

3

Health Care Logistics Karlsruher Institut für Technolo Home health care 00 00 $\mathbf{O}\mathbf{O}$ \Box \square Patient transportation Appointment planning Emergency medical services

Patient-based nurse rostering and tour planning in home care

Hospital layout planning and evaluation

Research Center for Information Technology www.fzi.de

Jacqueline Wirnitzer

Prevention of bottlenecks in hospital layouts through simulation modeling

Institute of Operations Research **Discrete Optimization and Logistics** dol.ior.kit.edu

Ines Arnolds

Hospital layout planning: combining simulation and optimization

Arnolds, I. V., Nickel, S., "An Iterative Simulation-Optimization Approach for Hospital Layout Planning", INFORMS Healthcare 2013, Chicago, USA.

Arnolds, I. V., Nickel, S., Multi-period layout planning for hospital wards, Socio-Economic Planning Sciences (47):220-237, 2013.

Karlsruher Institut für Techno

Institute of Operations Research

Discrete Optimization and Logistics

An Iterative Simulation-Optimization Approach for Hospital Layout Planning

Stefan Nickel, Ines Arnolds

Institute of Operations Research, Discrete Optimization and Logistics

www.kit.edu

Outline

- Motivation and research questions
- Literature
- Methodology
- Models
- Preliminary results
- Summary and next steps

Motivation

Motivation

Compare and improve the performance and robustness of hospital layouts for various scenarios Studying factors by DES, which are hard to integrate in mathematical models or heuristics for hospital layout planning

Combination of

- Mathematical optimization and
- Discrete event simulation

Extrinsic configuration

- Control, capacity and number of elevators,
- · Personnel elevators,
- Personnel shifts and schedules for breaks.

Stochastic influences

- · Clinical pathways,
- Means and speed of transportation,
- Patient arrival rates,
- · Service durations.

Outline

- Motivation and research questions
- Literature
- Methodology
- Models
- Preliminary results
- Summary and next steps

Literature

Hospital layout planning

Elshafei, A. N. 1977. "Hospital Layout as a Quadratic Assignment Problem". Operational Research Quarterly, 28:167-179.

Gibson, I. 2007. "An Approach to Hospital Planning and Design Using Discrete Event Simulation". *Proceedings of the 2007 Winter Simulation Conference*.

Simulation-optimization

Acar, Y., S. Kadipasaoglu, J. Day. 2009. "Incorporating uncertainty in optimal decision making: Integrating mixed integer programming and simulation to solve combinatorial problems". *Computers & Industrial Engineering.* 56 (1):106–112.

Kulkarni, K., J. Venkateswaran. 2012: "Stochastic Job Shop Scheduling using Hybrid Simulation and Optimization Approaches". *International Simulation Conference of India*.

Outline

- Motivation and research questions
- Literature
- Methodology
- Models
- Preliminary results
- Summary and next steps

Methodology

Combining simulation and optimization

Non-iterative models

- Models interact just once
- Running either simulation or optimization first
- Using preliminary results to obtain final solution from other model

Iterative models

- Models interact multiple times
- Until stopping criterion is met

Methodology

Iterative optimization and simulation

Kulkarni (2012)

Institute of Operations Research Discrete Optimization and Logistics

Outline

- Motivation and research questions
- Literature
- Methodology

Models

- Quadratic assignment problem
- Discrete event simulation
- Preliminary results
- Summary and next steps

Iterative simulation-optimization approach

- Objective: Robust hospital layout with short travel distances and times
- Assumption: Worse objective function value under uncertainty
 - DES: Additional patient arrivals with uncertain pathways

$\min Z =$	$= \sum_{j=1}^{m} \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{r=1}^{m} \sum_{r=1}^{m} \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{r=1}^{m} \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{r=1}^{m} \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{r=1}^{m} \sum_{l=1}^{m} \sum_{r=1}^{m} \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{r=1}^{m} \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{r=1}^{m} \sum_{k=1}^{m} \sum_{r=1}^{m} \sum_{r=1}^{m} \sum_{r=1}^{m} \sum_{k=1}^{m} \sum_{r=1}^{m} \sum_{k=1}^{m} \sum_{r=1}^{m} \sum_$	$\int_{1}^{2} f_{jk} d_{rl} y_{jr} y_{kl}$ Minimize total t	ravel distance	(1)
s.t.	$\sum_{r=1}^{m} y_{jr} = 1$	Each department assigned to one room	$\forall j \in \{1, \dots, m\}$	(2)
	$\sum_{j=1}^{m} y_{jr} = 1$	Each room assigned to one department	$\forall r \in \{1, \dots, m\}$	(3)
	$y_{jr} \in \{0,1\}$		$\forall j, r \in \{1, \dots, m\}$	$\{4)$

