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Abstract This paper presents a mathematical model that provides a real-time
forecast of the number of COVID-19 patients admitted to the ward and the In-
tensive Care Unit (ICU) of a hospital based on the predicted inflow of patients,
their Length of Stay (LoS) in both the ward and the ICU as well as transfer of
patients between the ward and the ICU. The data required for this forecast is
obtained directly from the hospital’s data warehouse. The resulting algorithm is
tested on data from the first COVID-19 peak in the Netherlands, showing that
the prediction is very accurate. The forecast may be visualised in real-time in the
hospital’s control centre and is used in several Dutch hospitals during the second
COVID-19 peak.

Keywords COVID-19 · forecast · bed occupancy · network of infinite server
queues · Richards’ curve · Kaplan-Meier estimator

1 Introduction

The COVID-19 pandemic impacts people’s health, jobs and well-being and puts an
enormous strain on healthcare resources. This is also the case in the Netherlands,
where hospital resources are under pressure due to the large number of hospitalised
COVID-19 patients, which moreover results in reduction of resources available
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for non-COVID-19 patients [25]. An accurate forecast of the number of COVID-
19 patients being hospitalised supports allocation of the resources required for
treatment of both COVID-19 and non-COVID-19 patients. This paper presents a
mathematical model that provides a real-time forecast of the number of COVID-
19 patients admitted to the ward and the Intensive Care Unit (ICU) of a hospital
based on the predicted inflow of patients, their Length of Stay (LoS) in both the
ward and the ICU as well as transfer of patients between the ward and the ICU.
The data required for this forecast is obtained directly from the hospital’s data
warehouse and the forecast is available to the hospital in real-time.

Forecasting the number of hospitalised COVID-19 patients is required to determine
the resource allocation to COVID-19 and non-COVID-19 patients. A COVID-19
patient’s medical condition may change rapidly and unexpectedly [20]. As a con-
sequence, it is not possible to accurately forecast the COVID-19 patients’ resource
requirements many days ahead of time [12]. We therefore focus on forecasting the
number of hospitalised COVID-19 patients one to five days ahead of time. In par-
ticular, we are interested in forecasting the mean number of patients present and
the risk of bed shortage, expressed as the probability that the maximum number
of COVID-19 patients in the ward and ICU exceeds a pre-specified safety level.
Several studies have demonstrated the Erlang loss model (or M/G/c/c queue) to
be suitable for dimensioning of isolated wards (e.g., [5, 28]) and ICUs (e.g., [2, 6]).
Such models typically assume constant arrival rates and LoS distributions. In our
context, however, the LoSs of patients may vary over time due to improved treat-
ment, arrivals of patients are non-stationary, and patients may transfer between
ward and ICU. In such settings with time-varying load, a network of Erlang loss
queues can well be approximated by a network of infinite server queues [1, 18],
either using a Pointwise Stationary Approximation or a Modified Offered Load
Approximation. The advantage of this approximation is that it allows explicit
evaluation of performance measures. Hence, for our case, the most suitable model
is a network of two infinite server queues with time-varying Poisson arrivals and
generally distributed time-varying LoSs. We build upon the results for networks
of infinite server queues as presented in [4, 18, 26] to allow for time-varying arrival
rates and patient-specific time-varying LoS distributions.

With data on COVID-19 patients becoming more and more available, prediction of
the infection rate a few days ahead of time [10, 30], and of the LoS [21] is possible.
Predictions of the number of hospitalised COVID-19 patients based on regression
methods are, e.g., reported in [7, 8, 17]. The LoS distribution of COVID-19 ICU
patients in the United Kingdom is fitted to probability distributions in [27]. Our
model combines such predictions to forecast the number of patients residing in the
COVID-19 ward and ICU. We have chosen to predict the arrival rates and LoS
directly from the hospital’s data warehouse as external data does not represent
the case mix of the hospital. Our method requires a complete set of time stamps
for patient admissions, transfers and discharges that is made available by the
participating hospitals. We use a Richards’ curve [24] to predict the arrival rates.
The Richards’ curve is a growth model that can be used to describe the cumulative
total number of hospitalised COVID-19 patients, i.e., ward and ICU combined. The
Richards’ curve was introduced to describe processes in biological systems, but has
recently gained popularity in predicting the outbreak of diseases. For instance, the
Richards’ curve has been successfully applied to predict the daily number of new
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COVID-19 infection cases in (provinces of) China and countries in Europe [15, 30].
We estimate the distribution of the LoS in both the COVID-19 ward and ICU
using a Kaplan-Meier estimator [13]. Analytical evaluation of the exact expressions
for the rates of the time-dependent distribution of bed occupancy is prohibitive.
Therefore, in our forecasting algorithm we use a Monte-Carlo method to sample
from the LoS distribution. We forecast the mean number of patients present and
the risk of bed shortage, expressed as the maximum number of COVID-19 patients
at the ward and ICU at a number of subsequent days, including the corresponding
prediction intervals. In particular, we sample the patient trajectories in the Poisson
Arrival Location Model [18] that determines the queue occupancy in our network
of infinite server queues. As such, our approach may be viewed as a data-driven
approach that predicts the number of hospitalised COVID-19 patients based on
estimated arrival rates and LoSs, justified by an underlying queueing model. The
algorithm is implemented in R version 3.6.3 and first tested on data from the
first COVID-19 peak for four hospitals in the Netherlands. The forecast is found
to be very accurate.

Forecasting the number of hospitalised COVID-19 patients is difficult [12]. As
stated above, various approaches exist based on regression methods [7, 8, 10, 17,
30], and on estimation of the LoS [21, 27]. The key to the accuracy of our forecast
is that admissions are predicted according to a growth curve, which has strong
links with the Susceptible-Exposed-Infected-Recovered (SEIR) model [19], while
also taking the joint effect of the arrival rates and the LoS into account via the
underlying network of infinite server queues. This enables evaluation of the future
evolution of bed occupancy via the trajectories of the Poisson Arrival Location
Model, taking into account patient admissions, transfers and discharges. The al-
gorithm currently runs in four hospitals to forecast the number of hospitalised
COVID-19 patients during the second peak the Netherlands is currently facing.

