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OPTIMAL CAPACITY SCHEDULING-I 

Arthur F. Veinott, Jr. and Harvey M. Wagner 

Stanford University, California 

(Received October 20, 1961) 

Efficient algorithms are developed optimizing an important class of capacity 
scheduling models. The specific problem considered can be simply 
described in terms of contracting for warehousing capacity. Contracts 
must be let for warehouse capacity over n time periods, with the minimum 
capacity to be provided in each time period being specified. Savings may 
be achieved by long-term leasing arrangements or by contracting at favor- 
able periods of time, even though this creates idle capacity at certain time 
periods. A minimum cost solution to this problem is sought. The mathe- 
matical model also applies to problems of equipment replacement and 
overhaul; checkout, repair, and replacement of stochastically failing 
equipment; determination of economic lot size, product assortment, and 
deterministic batch queuing policies; labor-force planning; and multi- 
commodity warehouse decisions. For some of these problems, such as 
equipment replacement, the computing algorithms presented are even 
more efficient than schemes heretofore proposed for simpler versions of the 
same problem. 

THIS PAPER has a twofold purpose: (1) to exhibit simple and efficient 
algorithms for solving a particular class of optimization problems, 

and (2) to demonstrate the wide applicability of this class, which includes, 
as significant models, capacity scheduling; equipment replacement and 
overhaul; automatic checkout, repair, and replacement of stochastically 
failing mechanisms; determination of economic lot sizes, product assort- 
ments, and batch queuing policies; labor-force planning; and multicom- 
modity warehouse decisions. Of some importance is the fact that not only 
do the algorithms assist in solving generalized versions of these models, 
but in many cases, such as equipment replacement, they actually improve 
on computational schemes heretofore proposed for simplified versions. 

Because of the entire paper's length, it is published in two parts, the 
second part immediately following this one. In containing the number of 
pages to a reasonable amount, discussions of certain detailed and relatively 
minor considerations have been omitted here; the reader interested in these 
aspects will find them treated in full in reference 15, which is available from 
The Rand Corporation. 

In the next two sections confusion that would be engendered by simul- 
taneously referring to several of the models has been avoided by keeping 
the exposition in terms of one particular problem, capacity scheduling; in 
the final section, attention is turned to the other interpretations of the 
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model. The specific capacity scheduling problem is described as follows: 
a decision maker must contract for warehousing capacity over n time 
periods, the minimal capacity requirement for each period being deter- 
ministically specified. His economic problem arises because savings may 
possibly accrue by his undertaking long-term leasing or contracting at 
favorable periods of time, even though such commitments may necessitate 
leaving some of the capacity idle during several periods. Clearly this 
programming model might also apply to other types of capacity, such as 
transport facilities, insurance protection, and leased telephone lines. 

The next section starts with a precise mathematical statement of the 
model, shows the equivalence of the model to a special type of transshipment 
network model, and states the qualitative properties of an optimal program. 
Following is an examination of how the model may be solved with linear 
programming techniques, either as an ordinary or as a reduced transship- 
ment problem. For the latter approach, a rule is given for efficient com- 
putation of the required cost coefficients; the rule is based on a dynamic 
programming recursion that fully exploits the particular structure of the 
model. A comparison is made of the two transshipment formulations and 
a test is provided for determining which of the two approaches is more 
promising in any particular application. The third section concentrates 
on special patterns for the minimal requirements, and in particular, horizon 
planning procedures are derived for monotonic patterns. In the final 
section several of the alternative interpretations of the model are discussed. 

In Part II special computing algorithms are presented that, when appli- 
cable, are significantly more efficient than the transshipment calculations. 
The results are also extended to situations in which initial capacity exists 
and to the multicommodity warehousing model. 