Parameters:

Decision Variables:

 $\begin{cases} 1, & \text{if department } j \text{ is assigned to room } r \\ 0, & \text{otherwise} \end{cases}$

 y_{jr}

Parameters:

 Z_n

 N_n | impact of uncertainty found by simulation for candidate solution n

Decision Variables:

binary variable for incorporating cost of uncertainty for candidate solution n: $\begin{cases}
1, & \text{if layot currently considered by QAP was suggested in a previous iteration} \\
0, & \text{otherwise}
\end{cases}$

 $\min Z = \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} \sum_{r=1}^{n} f_{jk} d_{rl} y_{jr} y_{kl} + \sum_{n}^{n} N_n Z_n$

m m m m

(1)

s.t.	$\sum_{r=1}^{m} y_{jr} = 1$	$\forall j \in \{1, \dots, m\} \ (2)$
	$\sum_{j=1}^{m} y_{jr} = 1$	$\forall r \in \{1, \dots, m\} \ (3)$
	$y_{jr} \in \{0,1\}$	$\forall j, r \in \{1, \dots, m\}$
Determine decision	$\sum_{j} \sum_{r} \left(2T_{njr} y_{jr} - y_{jr} - T_{njr} \right) \le Z_n - 1$	$\forall n \in \{1, \dots, I\} \tag{4}$
variables Z_n	$\sum_{j} \sum_{r} \left(2T_{njr} y_{jr} - y_{jr} - T_{njr} \right) \ge M(Z_n - 1)$	$\forall n \in \{1, \dots, I\} $ (6)
Parameters	$:: \begin{array}{ c c c c } T_{njr} & \begin{cases} 1, & \text{if binary variable } y_{jr} \text{ in car} \\ 0, & \text{otherwise} \\ I & & \# \text{ iterations} \end{cases} $	ndidate solution n is 1

 $\min Z = \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} \sum_{r=1}^{n} f_{jk} d_{rl} y_{jr} y_{kl} + \sum_{n} N_n Z_n$

$$y_{jr} \in \{0, 1\}$$
 $\forall j, r \in \{1, \dots, m\}$
(4)

$$\sum_{j} \sum_{r} \left(2T_{njr} y_{jr} - y_{jr} - T_{njr} \right) \le Z_n - 1 \qquad \forall n \in \{1, \dots, I\} \quad (5)$$

$$\sum_{j} \sum_{r} (2T_{njr}y_{jr} - y_{jr} - T_{njr}) \ge M(Z_n - 1) \qquad \forall n \in \{1, \dots, I\}$$
(6)

 $Z \leq Q_{min}$ Min. cost of QAP \leq best found solution of DES (7)

Parameters:

17

minimum total cost obtained so far from simulation

(1)

 $\forall j \in \{1, \dots, m\} \ (2)$

 Q_{min}

Institute of Operations Research Discrete Optimization and Logistics

Model: Discrete event simulation (DES)

Parameters

- 3 patient types: Walking, wheelchair, bed
- Individual speed per patient type
- Individual weights for elevator usage per patient type
- Arrival rates per patient type
- Transition probabilities

Outline

- Motivation and research questions
- Literature
- Methodology
- Models

Preliminary results

- Simulation-optimization approach
- Focusing on elevators in DES model

Summary and next steps

Preliminary results: Simulation-optimization approach

Setting

- Layout: One floor: 6 rooms and entry/exit
- Randomly generated flow matrix
- Random transition probabilities