This paper is organised as follows. Section 2 presents our modelling assumptions
and the network of two infinite server queues that we propose to forecast the num-
ber of hospitalised COVID-19 patients. Section 3 describes the statistical forecast-
ing approach used in our method, and Section 4 presents forecasts for our method
using data of the first COVID-19 peak in the Netherlands. Occupancy is most
easily forecast in a large hospital with a homogeneous patient mix. In Section 4,
we present forecasting results for a medium-sized, academic hospital as well as for
a number of larger hospitals, and reflect on the accuracy of our forecasts. Finally,
Section 5 wraps up the paper with concluding remarks and our aims for further
research: extending our model to a regional prediction model including patient
transfers between hospitals.

2 Model

Upon COVID-19 infection, some patients develop mild or no symptoms,
whereas others develop symptoms that require hospitalisation at either the ward
or Intensive Care Unit (ICU) depending on, e.g., the need for artificial respiration
[11, 20]. While hospitalised, a patient’s condition may worsen, resulting in a trans-
fer from the ward to the ICU or death, or a patient may recover, resulting in a
transfer from ICU to ward or a discharge from the ward. Some patients admitted
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to the ward have treatment restrictions that prohibit transfer from ward to ICU.
As COVID-19 is a relatively new disease, the evolution of a patient’s condition
and the effect of treatment are still under investigation. A patient’s Length of
Stay (LoS) at the ward or ICU may depend on patient characteristics such as age,
gender, length, BMI and treatment restrictions, may differ considerably between
hospitals due to different treatment protocols or differences in case mix, and may
also change over time due to, e.g., improved treatment [3, 20, 21]. Therefore, we
estimate the distribution of the LoS and the probability of patient transfers be-
tween ward and ICU from the data on COVID-19 patients in the hospital’s data
warehouse. Arrivals of new patients are influenced by the number of infections in
the hospital’s region, and also by the characteristics of the hospital, e.g., more
severely ill patients will be admitted to university medical centres, whereas less ill
patients may be treated in local hospitals and may be transferred if their condition
worsens. Therefore, we predict the rate of admittance of COVID-19 patients from
the hospital’s data warehouse record of earlier admissions. Figure 1 depicts the
flow of patients in the COVID-19 ward and ICU.

We now develop a network of two infinite server queues with multiple patient-types,
time-dependent arrival process, and general and time-dependent LoS that records
the number of hospitalised patients. Consider a hospital that admits COVID-
19 patients to its ward and ICU. The arrival rate of patients is determined by
the number infected in the hospital’s region and a consequence of the infection
rate in that region. In agreement with arrivals to Emergency Departments, the
arrival process may be modelled as a Poisson process with time-dependent rate
[29]. Consider a set C of patient characteristics, including, e.g., age, length, BMI,

COVID-19 ward

ICU

Fig. 1: Patient flows.
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and treatment restrictions. Let patients with characteristics c ∈ C arrive with rate
λc(t), where t denotes time. A fraction pc(t) of these patients is admitted to the
ward, the other patients are admitted to the ICU. Let random variables LcW (t)
and LcI(t) denote the LoS of a patient with characteristics c ∈ C admitted or
transferred to the ward and ICU, respectively, at time t. Let qcW (t), qcI(t) denote
the probability that a patient admitted or transferred to the ward or ICU at time
t is discharged or dies. Then 1 − qcW (t) and 1 − qcI(t) are the probabilities of
transfer from ward to ICU and vice versa upon completion of the LoS. We assume
that patients do not interfere with each other, hence that all random variables
related to patients’ arrival, transfer, and LoS are independent.

Characteristics of a patient’s LoS and transfer probabilities are related to the time
the patient is admitted. Therefore, we may incorporate these characteristics in the
set C. As a consequence, we may model the system as a network of two infinite
server queues with multiple job-types, time-varying arrival rates and general LoS
distribution. To this end, let NcW (t) and NcI(t) record the number of patients
with characteristics c at time t in the ward and ICU, respectively. These random
variables have a time-dependent Poisson distribution, for ncW , ncI = 0, 1, 2 . . .:

P[NcW (t) = ncW , NcI(t) = ncI ] =
ρcW (t)ncW

ncW !

ρcI(t)
ncI

ncI !
e−(ρcW (t)+ρcI(t)), (1)

where the means ρcW (t), ρcI(t) are, in closed-form, determined by λc(t), pc(t),
LcW (t), LcI(t), qcW (t) and qcI(t), via the Poisson Arrival Location Model, as
integrals over a location function, see [18, Theorem 2.1]. If the LoSs are exponen-
tially distributed with rates µcW and µcI at the ward and ICU, then the means
ρcW (t), ρcI(t) may be obtained from

1

µcW

dρcW (t)

dt
= λc(t)(1− pc(t)) + ρcI(t)(1− qcI(t))− ρcW (t),

1

µcI

dρcI(t)

dt
= λc(t)pc(t) + ρcW (t)(1− qcW (t))− ρcI(t),

with initial conditions

ρcW (0) = ρ∗cW , ρcI(0) = ρ∗cI , (2)

that reflect the current number of hospitalised patients in the ward and ICU at the
starting time 0 of our forecasting period [4]. If the LoS has a general distribution
not depending on the arrival time of the patients, and transfer probabilities do not
depend on time, the means ρcW (t), ρcI(t) are obtained as

ρcW (t) = E
[∫ t

t−LcW

λ+cW (u)du

]
, (3)

ρcI(t) = E
[∫ t

t−LcI

λ+cI(u)du

]
, (4)

with

λ+cW (t) = λc(t)pc(t) + E
[
λ+cI(t− LcI)

]
(1− qcI),

λ+cI(t) = λc(t)(1− pc(t)) + E
[
λ+cW (t− LcW )

]
(1− qcW ),
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see [18, Theorem 1.2]. In our network of ward and ICU with time-varying LoS
and transfer probabilities, the expressions for ρcW (t), ρcI(t) are more involved.
Moreover, the arrival rates, LoS distributions and transfer probabilities are not
available in closed form, which prohibits evaluation of the expectations in (3), (4).
Therefore, we do not provide an explicit expression for these means in the general
case. In Section 3 we provide an algorithm that predicts the arrival rates and
estimates the LoSs and transfer probabilities from the hospital’s data warehouse.
Subsequently, we use these system parameters to sample the patient trajectories of
the Poisson Arrival Location Model resulting in a forecast of ρcW (t), ρcI(t) given
the initial Poisson distribution of the number of patients as reflected by the initial
condition (2) and the residual LoS of these patients.