MATHEMATICAL FORMULATION 

Description as a Transshipment Problem 

WE NOW formalize the discussion in the preceding section. Let Dk be the 
minimal capacity requirement during period k, k = 1, 2, * , n. Capacity 
acquired at the beginning of period k, available for possible use during 
periods k, k+ 1, * * *, t- 1, and relinquished at the beginning of period t is 
said to be available for the interval [k, t]. Let Xkt denote the amount of 
capacity available during the interval [k, t] and let Ckt be the associated 
unit cost. Then the problem is to find Xkt that minimize 

Zk Zt>k Ckt Xkt, (1) 

subject to the capacity constraints 

Ek<j Zt>jXkt-Sj=Dj, (j=Q2, . *,n ; Xk tO; S>O0) (2) 
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where the Sj may be interpreted as slack variables representing unused 
capacity in period i.t We denote optimal program values by asterisks, 
e.g., Xkt. 

It is plausible to expect in most real problems that 

Ckt-<Crj for every r<k<t<jt (3) 

which states that if [r, j] encompasses [k, t], then the unit cost of the activ- 
ity for [r, j] is at least as great as the unit cost of the activity for [k, t]. Un- 
less otherwise stated we assume in the remainder of this paper that the 
model is so formulated that (3) is satisfied. ? 

By a simple manipulation of the restrictions (2), we show that the 
problem described above is a transshipment linear programming model. I21 
We give the details for the case n= 4, but the reader will observe the proof 
is general. Writing (2) in full we have 

X12+Xl3+Xl4+XI5 -S1 = D1, (4) 

X13+XI4+Xl5+X23+X24+X25 -S2 = D2, (5) 
X14+X15 +X24+X25+X34+X35 -S3 = D3, (6) 

X15 +X25 +X35+X45 -S4=D4. (7) 

Subtracting (6) from (7), (5) from (6), (4) from (5), and multiplying 
(7) by (-1) yields the equivalent system written in matrix form (with 
one redundant equation): 

1 1 1 1 0 0 0 0 0 0 -1 0 0 0 X12 lDi X14 -1 000 o1 1 1000 1-100o 3 D2D 
0-1 0 0-1 0 0 1 1 0 0 1 -1 0 X14 D3-D2 (8) 
0 0-1 0 0-1 0-1 0 1 0 0 -1 S3 D4-D3 
0 0 0-1 0 0 -1 0-1 -1 0 0 0 1 83 D4 

The structure (8) is that of a transshipment model, and it follows as one 
consequence, that if the Dk are integer valued, there exists an integer 
valued optimal program. 

In reference 12 two alternative procedures are proposed for solving a 
transshipment problem with p restrictions. The first procedure requires 
that a related transportation problem (TP) with 2p restrictions be solved. 
The second method requires solving up to p/2 'shortest-route problems' 

t If there are several ways of providing capacity for a given interval, we choose 
one with the lowest unit cost. 

Clearly if any ckt<O, then an unbounded solution exists; throughout we assume 
that Ckt>-. 

: For purposes of testing whether (3) holds, we adopt the convention 
that cii= + oo for each interval [i, j] for which no activity is defined. 

? It is shown in reference 15 that if initially (3) does not hold, it is possible to 
redefine the cij so that (3) holds and so that any optimal program with the new unit 
costs ctj=mink<?iiS Ckt is after a simple transformation optimal for the original 
problem. 
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and then solving a transportation problem with at most p restrictions; this 
latter method we call the reduced transportation method (RTP). Within 
the context of our capacity problems, we explore each of these methods 
with a view toward determining the more efficient approach for any specific 
application. 

The TP Method 

If we use the standard approach to convert the transshipment model to a 
transportation problem, we have, for our example with n=4, Table I as 
representing the possible activities and Table II as the associated costs. 

TABLE I TABLE II 
ACTIVITIES AND RESTRICTIONS COST COEFFICIENTS 

Row sum 

Y1 X12 X13 X14 X15 D1+G 0 C12 C13 C14 C15 

S1 Y2 X23 X24 X25 D2-D1+G 0 0 C2 C24 C25 
S2 Y3 X34 X35 D3-D2+G 0 0 C34 C35 

S3 Y4 X45 D4-D3+G o o C45 

S4_Y5 G 0.0 

Column G G G G D4+G 
sum 

The blanks in Tables I and II refer to inadmissible activities. The Yi are 
dummy variables and G may be defined as 

G=0.5[D1+ ST 4 IDi-Dsi-I+D4]. 
In general, the above transportation problem has n+ 1 row and n+ 1 

column restrictions; using Proposition 1 below, we demonstrate that the 
dimensions may be reduced to nXn. 

