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Abstract 

The Maximal Availability Location Problem (MALP) has been recently formulated as a probabilistic version of the 
maximal covering location problem. The added feature in MALP is that randomness into the availability of servers is 
considered. In MALP, though, it is assumed that the probabilities of different servers being busy are independent. In this 
paper, we utilize results from queuing theory to relax this assumption, obtaining a more realistic model for emergency 
systems: the Queueing MALP or Q-MALP. We also consider in this model that travel times or distances along arcs of the 
network are random variables. We show here how to site limited numbers of emergency vehicles, such as ambulances, in 
such a way as to maximize the calls for service which have an ambulance available within a time or distance standard with 
reliability o~ - using a queueing theory model for server availability. We also propose some extensions to the basic model. 
Formulations are presented and computational experience is offered. 

Keywords: Emergency vehicles; Location; Congestion; Queueing theory 

1. Introduct ion 

Mathematical  programming models  for the siting 
of  emergency services began their evolution,  along 
with plant and warehouse location models,  in the late 
1960's and early 1970's. Among the early formula- 
tions was a group of  models  that either required the 
siting of  a server within a distance or t ime standard 
of  a demand node or sought the siting within the 
standard as a desirable goal. This is the l ineage of  
models  that is developed further in the present paper, 
but the interested reader can refer to ReVelle  et al. 

* Corresponding author. 

(1977) for a fairly complete review of  these early 
models.  

In this paper, we develop a new probabilist ic 
model  for the siting of  a single type of  emergency 
service - of  which the ambulance is the prototype. 
The model  provided here is based on the well-devel-  
oped ideas of  queueing theory. This model  represents 
a new and undoubtedly temporary endpoint  in the 
gradual evolution of  the original covering models.  
To understand the relationship between this model  
and its predecessors,  we offer a brief  verbal  descrip- 
tion of  the constraints and objectives of  the predeces- 
sor models.  

The location set covering problem (LSCP) sought 
to position the least number  of  servers required to 
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achieve coverage (at least one server within the time 
or distance standard) of  all nodes of  demand (Tore- 
gas et al., 1971). Since demand nodes were not 
differentiated by population or frequency of  calls, 
and since all demand nodes needed coverage no 
matter how peripheral their position was, the number 
of  servers required by the LSCP could well exceed 
the resources for servers available to a community or 
district. This condition motivated the development of  
the maximal covering location problem (MCLP) 
(White and Case, 1974; Church and ReVelle, 1974), 
a model which placed a limited number of  servers in 
such a way as to maximize the population or calls 
which had a server stationed within the time or 
distance standard. Absent in these formulations was 
any consideration of  congestion; the servers were 
assumed to almost always be available at the time 
that a call arrived. 

During roughly the same period that these siting 
models were developed, Larson (1974, 1975) was 
developing a set of  spatial queueing models, which 
calculated the steady-state busy fractions of  servers 
on a network once their positions had been specified. 
Larson's  hypercube and simplified hypercube mod- 
els offered decision makers a way to assess the 
quality of  any server placement scheme. Thus, a 
consideration of server congestion was begun in 
parallel with the line of  research on server place- 
ment. 

By the early 1980's, the problem of  siting to 
cover demand begun to be extended to the issue of  
server congestion. Daskin and Stern (1981) restruc- 
tured the LSCP to consider not simply needed first 
coverage but coverage in excess of  the first coverage 
requirement. Their motivation in providing addi- 
tional coverage within the standard was to increase 
the likelihood of  a server continuing to be available 
within the standard even after one of  the servers had 
responded to a call. Their model maximized the 
number of  coverers in excess of  first coverage sub- 
ject to a constraint on the total number of  servers 
available to the system. Eaton et al. (1986) suggested 
that weights, proportional to population, be placed 
on the number of  redundant coverers for each of  the 
demand nodes, thus placing emphasis on the pres- 
ence of  excess coverers for the most densely popu- 
lated areas. Hogan and ReVelle (1986) showed how 
to maximize the population with two or  more  cover- 

ers given a requirement that all demand nodes have 
first coverage; that is, coverers beyond the first 
excess coverer were not counted as providing addi- 
tional benefit. Eliminating the requirement  for first 
coverage, they also showed how to trade off popula- 
tion which achieves two or more coverers against the 
population which achieves first coverage. All of  
these models focused on providing server availability 
even when one or more servers were busy, but they 
did so within a deterministic framework. All of  these 
models were brought together and compared to each 
other in a review by Daskin et al. (1988). 

