UNIVERSITEIT TWENTE.

COMBINING WALK-IN AND APPOINTMENTS

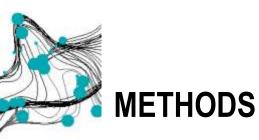
RESEARSCH AND IMPLEMENTATION IN THE AMC

ACADEMIC MEDICAL CENTER AMSTERDAM

- UvA University of Amsterdam
- Level 1 trauma center
- 1000 beds
- 30 ICU beds

DEPARTMENT OF RADIOLOGY

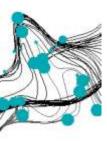
- 33 staf radiologists
- 33 residents
- 70 radiological technicians
- 3 CT scans
- Increasing CT demand and complexity
 - \rightarrow increasing waiting times
 - \rightarrow increasing patients dissatifaction



UNIVERSITY OF TWENTE

To investigate the effects of combining walk-in and appointments for outpatient CT scheduling

- patients
- specialists at outpatient clinics
- radiologists and technicians
- Improvement of patient care and efficient equipment use

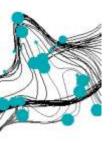


Contact KPI (Quality, proces and inovation), UT (University of Twente)

Patient questionnaire

- preferences
- Simulation process

APPOINTMENT OR WALK-IN?



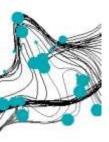
Advantages of walk-in:

- Saves the patient an additional hospital visit
- No access time → shortens diagnostic trajectory
- No buffer & no shows → higher utilization of facility
- > Advantages of appointments:
 - Dispersion of workload → shorter waiting times (if planned correctly)
 - Predictable patient flow

Motivation for this research:

Quantitative evaluation of organizing CT visits on walk-in basis

PATIENT PREFERENCES


GRADUATE STUDENT: MARISKA SCHOLTENS

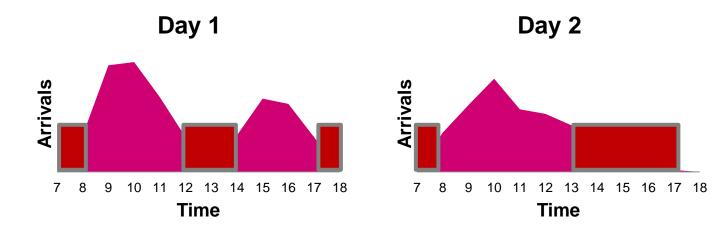
Priorities with respect to:		Combined
Goal: Which service aspect is preferred by the patient?		
Short access time	,224	
Short waiting time	,188	
One stop shop	,432	
Autonomy in choice of moment	,157	
Inconsistency = 0,00554		
with 0 missing judgments.		

Maximal waiting time according to patient:

- In case of appointment: ~ 12 minutes
- In case of walk in: ~ 23 minutes


APPOINTMENTS & WALK-IN

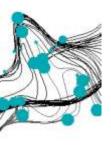
Appointment is required or requested if:


- Support of other consultants (e.g. anesthesiologist) is required
- Patient requires lengthy preparation
- Patient preference
- > If the waiting time exceeds 30 min upon arrival of patient
 - \rightarrow Appointment planned on other date