We turn to a description of the properties of an optimal program. For 
a specific optimal program, let Zk* be the amount of capacity available in 
period k, i.e., 

Zk ZErAk Et>k Xrt. - (k=1, 2, **,n) 

PROPOSITION 1. There exists an optimal extreme point program such that 

(a) if Zk*>Dk, then Xj*,k 1l=O for all j<k +I and 
Xt =O for all t>lk; 

(b) if DkCO, then Xjk+l=O for all j<k?+ and 
Xkft=O for all t>k; 

t We say that X is an extreme point program if it is an extreme point of the con- 
vex set of programs satisfying (2). The general theory of linear programming ensures 
that at least one extreme point program is optimal when a feasible and finite optimal 
program exists. 

I This and subsequent propositions are proved in the Appendix. 
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(c) if Zk*>Dk, then there are integers r <Ik and t> k for which Dr = 

Zr*>Z?*+l Zj*=Zr*+, for j=r+2, r+3, , t-1, and Z*-1=< 
Zt*=Dt; 

(d) Zk*?<min (maxi?k Di, maxj>k D)= Uk for every Ik; the function U1, 
is unimodal;t 

(e) if k= 1, Ik=n, Dkmaxi<k Di, orD,>maxi>k Di, then Uk=Dkc, Sk = 

0, and Zk =Dk; 

(f) if Dk is a unimnodalfunction of Ik, then Sk* =0 and Zk*=Dk for all 1. 

We now discuss the meaning of the proposition. Part (a) implies that 
we may restrict our attention to policies wherein no capacity is bought at 
the beginning or sold (released) at the end of a period k in which the total 
available capacity exceeds the total required. Part (b) states that if 
Dk=O for some k and if all period k activities are eliminated from the 
problem, an optimal solution for the revised (n-i) -period problem is also 
optimal for the original problem. More generally, if say, p of the Dk are 
zero, the problem may be reduced to an (n-p) period model in which 
every requirement is positive. The conclusions of Part (a) are refined 
in Parts (c), (d), and (e), which assert respectively that available capacity 
coincides with the requirements schedule except over certain intervals 
where the available capacity remains constant; available capacity is never 
larger than the smaller of the preceding and subsequent peak require- 
ments; and idle capacity never exists at the first or last period, or when 
the current requirement is at least as large as either the preceding or the 
subsequent peak requirement. Part (f) states that if the requirement 
pattern is unimodal, then we may seek a schedule in which no idle capacity 
occurs. These properties have been observed by other authors in a related 
context. [l 9] 

One use of Part (e) is to eliminate certain Sk activities from the pro- 
gramming problem. In particular, since S* = S*=0, we note from Table I 
that Yi* = Y*+1 = G; therefore, we may eliminate the first column restraint 
and the (n+ 1)-st row restraint. The new table of restraints is identical 
to Table I except for the deletion of the indicated row and column and the 
replacement of the first row sum, D1+G, by the quantity D1 and the 
(n+1)-st column sum, Dn+G, by the quantity Dn. 

The RTP Method 

In order to describe the RTP [12] method for the transshipment problem, 
we give a network representation to the restrictions (8). The network is 

t A function fk is unimodal if there exists a number t such that fk is nondecreasing 
for k!t and is nonincreasing for k>1t. 
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comprised of nodes, one for each restriction in (8), and of directed arcs 
connecting the nodes, one arc for each activity variable in (8). In Fig. 1 
we illustrate this particular example. In the network representation, Xij 
is interpreted as the amount of flow along are (i, j), i.e., from node i to 
node j; cij is the cost per unit of flow along the are. Similarly Si is the 
flow from node i+1 to node i; here the cost per unit flow ci+,,=O. 

