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The crux of the kidney allocation problem is the trade-off between clinical efficiency and equity. We consider a dynamic resource allocation 
problem with the tri-criteria objective of maximizing the quality-adjusted life expectancy of transplant candidates (clinical efficiency) and 
minimizing two measures of inequity: a linear function of the likelihood of transplantation of the various types of patients, and a quadratic 
function that quantifies the differences in mean waiting times across patient types. The dynamic status of patients is modeled by a set of 
linear differential equations, and an approximate analysis of the optimal control problem yields a dynamic index policy. We construct a 
large-scale simulation model using data from over 30,000 transplants, and the simulation results demonstrate that, relative to the organ 
allocation policy currently employed in the United States, the dynamic index policy increases the quality-adjusted life expectancy and 
reduces the mean waiting time until transplantation for all six demographic groups (two sexes, races, and age groups) under consideration. 

K idney transplantation is the treatment of choice for 
patients suffering from end stage renal disease 

(ESRD), also known as chronic kidney failure. However, the 
supply of cadaveric kidneys for transplantation is not enough 
to meet the increasing demand; e.g., at the end of 1996 the 
waiting list for kidney transplants had 34,550 registered 
candidates, but the total number of cadaveric transplants 
performed during that year was only 7833 (UNOS 1997). 
Unfortunately, repeated attempts to increase the supply of 
organs have been unsuccessful. This organ shortage exac- 
erbates the trade-off between clinical efficiency and equity 
that lies at the heart of the kidney allocation problem. The 
goal of this paper is to shed light on and better quantify 
this trade-off in an attempt to assist policy makers in the 
formidable task of allocating cadaveric kidneys to potential 
transplant recipients. 

In the United States, the distribution of organs to trans- 
plant candidates is controlled by the United Network of 
Organ Sharing (UNOS). This organization has developed 
a point system that dictates who receives a donated kidney 
when it becomes available; a description of ESRD and the 
UNOS policy are given in ? 1. This allocation scheme, which 
attempts to match tissue types of donors and recipients, is 
still the subject of heated debate, even though it has been 
in use for more than seven years and has been revised at 
least twice. Several empirical studies (Kasiske et al. 1991, 
Sanfilippo et al. 1992, Ellison et al. 1993, Gaston et al. 1993, 
Gaylin et al. 1993) demonstrate that this allocation policy 

generates inequities; most notably, African-Americans ex- 
perience longer waiting times than other candidates. In addi- 
tion, a report by the Office of Inspector General (OIG 1991 ) 
concludes that the current allocation scheme fails to meet 
the expectations of the general public. 

In an attempt to understand the limitations of the UNOS 
scheme, medical researchers have assessed how tissue type 
matching affects the efficiency and fairness of an allo- 
cation policy. For example, Ghjertson et al. (1991) and 
Held et al. (1994) estimate that an allocation algorithm 
based solely on tissue matching would enhance (relative to 
the UNOS policy) graft survival (graft is the medical term 
for a transplanted organ) by 5% over a 10-year period and 
2% over a 5-year period, respectively. However, much of 
this enhancement would be achieved by patients receiving 
a perfectly matched kidney, and such an algorithm would 
reduce access to transplantation for African-Americans. 

Wujciak and Opelz (1994) and Yuan et al. (1994) at- 
tempt to clarify these issues by developing simulation 
models that compare different allocation policies. While 
Wujciak and Opelz conclude that it is possible to achieve 
considerable efficiency improvements without generating 
additional inequity, Yuan et al. conclude that efficiency and 
equity are conflicting and argue that devising an acceptable 
allocation policy requires explicit value judgements about 
efficiency and equity. However, neither simulation model al- 
lows candidates to exit the waiting list (due to death) and the 
former model does not permit new arrivals to the waiting list. 
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Medical researchers have also investigated other fac- 
tors that affect the clinical efficiency of organ allocations. 
Gaston et al. (1996) and Miles et al. (1996) conclude 
that the relative kidney size of the donor and recipient 
has little impact on graft survival. Chertow et al. (1996) 
conclude that nonimmunological factors, such as donor 
and patient age, gender, and race, are predictive of graft 
failure. 

Several researchers have also attempted to clarify the eth- 
ical dilemmas that underlie the organ allocation problem. 
Bailey (1988) discusses the problem in the general context 
of rationing of expensive health care resources. More re- 
cently, the Council on Ethical and Judicial Affairs of the 
American Medical Association (AMA 1995) has proposed 
ethically acceptable criteria for organ allocation. These cri- 
teria include the likelihood of benefit, the duration of bene- 
fit, the urgency of need, and the improvement in quality of 
life. 