Probabilistic models received their current impe- 
tus when Daskin (1983) suggested the maximum 
expected coverage location problem (MEXCLP). His 
model deployed a limited number of  servers on the 
network in such a way as to maximize the expected 
population coverage; his assumption was that a uni- 
form and calculable busy fraction existed for all 
servers in the system. His paper reviewed an unpub- 
lished probabilistic location covering model sug- 
gested by Chapman and White (1974); the model 
was essentially a concept which had never:been fully 
implemented because of  mathematical difficulties that 
arose from the problem statement. Specifically, the 
model utilized site-Specific server busy fractions that 
could not be effectively estimated a priorz. The  

problem formulation Sought the least number and the 
positions of servers such that for each and every 
demand node the probability of  a server actually 
being available from a location within the time stan- 
dard was at least ~ .  

ReVelle and Hogan (1989a) showed how that 
probabilistic location set covering model could be 
made operational by exploiting the structure of  the 
probabilistic constraints and by assuming that the 
busy fraction was roughly constant in the local re- 
gion around each demand node. Except for these two 
most important differences, the problem statement 
and conceptual constraints on reliability matched 
those of  the original Chapman and White model. 
Subsequently, ReVelle and Hogan (1989b) converted 
the constraints on the reliability of  server availability 
into desired rather than required conditions. In the 
same way that the maximal covering location prob- 
lem distributed a limited number of  servers in such a 
way as to maximize the population covered, the 
maximum availability location problem (MALP) al- 
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located a limited number of servers in such a way as 
to maximize the population with a server available 
within the time standard with a reliability. ReVelle 
and Marianov (1991) and Marianov and ReVelle 
(1992) extended the model framework to the fire 
protection system wherein two types of servers, en- 
gine companies and truck companies, are needed 
within their respective time standards for coverage to 
be achieved. Fire stations to house the vehicles need 
to be sited in addition. Their model seeks to dis- 
tribute engines, trucks and stations in such a way as 
to maximize the population or calls for service which 
have an engine company available within an engine 
standard time or distance and a truck company avail- 
able within a truck standard time or distance, either 
with independent availabilities aE and err, or with a 
joint availability a .  

In this paper, we show for the first time how 
queueing theory can be explicitly applied to the 
estimation of local-region busy fractions in the maxi- 
mum availability location problem. The application 
of queueing theory to deriving these estimates of 
busy fractions within the siting model itself ad- 
dresses a concern that was raised by the introduction 
of the MALP model (ReVelle and Hogan, 1989b) 
about the independence of the actual server availabil- 
ity. The new estimates of local busy fractions are 
then utilized to structure the constraints that define 
availability in a MALP-type model. 

2. Review of  MCLP and MALP models  

The Maximal Covering Location Problem, MCLP 
(Church and ReVelle, 1974), was the first model that 
took account of both a limited number of servers and 
the fact that coverage of a node is achieved only if a 
server is positioned within a time or distance stan- 
dard. The formulation seeks to site p facilities in 
such a way that the maximum population is covered 
at least by one of the facilities: 

Maximize Z = E ai Yi (1) 
iEl 

subject to 

Yi <~ E Xj V i i i ,  (2) 
j ~ N l 

E x j = p ,  
j~J  

xj, y~=O, 1 

where: 
J =  
I =  

V j E J ,  i E I ,  

(3) 

Set of eligible facility sites (indexed by j). 
Set of demand nodes (indexed by i). 

l i if a facility is located at node j ,  
xs = , otherwise. 

if node i is covered, 
Yi = I, 0, otherwise. 
tj,. = Shortest time from potential facility site j to 
demand node i. 
S = The time or distance standard for coverage. 
aj = Demand at node i. 
N,. = {j[ tji ~ S}; that is N,. is the set of nodes j 
located within the time or distance standard of de- 
mand node i, or the neighborhood of i. If  a call for 
service originating at this node is answered by avail- 
able servers stationed inside this neighborhood, it 
will be answered within the time or distance stan- 
dard. 