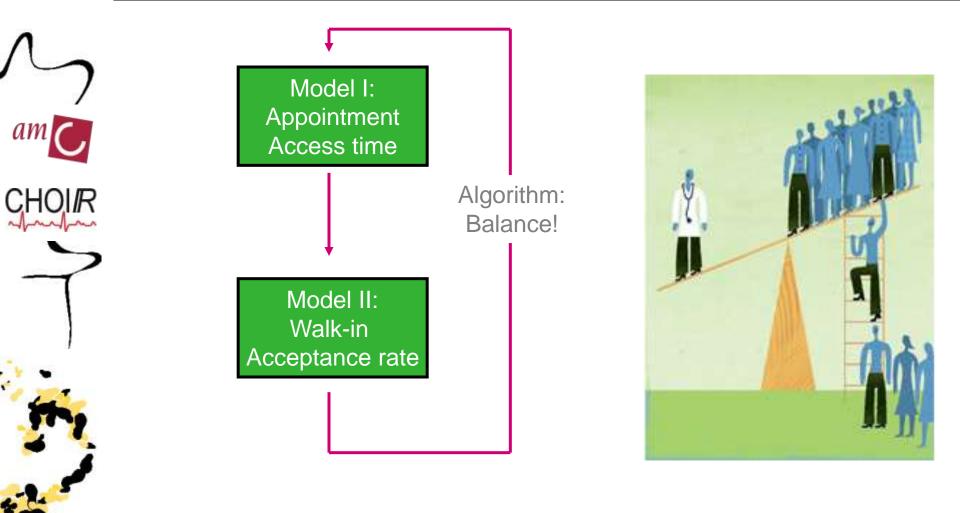
BLUEPRINT APPOINTMENT SCHEDULE

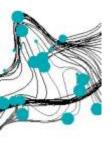
GRADUATE STUDENT: JOOST VELDWIJK

- Given a certain walk-in pattern, when to plan appointments:
 - >> on which day?
 - >> on which moment of the day?


- Requirements:
 - \rightarrow Walk-in patients: high probability of acceptance (on day level)
 - \rightarrow Appointment patients: short access time (on week level)

UNIVERSITEIT TWENTE.


BLUEPRINT APPOINTMENT SCHEDULE OUTPUT EXAMPLE


	8:00 - 8:15	8:15-8:30	8:30 - 8:45	8:45 - 9:00	• • •
Monday	Reserved for appointment	Reserved for appointment	Reserved for appointment	Reserved for appointment	
Tuesday		Reserved for appointment			
Wednesday	Reserved for appointment	Reserved for appointment		Reserved for appointment	
Thursday	Reserved for appointment	Reserved for appointment			
Friday					
Monday	Reserved for appointment	Reserved for appointment	Reserved for appointment	Reserved for appointment	
Tuesday		Reserved for appointment			
Wednesday	Reserved for appointment	Reserved for appointment		Reserved for appointment	

BLUEPRINT APPOINTMENT SCHEDULE

MATHEMATICAL MODEL (1)

BLUEPRINT APPOINTMENT SCHEDULE

MATHEMATICAL MODEL (2)

am O

Model I: Appointment access time

Discrete time cyclic queueing model


$$S(y) = \sum_{d=1}^{D} \left(1 - \mathbb{P}[W^d > y] \right) \frac{\mathbb{E}[A^d]}{\sum_{r=1}^{D} \mathbb{E}[A^r]}$$

Model II: Walk-in acceptance rate

Markov reward model

States: (t, v, w)

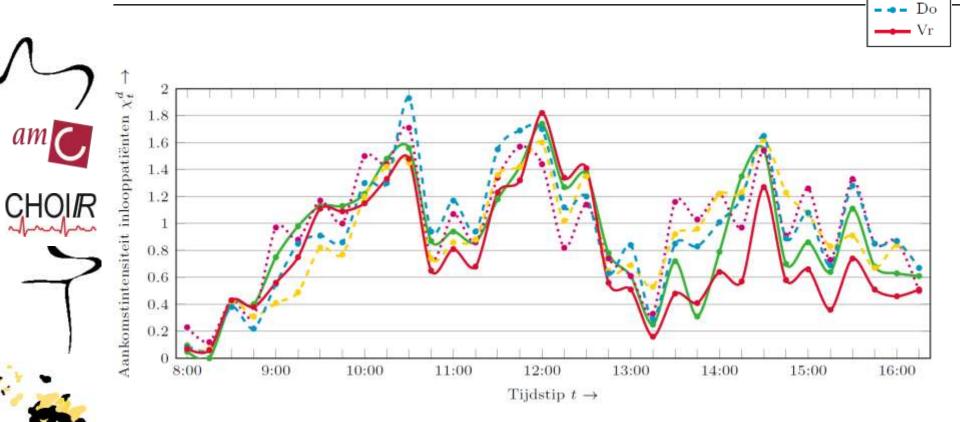
Transitition probabilities: $\mathbb{P}[(s, u)_{t+1} | (v, w)_t]$

CASE STUDY: CT SCAN AMC KEY DATA

General

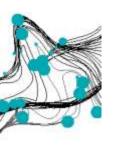
- ~ 11.000 scans per annum
- 2 CT modalities (+ 1 at ED)
- Opening hours: 8:00-16:30
- 72% of patient eligble for walk-in