In addition to the medical literature, the operations re- 
search literature also includes several studies that address 
some aspects of the organ allocation problem. One of the 
first papers in this area is by Ruth et al. (1985), who 
present a simulation model for the waiting list in Michigan. 
Righter (1989) formulates the organ allocation problem 
as a stochastic assignment problem (Derman et al. 1972) 
and develops properties of the optimal policy. David and 
Yechiali (1985, 1990, 1995) and David (1995) study sev- 
eral sequential decision problems that are motivated by 
organ transplantation, from the perspectives of both a po- 
tential recipient (1985) and a centralized decision maker. 
In recent studies that combine analytical and empirical re- 
search, Ahn and Hornberger (1996) and Hornberger and 
Ahn (1997) develop kidney acceptance policies for poten- 
tial recipients that explicitly incorporate patient preferences 
and demonstrate that some patients can afford to be selec- 
tive when making transplantation decisions. Pritsker (1998) 
describes a large-scale simulation model for the liver allo- 
cation system that is used by UNOS to compare alternative 
liver allocation policies. 

In summary, the efficiency-equity trade-off that is at the 
root of the kidney allocation problem is not well understood. 
To gain a better understanding of this trade-off, we use an 
analytical model to develop a new set of policies, and we 
use a simulation model to compare these policies to existing 
policies. Specifically, we develop a fluid model that provides 
a stylistic representation of the organ allocation problem in 
?2, and we formulate an objective function that captures 
both efficiency and equity criteria in ?3. In ?4, we utilize 
the theory of optimal control to develop a heuristic dynamic 
index policy that attempts to maximize the objective. Finally, 
we compare an empirically calibrated version of the heuris- 
tic policy to the first-come first-transplanted policy and to 
the one used by UNOS. This comparison employs a detailed 
simulation model that utilizes the most current transplant 
data; the simulation model is described in ?5, and the sim- 
ulation results are reported and discussed in ?6. Concluding 
remarks appear in ?7. 

1. BACKGROUND ON ESRD 

This section contains a brief description of ESRD and the 
organ allocation scheme that is currently used in the United 
States. ESRD is a fatal disease unless treated with dialysis 
or kidney transplantation. Patients undergoing dialysis suf- 
fer the inconvenience of visiting a dialysis center for at least 
12 hours per week (Allen and Chapman 1994). Although 
transplant recipients run the risk of graft rejection, transplan- 
tation appears to be a superior form of treatment because it 
enables patients to resume normal life activities. This risk 
can be reduced by receiving an organ from either a living- 
related donor or a carefully matched cadaveric donor; we 
focus on cadaveric donors in this paper because there are no 
allocation decisions associated with living donors. 

Matching cadaveric donors to recipients is a two-step pro- 
cess. The first step involves comparing the tissue type of 
the donor to the tissue type of the recipient. Specifically, the 
tissue type, also known as HLA type, is a combination of 
six proteins: two of type A, two of type B, and two of type 
DR. Empirical and clinical evidence shows that when the 
donor and recipient share all six proteins in common (zero 
mismatches), the risk of graft rejection is minimized. How- 
ever, the risk increases with the number of mismatches, so 
allocating an organ to the recipient with the smallest number 
of tissue type mismatches reduces the chance of graft fail- 
ure; the number of mismatches gives the number of donor 
HLA proteins that are absent in the recipient. The second 
step of the process involves a blood test that determines 
whether the candidate exhibits antibodies to the proteins of 
the donor. (In addition, candidates must have a blood type 
that is compatible with the donor.) Because patients who 
test positive (also known as positive-crossmatch or presen- 
sitized patients) are at a high risk of acute graft rejection 
(Allen and Chapman, 1994, Ghjertson et al. 1991, Chertow 
et al. 1996), transplantation is performed only on candidates 
with a negative test (negative-crossmatch or nonpresensi- 
tized patients). 