The quantity associated with each node, e.g., Di-Di-1 with node i, 
represents the amount by which the flow out of the node exceeds the total 
flow into the node. With this identification, our capacity scheduling 
problem is equivalent to the problem of finding flows in a network satisfying 
the nodal requirements at a minimum cost. From the point of view of 

x15 

D a) - .) 4 x-- x13 x2 35 

x12 x3 x45 
2~~~~~ 

D D -D D -D D-D - D 
1 2 1 3 2 4 3 4 

Figure 1 

constructing a feasible set of flows, we observe that any positive node i 
(say), i.e., where Di>Di1, may possibly supply the deficit at any nega- 
tive node j (say), i.e., where Dj<Dj-1. Clearly, for any optimal program, 
the flow between a positive node i and a negative node j would travel over 
a minimal cost path, i.e., along an admissible set of arcs of the form (i,ti), 
(tit2), (t2,t3), ... , (tkj) such that the sum of the associated unit costs is 
a minimum; we denote the minimal cost by fij. The RTP method is to 
solve a wXs ordinary transportation problem in which the 'surpluses' at 
the w positive nodes are used to satisfy 'shortages' at the s negative nodes 
and where fij is the unit cost of flow between positive node i and negative 
node j. The RTP approach necessitates solving first for the minimal cost 
paths to obtain the fij, and then for the optimal transportation schedule. 
Having such an optimal solution, we apply the obvious correspondences 
with the original Xkt variables to produce the desired capacity schedule. 

The fij required for the RTP method may be determined in the follow- 
ing way. First, one readily concludes from Fig. 1 that fij=0 for i>j. 
Upon putting fjj =0 for notational convenience, the following result, proved 
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in reference 15t (c.f., reference 6 and 13), may be used to compute theftj for 
i<j recursively. 

PROPOSITION 2 

(a) fig Ltfkfor every i-< k < t _<j; 

(b) for every i <j, fj =mini<k?j(cik+fkj); 

(c) for every i<j, fij= min ?k</f`k+ek3). 
In order to use the 'backward equations' given in Part (b), we first 

observe that fj- ,j=cj-,,j. Then fj-2,j, *3 ... fij may be calculated 

TABLE III 

RELATIVE EFFICIENCY OF TP AND RTP METHODS(a) 

Total additions 
and subtractions Total comparisons 

TP-method 2Kn3+0(fn2) Kn3+0(n2) 

RTP-method Y48+ )' ?4 (8 +) Xn0(n2) 

(a) The symbol O(x) stands for any function for which limx-oO O(x)/x is bounded. 
The entries corresponding to the RTP method are upper bounds and are based on the 

assumption that the backward equations are used to compute all the fij when s < w and that 
the forward equations are used otherwise (see footnote at the end of the preceding sub-section). 
When w or s is small in relation to o.5n, the advantage of the RTP method is even more 
pronounced. 

recursively in the order given, since each term in the sequence depends 
only upon the terms preceding it and upon certain of the known cost 
coefficients. In the usual manner of dynamic programming, r3 the minimal 
cost computations provide the associated optimal path. Alternatively 
the 'forward equations' in Part (c) may be employed in an entirely anal- 
ogous way.t 

t The proof consists essentially in exploiting (3) to show that there is an optimal 
path from i to j which does not involve 'back-tracking,' i.e., a path in which no arcs 
of the form (k, k-1) appear. 

I It is not necessary to determine every fij for the RTP method, but only those 
corresponding to a possible flow from a positive node to a negative node. There is 
a simple procedure that takes advantage of this fact. If s < w, use the backward 
equations to obtain {fj*j} where i* is the first (lowest numbered) positive node 
and j ranges over the negative nodes; otherwise use the forward equations in a sim- 
ilar manner. It is shown in reference 15 that this rule for choosing between exclu- 
sive use of the backward and forward equations respectively always selects the 
procedure requiring the smallest number of calculations when max(w, is)_0.6n+2. 

