### Multiskillness and health care process types Frits van Merode, Jyoti R.Munavalli, Shyam Vasudevarao



## Symposium CHOIR in Practice UTWENTE, 22 november 2013

### **Maastricht UMC+**



Maastricht University

### Multiskillness in health care: Observations

- Jobs in health care become more and more specialized.
- Often efficiency arguments for specialization do not appear true.
- Flexibility of work force decreases.
- Complexity of planning increases.

### **Multiskillness:**

• Staff can be allocated to various tasks requiring different skills.

# Multiskillness is an important issue because:

- There is always a labour shortage issue.
- There is a trend towards hierachical as well as horizontal differentiation in jobs and jobs requirements
- Often staff is underutilized, flexibility can increase efficiency.

### **Multiskillness:**

- Staff can be allocated to various tasks.
- Staff work on different types of tasks, and/or
- Staff is involved in different care processes, and/of
- Staff is involved in different phases of care processes.

### **Dimensions of multiskillness:**



### Karaseks model (1979, 1990)



### Job and process design are interrelated

### **Process variation versus volume**



Bron: Johnston, R., G. Clark, and M. Shulver, Service Operations Management: Improving Service Delivery 2012, Harlow, Essex: Pearson. Maastricht UMC+

### **Process variation versus volume**



### Apart from volument there is 'uncertainty'

- Processing uncertainty
- Arrival uncertainty
- Intervention uncertainty
- How to keep the hospital synchronized?

Lack of synchronization leads to waiting times for patients and underutilization of capacity



### The way to synchronization.

- Case study 1: What is the optimal structure of a large clinical laboratory with multiskillness?
- Case study 2: Real time scheduling of staf and patients in a large eye hospital with a deskilling strategy.
- Case study 3: Automating health care, avoiding the skill issue.

### The way to synchronization.

• Case study 1: What is the optimal structure of a large clinical laboratory with multiskillness

### **Case study 1: large clinical laboratory**

- Standardized processes.
- Departments with job shop structure and with production line structure.
- Short turn-around times required.
- Variable arrival times and product mix characteristics.
- How can we optimize turn around times?
- What is de optimal combination of cross-skillness and the composition of departments: what are optimal teams?



Fig. 1. Example of a layout of a laboratory department. Triangles indicate queues of samples. Boxes indicate workstations. Sample streams are represented by solid lines. Dashed lines indicate the possibility that samples flow from a particular workstation to another workstation.

van Merode, G.G., et al., Advanced management facilities for clinical laboratories. Computer Methods and Programs in Biomedicine, 1996. 50(2): p. 195-205.

| No | Workstation                           | Volume | Minimum (min) | mean (min) |  |
|----|---------------------------------------|--------|---------------|------------|--|
| 1  | Bulk chemical analyser                | 445    | 0.5           | 1          |  |
| 2  | Specific test analyser                | 150    | 1.5           | 2.5        |  |
| 3  | Specific test analyser                | 195    | 1.5           | 2.5        |  |
| 4  | Glucose and chloride analyser         | 200    | 0.5           | 2          |  |
| 5  | Bulk haematological analyser          | 425    | 0.5           | 1.5        |  |
| 6  | Small size haematological analyser    | 95     | 1             | 2          |  |
| 7  | Eye blood cell differential           | 55     | 2             | 2.5        |  |
| 8  | Erythrocytes sedimentation rate (ESR) | 125    | 1             | 2          |  |
| 9  | Coagulation analyser                  | 102    | 2             | 4          |  |
| 0  | Urine stick analyser                  | 102    | 2             | 4          |  |
| 1  | Eye urine differential                | 43     | 1.5           | 2          |  |
| 2  | Metabolic diseases screening tests    | 2      | 10            | 20         |  |
| 3  | Metabolic diseases specific tests     | 2      | 10            | 20         |  |
| 4  | Chromatography                        | 90     | 4             | 8          |  |
| 5  | Blood gas analyser                    | 75     | 3             | 5          |  |
| 6  | Manual techniques                     | 25     | 60            | 60         |  |
| 7  | Manual screening                      | 150    | 2             | 3          |  |
| 8  | Radio-immuno assays                   | 70     | 5             | 10         |  |
| 9  | Immuno assays                         | 250    | 5             | 10         |  |
| 20 | Reception area out-patient samples    | 600    | 1             | 1.5        |  |
| 21 | Reception area in-patient samples     | 455    | 1             | 1.5        |  |

Data of processes for optimisation model

van Merode, G.G., et al., Optimisation of the structure of the clinical laboratory. European Journal of Operational Research, 1998. **105**(2): p. 308-316.