The distribution of the total number of patients at the ward and ICU is now
readily obtained. To this end, let NW (t) and NI(t) record the total number of
patients in the ward and ICU, respectively, at time t. These random variables
have a time-dependent Poisson distribution, for nW , nI = 0, 1, 2 . . .:

P[NW (t) = nW , NI(t) = nI ] =
ρW (t)nW

nW !

ρI(t)
nI

nI !
e−(ρW (t)+ρI(t)), (5)

with

ρW (t) =
∑
c∈C

ρcW (t), ρI(t) =
∑
c∈C

ρcI(t).

Observe from (5) that at each time t the random variables NW (t), NI(t) are
independent. However, for different time points, say t1 and t2, the random variables
NW (t1), NI(t2) are correlated, see [18, Theorem 2.2].

The Poisson distributions for the number of hospitalised patients (1), (5) allow us
to evaluate various performance measures. Let LW (s), LI(s) be tuples of realised
LoSs (up to time s) of patients residing in the ward and ICU, respectively. These
tuples contain information on the number of patients in the ward and ICU, their
patient characteristics c, and how long they have been in the ward and ICU at
time s. We aim to forecast the occupancy at the ward and ICU at time s+ t given
the LoSs of the residing patients at time s:

E[NW (s+ t) | LW (s) = `W ,LI(s) = `I ],

E[NI(s+ t) | LW (s) = `W ,LI(s) = `I ]. (6)

Furthermore, for a confidence level α ∈ [0, 1], we are interested in the quantiles

lαW (s+ t), rαW (s+ t), lαI(s+ t), rαI(s+ t) (7)

such that

P
[
NW (s+ t) ∈ [lαW (s+ t), rαW (s+ t)) | LW (s) = `W ,LI(s) = `I

]
≥ α,

P
[
NI(s+ t) ∈ [lαI(s+ t), rαI(s+ t)) | LW (s) = `W ,LI(s) = `I

]
≥ α. (8)

These quantiles give conditional level α prediction intervals for the occupancy of
the ward and ICU at time s+t, conditional on all LoS information of the currently
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residing patients. A forecast of the expected maximum occupancy at the ward and
ICU from time s up to time s+ t is:

E
[

max
u∈[s,s+t]

NW (u) | LW (s) = `W ,LI(s) = `I

]
,

E
[

max
u∈[s,s+t]

NI(u) | LW (s) = `W ,LI(s) = `I

]
. (9)

For some confidence level α ∈ [0, 1], we are interested in the quantiles

lαmW (s+ t), rαmW (s+ t), lαmI(s+ t), rαmI(s+ t), (10)

such that

P
[

max
u∈[s,s+t]

NW (u) ∈ [lαmW (s+ t), rαmW (s+ t)) | LW (s) = `W ,LI(s) = `I

]
≥ α,

(11)

P
[

max
u∈[s,s+t]

NI(u) ∈ [lαmI(s+ t), rαmI(s+ t)) | LW (s) = `W ,LI(s) = `I

]
≥ α.

(12)

These quantiles give conditional level α prediction intervals for the maximum
occupancy of the ward and ICU during the interval [s, s+ t], that is of particular
interest for the decision to accept new COVID-19 patients. Other performance
measures, including the mixture of patients in the ward and ICU at each time t,
may be obtained from (1).

3 On-line forecasting method

This section provides a procedure to predict the arrival rates (Section 3.1) and
estimate the LoS distribution and transfer probabilities (Section 3.2) from the
hospital’s data warehouse. In Section 3.3 we use these system parameters to sample
the patient trajectories of the Poisson Arrival Location Model resulting in forecasts
of the daily occupancy and the maximum occupancy, including their prediction
intervals.

3.1 Richards’ curve to predict the arrival rate

Our forecasting method requires λ(t), the expected number of arrivals of patients
to the hospital at time t. In accordance with literature [15] the cumulative rate
follows a 5-parameter Richards’ curve:

Λ(t) =

∫ t

−∞
λ(s)ds =

R− L
[1 + δ exp(−k(t− t0))]1/δ

+ L, (13)

where all parameters R, δ, k, t0 are positive, resulting in an S-shaped growth curve
for the expected number of arrivals up to time t. The parameters have the following
interpretations: R represents the total number of arrivals (indeed limt→∞ Λ(t) =
R), k is a scale parameter related to the growth rate, t0 determines the offset
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along the t-axis, δ is a shape parameter that introduces asymmetry and L is a left
asymptote of Λ(t). If δ = 1, the resulting growth curve is the logistic growth curve
that describes the fraction of infected people in a Susceptible-Infected-Susceptible
(SIS) compartmental model [9].