It is also shown in reference 15 that the computation of the fij may be simplified 
in a different way when the cij can be written in the form cij=aim(j-i)+>LJ hk 
for all i<j. In particular f =aif(j-i)+jbjl hk for i < j where f (0) = O and f(k) 
=mino t<k {a'm(k-t)+f (t) } for k=1, 2, *.* ,n. 
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Comparison of the TP and RTP Methods 

Our comparison of the TP and RTP approaches to capacity scheduling 
models is based on the assumption that the transportation simplex method 
is employed. We also postulate that the ratio of the expected number of 
iterations to the number of linear restrictions is a constant K. Under 
these assumptions, it is shown in reference 15 that the amount of computa- 
tion required for the TP and RTP methods is as shown in Table III. 

Observe that if K> 772 then the RTP method is more efficient in terms 
of additions and subtractions for sufficiently large n. Similarly, the RTP 
method requires fewer comparisons if K> Y36. Available evidence refer- 
ence 8, pp. 119-20, points to the conclusion that K is close to 1, and there- 
fore the RTP method appears superior to the TP method for large n. 

MONOTONE AND PULSATING REQUIREMENTS SCHEDULES 

WHEN THE Dk form a nondecreasing sequence for k= 1, 2, ..., n, the RTP 
method yields a simple solution. Since s =1 and j, = n+ 1, we obtain the 
minimal cost paths from each positive node to the (n+ 1) -st node by means 
of the backward equations. The RTP approach yields a w by 1 trans- 
portation problem with the evident solution: schedule the capacity for 
requirement level D1 according to the minimal cost path associated with 
fil,,?'; schedule the capacity for the increment D2-D1 according to the 
minimal cost path associated with f2n+1; etc. It is clear that in each 
period k, X* = 0 for all t #j where (k,j) is the first arc in the minimal cost 
path from node k to node n+1. In addition, X* =Dk-Zi<k t>k Xt. 
Thus, in order to schedule optimally in period k, it is not necessary to know 
the exact values of Dk+?, Dk?+2, ... D), but only that this sequence is non- 
decreasing and that Dk+?1> Dk. 

When the Dk form a nonincreasing sequence, we employ the forward 
equations to obtain the minimal cost paths from the first node to each 
negative node. The RTP approach yields a 1 Xs transportation problem 
with the solution: Schedule the capacity requirement Dn according to the 
minimal cost path associated with fi n-l-; schedule the capacity for the 
increment Du1 -Do according to the minimal cost path associated with 
fin; etc. Here it is necessary to know, in general, the exact values of 
Dk+?1 Dk+2, . . . , Dn in order to determine correctly XAk, k<j. 

In the special case where Dk = d for all k, we may employ the approach 
for either procedure above. It follows that only the activities associated 
with f,+i are employed, each at the level d, and that there is exactly d 
units of capacity available in each period. 

t There is some evidence supporting this hypothesis in reference 8, pp. 119-20. 
Although our analysis was developed under the assumption that K is the same for 
both the TP and RTP methods, an alternative postulate that K differs for the two 
approaches would necessitate only minor changes. 
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As we shall observe in Part II, an important type of requirement 
scheduling problem stems from a pulsating pattern of minimal capacities, 
i.e., a pattern in which each element of {IDk equals either d or 0. In order 
to characterize certain properties of optimal extreme point programs for 
this problem, it is convenient to introduce some definitions. We say 
that a program X has overlapping components if for some integers i <j < k < 
t, both Xi> O and Xj> 0. A program X is said to have nested components 
if for some integers i<j<k<t(t-i>k-j), both Xjt>0 and Xjk>O. 

By exploiting the fact that every extreme point of the set of feasible 
programs for a transportation problem involves only integral variables, it 
follows readily that every extreme point program X for the case of pulsat- 
ing requirements has the following properties: (a) each X~j equals zero 
or d; (b) X contains no nested components; (c) at most two activities 
may be employed in any period; and (d) if Xjj = d, then Dk= d for at least 
some i?<k<j. 