The objective (1) maximizes the sum of covered 
demands. Constraints (2) state that the demand at 
node i is covered whenever at least one server is 
located within the time or distance standard S. Con- 
straint (3) gives the total number of facilities that can 
be sited. This last constraint can be relaxed to 

E x j<~p,  
i~J 

because an optimal value of the objective function 
will naturally push to the needed number of servers. 

This model does not consider the possibility that a 
server may be busy at the time the call arrives, that 
is, the possibility of congestion. In order to improve 
this model by taking explicit care of congestion, 
ReVelle and Hogan (1989b) formulated the maxi- 
mum availability location problem (MALP), which is 
the base for the model presented in this paper. In 
MALP, ReVelle and Hogan utilized the concept of a 
local estimate of busy fraction. By analogy to 
Daskin's estimate (1983) of a system-wide busy 
fraction, the local estimate of busy fraction in the 
service region around demand node i was given by 

t~2k~Mifk 
ql 24~_~j~NIX j • (4)  
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where: 
xj = Integer variable which takes the value m if m 
servers are positioned at location j, and zero other- 
wise. 

= Average duration of a single call, in hours. 
fk ---- Frequency of  calls for service at demand node 
k, in calls per day. 
M i = {kl tki  <<. S}; that is the set of  demand nodes 
located within S of  node i. 

I f  we assume that the neighborhood N,. is an 
isolated region with all its servers identical,  the 
likelihood of  any server in that region being busy is 

qi = ~ki/(~'LiS)" 

The parameter hi is the region 's  arrival rate, ( 1 / p ~ )  
is the single server 's  mean service time, and s is the 
number of  servers in the region. T h e  paramete r h l 
c a n b e  represented as E k e  M,fk, the parameter  P'i as 
2 4 / t ,  and s as E j ~ u  xj. The traffic intensity Pi is 
represented as 

Pi = )ki//['Li' 

so that 

Pi Pi 
q i =  - -  ~_ 

S E j ~ N X j "  

The probability that at least one server is available 
within time standard S when a call arrives f rom node 
i is  simply one minus the probability that all servers 
within S of  node i are busy. The M A L P  model 
utilized the binomial distribution to calculate this 
probability; that is, 

1 - P(all  servers of  node i are busy)  = 1 - q ~ , ~ J .  

Hence, the requirement that the probabili ty of  at least 
one server being available within the time standard 
with reliability ct is given by 

1"-- ( Pi )E~  u, xj 

EjeNX j ~ OL. ( 5 )  

Although this probabilistic constraint does not have 
an analytical linear equivalent, it can be shown 
(ReVelle and Hogan, 1988) to be equivalent to 

Y'~ xj>~ b i, (6)  
jEN, 

where b~ is the smallest integer which satisfies 

1 - (pi/bi)b'>~ ct. 

In ReVelle and Hogan ' s  1989b MALP,  coverage 
with reliability e~ is desired but not required, so Eq. 
(6) cannot be used. MALP is the probabilistic ver- 
sion of the MCLP; that is, its objective is, given a 
limited number of  servers, to maximize the popula- 
tion with service available within the standard with a 
reliability ct. ReVelle and Hogan presented two 
models. The first one (MALP I) utilized a system- 
wide busy fraction q, and the second one (MALP 
II), utilized the local busy fraction estimate described 
above. The formulation of  MALP II is: 

Maximize Z =  ~-,fiYib, (7) 
i ~ l  

subject to 
bi 

E Yik <~ 
k = l  

xj V i ~ l ,  (8)  
j e  N, 

Yik <<- Yi(k- l)  Vi,  k = 2, 3 . . . . .  b i, (9)  

xj = p ,  (10) 
j ~ J  

xj = nonnegative integer Vj  E J ,  

Yik = O, 1 V i ,  k, 

where the new variable Yik is 1 if node i is covered 
by at least k servers within the time limit, and 0 
otherwise. The variable Yib, is one if node i is 
covered by at least b i servers. That is, it is one if 
node i is covered with reliability a ,  because the 
parameter b i is the smallest number of  servers that 
must be located within the service area of  node i for 
node i to be covered with reliability ct. 