The Richards’ curve is fitted on the cumulative number of arrivals using the R

package FlexParamCurve version 1.5-5 [22] via the following procedure. Our goal
is to predict the occupancy of the ward and ICU on a daily basis. To this end,
the number of arrivals of COVID-19 patients with characteristics c is determined
for each day from the hospital’s data warehouse. The parameters of the Richards’
curve are estimated minimising the sum of squared errors between the cumulative
number of arrivals on each day and the expression in the right-hand side of (13) at
that day using the Gauss-Newton algorithm, similar to [30] (that uses a different
algorithm to minimise the sum of squared errors). For some sets of arrival data, the
nonlinear least squares method fails to converge due to over-parameterisation. In
this case, the procedure first fixes the parameter L to 0 (leading to a 4-parameter
Richards’ curve). If this also does not lead to convergence, the parameter δ is fixed
to 1, in which case the procedure fits a logistic growth curve on the arrival data.
This procedure results in an estimate Λ̃(d) for the expected cumulative number of
arrived COVID-19 patients on any given day d. This daily estimate is then linearly
interpolated to generate a cumulative arrival intensity Λ̂(t) which can be evaluated
at each time point t. Let p̂ denote the empirically estimated probability pc(t) that a
patient with characteristics c is admitted to the ward at time t, which is assumed
stationary and equal for all patient types. Let fc be the empirically estimated
fraction of patients with characteristics c that arrive directly to the hospital. The
cumulative arrival rate Λc(t) of patients with characteristics c arriving directly
to the hospital is then estimated as Λc(t) = fcΛ(t) for all t, and the cumulative
arrival rates to the ward and ICU are estimated as fcp̂Λ(t) and fc(1− p̂)Λ(t) for
all t.

3.2 Kaplan-Meier estimation of the LoS distribution and transfer probabilities

Our forecasting method requires the LoS distribution FcW at the ward and FcI
at the ICU for all patient characteristics c. We use the Kaplan-Meier estimator
[13] for the survival function that takes right-censored observations into account,
which occur when a patient is still at the respective department or when a patient
is transferred to another hospital. Our goal is to predict the occupancy at the ward
and ICU on a daily basis. The estimated LoS distribution gives the probability
that a patient is at the department at most a certain number of days. Let ecW (u),
resp. ecI(u), denote the number of patients with characteristics c at the ward,
resp. ICU, with a realised LoS equal to u. Let ncW (u), ncI(u) denote the number
of patients with characteristics c that are still being treated at the ward, ICU after
u− 1 days. The Kaplan-Meier estimates for the LoS distribution at the ward and
ICU are then given by [13]:

F̂cW (`) = 1−
∏̀
u=1

(
1− ecW (u)

ncW (u)

)
, F̂cI(`) = 1−

∏̀
u=1

(
1− ecI(u)

ncI(u)

)
.
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Our method requires the probabilities qcW (`) (qcI(`)) for a patient with charac-
teristics c transferring from the ward (ICU) to the ICU (ward) after completing a
LoS of ` days at the ward (ICU) that are estimated as follows. Let F̂cIW (`) denote
the empirical probability that a patient with characteristics c is transferred from
the ICU to the ward after a LoS of ` days at the ICU, and let F̂cWI(`) be defined
similarly for a patient transferring from ward to ICU. The probabilities qcW (`)
and qcI(`) are estimated as

q̂cW (`) =
F̂cWI(`)− F̂cWI(`− 1)

F̂cW (`)− F̂cW (`− 1)
, q̂cI(`) =

F̂cIW (`)− F̂cIW (`− 1)

F̂cI(`)− F̂cI(`− 1)
.

3.3 Generation of the PALM and forecasting ward and ICU bed occupancy

This section presents our method to sample the patient trajectories of the Pois-
son Arrival Location Model (PALM) resulting in (for instance) forecasts of the
conditional means shown in (6). Our method simulates the PALM using Monte
Carlo sampling of arrivals, transfers and departures of patients over the forecasting
period [s, s+ t]. We restrict the trajectories to:

1. patients admitted to the ward that leave the hospital from the ward,

2. patients admitted to the ICU that leave the hospital from the ICU,

3. patients admitted to the ICU, then transferred to the ward and leave the
hospital from the ward,

4. patients admitted to the ward, then transferred to the ICU and leave the
hospital from the ICU.

As a consequence, in our simulation method a patient may visit at most two
departments. This restriction is introduced to reduce computational complexity
as it avoids a large number of possible patient trajectories. The restriction has
a minor effect on our results, as data shows that multiple transfers are very rare
during our forecasting horizon of one week. In the description of our method below,
we identify the patient characteristics c with the trajectories. Note that randomly
assigning patients to these trajectories is equivalent to random selection of transfer
or discharge/death upon completion of the LoS at a department, see, e.g., [14, p.
64].

All parameters required for our sampling method are obtained from the hospital’s
data warehouse as presented in Sections 3.1 and 3.2.

For each time u in the forecasting period [s, s + t], arrivals of new patients with
characteristics c are sampled according to a non-homogeneous Poisson process
with cumulative rate equal to fcp̂Λ̂(u) for the ward and fc(1− p̂)Λ̂(u) for the ICU,
where the cumulative total arrival rate Λ̂(u) is extrapolated from the Richards’
curve based on the hospital’s data up to the start of the forecasting period at time
s. The sampling procedure is executed until the next arrival time exceeds s + t.
Sampling of inter-arrival times is executed by inverse transformation sampling
based on the cumulative arrival rates (see, e.g., [23, p. 312]).
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Departure times are generated upon the arrival/transfer of patients and is done
by inverse sampling with replacement under the estimated empirical LoS distribu-
tions for that combination of patient characteristics and department. These LoS
distributions are estimated on all LoS data obtained before the start of the fore-
casting period at time s. Note that for this specification of patient characteristics,
the probability q̂cI (resp. q̂cW ) of transfer from the ICU to the ward (resp. ward
to ICU) is either always equal to zero or equal to one, depending on whether the
patient is of type 3 that is admitted to the ICU and then transfers to the ward
(resp. type 4). We do not distinguish the LoS distributions for patients of type
2 and 4 at the ICU, i.e., we assume that F2I = F4I . Similarly, we assume that
F1W = F3W .