When (3) holds, it follows from Part (d) of Proposition 1 that there 
exists an optimum extreme point program for which Zk* <d for all k. t In 
addition, since this extreme point must satisfy property (a) in the pre- 
ceding paragraph, it can have no overlapping or nested components. 
Hence, new capacity is acquired only after old capacity terminates. 

An optimum extreme point for the case of pulsating requirements can 
be found by applying Part (b) of Proposition 1, i.e., by dropping periods 
with zero requirements, to form a new problem with identical require- 
ments in every period. The new problem is readily solved by the method 
indicated in this section. 

EXTENSIONS AND APPLICATIONS 

Equipment Replacement and Overhaul 

A NUMBER of important models in operations research have been 
recognized as yielding to both linear programming and dynamic program- 
ming methods. So far as we know, recognizing that equipment replace- 
ment models[4'5'10"11] are equivalent to a transportation model (actually, to 
an assignment model) appears a new observation. The replacement 
models are equivalent [when (3) holds] to the special case of our model in 
which Dk=1 for all k. 

The assignment model representation is given by Table I (making the 
deletion of the first column and the n+1-st row, as indicated at the end of 
the sub-section "The TP Method") with each row and column sum entry 
being 1. If instead a dynamic programming approach is to be used, then 

t This property also holds if (3) is relaxed to require merely that cijjcsj+j for 
all i and j or that cij5ci_,l for all i and j. 
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we propose solving the problem by computing flf+, employing either of 
the recursions in Proposition 2. An alternative recursion proposed in 
reference 4 for solving the problem requires twice the number of additions 
and the same number of comparisons as our method. 

Since the cij may depend upon the length of the interval [ij] as well 
as the calendar dates i and j, our formulation easily encompasses situations 
in which technological progress, as reflected in economic terms, is present, 
and situations in which it is possible to purchase a used machine. 151 

Finally, we mention the possibility of including the decision to overhaul 
the equipment. [5J In particular, we permit (but do not require) a machine 
to be overhauled at the beginning of any period after the initial procure- 
ment and prior to the sale of the machine. We further assume that the 
length of time required to overhaul a machine is negligible in comparison 
with the length of a period. Thus, a machine that is overhauled at the 
beginning of a period is still available for use during the period. We sup- 
pose also that if a machine is bought at the beginning of period i, over- 
hauled at the beginning of periods t1 <t2 < ... <t*(i<t1), and sold at the 
beginning of period j(j> t.), the total net cost incurred can be written in 
the form: 

Oi(i,tl) +oi(tl,t2) + *+oi(tp-1)ttp) +bij(tv) . (9) 

We interpret o (k,v) (i< k <v) as the cost of operating a machine during 
the interval [lov] and then overhauling it at the beginning of period v, given 
that the machine was initially purchased in period i and was last over- 
hauled in period k (or bought, if k=i). The term b1j(t,) represents the 
net total cost resulting from acquiring the machine in period i, from relin- 
quishing the machine in period j, and from operating the machine during 
the interval [tp,j] between final overhaul and sale. The cost of providing a 
machine during the interval [ij] without overhauling is denoted by bij(i). 

Denote by O'j the total cost of operating and overhauling a machine 
purchased in period i and overhauled in period j(j>i) when an optimal 
overhaul policy is followed within the interval [i, j]. In view of (9), the 
Oij satisfy the forward equations:t 

Ojj=min t<jfOjt+oj(tj)} for all 1 ? i<j<n (10) 

where we put Oii == 0 for all i. 
The first step in our approach is to employ (10) to calculate the Oj; 

specifically, for each i we compute ?+, Oi,i+2, ... I Oi, Next we use 
these results to calculate the cost cij resulting from buying a machine in 
period i, selling it in period j, and overhauling it in an optimal manner 

t It is inefficient to use backward equations here. 
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during the interval [i, j]. In view of (9), the cij may be obtained from 

cij=mini?t<ifOit+bij(t)} for all 1?<i<jn+1. (11) 

The final step is to employ Proposition 2 to calculate the optimal replace- 
ment policy. This method of solving the replacement-overhaul problem 
requires about two-thirds of the number of additions and the same number 
of comparisons as the proposal in reference 5. 