In objective (7), the number  of  calls covered at 
least b i times is maximized,  that is, covered with a 
reliability level of  at least  et. Constraint (8) implies 
that node i is covered bi  times only if at least b~ 
servers are stationed within the given time limits. 
Constraint (9) states that node i can not be covered k 
times if it is not covered k - 1 times. Constraint (10) 
limits the  total number  of  servers to p. 

Note that the number of  variables can be reduced 
by utilizing a variable z; in place of  Yibd The model 
becomes 

Maximize Z =  ~_,fizi (11) 
i ~ l  

subject to 

~_, xj>~biz i V i i i ,  (12) 
j e  N, 
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E xj=p, (13) 
j ~ J  

x i = nonnegative integer V j  ~ J, 

z i=O,  1 Vi ,  

where z; is one if node i is covered by b i servers. 
Numerical experience indicates, however, that this 
model has the tendency to give substantially more 
fractional results when solved using linear relax- 
ation; consequently it will need more branching when 
branch and bound is utilized. 

3. The Queueing Maximal Availability Location 
Problem 

The principal and significant distinction between 
the model proposed here and the MALP model 
resides in the methodology for the calculation of the 
parameter b r As before, this parameter represents 
the minimum number of servers required to be sta- 
tioned within the time or distance standard of node i. 
A second distinction between MALP and the present 
model lies in the treatment of travel distances or 
times. In this model we can view the distances/times 
as random and, as a consequence, derive possibly 
different sets of N i, the set of the server positions 
eligible to serve node i by virtue of being within the 
time or distance standard of node i. 

The parameter b i is calculated here by treating 
arrival and service activities in the neighborhood 
around i as an M / G / s - i o s s  (or M / G / s / s )  queue- 
ing system (Poisson distributed call arrival rate, gen- 
erally distributed service times, s servers in the 
neighborhood, and up to s callsbeing serviced at the 
same time). The assumption in the original MALP 
model of the independence of server busy fractions 
is thUS avoided. Since we use queueing theory to 
arrive at busy fractions within the neighborhoods; we 
thus are able to account for the dependence between 
the probabilities of different servers being busy. The 
division of the region into neighborhoods also means 
that we do not have to track the state of each of the 
servers in the system, as Larson (1974) does with his 
queueing theory model. 

Implicit in our model, as in MALP, is the assump- 
tion that the call rate in any neighborhood i does not 
differ to a significant extent from the call rate in the 

neighborhoods that border i. This suggests a rough 
equivalence between 1) the number of calls originat- 
ing outside of N~ and requiring servers stationed 
inside N i, and 2) the number of calls inside N i which 
require servers to come from stations in adjacent, or 
nearby, neighborhoods. If we assume also that travel 
time within a neighborhood and to adjacent areas is 
small as compared to service time (an assumption 
born out in most urban systems), then there is little 
difference between the situation in which a server 
attends a call inside its area and the situation in 
which the server attends a call outside its neighbor- 
hood. It follows from these two assumptions on the 
spatial variation in call rate and the relative magni- 
tude of travel time that the flows of servers into N i 
and out of N~ are not too different, indeed approxi- 
mately Cancel each other. Such a situation would 
justify our treatment of each neighborhood as an 
isolated, independent unit whose demands and servers 
interact solely with each other. 

This treatment is further supported by the conven- 
tional choice of the magnitude of the reliability level 
a .  The value of a is always chosen close to one if 
the problem is at all meaningful. Thus, the number 
of servers chosen for placement within N~ after 
application of the model is greater than or equal to 
the number required to serve node i with ~x reliabil- 
ity. Nearly all calls from i will then find a server 
available within the neighborhood of the i-th node. 
That is, resort to servers from outside the neighbor- 
hood of i should occur only occasionally, making 
flow of servers across the boundary sufficiently small 
to be ignored. 

These arguments and assumptions are made, as 
well, in previous models (Hogan and ReVelle, 1986; 
ReVelle and Hogan, 1988, 1989a,b), where they are 
also used to justify calculation of neighborhood-based 
busy fraction - but in a system that assumed inde- 
pendence of server availabilities. In the model pre- 
sented here, we not only use region-specific busy 
fractions, but we also allow dependence between 
busy fractions at a local, neighborhood level. We 
thus offer an improvement over the total indepen- 
dence assumption. Further, these assumptions are far 
better than the next level of abstraction, the situation 
in which the probability of a server being busy is the 
same across the whole system (as in MEXCLP). We 
do not claim that the assumptions are perfect, but 
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they allow exact solution of  an optimization model 
and they at least begin to approximate a spatial 
server system. 

