Tactical Ambulance Location and Relocation

Brigitte Werners Dirk Degel, Lara Wiesche, Sebastian Rachuba

Management, Operations Research and Accounting - Ruhr-University Bochum, Germany

CHOIR in Practice, University of Twente, the Netherlands

November 22, 2013

Outline

- 1. Motivation
- 2. Basic idea and models
- 3. Data driven optimization model for tactical EMS-vehicle planning
- 4. A real world EMS-planning problem in the city of Bochum
- 5. Conclusions and Outlook

Aging population

- \blacktriangleright Age class of $[70,\,\cdot\,]$ causes 50 % of EMS operations
- EMS demand increases

source: Statistisches Bundesamt 2013

Aging population

- \blacktriangleright Age class of $[70,\,\cdot\,]$ causes 50 % of EMS operations
- EMS demand increases

source: Statistisches Bundesamt 2013

- 1. Access to emergency medical services (EMS) is crucial
- 2. Ensuring optimal supply quality
 - Short arrival time
 - Coverage of entire demand area
 - High degree of achievement
 - ⇒ Dependent on location and number of ambulances
- 3. Efficiency
 - Reduction of fixed costs (avoid overcapacity)
 - Utilization of ambulances

Quality criteria and objectives

Evaluation of emergency medical services (objective of EMS provider):

Degree of achievement (ex post):

 $\frac{\# \text{ operations within a time standard } T}{\# \text{ total number of operations}}$

Objectives in literature (ex ante):

 Coverage: Single coverage, double coverage, busy fraction models, queuing models, hypercube models

6 / 28

Optimal quality in emergency medical services

Research project: 2 years (work in progress)

Focus:

- Analysis of required resources for EMS
- Analysis of time-dependent demand and speed fluctuations for EMS
- Tactical and strategic planning horizon
- Stochastic influences, uncertain parameters (demand, speed)

Goal:

- Dynamic (and robust) optimization model
- IT-based decisions support tool for local EMS providers

Decision support tool

Decision support tool

Basic covering location models

Idea: Demand nodes i have to be covered within a time standard \boldsymbol{T}

source: Zarandi et al. 2011-The large scale maximal covering location problem; page 1565

Set Covering Problem (SCP)

Toregas et al. 1971

$\mathcal{N}_i := \{ j \in J \mid $	$t_{ij} \leq T$
-------------------------------------	-----------------

Set Covering Problem (SCP)

Toregas et al. 1971

$\mathcal{N}_i := \{ j \in J \mid t_{ij} \le T \}$	$\mathcal{N}_i :=$	$\{j\in$	$J \mid$	t_{ij}	\leq	T
--	--------------------	----------	----------	----------	--------	---

Maximal Covering Location Problem (MCLP) Church, ReVelle 1974

Double Standard Model (DSM)

Gendreau et al. 1997

$$\mathcal{N}_i^{T_\ell} := \{ j \in J \mid t_{ij} \le T_\ell, \, \ell \in \{1, 2\} \} \qquad p = 3$$

Double Standard Model (DSM)

Gendreau et al. 1997

\max	$\sum d_i x_i^2$	
	$i \in I$	
s.t.	$\sum y_j \ge 1$	$\forall i \in I$
	$j \in \mathcal{N}_i^{T_2}$	
	$\sum_{i \in I} d_i x_i^1 \ge \alpha \sum_{i \in I} d_i$	
	$x_i^1 \ge x_i^2$	$\forall i \in I$
	$\sum_{i \in \mathcal{N}^{T_1}} y_j \ge x_i^1 + x_i^2$	$\forall i \in I$
	$j \in \mathcal{N}_i$	
	$\sum_{j\in J}y_j=p$	
	$x_i^1, x_i^2 \in \{0, 1\}$	$\forall i \in I$
	$y_j \in \mathbb{N}_0$	$\forall j \in J$

- d_i : demand at node i
- $\mathcal{N}_i^{T_\ell} := \{ j \in J \mid t_{ij} \le T_\ell \}$ $T_1 < T_2$

$$x_i^k = \begin{cases} 1, & \text{if demand node } i \text{ is} \\ & \text{covered } k \in \{1, 2\} \text{ times} \\ 0, & \text{else.} \end{cases}$$

 y_j : number of ambulances at node j

Double Standard Model (DSM)