For patients residing at the hospital at time s, the patient type is first sampled
based on a patient’s current realised LoS `. Conditional sampling is based on the
ratio between Kaplan-Meier Survival function estimates of general patients resid-
ing in the current department and the Kaplan-Meier Survival function estimate
of patients being transferred to the other department. For instance, for a patient
currently residing at the ICU with current LoS equal to `, the probability that
this patient is assigned type 3 is equal to

1− F̂IW (`)

1− F̂I(`)
,

where F̂I is a Kaplan-Meier estimate of the LoS distribution at the ICU for a
general patient, i.e., estimated on all LoS data at the ICU.

The LoS for these currently residing patients is then sampled from the empirical
conditional LoS distribution for the sampled patient’s type, where the conditioning
is done on the already realised LoS. For example, if the patient is assigned type 2
and has a current LoS of `2 days at the ICU, the total LoS of this patient at the
ICU is sampled from the cumulative distribution:

F̂2I(`1|`2) =
F̂2I(`1)− F̂2I(`2 − 1)

1− F̂2I(`2 − 1)
∀`1.

In order to keep track of the PALM, NI(s) and NW (s) are first determined. Then,
at each simulated arrival, transfer or departure before time s+ t, the counters are
updated according to the nature of the event. This results in a registered occupancy
for both departments at each time point in the forecasting period [s, s + t]. The
occupancy at a given day at a department is now calculated as the number of
patients at the department at the start of that day.

The simulation procedure is repeated 1, 000 times in order to accurately estimate
the statistics mentioned at the end of Section 2. In order to estimate the expected
values at day s + t in (6), the average of the number of patients on day s + t at
both departments is taken over all simulations runs. Next, in order to estimate the
boundaries in (7) for a given day s+ t, the respective empirical quantiles are taken
over the simulated occupancy on that day for both departments. Furthermore, in
order to determine the expressions in (9) and (10), the maximum occupancy is
determined for both departments from the forecast date (time s) until the end of
the forecasting horizon (time s+t). Then, to determine (9) and (10), the empirical
mean and quantiles are determined.
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4 COVID-19 bed occupancy: case studies and evaluation

This section presents the results of our forecasting method detailed in Section 3 for
four Dutch hospitals. Section 4.1 presents results for the Leiden University Medi-
cal Centre (LUMC), a medium-sized academic hospital. Subsequently, we present
results for the larger general hospitals HagaZiekenhuis (Section 4.2), Rijnstate
(Section 4.3), and Elisabeth-TweeSteden Ziekenhuis (Section 4.4). In Section 4.5,
we compare these forecasts, elaborate on the quality of our forecasts and provide
a statistical evaluation of our forecasting method.

Fig. 2: Extract of the input data for our model, where the name of the hospital,
patient identification number, as well as patient characteristics such as age, BMI
and gender have been removed for privacy reasons. Care facility denotes a long
term care facility outside the hospital.

Our forecasting method requires a complete record of time stamps for patient
admissions, transfers and discharges that we obtained from all hospitals included
in this paper. Figure 2 shows an extract of the input table, where the name of
the hospital, patient identification number, as well as patient characteristics have
been removed for privacy reasons. The rows of this table describe the trajectory of
the patient at either the ward or the ICU. The patient ID is replaced by a number
in the first column. The next two columns describe the Origin and Destination
of the patient before and after his/her stay at the current department, while the
last column indicates whether the current department is ICU (yes) or ward (no).
The fourth and fifth columns give information about the start and end time of
the patient’s stay at the current department. In this table, the trajectory of the
patient is explicitly characterised. For example, patient nr. 5 is admitted to the
ICU on March 15 at 22:15 from his/her own home environment, transferred to
the ward on March 16 at 13:51 and discharged from the ward to return to his/her
home environment on March 18 at 14:49.

Using the method described in Section 3.3, the PALM is simulated 1,000 times. In
the figures in this section, performance measures of the true occupancy (at the start
of each day, depicted in red) are compared with these measures forecast by our
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method. The graphs in this section report estimates of the following performance
measures:

– Expanding window forecasts of the bed occupancy at the ward and ICU 1, 2,
3 and 5 days ahead:

E[NW (s+ t) | LW (s) = `W ,LI(s) = `I ], (14)

E[NI(s+ t) | LW (s) = `W ,LI(s) = `I ], (15)

where s is the current day and t = 1, 2, 3, and 5 the forecasting horizon for
which the bed occupancy is forecast. These expected values are estimated by
taking the average of the occupancy at both departments for all 1,000 PALM
simulations at t = 1, 2, 3 and 5 days. The forecasts are obtained using an
expanding window procedure. This means that for each day, the forecasts are
generated using only the data (e.g. arrivals, transfers and departures) up to
that day. After predicting the daily occupancy at a given date, the date is
incremented by one day, i.e., s → s + 1 and the forecasts are generated using
all data up to that new date.

The graphs show, for a certain period, the forecasts of the occupancy at 1, 2,
3 and 5 days ahead, as well as the realised daily occupancy.

– The corresponding 95% prediction interval 3 days ahead based on (8). These
quantiles are estimated by taking the empirical quantiles of level 1/2−α/2 and
1/2+α/2 of the occupancy at both departments for all 1,000 PALM simulations
at t = 3 days ahead for each day s in the forecasting period.

– Expanding window forecasts of the maximum expected occupancy at the ward
and ICU for forecasting horizon t

E
[

max
u∈[s,s+t]

NW (u) | LW (s) = `W ,LI(s) = `I

]
, (16)

E
[

max
u∈[s,s+t]

NI(u) | LW (s) = `W ,LI(s) = `I

]
. (17)

These expected values are estimated by taking the average of the maximum
occupancy realised for all 1,000 PALM simulations in the interval [s, s+ t].

– The corresponding 95% prediction interval 3 days ahead based on (11), (12).
These quantiles are estimated by taking the empirical quantiles at levels 1/2−
α/2 and 1/2 + α/2 of the maximum occupancy, at both departments for all
1,000 PALM simulations in the interval [s, s+ t] for t = 3 for each day s in the
forecasting period.

The expected daily bed occupancy, along with its quantiles, can be used to visualise
the expected evolution of the occupancy at both COVID-19 ward and ICU.