In addition to the above assumptions, we model 
calls for service (CFS) in neighborhood i as Poisson 
arrivals with intensity h r General service time is 
also assumed with a mean rate of  service comple- 
tions per unit of  time equal to ~i, where the service 
time includes the travel time. In Section 2, we 
showed how these parameters are calculated. Each 
neighborhood is thus modeled as an M / G / s - l o s s  
system. When all the servers in a neighborhood are 
busy, new calls are presumed lost, relative to service 
in the local neighborhood (servers from outside the 
neighborhood take these calls). 

Let s be the number of  servers in the neighbor- 
hood. If  we define the state k of  the system as k 
servers being busy, the probability Pk of  the system 
being in state k is computed by writing the following 
standard queuemg theory steady-state equations: 

P[getting into state k]  

- P[getting out of  state k] 

= [ P k - l h i  "~ ( k + 1)txipk+ 1] 

- [ pkhi  + kl~iPk] = 0  (14) 

for states 1, 2, 3 . . . . .  s, and, for the state 0, 

I~iPl - - p o h i  = 0 .  (15)  

Solution of  these equations at steady-state yields the 
probability of  all s servers being busy, Ps: 

(1/s[)p/b '  

P ' =  l + p i + ( 1 / 2 ! ) p ~ + - - .  + ( 1 / s ! ) p ~  (16) 

This probability is a decreasing function of  the pa- 
rameter s. The recursive formula for Ps as a function 
of  p ,_  l illustrates this as the term in parentheses in 
the following equation is less than one: 

( 1 ) 
Ps = Ps- 1 "]- S|'Li/hi p ' -  l" (17)  

Now, the probability of  at least one server being 
available in the region is 1 - P r  For each neighbor- 
hood around demand node i and each value of  s, we 
can compute the value of  p, ,  and if for that demand 
node, 1 - p, > / a  or, equivalently, p~ ~< 1 - or, then 

we assume that node i will be covered with reliabil- 
ity ct. As Ps is a decreasing function of  s, there 
always exist a nonnegative integer b i, such that for 
s >1 b i, 1 - P s  > a .  This integer b i represents, as in 
MALP,  the minimum number of  servers which must 
be located within the time or distance standard of  
node i, for that node to be considered as covered 
with reliability et. That is, b, is the smallest integer 
that satisfies 

(1/bi!)O~'  
< ~ l - o L .  

1 + Pi + ( 1 / 2 ! ) P  2 + ' ' "  +(1/b i ! )pbi  ' 

Given a value for ~ and knowing the values of  h i 
and ix i, we can pre-compute, or determine exoge- 
nously to the optimization problem, this integer b r 
The value of  b i is calculated by determining 
Pl, P 2 , ' " , P s ,  P~+I . . . . .  etc. in sequence, and 
choosing as b i the smallest value of  s that satisfies 
the above inequation. 

Analogously to MALP, to maximize the popula- 
tion o r  calls with u-reliable service, we maximize 
the population with b i or more servers. Let Y;k = 
1, 0; it is one if k or more servers are within S of  
demand area i, and it is 0 otherwise. Clearly, Yik 
cannot be one unless Yi~k- x) is also one, that is, 

yik <~ yi(t_t) V i ,  k = 2 , 3  . . . . .  b i 

should be one of  the constraints of  the model. 
To count coverers for each demand node, we 

write again constraint (8): 

bi 

E Yik <~ E Xj V i i i .  
k= 1 j~N i 

The capacity C i (in servers) of  each location j is 
reflected in the model as an upper bound on the 
corresponding integer variable xj. 

There is an alternative formulation which consid- 
ers only zero-one variables. Instead of  integer vari- 
ables x j, variables xkj are defined, which are one if 
a k-th server is located at site j,  and zero otherwise. 
In this case, there are as many variables xkj for each 
site j as possible places to be filled in the corre- 
sponding depot. 