Gendreau et al. 1997 — Limitations: (1) static consideration (2) fixed double coverage

max	$\sum oldsymbol{d}_i oldsymbol{x}_i^2$	
	$i \in I$	
s.t.	$\sum y_j \ge 1$	$\forall i \in I$
	$j \in \mathcal{N}_i^{T_2}$	
	$\sum_{i \in I} \mathbf{d}_i x_i^1 \ge \alpha \sum_{i \in I} \mathbf{d}_i$	
	$x_i^1 \ge oldsymbol{x}_i^2$	$\forall i \in I$
	$\sum_{m} y_j \geq x_i^1 + oldsymbol{x}_i^2$	$\forall i \in I$
	$j \in \mathcal{N}_i^{T_1}$	
	$\sum_{j\in J}y_j=oldsymbol{p}$	
	$x_i^1, \frac{x_i^2}{x_i^2} \in \{0, 1\}$	$\forall i \in I$
	$y_i \in \mathbb{N}_0$	$\forall j \in J$

- $\begin{array}{l} \blacktriangleright \quad d_i: \text{ demand at node } i \\ \hline \quad \mathcal{N}_i^{T_\ell} := \{j \in J \mid \textbf{t}_{ij} \leq T_\ell\} \\ T_1 < T_2 \end{array}$
- p: number of ambulances (fleet size)

$$x_i^k = \left\{ \begin{array}{ll} 1, & \text{if demand node } i \text{ is} \\ & \text{covered } k \in \{1, \mathbf{2}\} \text{ times} \\ 0, & \text{else.} \end{array} \right.$$

 y_j : number of ambulances at node j

Extensions of the Double Standard Model

Time-dependent parameter: speed

 Time-dependent speed on (city-)motorways (example of the city of Vienna)
Source: Kritzinger et al. (2011), S. 71

12 / 28

Time-dependent parameter: demand

 \implies Dynamic considerations required

ξ : number of ambulances, X : number of parallel operations

$$P(\{X \le \xi\}) \ge \beta \quad (=0.95)$$

Time-dependent parameter: degree of required coverage

 $\xi: \text{number of ambulances}, X: \text{number of parallel operations}$

 $P(\{X \le \xi\}) \ge \beta \quad (=0.95)$

Time-dependent parameter: degree of required coverage

$\xi: \text{number of ambulances}, X: \text{number of parallel operations}$

$$P(\{X \le \xi\}) \ge \beta \quad (=0.95)$$

Time-dependent parameter: degree of required coverage

 $\xi: \text{number of ambulances}, X: \text{number of parallel operations}$

$$P(\{X \le \xi\}) \ge \beta \quad (= 0.95)$$

Extensions of the Double Standard Model

Existing:

- Speed is time-dependent and location-dependent
- Empirical investigation (e. g. Schmid/Doerner (2010); Wiesche 2012)

Extensions of the Double Standard Model

Existing:

- Speed is time-dependent and location-dependent
- Empirical investigation (e.g. Schmid/Doerner (2010); Wiesche 2012)

Additional:

- Time- and location-dependent demand
- Empirically required coverage for each demand node/period
- Additional and flexible ambulance stations
- Dynamic and flexible allocation of ambulances to stations

O

Extensions of the Double Standard Model

Existing:

- Speed is time-dependent and location-dependent
- Empirical investigation (e.g. Schmid/Doerner (2010); Wiesche 2012)

Additional:

- Time- and location-dependent demand
- Empirically required coverage for each demand node/period
- Additional and flexible ambulance stations
- Dynamic and flexible allocation of ambulances to stations

New optimization approach Objectives (1)

- Observed: differences between required and actual coverage
- Maximize the empirically required coverage:

 $x_{it}^{k} := \begin{cases} 1, & \text{if demand node } i \text{ is covered } k \text{-times in period } t, \\ 0, & \text{otherwise.} \end{cases}$

• $k = \mathbf{e}(it)$ is determined empirically (\leftarrow parallel operations)

New optimization approach Objectives (1)

- Observed: differences between required and actual coverage
- Maximize the empirically required coverage: $x_{it}^{e(it)} \in \{0, 1\}$

$$\max \quad \sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{I}} d_{it} x_{it}^{\mathbf{e}(it)}$$

• k = e(it) is determined empirically (\leftarrow parallel operations)

New optimization approach

Objectives (2)