Current performance

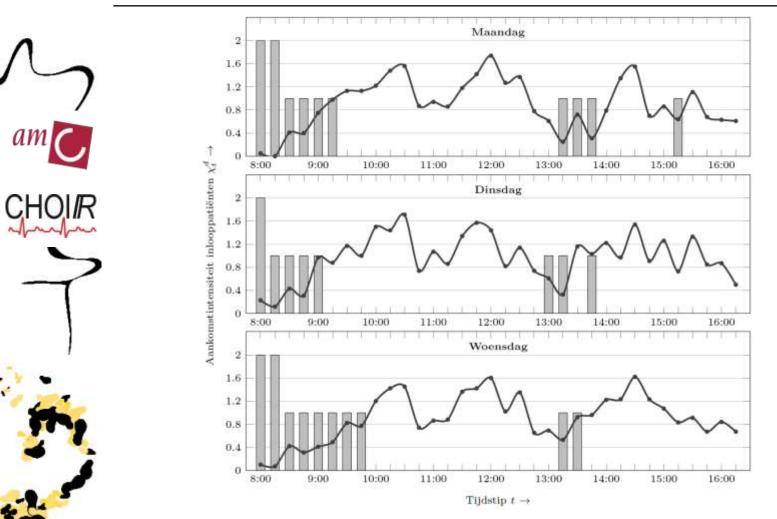

- Utilization: 62.3%
- Average waiting time:11 minutes
- Average access time: 5 days

Timing

- Average scan duration: 13.25 min inpatient, 11.34 min outpatient
- Appointment slots: 15 min
- Max waiting time for walk-in patient: 30 min (2 slots)

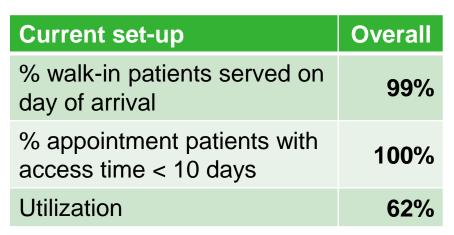


CASE STUDY: CT SCAN AMC EXPECTED ARRIVAL PATTERN OF WALK-IN PATIENTS



– Ma •• Di

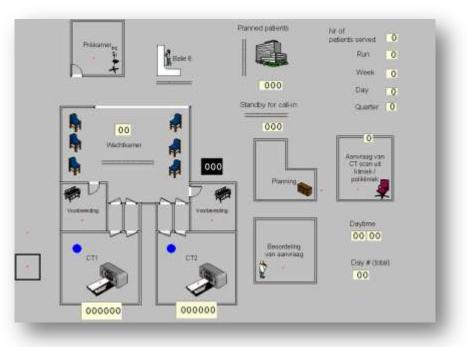
Wo

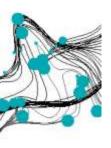

BLUEPRINT APPOINTMENT SCHEDULE ILLUSTRATION

BLUEPRINT APPOINTMENT SCHEDULE RESULTS

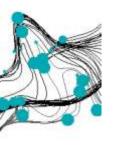
	Patient increase	Overall	Мо	Tu	We	Th	Fr
	% walk-in patients served on day of arrival	94%	94%	94%	94%	94%	94%
	% appointment patients with access time < 10 days	100%					
1	Utilization	85%	86%	85%	84%	85%	84%

COMPUTER SIMULATION


GRADUATE STUDENTS: JELMER KRANENBURG, KEES SMID



- Detailed representation of reality
- Low risk and low costs
- Visualization properties


Evaluation of analytical model

COMPUTER SIMULATION RESULTS

\sim		Only appointments	Walk-in Current apointment schedule	Walk-in New appointment schedule	Walk-in +20% patients
	Walk-in patients served on day of arrival (%)	N/A	90.4	93.4	85.9
sharka	Appointment waiting time (mm:ss)	11:28	10:13	8:13	10:15
	Walk-in waiting time (mm:ss)	N/A	16:12	15:26	19:11
54	Appointment access time (days)	5.0	4.9	5.7	5.3
	Overtime (%)	0.7	3.3	3.1	3.6

patiëntyriendeliikheid

Belangrijkste barrière was contrastnefropathie

Inloop-CT blijkt succes

Els te Loo, radiologisch laborant, hoofd behandelteam Radiologie, sectie CT

Frank Joosten, radioloog, afdeling Radiologie

Geeske van den Heuvel. radiologisch laborant, kerngroep CT

Ronald Niekel. radioloog, specialistmanager afdeling radiologie

Allen werkzaam in ziekenhuis Rijnstate, Amhem Correspondentieadres: fioosten@alvsis.nl;

c.c.; redactie@medischcontact.nl Geen belangenverstrengeling

gemeld.