The maximum expected occupancy in a certain forecasting period of [s, s + t]
days expresses the risk of overcrowding of the ward and ICU in the next t days.
These forecasts can be used to evaluate the expected minimally required number of
available beds in the next days. The maximum expected occupancy is an important
performance measure to control admittance of COVID-19 patients to a hospital
at both ward and ICU.
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In the following sections, six figures are shown for each hospital. The left-hand fig-
ures consider occupancy at the ICU and the right-hand figures consider occupancy
at the ward. For all figures, the patients transferred from other hospitals are ex-
cluded from the calculation of the occupancy. This is because the predicted arrival
rate only pertains to autonomous arrivals to the hospital. In the figures in the top
row, expanding window forecasts of the daily occupancy are shown for each day
s. Furthermore, for each day s, the forecast at day s− t of the occupancy at day
s is shown for forecast horizons t. The realised occupancy at those dates is shown
in red. In the top row, the forecasts are shown without prediction intervals. For
the LUMC, forecasts for horizons t = 1, 2, 3 and 5 days are shown. For the other
hospitals, forecasts for the horizons t = 1 and 3 are shown only, to enhance the
clarity of the figures. The colours for forecast horizon t = 1, 2, 3 and 5 are orange,
cyan, blue and purple, respectively. The figures in the middle row display the ex-
panding window forecasts for daily occupancy at forecast horizon t = 3 including
the 95% prediction interval. The figures in the bottom row show the expanding
window forecasts of the maximum expected occupancy for a forecast horizon of
t = 3 days.

4.1 Leiden University Medical Centre

Leiden University Medical Centre (LUMC) is an academic hospital in Leiden.
Together with the other general hospitals in the region, it serves a community of
around two million people in an urban area in the south-west of the Netherlands.
The main focus of the LUMC is top clinical and highly specialised care. It is the
smallest and oldest of the eight academic hospitals in the Netherlands.

Figure 3 presents our forecasts for the LUMC for the period April 15, 2020 until
July 10, 2020, the second part of the first COVID-19 peak in this region. The first
COVID-19 patient arrived at the LUMC on March 3, 2020. Hence at the start
of the forecast interval, 1.5 months of data is available on the arrival rates and
LoSs of COVID-19 patients, including 99 (30) COVID-19 patients that had left
the ward (ICU) before then.

4.2 HagaZiekenhuis

HagaZiekenhuis (Haga) is a top clinical hospital in The Hague with 600 beds
and approximately 29,000 inpatient admissions per year. Next to secondary care,
top clinical hospitals in the Netherlands also provide tertiary care for particular
patient groups that the hospital specialises in. Moreover, top clinical hospitals
play an important role in the education of medical professionals, and perform
clinical research. Haga is located in the same urban area in the south-west of the
Netherlands as the LUMC.

Figure 4 presents our forecasts for Haga for the period March 30, 2020 until July
10, 2020, the second part of the first COVID-19 peak in this region. The first
COVID-19 patient arrived at Haga on March 5, 2020. Hence at the start of the
forecast interval, 25 days of data is available on the arrival rates and LoSs of
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Fig. 3: Leiden University Medical Centre April 15, 2020 until July 10, 2020.
Top row: expanding window forecasts 1, 2, 3 and 5 days ahead at the COVID-19
ICU (left) and ward (right).
Middle row: expanding window forecasts 3 days ahead at the COVID-19 ICU (left)
and ward (right), along with a 95% prediction interval.
Bottom row: expanding window forecasts of the maximum occupancy, including
the 95% prediction interval and realised maximum occupancy of patients at the
COVID-19 ICU (left) and ward (right) over the last 3 days.
The realised occupancy is shown in red, while the forecasts for 1, 2, 3 and 5 days
ahead are shown in orange, cyan, blue and purple respectively.
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COVID-19 patients, including 40 (5) COVID-19 patients that had left the ward
(ICU) before then.

4.3 Rijnstate

Rijnstate is a top clinical hospital in Arnhem with 766 beds and approximately
33,000 inpatient admissions per year. Rijnstate serves a community of 450 thou-
sand people in and around Arnhem, a city in the east of the Netherlands.

Figure 5 presents our forecasts for Rijnstate for the period March 30, 2020 until
July 10, 2020, the second part of the first COVID-19 peak in this region. The first
COVID-19 patient arrived at Rijnstate on March 3, 2020. Hence at the start of
the forecast interval, approximately one month of data is available on the arrival
rates and LoSs of COVID-19 patients, including 157 (7) COVID-19 patients that
had left the ward (ICU) before then.

4.4 Elisabeth-TweeSteden Ziekenhuis

Elisabeth-TweeSteden Ziekenhuis (ETZ) is a top clinical hospital in Tilburg with
782 beds and approximately 37,000 inpatient admissions per year. Tilburg is a city
in North-Brabant, the province that experienced the initial outbreak of COVID-19
in the Netherlands at the end of February, 2020. As a consequence, ETZ was the
first Dutch hospital to admit a COVID-19 patient. Just like HagaZiekenhuis and
Rijnstate, ETZ is a top clinical hospital.

Figure 6 presents our forecasts for ETZ for the period March 23, 2020 until July
10, 2020, the second part of the first COVID-19 peak in this region. The first
COVID-19 patient arrived at ETZ on February 28, 2020. Hence at the start of the
forecast interval, almost one month of data is available on the arrival rates and
LoSs of COVID-19 patients, including 104 (24) COVID-19 patients that had left
the ward (ICU) before then.

4.5 Evaluation of our method

In this section, we discuss the results presented in Sections 4.1 through 4.4. More-
over, we compare the performance of our forecasting method to the performance
of a moving average forecaster for all four hospitals.

