronic apwill move towards each other and finally annihilate. In the
plications. The reasons for the interest in using MdB  process of vortex motion an electric field is induced in the
superconducting electronics are manifold. The large chargdirection of the transport current and energy dissipation will
carrier density, the isotropy of the materidl,and the fact take place.
that grain boundaries in polycrystalline MgBre strong The Abrikosov vortices have a normal core of radés
links*® are important advantages as compared to the cuprate coherence length, which for Mgls reported to be 5.2
high-temperature superconductors. In comparison with them? For superconducting bridges that are smaller than a few
conventional metallic superconductors, Mgias the poten- times £, the normal core area in the bridge will act as a
tial for higher operation speed due to its larger energy®gap.Josephson weak link, with a characteristic relationship be-
Finally, the high transition temperature of MgBalbeit tween the supercurrent and the phase change of the macro-
lower than the transition temperature of the cuprates, faciliscopic wave function over the weak linkimportantly, also
tates cooling of superconducting electronic circuits by cryo-wider bridges can show a significant current-phase relation-
coolers. Essential for the realization of superconducting elecship, provided the width of the bridge is comparable to, or
tronics is the availability of high-quality thin films and the smaller than, the effective London penetration depth®’*®
technology to fabricate Josephson circuits in these filmsReported values for the bulk penetration depth for MgB
Several groups have succeeded recently in fabricating supefary from 140 to 180 nni? yielding an effective penetration
conducting MgB films.”~**The procedures used for this are, depth,\, =\ cotanh@l/2x ) of 230—360 nm for films with
however, not foreseen to be suited for the realization oft thicknessd of 200 nm.
trilayer Josephson junctions because of the postanneal step In @ superconducting ring, the total phase change of the
involved. Fortunately, aside from Josephson junctions that
include a barrier layer, also nanobridges can be employed as
the weak links in a superconducting quantum interference
device(SQUID).** In the following, we present the observa-
tion of Josephson quantum interference in MgBing two
superconducting nanobridges of 150 nm by 70 nm incorpo-
rated in a superconducting ring.

In Fig. 1, a scanning electron microscopy image of a
nanobridge in a MgB film is depicted. When a transport
current is directed through the bridge a magnetic field is
created, which can penetrate the superconductor in the form
of Abrikosov vortices if the field is larger than the lower
critical field (H.;). Two of such vortices, with opposite ori-
entation, will then be created simultaneously at the edges of
the bridge'® An edge-pinning force will act on the vortices,

dAuthor to whom correspondence should be addressed; electronic maiFIG. 1. Scanning electron microscopy image of a Mgfnobridge. The
d.h.a.blank@tn.utwente.nl width of the bridge is approximately 70 nm, the length 150 nm.
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FIG. 2. (a) Schematic layout of the SQUIDs affio) schematic cross section “\,
of the nanobridges. C{ 1000 | S ]
superconducting wave function when going around the hole sl ) .
is quantized in multiples of 2 With the nanobridges incor- '\_
porated in the ring, the phase change is composed of two .
contributions. The first is due to the current flow through the 0 . s . taa
nanobridgesA ¢, (11) andAg,(l,), with I, andl, the cur- 0 5 10 1 2 %
rents through bridges 1 and 2, respectively, and the second is T K

aS_SOCiated with the a_pplied ma_g_netic flidn the ring. With  Fig. 3. (@) Current-voltage characteristics of a SQUID &t 19K for
this, the quantization condition becomed¢;—A¢p, different values of the enclosed magnetic flux. In the inset, a hysteretic
+27(®/Py) =27k, with k an integral number and, the current—voltage characteristic is shown o 10 K; the kinks in the volt-

—15 . . age branch indicate the onset of additional channels for vortex ftes
elemental flux quantum=2.07x10 Tmz)' The ring is Refs. 17 and 1B (b) Critical current of the SQUID as function of tempera-

superconducting for bias currentgis=1;+1,, for which e The dashed line shows the theoretical fit.
this condition can be fulfilled. By varying the applied flux,
the maximal attainablé,;, to fulfill the quantization condi-
tion is modulated with a periot,. This critical current will ~ 0.30mn¥/C. The density of the Gaions has a Gaussian
be maximal when the enclosed flux equals a integral numbedistribution in the central part of the beam. The nanobridges
n times®, and is minimal for® = (n+1/2)d,. are made by letting two beam profiles partly overlap, which
For the fabricaton of the SQUIDs, first, thin films of 200 results in a reduced height of the bridge, as compared to the
nm MgB, were deposited on MgO substrates, by pulsed-lasegriginal film thickness. The dimensions of the fabricated
ablation in a two-stefin situ process: The MgB; is depos-  nanobridges are shown in Figl; the width is about 70 nm
ited at room temperature from a Mg-enriched Mglarget (FWHM) and the height of the nanobridges is approximately
and subsequently annealed at 600°C. The transition ten#50 nm. The length of the bridges is 150 nm. The dimensions
peratureT, of the as-deposited films is 24 R.These films of the bridge are determined from the known beam profile
are polycrystalline. This does not hamper the supercurrengnd analysis of scanning electron microscopy images.
since the grain boundaries in MgRct as strong link4> The electrical transport properties of the ring structure
The SQUID and contact paths were patterned in twovere measured in a four-point configuration in a shielded
steps. First, the coarse structures, including the squarerariable-temperature flow cryostat. The transition tempera-
washer SQUID ring and the contact leads were defined byure of the structure was found to be 22 K, comparable to the
standard photolithography and argon-ion-beam milling. Withoriginal T, value of the unpatterned film. In Figurda3 a
an acceleration voltage of 500 V, the ion milling under antypical example of the measured SQUID current—voltage
angle of 45° occurs at an etching rate of approximately Scharacteristics is shown for the two extremal values of the
A/s. The SQUID, with an estimated inductance of 60 pH,enclosed magnetic flux of the SQUID, at a temperaflire
consists of a square washer of 220um inner and 70 =19K. Above T=12K the current—voltage characteristics
X 70 um outer dimension and a>655um slit, as is shown are nonhysteretic, with a parabolic shape of the voltage
in Fig. 2(a). Further, the structure contains two striplines, 30branch. Below 2 K a hysteresis appears, as can be seen in
um long and 5um wide, into which, subsequently, nano- the inset of Fig. 8) where a current—voltage characteristic
bridges were structured by direct focused-ion-be@tB)  at 10 K is shown. This hysteresis is presumed to arise from
milling. Using a 25 kV Gd beam with a diameter of 50 nm the considerable heating of the bridges by the large bias cur-
[full width at half maximum(FWHM)] and a beam current rents needed at these temperatures. In Flg, e measured

of 40 pA, trenches are etched in the ms at a rate of critical current dependence on temperature is depicted. For a
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16 - - - - MgB, SQUID. This result is an essential step towards sen-
sors and electronic circuits based on this superconductor.
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