Ziekenhuis Rijnstate heeft sinds een jaar de afspraken (en lange wachttijden!) voor CT-onderzoek afgeschaft. Patiënten kunnen er zo binnenlopen voor een scan. Aan dit resultaat zijn wel de nodige inspanningen en hobbels voorafgegaan.

n de zoektocht naar patiëntvriendelijker en efficiënter werken is in ziekenhuis Rijnstate (Arnhem) de logistiek rond de aanvraag en uitvoering van CT-scans onder de loep genomen. Zou het mogelijk zijn om voor een grote groep patiënten dit onderzoek uit te voeren zonder afspraak vooraf, ook wel 'op inloop' genoemd? Dan zou de patiënt direct nadat de indicatie voor dit beeldvormend vervolgonderzoek is gesteld, hiervoor naar de radiologieafdeling gaan en na afloop het resultaat meteen met de verwijzer moeten kunnen bespreken.

In eerste instantie lijkt het een tegenstrijdigheid: duur en hoogtechnologisch onderzoek direct beschikbaar. En daar komt een belangrijk probleem bij: voor veel CT-onderzoeken is het gebruik van jodiumhoudend contrastmiddel noodzakelijk. Aan de veiligheid kunnen geen concessies worden gedaan, maar het implementeren van het contrastnefropathie (CNP)-protocol zoals eerder beschreven in dit tijdschrift leek voor deze situatie een haast onoverkomelijke barrière. 1

Van den Heuvel over de voordelen van het nieuwe CT-inloopsysteem. Bekijk het filmpje op www.medischcontact.ni/mcdocument

Veel extra werk

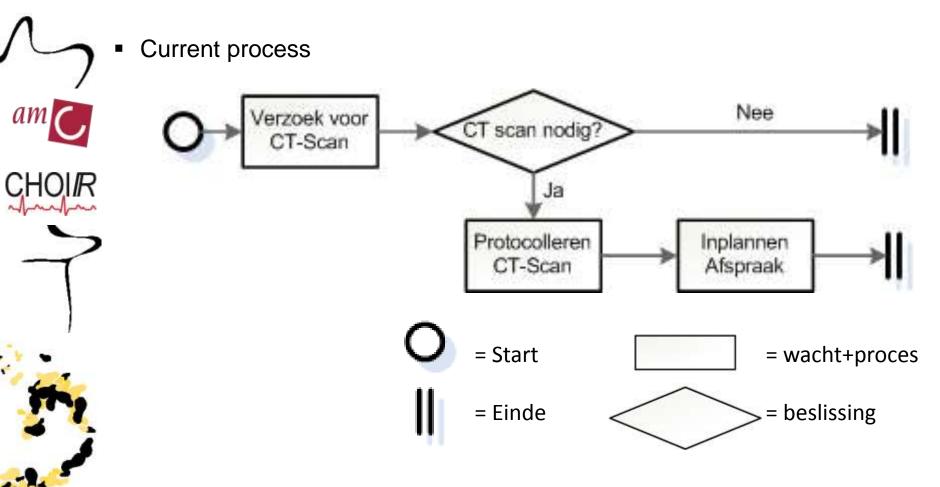
Om tot een werkbaar protocol te komen is een werkgroep van alle belanghebbenden aan de slag gegaan. Zij hebben knelpunten gedefinieerd, waarbij als eerste het CNP-protocol tegen het licht is gehouden.

Het contrastnefropathieprotocol vereist dat een patiënt bij toediening van intraveneus contrast een glomerular filtration rate (GFR) heeft van minimaal 60 ml/min/1,73 m. Deze uitslag mag niet ouder zijn dan zes weken. Daarnaast mag een patiënt 24 uur voorafgaande aan het onderzoek geen NSAID's, diuretica of aminoglycosiden hebben gebruikt.2 Doordat de patiënt geen afspraak heeft voor een CT-scan, is het aan de aanvrager om de patiënt voor te lichten over de risico's van het toedienen van stralen en contrast, maar ook om zorg te dragen voor de goede voorlichting en afhandeling van de genoemde medicatie. De medewerkers van de afdeling radiologie zowel aan de balie als in de CT-ruimte zijn hier niet voor bevoegd. Lukt het de aanvrager niet om de medicatie te stoppen omdat bijvoorbeeld een collega deze heeft voorgeschreven, dan wordt de patiënt verwezen naar de CNP-poli en neemt een nefroloog de patiënt over. Na stopzetten van de NSAID, diuretica of aminoglycoside komt de patiënt alsnog voor een CT-scan. Ook als de GFR te laag is, krijgt de patiënt een afspraak voor de CNP-poli.