When investigating trends in the COVID-19 occupancy during the first peak, we
see a very similar trend for the LUMC (Figure 3) and Haga (Figure 4), which
is natural as these two hospital are located in the same region. ETZ (Figure 6)
has the earliest and highest peak and also admitted the highest total number of
COVID-19 patients, because ETZ is located in North-Brabant, the region that
was hit first and hardest during the first COVID-19 peak in the Netherlands. In
Rijnstate (Figure 5) the first COVID-19 peak ended the latest.

Naturally, the accuracy of forecasts increases when forecasts are made at a point
in time that is closer to the actual realisation. This can clearly be seen in the top
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Fig. 4: HagaZiekenhuis March 30, 2020 until July 10, 2020.
Top row: expanding window forecasts 1 and 3 days ahead at the COVID-19 ICU
(left) and ward (right).
Middle row: expanding window forecasts 3 days ahead at the COVID-19 ICU (left)
and ward (right), along with a 95% prediction interval.
Bottom row: expanding window forecasts of the maximum occupancy, including
the 95% prediction interval and realised maximum occupancy of patients at the
COVID-19 ICU (left) and ward (right) over the last 3 days.
The realised occupancy is shown in red, while the forecasts for 1 and 3 days ahead
are shown in orange and blue respectively.
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Fig. 5: Rijnstate March 30, 2020 until July 10, 2020.
Top row: expanding window forecasts 1 and 3 days ahead at the COVID-19 ICU
(left) and ward (right).
Middle row: expanding window forecasts 3 days ahead at the COVID-19 ICU (left)
and ward (right), along with a 95% prediction interval.
Bottom row: expanding window forecasts of the maximum occupancy, including
the 95% prediction interval and realised maximum occupancy of patients at the
COVID-19 ICU (left) and ward (right) over the last 3 days.
The realised occupancy is shown in red, while the forecasts for 1 and 3 days ahead
are shown in orange and blue respectively.
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Fig. 6: Elisabeth-TweeSteden Ziekenhuis March 23, 2020 until July 10, 2020.
Top row: expanding window forecasts 1 and 3 days ahead at the COVID-19 ICU
(left) and ward (right).
Middle row: expanding window forecasts 3 days ahead at the COVID-19 ICU (left)
and ward (right), along with a 95% prediction interval.
Bottom row: expanding window forecasts of the maximum occupancy, including
the 95% prediction interval and realised maximum occupancy of patients at the
COVID-19 ICU (left) and ward (right) over the last 3 days.
The realised occupancy is shown in red, while the forecasts for 1 and 3 days ahead
are shown in orange and blue respectively.
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rows of Figures 3 through 6. In particular, the top row of Figure 3 shows that our
expanding window forecasts 1 day ahead are very accurate, while the accuracy
reduces for forecasts 5 days ahead. One of the reasons is that the 1-day forecast is
able to pick up sudden changes in the trend the next day, whereas this obviously
takes five days for the 5-day forecast. This is, for example, visible in the top-
right graph of Figure 3 when, half May, the downward trend changes to a sudden
peak. Similar effects are visible in the same graph at the end of May and also in
Figures 4 through 6 with a sudden decline in the number of hospitalised patients.
This delay in picking up sudden changes in the trend also results in larger over-
or undershoots for the forecasts further into the future.

The top and middle rows of the figures also show clearly that the accuracy of
forecasts increases for larger population sizes. ETZ has seen the highest number
of COVID-19 patients on its ward and ICU during the first peak, and indeed the
middle row of Figure 6 displays narrow confidence intervals that often contain the
realisation. LUMC (Figure 3) and Rijnstate (Figure 5) saw the smallest number
of COVID-19 ward and ICU patients, respectively, resulting in broader confidence
intervals that contain the realisation less often.

In contrast to the forecasts of the daily occupancy that we just discussed, the
forecast of the maximum occupancy 3 days ahead of time is spot-on, as displayed
in the bottom rows of Figures 3 through 6. This is exactly the forecast that is most
valuable for hospitals, as it provides quantitative support for several decisions,
for example on the admittance of additional COVID-19 patients, the necessity of
COVID-19 patient transfers to other hospitals, and the (im)possibility of providing
care for non-COVID-19 patients.

Table 1 displays error measures for our forecasting method and also for a mov-
ing average forecaster, which enables us to compare the results. For the moving
average forecaster, the average occupancy of the last week is used as forecast of
the daily occupancy for several horizons t. Error measures for the expected max-
imum bed occupancy are not displayed, as it is not straightforward to forecast
the maximum occupancy using a moving average. The stochastic nature of our
own forecasting method results in some noise in the performance measures, which
we have reduced by averaging the performance measures over five independent
replications for each of the hospitals. The columns ‘CR’ (coverage rate) indicate
how often the realised bed occupancy was covered by the 95% prediction interval.
For the ICU, this happened in 74-97% of cases. The lower coverage rate at the
ward, resulting from narrow prediction intervals, is most likely due to the fact that
we do not incorporate the uncertainty about the estimated LoS distributions and
predicted arrival rates in our prediction intervals. Most of the occupancy in the
ward is due to direct arrivals to the hospital, while the uncertainty was seen to
be highest for the arrival rate predictions. Observe from Figures 3 through 6 that
when the prediction interval does not cover the realisation, it is mostly very close
to the realisation. The bias is calculated as the average of ‘forecast minus realised’.
Hence, the closer to zero the better. For the ICU, the bias of our forecast is always
close to zero and lower than that of the moving average forecaster. For the ward,
the negative bias indicates that our forecast is slightly too low on average. For the
wards at ETZ and Rijnstate, that admitted the highest numbers of patients, the
bias of our forecast is much lower than that of the moving average forecaster. The
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Table 1: Results for our forecasting method (average of 5 simulation runs of 1,000
replications per hospital) compared to a moving average forecaster for the occu-
pancy at the departments of the hospitals.
CR: coverage rate of the occupancy by the 95% prediction interval, bias: the bias
estimated by averaging errors, MAE: mean absolute error.