The full formulation in this case is 

Maximize Z =  Ef iY ib ,  (18) 
i~l  
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subject to 

b, c: 

E Yik <~ E E Xkj V i i i ,  (19) 
k=l  j~N i kffil 

yik~<yi(k_l) Vi, k = 2 , 3  . . . . .  bi, (20) 

cj 

E E  kj=p, (21) 
j ~ J  k= 1 

Xkj" Yik = O, 1 Vi ,  j ,  k. (22) 

I f  instead of the weights f,. (call arrival rate from 
demand node i) we utilized no weights in Eq. (18), 
we would be maximizing the number of demand 
nodes which are covered by b~ or more servers, i.e. 
the number of demand nodes which have a server 
with reliability a .  With the weights f,. added to the 
objective, we maximize the calls for service with 
service available with e~ reliability. Constraints (19) 
and (20) were already explained, and constraint (21) 
states that there are only p servers available to be 
located over the whole region. Constraint (22) forces 
all variables to be zero or one. 

Without modifying the model presented in Eq. 
(18) to (22), an improvement might be introduced in 
the way Ng is computed, by considering the travel 
time or distance a random quantity. Particularly, we 
assume that travel times or distances along arcs of 
the network are random variables, and we choose the 
neighborhood of each node in such a way that, if a 
call for service originating at this node is answered 
by an available server located within the neighbor- 
hood, it will be answered within time standards with 
probability [3. In this model we do not take into 
account the uncertainty regarding the identity of the 
first responding server (See Larson and Odoni, 1981, 
for an analysis of this subject). 

As Daskin (1987), we assume that travel times are 
normally distributed. This assumption may be re- 
laxed and any distribution used, provided that the 
inverse of its cumulative distribution function exists. 
We redefine our set N~ as 

Ni{j[ P(tij <~ S) >I [3}, 

that is, the set of possible server locations such that 
the probability of the travel time being within the 
time standard S is greater than or equal to some 
value B. 

Let -tij be the expected value and o-ij be the 
standard deviation of tij. We can rewrite the condi- 
tion for membership in the set N i as a function of the 
zero mean, unit standard deviation variable z = 
( lij -- -tij)//(rij" 

p( ( , . -  <. ( s - >: [3. 

that is, 

o r  

Fz( ( S---tij)/o'ij) >/ [3, (23) 

where Fz(X) is the normal cumulative distribution 
function. We can find the smallest value K~ such 
that Fz(K ~) = [3 and, since ~ ( x )  is a nondecreasing 
function, we can write the deterministic equivalent of 
Eq. (23): 

( S -  -~ij)J(~ij >1 K~, (24) 

o r  

-ti j dr. Ki31Yij <~ S. (25) 

Eq. (25) becomes the new condition for member- 
ship in the set Ni, which is rewritten as 

N i = {jl'tij + KI3%j <~ S}. 

Given a value of [3, we can compute the parame- 
ter K~. Once the expected value and standard devia- 
tion of each travel time tij are known, we can 
determine which nodes j belong to N,.. Other forms 
of treating random travel times can be found in 
Larson and Odoni (1981). 

The ability to calculate a neighborhood specific 
busy fraction, Ps, using queueing theory allows us to 
do more than specify the number of servers within 
N,. to achieve availability with oc reliability. We can 
also constrain workload. Indeed ps is itself work- 
load. The constraint would be 

psi<~w V i ~ l .  

The smallest value of s (found iteratively as in the 
search for b~) which achieves Psi <~ w, using Eq. 
(16), can be called gi, where gl is the minimum 
number of servers needed within N i to assure that 
the workload in the neighborhood is less than or 



V. Marianov, C. ReVelle / European Journal of  Operational Research 93 (1996) 110-120 117 

equal to w. The constraint which enforces Ps ~ w 
then is 

E Xj>~gi  V i i i .  
j ~ N  i 

A constraint on workload in each neighborhood thus 
leads to a requirement on the number of servers 
stationed within the neighborhood. 

Constraints also may be added which force all the 
demands to be covered at least by one server, or 
covered with a reliability OLl(~< et). In other words, 
constraints may be appended which impose a mini- 
mum reliability standards for all call origins. These 
constraints, which look exactly like the workload 
constraints, would improve the degree to which eq- 
uity is enforced in the model. 