### Approach:

- 1. Determine skill matrixes and their degrees of freedom.
- 2. Determine a covariance matrix with arrival patterns.
- 3. Use portfolio optimization (similar to the Markowitz model) to find the optimal # of departments.

| Solution | for | scenarios | for | the | optimisation | model |
|----------|-----|-----------|-----|-----|--------------|-------|
|----------|-----|-----------|-----|-----|--------------|-------|

| Scenario    |                      | Minimum process time<br>17 technicians available |                  |                          | Mean process time<br>24 technicians available |                   |                          |
|-------------|----------------------|--------------------------------------------------|------------------|--------------------------|-----------------------------------------------|-------------------|--------------------------|
| # job shops | Max #<br>technicians | #technicians<br>total per<br>period              | Max idle<br>time | Total idle<br>time (min) | #technicians<br>total per<br>period           | Max. idle<br>time | Total idle<br>time (min) |
| 3           | 5                    | 57                                               | 16.27            | 90.40                    | -                                             | -                 | -                        |
| 3           | 8                    | 57                                               | 10.11            | 90.49                    | 92                                            | 56.50             | 220.00                   |
| 4           | 5                    | 57                                               | 13.00            | 90.49                    | -                                             | -                 | -                        |
| 4           | 8                    | 57                                               | 27.00            | 90.49                    | 92                                            | 16.00             | 220.00                   |
| 5           | 5                    | 58                                               | 46.00            | 225.49                   | 92                                            | 29.00             | 298.50                   |
| 5           | 8                    | 58                                               | 46.00            | 225.49                   | 92                                            | 18.00             | 220.00                   |

van Merode, G.G., et al., Optimisation of the structure of the clinical laboratory. European Journal of Operational Research, 1998. 105(2): p. 308-316.

### **Results of portfolio - optimization:**

- Multiskillness has a large effect.
- Switching and set up costs do have a large effect to.
- Portfolio optimization is effective to design departments, but investing in flexibility of staff and processes has a larger effect.

### The way to synchronization.

• Case study 2: Real time scheduling of staff and patients in a large eye hospital with a deskilling strategy.

### **Example 2: Real time scheduling**

### Example 2. Real time schedulingPull systems in Aravind Eye Clinic, Madurai, India.







### **Objectives of Research**



- Determine the workflow and capacity characteristics of Aravind.
- Resource Optimization: Reschedule staff during the day.
  Real time Patient Routing to minimize the patient wait time.

### **Results**

The resource optimization and real time patient routing algorithms are implemented. The results obtained are compared.(existing scenario, optimized staffing and optimized patient scheduling). The wait time reduced by 50% with these algorithms.

|                                        | Actual<br>Aravind<br>model | Using<br>Patient<br>routing<br>algorithm | Using patient<br>routing +<br>Resource<br>optimization<br>model |
|----------------------------------------|----------------------------|------------------------------------------|-----------------------------------------------------------------|
| Waiting time<br>in minutes             | 42                         | 18                                       | 15                                                              |
| Difference in<br>load in both<br>units | 15                         | 11                                       | 20                                                              |



Both examples were of the high volume, low complexity type, but with often great volume variability.

### The challenge:

'A push system schedules the release of work based on demand, while a pull system authorizes the release of work based on system status.'(Hopp and Spearman 2001)

Hopp, W. J. and M. L. Spearman (2001). Factory Physics: foundations of manufacturing management. New York, Irwin/McGraw-Hill.

### The challenge:

'A push system schedules the release of work based on demand, while a pull system authorizes the release of work based on system status.'(Hopp and Spearman 2001)

Hopp, W. J. and M. L. Spearman (2001). Factory Physics: foundations of manufacturing management. New York, Irwin/McGraw-Hill.

In most hospitals the system status is not know.

### The challenge:

'A push system schedules the release of work based on demand, while a pull system authorizes the release of work based on system status.' (Hopp and Spearman 2001)

Hopp, W. J. and M. L. Spearman (2001). Factory Physics: foundations of manufacturing management. New York, Irwin/McGraw-Hill.

In most hospitals the system status is not know Real time information is the problem, not planning

### The way to synchronization.

• Case study 3: Automating health care, avoiding the skill issue.

### **Ophthalmology screening workflow**



**Step 6:** Collate all reports and send to Ophthalmologist for pril diagnosis and send to expert based on problem **Step 7**: Council patients, wait for 2-3 hrs till the effect of dilation nullifies before leaving the hospital

### Affordable: Ophthalmology screening workflow

A device that can screen for 5 common eye problems OPD workflow at Eye Hospital / Screening centre/ camps



### **Availability: 3nethra ForCare**

#### **3nethra Pre-screening in Rural India**















# Thank you