Preliminary results: Simulation-optimization approach

Preliminary results: Simulation-optimization approach

Deterioration under deterministic data

Improvement under uncertain data

Preliminary results: Focusing on elevators in DES model

Institute of Operations Research Discrete Optimization and Logistics

Preliminary results: Focusing on elevators in DES model

Sensitivity analysis

Average waiting time for elevator

Outline

- Motivation and research questions
- Literature
- Methodology
- Models
- Preliminary results
- Summary and next steps

Summary

Robust hospital layout via simulation-optimization approach

Institute of Operations Research Discrete Optimization and Logistics

Next steps

- Modify QAP to solve larger instances
 - Practically relevant constraints
 - Symmetry breaking constraints
- DES model: Measurement of other relevant KPI's
 - Travel times
 - Personnel: Travel distances/times with/without patients
 - Fair layout: Regarding KPI's for different patient types
 - Tests on real-world data
 - Flow data

. . .

Transition matrices and transition probabilities

An Iterative Simulation-Optimization Approach for Hospital Layout Planning

Stefan Nickel, Ines Arnolds

Institute of Operations Research, Discrete Optimization and Logistics

www.kit.edu

Backup

Hospital layout planning: Example

Institute of Operations Research Discrete Optimization and Logistics

Methodology

Institute of Operations Research Discrete Optimization and Logistics

Hybrid models

34

Non-iterative optimization and simulation

Hybrid models

Non-iterative simulation-based optimization and optimization

Institute of Operations Research Discrete Optimization and Logistics

Hybrid models

Kulkarni (2012)

Institute of Operations Research Discrete Optimization and Logistics

$$\min Z = \sum_{j=1}^{m} \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{r=1}^{m} f_{jk} d_{rl} y_{jr} y_{kl} + \sum_{n} N_n Z_n$$

$$\text{s.t.} \sum_{r=1}^{m} y_{jr} = 1 \qquad \forall j \in \{1, \dots, m\} \quad (2)$$

$$\sum_{j=1}^{m} y_{jr} = 1 \qquad \forall r \in \{1, \dots, m\} \quad (3)$$

$$y_{jr} \in \{0, 1\} \qquad \forall j, r \in \{1, \dots, m\} \quad (4)$$

$$\sum_{j} \sum_{r} (2T_{njr} y_{jr} - y_{jr} - T_{njr}) \leq Z_n - 1 \qquad \forall n \in \{1, \dots, I\} \quad (5)$$

$$\text{Parameters:} \qquad \begin{bmatrix} T_{njr} \\ I \end{bmatrix} \begin{cases} 1, & \text{if binary variable } y_{jr} \text{ in candidate solution } n \text{ is } 1 \\ 0, & \text{otherwise} \\ \# \text{ iterations} \end{cases}$$

$$\min Z = \sum_{j=1}^{m} \sum_{k=1}^{m} \sum_{l=1}^{m} \sum_{r=1}^{m} f_{jk} d_{rl} y_{jr} y_{kl} + \sum_{n} N_{n} Z_{n}$$
(1)
s.t.
$$\sum_{r=1}^{m} y_{jr} = 1$$
$$\forall j \in \{1, \dots, m\}$$
(2)

$$\sum_{j=1}^{m} y_{jr} = 1$$
$$\forall r \in \{1, \dots, m\}$$
(3)

$$y_{jr} \in \{0, 1\}$$
$$\forall j, r \in \{1, \dots, m\}$$
(4)

$$\sum_{j} \sum_{r} (2T_{njr} y_{jr} - y_{jr} - T_{njr}) \le Z_{n} - 1$$
$$\forall n \in \{1, \dots, I\}$$
(5)

$$\sum_{j} \sum_{r} (2T_{njr} y_{jr} - y_{jr} - T_{njr}) \ge M(Z_{n} - 1)$$
$$\forall n \in \{1, \dots, I\}$$
(6)

$$(\exists T_{njr} \neq y_{jr}) \Rightarrow (Z_{n} = 0)$$

Model: Discrete event simulation (DES)

Parameters

- 3 patient types: Walking, wheelchair, bed
- Individual speed per patient type
- Individual weights for elevator usage per patient type
- Arrival rates per patient type
- Transition probabilities
- 20 departments on 4 floors:
 - Fixed
 - Entrance
 - Variable
 - 3 surgical units, laboratory
 - 4 functional departments
 - 12 wards