- Re-locations due to variations of demand/speed (penalty costs)
- Utilization of flexible ambulance stations (penalty costs)

New optimization approach

Objectives (2)

- Re-locations due to variations of demand/speed (penalty costs)
- Utilization of flexible ambulance stations (penalty costs)

$$\begin{array}{ll} \min & \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}} \sum_{j \in \mathcal{J}} u_{ijt} \\ \min & \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}} y_{jt} \\ y_{Dt} = p - pt & \forall t \in \mathcal{T} \\ y_{jt} + \sum_{i \in \mathcal{J} \cup \{D\}} u_{ij(t+1)} - \sum_{i \in \mathcal{J} \cup \{D\}} u_{ji(t+1)} = y_{j(t+1)} & \forall j \in \mathcal{J} \cup \{D\}, \forall t \in \mathcal{T} \setminus \{T\} \\ y_{jT} + \sum_{i \in \mathcal{J} \cup \{D\}} u_{ij1} - \sum_{i \in \mathcal{J} \cup \{D\}} u_{ji1} = y_{j1} & \forall j \in \mathcal{J} \cup \{D\} \\ u_{ijt} \in \{0, 1\} & \forall i \in \mathcal{I}, \forall j \in \mathcal{J} \cup \{D\}, \forall t \in \mathcal{T} \\ y_{jt} \in \mathbb{N}_{0} & \forall j \in \mathcal{J}, \forall t \in \mathcal{T} \\ \vdots & \end{array}$$

New optimization approach

Constraints

- covering constraints
- Iocation constraints
- relocation constraints
- allocation constraints
- demand constraints

Basic model

Bochum

Coordinates $51^{\circ} 28' 55'' N \quad 7^{\circ} 12' 57'' E$

- 16th biggest city in Germany
- Area: 145.4 km² (56.1 sq mi)
- Population: ca. 375,000
- Population density: 2,577/km²
- Services: about 21,000 operations per year
- Services per 1,000 inhabitants per year: about 56 operations
- E 🕨 🕨 14 ambulances

20 / 28

The city area of Bochum

The city area of Bochum

The city area of Bochum

	A	В	С	D	Ε	F	G	Н	J	K	L	M	Ν	0	Р	Q	R	
1													129					1
2							55	67		92	105	118	130	140	148			2
3						44	56	68	80	93	106	119	131	141				3
4			12	22	33	45	57	69	81	94	107	120	132	142	149			4
5			13	23	34	46	58	70	$\frac{82}{W_{6}}$	95	108	121	133	143	150	155		5
6	1	5	14	24	35	47	59	71	83	96	109	122	134	$\begin{array}{c} 144 \\ W_3 \end{array}$	151	156	160	6
7	2	6	15	25	36	48	${}^{60}_{W_2}$	72	84	97	110	123	135	145	152	157	161	7
8	3	7	16	$24 \\ W_1$	37	49	61	73	85	98	111	124	136	146	153	158	162	8
9	4	8	17	27	38	50	62	74	86	99	112	125	137	147	154	159	163	9
10		9	18	28	39	51	${}^{63}_{W_4}$	75	$\frac{87}{W_{5}}$	100	113	126	138					10
11		10	19	29	40	52	64	76	88	101	114	127	139					11
12		11	20	30	41	53	65	77	89	102	115	128						12
13			21	31	42	54	66	78	90	103	116							13
14				32	43			79	91	104	117							14
	A	В	С	D	Ε	F	G	H	J	K	L	М	Ν	0	Р	Q	R	

Usage of flexible ambulance stations and relocations

Period t = 1, number of ambulances 7

Usage of flexible ambulance stations and relocations

Period t = 2, number of ambulances 7

Usage of flexible ambulance stations and relocations

Period t = 3, number of ambulances 14

Usage of flexible ambulance stations and relocations

Period t = 4, number of ambulances 13

Usage of flexible ambulance stations and relocations

Period t = 5, number of ambulances 13

Usage of flexible ambulance stations and relocations

Period t = 6, number of ambulances 10

Difference between resulting and required degree of coverage (period 8-12 a.m.)