A workload constraint is likely to decrease the 
total number of calls which have a server available 
with ct reliability. Alternatively, more servers could 
be needed to achieve the desired level of availability. 

4. Computational experience 

We used the 55-node test network of Swain, 
1971, to test Q-MALP. We assumed that the server 
vehicles are ambulances. The population concentra- 
tion at each node in the network was multiplied by a 
constant factor and used as an estimate of the num- 
ber of calls per node per day. The resulting average 
of calls per node per day over the network is 0.4. An 
average duration of a single service, 1 / ~  of 3 / 4  of 
an hour (45 minutes) was used. This figure was 
estimated considering the average of three cases: in 
the first one, the ambulance goes to the site of the 
call, stays there for some time, and then goes back to 
the depot. In the second case, the ambulance reaches 
the emergency site, takes a patient to a hospital and 
returns to its assigned depot. The third possibility is 
a false alarm, or the event that the emergency is over 
when the ambulance reaches the alarm site, The 
standard response distance was set at 1.5 miles. 

With these values of the parameters, we first 
computed two values of bg: using the method of 
ReVelle and Hogan's MALP and the methodology 
described in Section 3. Table 1 shows how many 
nodes have b i equal to one, two, three or four, at 
varying levels of desired availability and using the 

Table 1 
Values of  b i for different levels of  availability, for MALP and 
Q-MALP. h = 0.4. Each entry shows the number of  nodes which 
need the value of b i in parentheses, when the availability of  
service for all nodes is forced to be at least the level indicated in 
the first column 

Availability MALP Q-MALP 

85 18 (1) 20 (1) 
37 (2) 35 (2) 

90 12(1) 14(1) 
43 (2) 21 (2) 

95 6 (1) 7 (1) 
26 (2) 24 (2) 
23 (3) 24 (3) 

97 3 (1) 3 (1) 
24 (2) 22 (2) 
28 (3) 30 (3) 

99 1 (1) 1 (1) 
19 (2) 17 (2) 
35 (3) 17 (3) 

20 (4) 

two different forms of computing this parameter. It is 
interesting to note that the values of b i in MALP and 
Q-MALP differ most significantly when preset avail- 
abilities approach very close to one (see the rows 
corresponding to availability 99%)' 

Looking at the problem in a different way, we 
assumed that only one server is sited in each neigh- 
borhood, and then, computed for each neighborhood, 
the availabilities of servers when using MALP for- 
mulas and Q-MALP formulas. Table 2 shows how 
many nodes fall in each range of availability of 
servers, with only one server in each neighborhood, 
for MALP and Q-MALP. 

Suppose we define m as the number of possible 
sites where stations may be located, and n as the 

Table 2 
Number of nodes in the different ranges of availability when only 
one server is located in each neighborhood, for Q-MALP and 
MALP 

Availability MALP Q-MALP 

under 0i45 1 - 
0.45-0~55 20 - 
0.56-0i65 7 t 
0.66-0,75 2 28 
0.76-0.85 7 6 
0.86-0,95 12 13 
0.96-1.00 6 7 
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total number of demand nodes. Despite the fact that 
the number of variables in Q-MALP is 

j = l  i=1 

not all of them need to be declared (0, 1); i.e., need 
to be potentially branched on. In particular, if the 
variables Ybi are declared (0, 1), and an upper bound 
of 1 is set on variables Yi, constraint sets (20) will 
force the variables Yi(b < b i) to be equal to 1 when- 
ever the corresponding Yb~ is equal to 1. This is the 
only case of interest, because when Ybi is equal to 
zero, we are not concerned about the value that those 
variables take. 

The variables xkj must be declared as (0, 1). 
Thus, we need to declare as (0, 1) only Y'.j"= 1Cj + n 

variables when solving Q-MALP. 
Linear Programming Relaxation was utilized to 

solve the problems and Branch and Bound was 
applied when needed. A commercial linear and inte- 
ger programming package (LINDO) was used on a 
VAX 750 computer. Lindo branches first on the 
integer declared variable with fractional value whose 
weight in the objective has the largest absolute value. 
Thus, the algorithm branches first on the variables 

Yb, in decreasing weight order, and then on variables 
xkj following the order given by the secondary ob- 
jective 

cj 1 
z2= E 

j = l  k=l  

This objective, included with a small weight, pro- 
duces an ordering in the variables xkj, that is, it 
makes the variable xlj  enter the solution before the 
variable x2j, and x2j  before x3j, and so on. Also, 
this objective was very helpful in decreasing the 
branching time of LINDO. 