As previously mentioned, the United Network of Or- 
gan Sharing governs the allocation of organs to transplant 
candidates in the United States. UNOS coordinates the ac- 
tivities of 72 organ procurement organizations (OPO) that 
operate in distinct geographic regions and are responsible for 
procuring all the organs donated in their region and allocat- 
ing them to candidates registered on their transplant waiting 
list. When an organ becomes available, the OPO prioritizes 
all the blood-compatible transplant candidates using a point 
system devised by UNOS (or an UNOS-approved variant 
of this system). The point system (see Table 1 ) gives pri- 
ority points based on the total number of tissue matches. 
To compensate candidates with rare tissue types, the pol- 
icy also awards points based on the waiting time and the 
rank in the waiting list; consequently, candidates do not stay 
on the waiting list indefinitely. Finally, the system allocates 
priority points to candidates with high panel reactive anti- 
bodies (pra); the pra of a candidate is the probability that 
the candidate will crossmatch positive with a randomly se- 
lected donor. The pra points ensure that a golden (but rare) 
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Table 1. The UNOS point system after (prior to) July 31, 1995. 

Category Points 

Waiting Time 1 (0.5) points for each full year in the waiting list 

Rank in the Waiting List 1 (1) point for the longest waiting candidate; fractions of points 
are assigned proportionately to all other candidates. 

Tissue Mismatches oc (10) points for no mismatches 
7 (7) points for 0 B or DR mismatches 
0 (6) points for 0 A or B mismatches 
5 (3) points for 1 B or DR mismatches 
2 (2) points for 2 B or DR mismatches 
0 (1) point for 3 B or DR mismatches 

Panel Reactive Antibodies 4 (4) points for PRA>80% 

Pediatric Candidates 4 (2) points when age < 1 1(5) years 
3 (1) points when I 1 (5) years <age < 18 (10) years 

opportunity of a negative crossmatch will not be missed by 
those candidates. 

Once the candidates are prioritized, the OPO offers the 
kidney to the top priority candidate. If the candidate is read- 
ily available (a procured kidney is immediately frozen and 
needs to be transplanted quickly; between 1987 and 1991, 
75% of organs were transplanted within 31 hours) and 
crossmatches negative, the transplantation is performed. 
Otherwise, the organ is offered to the next candidate, 
and the procedure is repeated until an available candidate 
who crossmatches negative is found. Under this allocation 
scheme, organs are transplanted locally, i.e., into candi- 
dates that are registered on the waiting list of the OPO that 
procured the organ. The only exception is when a zero- 
mismatched candidate exists somewhere else in the country. 
In that case, UNOS demands that the kidney be offered to 
that candidate and in exchange, the OPO of that candidate 
offers the next kidney it procures to the OPO that provided 
the zero-mismatched kidney. 

2. THE FLUID MODEL 
In this section we construct a continuous time, continuous 
space, deterministic model that provides a stylistic represen- 
tation of the organ allocation process and tracks the dynam- 
ics of the ESRD population over time. The model divides 
the ESRD population into K distinct categories, or classes, 
based on demographic (age, gender, race), immunological 
(blood type, tissue type, pra) and physiological character- 
istics (height, weight). However, other relevant character- 
istics (e.g., health status) can also be incorporated into the 
class division. The model also divides the donor population 
into J classes, based again on demographic, immunological, 
and physiological characteristics. Without loss of generality 
we assume that patients of class k = 1, . .. , Kw are registered 
on the waiting list, and patients of class k =Kw + 1,... ,K 

have a functioning graft. 

The state of the system at time t is described by the 
K-dimensional column vector x(t) =(x(t), .. XK(t))' 
(where primes denote transposes), which gives the number 
of patients in each class. Transplant candidates of class 
k 1,.. , Kw join the waiting list at rate A4 per unit time. 
These patients depart from the waiting list via death, which 
occurs at rate Pk per unit time for class k patients, or organ 
transplantation. Organs of class j = 1, . .. , J arrive at rate 
per unit time; we assume that the demand-to-supply ratio 
p=EK-Z 

, 
j/+ZE?1 AJ is greater than one. A fraction V k(t) of 

class j organs is allocated to transplant candidates of class 
k; thus, Vjk(t) is a control variable and Ujk(t) = jVjk(t) is 
the instantaneous transplantation rate of class j kidneys into 
class k candidates. 

When a class j 1, ..., J kidney is transplanted into 
a class k= ,... , Kw candidate, the class k candidate 
leaves the waiting list and becomes a patient of class 
c(k, j) C {Kw + 1, ..., K}. Patients of class c(k, j) depart this 
class at rate Pc(k,j) per unit time; a fraction qc(k,j) C [0, 1 ) of 
these patients experience graft failure and rejoin the waiting 
list as patients of class k, and the remaining fraction exit 
the system due to death. 