Voor extra veiligheid omtrent het toedienen van intraveneus contrast, vult de patiënt bij aanmelden voor de CT een veiligheidsformulier in. Hiermee wordt opnieuw gecheckt of de patiënt met bepaalde medicatie is gestopt. Deze invoering van het CNP betekent dus voor alle betrokkenen veel extra werk ten opzichte van de oude werkwijze van het afspreken.

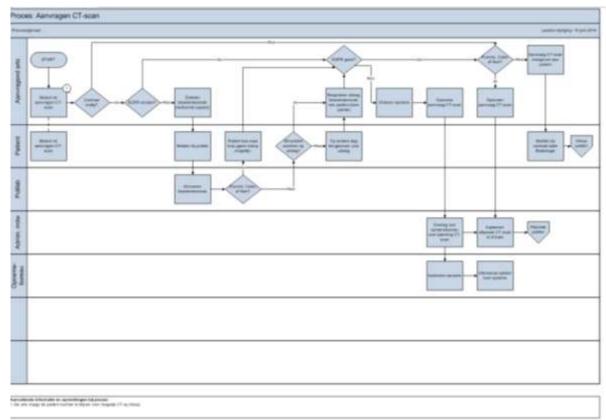
UNIVERSITEIT TWENTE.

684 | Medisch Contact | 18 maart 2011 | 66 nr. 11

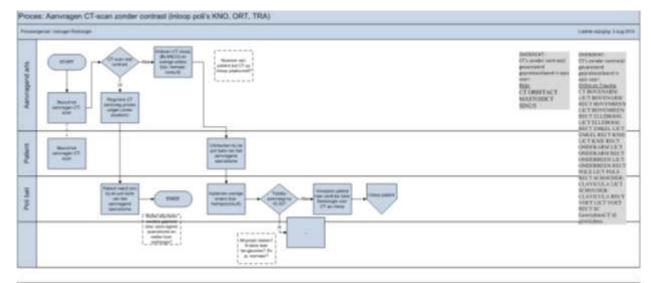

De productie bleek met 30 procent toe te nemen

SAMENVATTING

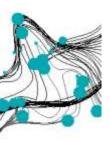
- Ziekenhuis Rijnstate is ruim een jaar geleden begonnen met CT-scans 'op inloop' in plaats van op afspraak (met lange wachttijden).
- Grootste uitdaging was en is het handhaven van het strikte beleid omtrent de contrastnefropathie.
- Medewerking van alle betrokkenen is essentieel, ook van de aanvrager.
- De effecten zijn indrukwekkend: toename in productie en grote tevredenheid bij betrokkenen.
- Dit betekent een belangrijke stap naar patiëntvriendelijker en efficiënter werken.


CASE STUDY IMPLEMENTATION AT AMC

28 November 2013 Go for walk-in CT


CASE STUDY

IMPLEMENTATION AT AMC


Process during EPIC



en alle de l'étant de la comme d'agen hé p

- A season an adversion of a contrast range of \$2. As many part (as a drawn in a star in the adversion and so it interesting of the star and the star in the star and the
- In the state of the protocol particle collapsing the state collapsing

CASE STUDY IMPLEMENTATION AT AMC

- Information procedures radiology and outpatient clinics:
 - all very enthusiastic
- Preparation logistics and protocols
- Decision to start with non enhanced CT
 - Ortho, ENT
 - At later stage all outpatient CTs
- Wait until Epic implementation AMC-VUMC
 - the start of walk-in CT is built in Epic and will be initiated with this.

Walk-in:

- Is a good match with patient preferences (one-stop shop, access time)
- Can well be realized from a logistical perspective
- Enables patient growth
- Combination of walk-in and appointments:
 - Workload dispersion

A JOINT CHOIR AND AMC RESEARCH EFFORT

Promovendi Maartje Zonderland Aleida Braaksma Nikky Kortbeek

UNIVERSITEIT TWENTE

AMC Ludo Beenen, Maaike Vogel Marieke Sprengers

Richard Boucherie, Ingrid Vliegen, Erwin Hans, Nelly Litvak

UNIVERSITEIT TWENTE.

QUESTIONS?

A.BRAAKSMA@UTWENTE.NL

N. Kortbeek, M.E. Zonderland, A. Braaksma, I.M.H. Vliegen, R.J. Boucherie, N. Litvak, E.W. Hans. Designing cyclic appointment schedules for outpatient clinics with scheduled and unscheduled patient arrivals. Performance Evaluation, 80:5-26, 2014.