The parameter Cj was set as 3 in most of the 
runs, that is, each depot could house up to 3 vehi- 
cles. 

Table 3 shows the set of results obtained. The 
numbers of vehicles that were used as input parame- 
ters to the runs are shown. Also shown are the server 
locations, and the percent of population (or calls) 
covered. 

Figs. 1 and 2 show two of the solutions obtained, 
for 6 servers and availability 90%, and 4 servers and 
availability 85%, respectively. 

Table 3 
Computational experience with Q-MALP 

Availability Servers Unconvered locations Covered Server locations 
level (%) popul. (%) 

85 4 37, 43, 46, 50, 51, 52, 53 96.42 7, 22, 25, 43 
5 40, 51, 52 98.50 1, 11, 17, 18, 38 or 

6, 18, 22, 38, 47 
6 - 100 7, 16, 18, 21, 43, 53 

90 4 20, 37, 43, 46, 48, 94.20 7, 22, 25, 43 
50, 51, 52, 53, 55 

5 37, 50, 51, 52, 53, 55 97.29 3, 22, 25, 43, 48 or 
3, 22, 25, 43, 15 or 
3, 22, 25, 43, 36 

6 40, 44 99.32 15, 16, 18, 37, 38, 53 
8 - 100 11, 14, 15, 18,37,43,45,50 

95 4 12, 14, 16, 27, 28, 86.12 7, 7, 9, 37 
35, 38, 39, 40, 43, 46, 
48, 49, 52, 54, 55 

5 24, 26, 35, 39, 40, 92.51 9, 9, 11, 22, 22 
46, 48, 49, 51, 52, 54, 55 

6 26, 35, 48, 51, 52, 55 96 9, 11, 22, 22, 25, 43 
8 - 100 16, 22, 23, 36, 43, 47, 49, 53 
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Fig. 1. Locat ions of  servers relative to demand nodes for 6 
s e rve r s ,  availabil i ty 90%. Coverage of  calls = 99.32%. Cj = 3. 
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Fig. 2. Locations of servers relative to demand nodes for 4 
servers, availabil i ty 85%. Coverage of  cal ls  = 96.42%. Cj = 3. 
Distances in miles.  

Fig. 3 shows the trade-off between number of 
servers and percent of coverage. 

5. Conclusions 

A model is presented, in this paper, which seeks 
to maximize the population covered by emergency 
vehicles with availability et. A probabilistic formula- 
tion is structured in which availability is computed 
utilizing queueing theory. As opposed to former 
models in which the probabilities of different servers 

being busy in a neighborhood were considered as 
independent, in this formulation these probabilities 
depend on each other, which is achieved by the use 
of queueing theory. A method is shown to take into 
account the fact that travel times or distances are 
random, and computational experience is presented. 

As an extension of this model, a hierarchical 
formulation can be easily developed to locate two or 
more types of servers. An example of application of 
this model would be the siting of Advanced Life 
Support (ALS) Ambulances and Basic Life Support 
(BLS) Ambulances. 

1Ol 

99  

97 

95 

Percentage 93  
covered 

91 

89  

87  

8 5  

oJ p / 
90% / 

/ 

I 
/ 

I"  
I "  

. . . . . . . .  " ~ J  

I 

95% / 

I I ! I I I 

4 5 6 7 8 9 

Number of Servers 

Fig. 3. Coverage of  population vs. number  of  servers, for different availabili t ies.  
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From a practical point of view, it is interesting to 
comment on how the parameters of the model can be 
estimated from observation of the behavior of the 
system. The fact that the parameters h i and ix i are 
random variables could be taken into account when 
the queueing differential equations are formulated 
and solved, by assuming that the arrival rates and 
service times are doubly stochastic processes (Snyder, 
1975). However, unless the probabilistic distribution 
function of the random parameters is a simple one, 
the mathematical treatment of doubly stochastic pro- 
cesses is complicated, and it is most probably not 
justified in this case. 
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