Forecast Mov. av. forecaster

ICU Ward ICU Ward

LUMC CR bias MAE CR bias MAE bias MAE bias MAE

1 day ah. 0.94 0.04 0.45 0.47 −0.52 1.16 0.62 1.06 0.55 1.62

2 days ah. 0.91 0.01 0.77 0.54 −1.31 1.81 0.75 1.24 0.83 1.79

3 days ah. 0.91 0.00 0.92 0.54 −1.89 2.28 0.86 1.40 1.05 1.99

5 days ah. 0.86 0.03 1.37 0.55 −2.77 2.99 1.10 1.67 1.47 2.27

Max. 3d. ah. 0.74 0.07 0.62 0.17 −0.55 1.43 - - - -

Haga

1 day ah. 0.89 0.06 0.60 0.59 −0.83 1.60 0.46 1.04 1.32 2.59

2 days ah. 0.90 0.02 0.90 0.65 −1.71 2.57 0.59 1.20 1.65 2.98

3 days ah. 0.92 0.00 1.14 0.60 −2.42 3.32 0.72 1.33 1.99 3.35

5 days ah. 0.89 0.25 1.58 0.55 −2.86 4.45 1.00 1.58 2.64 4.19

Max. 3d. ah. 0.76 0.16 0.74 0.19 −0.19 1.69 - - - -

Rijnstate

1 day ah. 0.96 0.04 0.33 0.76 −0.61 3.54 0.23 0.37 2.44 4.65

2 days ah. 0.95 0.14 0.50 0.67 −1.19 5.18 0.29 0.44 2.95 5.19

3 days ah. 0.97 0.25 0.58 0.66 −1.72 6.21 0.34 0.52 3.44 5.60

5 days ah. 0.96 0.48 0.79 0.61 −1.62 7.61 0.43 0.65 4.54 6.31

Max. 3d. ah. 0.93 0.24 0.41 0.29 0.72 4.22 - - - -

ETZ

1 day ah. 0.97 −0.11 0.92 0.85 −0.40 2.00 0.52 1.89 2.75 3.57

2 days ah. 0.95 −0.34 1.42 0.78 −0.68 3.45 0.74 2.21 3.38 4.19

3 days ah. 0.92 −0.57 1.91 0.69 −0.71 4.92 1.01 2.50 4.02 4.75

5 days ah. 0.89 −0.59 2.60 0.59 0.30 7.00 1.63 2.93 5.43 5.76

Max. 3d. ah. 0.76 0.21 1.21 0.22 1.71 2.80 - - - -

mean absolute error (MAE) of our forecast is again close to zero for the ICU, and
lower than that of the moving average forecaster for all hospitals except Rijnstate
(the hospital with the smallest number of COVID-19 ICU admissions). For the
ward, the MAE of our forecast is lower than that of the moving average forecaster
up to a horizon of 2 days. In conclusion, our forecasting method often outperforms
the moving average forecaster. Moreover, our forecasting method is richer as it also
produces prediction intervals and generates forecasts for the maximum occupancy
that are spot-on.

To summarise, our forecasting method shows to be very accurate, which has con-
vinced hospitals to embrace our forecasting method and incorporate it in their
COVID-19 control or capacity dashboard (e.g., Figure 7).
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5 Discussion and conclusion

In this paper, we have presented a data-driven approach that forecasts the number
of hospitalised COVID-19 patients in the ward and the ICU based on predicted
arrival rates and estimated LoSs, justified by an underlying network of infinite
server queues driven by a Poisson Arrival Location Model. As demonstrated in
Section 4, that reports the results of our method for the first COVID-19 peak, the
forecasts produced by our method are very accurate. In particular, the forecasts
of the maximum occupancy in the ward and the ICU three days ahead are spot-
on. This enables hospitals to make informed decisions about whether or not to
admit additional COVID-19 patients at their ward or ICU. Indeed, our forecasts
are currently being used in four Dutch hospitals during the second COVID-19
peak the Netherlands is facing. For example, the LUMC has incorporated our
forecasting graphs in their capacity dashboard (see Figure 7), which is now being
reviewed on a daily basis by their physicians.

Now that we have developed a forecasting method that enables informed decision-
making for individual hospitals, in future research we aim to build on this method
to develop a regional model. Our regional model will not only forecast the COVID-
19 occupancy in several hospitals, but also use these forecasts to provide decision
support for proactively transferring COVID-19 patients from one hospital in the
region to another when the first faces a risk of overcrowding. In our regional model,
we will apply a Richards’ curve to predict the daily regional number of COVID-19
patients that require hospitalisation, instead of autonomous direct arrivals to each
of the hospitals, as this provides an accurate approximation at the regional level.

Fig. 7: The LUMC capacity dashboard, with our forecasts of the bed occupancy
incorporated in the darker (right) part of the top-left graph provided with the
prediction interval (green and red), and our prediction of the daily number of
regional infections incorporated in the right (grey) part of the bottom-left graph.
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Fig. 8: Left: the number of daily infections in ROAZ region NAZ West and the
trend given by our prediction method using the Richards’ curve fitted on the
(cumulative) daily number of infections. Right: the daily number of autonomous
direct arrivals to the LUMC. The trend and 80% prediction interval given by our
prediction method using the Richards’ curve fitted on this arrival data is also
shown for LUMC. Both plots are shown for the period starting from 8-07-2020
until 14-10-2020.

Figure 8 shows the Richards’ curve for the LUMC and for the region NAZ West
that contains the LUMC. As we aim for a model that provides decision support for
patient transfers between hospitals in the region, interaction between the hospitals
clearly plays a major role. Therefore, we plan to combine our current research with
earlier work on managing the overflow of ICU patients within a region [16], where
we will invoke the Modified Offered Load approximation [1, 18] to take into account
the capacity constraints on the number of available beds in the hospitals.

Given the quality of our forecasts and the swift implementation of our forecasting
method in four Dutch hospitals, we are confident that hospitals will also embrace
our regional model. As such, the outlook is that we can provide decision support for
one of the major COVID-19 challenges in the Netherlands – transferring COVID-
19 patients between hospitals.
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