	A	В	С	D	Ε	F	G	H	J	K	L	М	N	0	P	Q	R		Г		A	В	C	D	E	F	G	Н	J	K	L	M	N	0	P	Q	R	
1													-2					1		1													-1					1
2							$^{-2}$	-1		-1	$^{-2}$	$^{-2}$	$^{-2}$	-2	$^{-2}$			2		2							$^{-2}$	0		2	0	0	$^{-1}$	-1	-1			2
3						$^{-2}$	-1	-1	$^{-1}$	$^{-1}$	$^{-1}$	$^{-2}$	2	2				3		3						$^{-2}$	0	0	2	2	2	0	2	1				3
4			$^{-2}$	$^{-2}$	$^{-2}$	3	3	3	$^{-1}$	-1	$^{-1}$	3	2	2	2			4		4			$^{-2}$	$^{-2}$	$^{-2}$	0	0	1	1	2	2	4	2	2	0			-4
5			1	1	5	3	3	3	3	$^{-1}$	3	3	2	2	2	2		5	IΓ	5			0	0	0	0	0	1	1	1	4	4	2	1	0	0		5
6	$^{-2}$	1	1	5	5	5	2	2	3	3	3	3	2	2	2	2	2	6	IΓ	6	$^{-2}$	0	0	0	0	1	$^{-1}$	0	1	1	3	3	1	1	0	0	0	6
7	1	1	1	5	5	5	6	4	3	3	3	2	2	2	2	2	2	7		7	0	0	0	0	0	1	3	3	2	2	3	1	1	0	0	0	0	7
8	1	1	1	5	6	5	6	4	4	4	$^{-1}$	2	2	2	2	2	$^{-2}$	8	IΓ	8	0	0	0	0	2	1	3	3	3	3	1	1	0	0	0	0	$^{-2}$	8
9	1	1	1	2	6	7	7	3	4	0	$^{-1}$	$^{-1}$	2	2	2	$^{-2}$	$^{-2}$	9	IΓ	9	0	0	0	2	2	4	4	1	2	2	0	0	0	0	0	$^{-2}$	-2	9
10		1	1	2	2	7	4	4	0	0	$^{-1}$	$^{-1}$	$^{-2}$					10	IΓ	10		1	2	4	3	4	2	2	2	2	0	0	$^{-2}$					10
11		$^{-2}$	1	2	2	0	0	0	0	0	$^{-1}$	$^{-1}$	$^{-2}$					11	IΓ	11		0	2	4	4	3	2	2	2	2	0	0	$^{-2}$					11
12		$^{-2}$	$^{-2}$	$^{-2}$	$^{-1}$	$^{-1}$	0	0	0	$^{-1}$	$^{-1}$	$^{-2}$						12		12		0	0	0	2	2	3	2	2	0	0	-2						12
13			$^{-2}$	$^{-2}$	-2	-1	-1	0	-1	-1	$^{-2}$							13		13			0	0	0	2	1	2	0	0	-2							13
14				$^{-2}$	$^{-2}$			-2	-2	$^{-2}$	$^{-2}$							14		14				0	0			$^{-2}$	-2	$^{-2}$	-2							14
	A	В	C	D	Ε	F	G	H	J	K	L	М	N	0	Р	Q	R				A	В	C	D	E	F	G	H	J	K	L	M	N	0	P	Q	R	

status quo

max double coverage

Difference between resulting and required degree of coverage (period 8-12 a.m.)