The technique given above can be extended to the case where several 
types of machines and/or used machines can be acquired for certain inter- 
vals. For this case we find the optimal overhaul policies for each activity 
using the above procedure. We then determine the cheapest activity 
available for each interval and solve the resulting replacement problem. 

Automatic Checkout, Repair, and Replacement 

In the models of the preceding section, equipment replacement is justi- 
fied solely in terms of economic factors, and the possibility of machine 
breakdown is taken into account implicitly, if at all, in the computation of 
the cij. The models in this section differ mainly in their focusing attention 
on the failure problem. Our purpose here is to indicate the basic idea 
permitting the use of the optimizing model in this paper for the solution of 
two stochastic failure problems. The model is also applicable to a number 
of generalizations of these problems; however, we postpone further 
extensions to another publication. 

Problem 1: It is desired that a system be available for possible emer- 
gency service over n periods. However, a certain critical part in the system 
is subject to chance failure, which results in the system being unavailable 
for service with attendant penalty costs. Since it is impractical (for 
economic or technological reasons) to determine the serviceability of the 
part by means of checkouts, it is necessary to replace the part when it has 
been in service for a suitable interval in order to avoid extended system 
unavailability. We therefore seek a replacement policy that minimizes 
the combined (expected) costs of part replacements and system unavail- 
ability. The problem is formally equivalent to the replacement problem 
of the preceding section under the following circumstances: replacements 
are permissible only at the beginning of each period; a part placed in 
service for the interval [i,j] has a known time to failure distribution Fij(t) 
with Fij(O-0) =0 and Fij(j-i) = 1;t and the total cost c(ij,t) incurred 
during [i,j] when the part placed in service for that interval fails at age 
t(0 ? t ?j-i) depends only on inj, and t. The cij, which are defined by 

t It is convenient for expository purposes to view removal of the part as a failure. 
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rj s 

cij= c(ii , t) dFij(t) for i<j, 

here represent expected costs. t 
Problem 2: A system, which is operational at the beginning of period 

one (i.e., at time zero), has a known time-to-failure distribution F(t) with 
F(0) = 0. If the system remains operational until the end of period n, it is 
removed from service at that point. Hence we assume for convenience 
that F(n) = 1. It is possible to check out the system at the beginning of 
each period, employing a test that determines with certainty whether the 
system is or is not operational. If the system is found to have failed, no 
further checkouts are performed. The optimizing problem is to find a 
checkout schedule determining the specific periods in which the system 
should be tested in order to balance properly the costs of making frequent 
checks and of having the system in an undetected nonoperational state. 

This problem is also mathematically equivalent to the replacement 
problem of the preceding section provided that the total cost (checkout 
and downtime) c(ij,t) incurred in the interval [ij] when successive check- 
outs are performed at the beginnings of periods i and j and when the 
system fails at time t(>i-1) depends only upon ij, and t.L The cij are 
obtained from Cn 

cry= Jc(i j, t) dF(t). 
S_1 

A continuous time version of this problem was formulated and studied 
extensively in reference 2. 

Economic Lot Size, Product Assortment, and Deterministic Batch 
Queuing Models 
The problem in the dynamic economic lot size model,t"6'171 is to find 

a minimal cost inventory policy under the following circumstances: deter- 
ministic requirements Rt are to be filled in each period t; the cost of pro- 
ducing or ordering Pt items, gt(Pt), is a concave nondecreasing function, 
thereby permitting situations having set-up costs and quantity discounts 
that may possibly depend on the period t; inventory may be stored from 
one period to the next at a cost of ht per unit on hand at the end of period 
t; and there is no inventory on hand initially.? 

t We assume that c(i,j,t) is nonnegative, bounded, and continuous in t. The 
latter assumption, which is imposed to ensure existence of the integral, can be re- 
laxed. 

i Here again we assume the c(i,j,t) are nonnegative, bounded, and continuous 
in t. 