	A	В	C	D	Ε	F	G	H	J	K	L	M	N	0	P	Q	R			Τ	A	В	C	D	Ε	F	G	H	J	K	L	M	N	0	P	Q	R	
1													-2					1															-1					1
2							$^{-2}$	-1		$^{-1}$	$^{-2}$	$^{-2}$	-2	$^{-2}$	$^{-2}$			2		T							$^{-2}$	1		3	0	0	$^{-1}$	$^{-1}$	-1			2
3						$^{-2}$	$^{-1}$	$^{-1}$	-1	$^{-1}$	$^{-1}$	$^{-2}$	2	2				3								$^{-2}$	1	1	3	3	3	0	2	1				3
4			$^{-2}$	$^{-2}$	$^{-2}$	3	3	3	$^{-1}$	-1	$^{-1}$	3	2	2	2			4					-2	$^{-2}$	$^{-2}$	1	1	2	2	3	3	5	2	2	0			4
5			1	1	5	3	3	3	3	$^{-1}$	3	3	2	2	2	2		5					0	0	0	1	1	2	2	2	5	5	2	1	0	0		5
6	-2	1	1	5	5	5	2	2	3	3	3	3	2	2	2	2	2	6			-2	0	0	0	0	2	0	1	2	2	4	4	1	1	0	0	0	6
7	1	1	1	5	5	5	6	4	3	3	3	2	2	2	2	2	2	7			0	0	0	0	0	0	3	3	3	3	4	1	1	0	0	0	0	7
8	1	1	1	5	6	5	6	4	4	4	$^{-1}$	2	2	2	2	2	$^{-2}$	8			0	0	0	0	1	0	2	3	3	4	1	1	0	0	0	0	$^{-2}$	8
9	1	1	1	2	6	7	7	3	4	0	-1	$^{-1}$	2	2	2	$^{-2}$	$^{-2}$	9			0	0	0	1	1	3	3	0	1	1	0	0	0	0	0	$^{-2}$	$^{-2}$	9
10		1	1	2	2	7	4	4	0	0	$^{-1}$	$^{-1}$	$^{-2}$					10	1	0		1	2	3	2	3	1	1	1	1	0	0	$^{-2}$					10
11		$^{-2}$	1	2	2	0	0	0	0	0	$^{-1}$	$^{-1}$	$^{-2}$					11	1	1		0	2	3	3	2	1	1	1	1	0	0	$^{-2}$					11
12		$^{-2}$	$^{-2}$	$^{-2}$	$^{-1}$	$^{-1}$	0	0	0	$^{-1}$	$^{-1}$	$^{-2}$						12	1	2		0	0	0	1	1	2	1	1	0	0	$^{-2}$						12
13			$^{-2}$	$^{-2}$	-2	-1	$^{-1}$	0	-1	-1	$^{-2}$							13	1	3			0	0	0	1	0	1	0	0	-2							13
14				$^{-2}$	$^{-2}$			-2	-2	$^{-2}$	$^{-2}$							14	1	4				0	0			$^{-2}$	$^{-2}$	$^{-2}$	-2							14
	A	В	C	D	Ε	F	G	Н	J	K	L	М	N	0	P	Q	R				A	В	C	D	Ε	F	G	H	J	K	L	M	N	0	P	Q	R	

status quo

max empirically required coverage

Coverage level

Difference to empirically required coverage (period 8-12 a.m.)

current allocation

optimal allocation

Difference between the empirically required coverage in percentage EMS demand

percentage of EMS demand

Conclusions and outlook

Improvements & further research

- Quality improvements:
 - Consideration of flexible ambulance stations is recommended
 - More suitable coverage according to empirical demands
- Efficiency of resource utilization:
 - Reduced number of ambulances
 - Constant quality, with cost reduction
 - Higher quality, with equal costs
- Integration of uncertainties (demand, driving speed \rightarrow robust models)
 - Robust Uncertain Set Covering Problem (considers uncertainty in driving speed)
- Heuristic solution approach for large instances

Contact

Prof. Dr. Brigitte Werners

Management, Operations Research and Accounting

Faculty of Management and Economics Ruhr-University Bochum Universitaetsstrasse 150 44780 Bochum E-mail: or@rub.de

References

Dirk Degel, Lara Wiesche, Sebastian Rachuba, and Brigitte Werners. Dynamic ambulance location providing suitable coverage for time-dependent demand. *Cayirli T.; Gunal, M. M.; Gunes, E. D.; Ormeci, E. L. (eds.): Operational Research Applied to Health Services (ORAHS) 2013 Conference Proceedings,* 2013.

Dirk Degel, Lara Wiesche, Sebastian Rachuba, and Brigitte Werners. Time-dependent ambulance allocation considering data-driven empirical necessary coverage.

Technical report, Ruhr-University Bochum, Bochum, 2013/01 2013.

Simon Heussen, Brigitte Werners, Dirk Degel, Sebastian Rachuba, Lara Wiesche, and Pascal Lutter.

Projekt: optimale Versorgungsqualität im Rettungswesen—Optimierung von Rettungswachenstandorten.

Brandschutz: Deutsche Feuerwehr-Zeitung, 67. Jahrgang(September 2013):701-703, 2013.

Brigitte Werners, Dirk Degel, Sebastian Rachuba, Lara Wiesche, and Simon Heußen. Bedarfsplanung für kommunale Rettungsdienste: Wo sollte jedes Fahrzeug stehen? *Rettungsdienst (www.skverlag.de)*, 4:38–41, 2013.