? If there is inventory on hand initially, we may assume without loss of opti- 
mality that it is used to satisfy the requirements consecutively in periods 1, 2, *-. 
for as long as it lasts. We then consider the revised problem in which the satisfied 
requirements are eliminated and in which there is no initial inventory. 
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In the assortment problem, i4 "6J decisions must be made concerning 
the production of items possessing a property of "one-way technological 
feasibility." For example, consider selecting the assortment of structural 
steel beams, where a stronger beam can be technologically employed to 
meet the demand for a weaker beam, with an attendant economic loss. 
It was demonstrated in reference 16 that the assortment problem is mathe- 
matically equivalent to the lot-size model. 

A third interpretation is a queuing system in which Rt persons arrive in 
period t and can be served in that period or subsequent periods. In decid- 
ing on an optimal batch size to serve in period t, an economic balance must 
be made between having persons wait and providing service capacity at a 
cost described by a concave function of capacity. 

It was demonstrated in references 16 and 17 that an optimal policy 
exists for the above problems wherein for some integers 1 =u1 <u2< ... < 

u,=n+l, PI,== ZjX, Rj for k=ui and t=ui+,-1 and i=1, 2, *^,p-1, 
and Pk=0 otherwise. This result permits us to formulate the indicated 
problems in terms of the capacity scheduling problem (1), (2), by letting 
cij be the total cost associated with Pi= EkZ Rk, i.e., 

Cij=gi( Rk)?Zt ht[ Z+Ij1 Rk] for 1 i< j n 1; 
by letting DA=1 for 1?t n; and by requiring that St=0 for 1<t<n. 
Adopting this procedure, we have the result, just as for the equipment 
replacement models above, that the dynamic economic lot-size problem 
is equivalent to an assignment problem. The dynamic programming com- 
putational approach of Proposition 2 is the same as the technique in 
references 16 and 17. 

Labor Force Planning 

A large number of papers have appeared on the scheduling of labor 
force size, given a time sequence of minimal requirements Dk for manpower, 
e.g., see references 1 and 9. The formulations differ considerably,t but 
many of them attempt to isolate the costs resulting from hiring, firing, and 
employing. Our model is applicable to such situations where it is mean- 
ingful to let Xij be the number of men hired in period i and fired at the 
beginning of j, where cij is the cost per man employed in this interval. 
Thus we are able to introduce explicitly the cost factors associated both 
with the length and with the calendar period of employment. 

APPENDIX: PROOF OF PROPOSITION 1 

We first prove that Part (a) holds for every optimal program under the assump- 
tion that the cost coefficients are strictly positive and that (3) is always satisfied 

t Here again it has been long recognized that both linear and dynamic program- 
ming may be applied to some of these models. 
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with strict inequality. We recall that the primal problem is to find X~j that 

minimize Eij cij Xij (12) 
subject to 

Ei<k,j>kXijDk; (k=1, 2, ** *, n; XxjO) (13) 

the dual problem is to find Uk* that 

maximize Ek' Dkc Uk, (14) 
subject to 

jkj- Uk <5ij. (1 ?i<j ?n+i-, UkO0) (15) 

It is well known that every pair of optimal solutions to the primal and dual 
problems satisfy the relations 

if Ei<k,j>k Xt >Dk, then Uka* -0, and (16) 

if EZ-i Uk* <Cij, then X1 = 0. (17) 

Employing these relations and the assumptions about the cij, we conclude 
that if Zk* >Dk, then 

Uk* =0 <ck,k+1, so that Xk*k+l =0; 

Etk Ut*=jtk+1 Ut*<Ck+l,?j <Ck, SO that X* =O forj>k+1; 

Et- Ut* =Eki1 t* <Cik <Cik+l, SO that X k~l =0 for i <k, 

which proves Part (a) where the cij are all positive and satisfy (3) with strict 
inequality. t 

The remaining assertions follow immediately from Part (a). 

t The proof is extended to the case where some of the cjj are zero and/or where 
(3) does not hold with strict inequality in reference 15. 
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