The dynamics of the system state are described by the 
ordinary linear differential equations: 

d J 
djXk(t) Ak - PkXk(t)-> Ujk(t) 

j~1 

J 

+ Z qc(ksj)Ic(kj)Xc(kj)(t); k1,.. ., Kw, 
j=l 

(1) 

and 

d J Kw 

d Xk(t) E Ufi(t)1 {c(ij)=k} - kXk(t); 

j=1 i=1 

k =Kw + I,-,. *K. (2) 
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However, our model can be expressed more compactly 
using matrix notation. Let e-(1,. ., 1)' be the Kw- 
dimensional unit vector, -I (i7 ... , ' - and A+ - 
(2j. . ,K)', where S = 0. In addition, let 
ujt) = (U I (t, ..UjKw(t))' and u(t) = (ui.(t)'J Uj.(t)')'. 

Define the matrices A C 9jKXK and B CK XJKw by 

-ilk, if k = i; 

Ak_ qipi, if i>Kw, k Kw and i=c(kj) (3) 
ki-] ~~for some j~l G.....,} 

0 otherwise, 

-1, if imodKw=k and k <Kw; 

Bki-f 1, if k=c (imodKw, Fi/Kwl) and (4) 
ki-~~ i mod Kw < Kw; 

0 otherwise, 

where i mod Kw gives the remainder from the division of i 
by Kw, and Fi/Kwl gives the smallest integer greater than 
or equal to i/Kw (these operators appear because the vector 
u(t) lists the control variables Ujk(t) in lexicographic order). 
Finally, define D C J X JKw satisfying 

O e' O 
D= . . . (5) 

0 O ... e' 

Then the system state equations are given by 

d x(t) - Ax(t) + Bu(t), (6) 
dt 

and are subject to the state constraints 

x(t) > 0. (7) 

The organ allocation rates u(t) must satisfy the constraints 

Du(t) _< , (8) 

u(t) -> 0. (9) 

Model (6)-(9) provides a stylized representation of the 
organ allocation system that sacrifices accuracy for tractabil- 
ity. Specifically, it ignores three aspects of the allocation 
process: crossmatching between donor and recipient, un- 
availability of some recipients, and organ sharing between 
OPOs. In addition, the model assumes that the system evo- 
lution is deterministic, the patient and organ survivor curves 
are exponential and independent of age; and following graft 
rejection, patients rejoin the patient class they occupied be- 
fore transplantation. Zenios (1996) analyzes a more general 
version of the fluid model that allows mixed Erlang survivor 
curves and a nonmemoryless graft failure process. 

Another limitation of the model relates to the definition 
of the patient and organ classes. To capture the fine interac- 
tion between patients and donors, we assume in ?6 that the 
number of classes is approximately 107, but the number of 
patients during the planning horizon is roughly 30,000. This 
clearly represents a significant deviation from the traditional 

application of multiclass fluid models, where a multitude of 
individuals are classified into a modest number of classes. 
Furthermore, it creates some technical problems because in 
reality the state vector is a very long list of zeroes and ones. 

Despite these limitations, the overall structure of the 
model captures the major driving forces behind the equity- 
efficiency trade-off and the first-order dynamics of the 
organ allocation process (because organ demand is greater 
than organ supply). As with other fluid models of single- 
resource queueing systems, we hypothesize that an analysis 
of the fluid model will result in a robust and effective 
allocation policy (e.g., Avram et al. 1995), even though 
the fluid model is too crude to be used as a reliable per- 
formance analysis tool. Hence, we develop a much more 
realistic simulation model in ?5 to assess the impact of 
various policies. The simulation results in ?6, which avoid 
the simplifying assumptions described above, confirm that 
the derived policies are indeed effective and robust. 

3. THE OBJECTIVE FUNCTION 

In this section we construct a tri-criteria objective function 
for the fluid model. This objective reflects the perspective 
of a central decision maker who makes organ allocation 
decisions based on a combination of efficiency and equity 
criteria. Both criteria are captured using simple analytical 
metrics, and the objective is assumed to be additive in these 
metrics. 

3.1. Efficiency 

Following an accepted convention in medical decision mak- 
ing research, we measure clinical efficiency using quality- 
adjusted life years (QALY); the reader is referred to Gold 
et al. (1996) for a detailed introduction to QALY and their 
applications to societal decision making. This measure as- 
sumes that the centralized decision maker assigns a quality 
of life (QOL) score hk to each patient class k = 1, .. ., K, and 
the QALY over a finite time horizon T is the total number 
of life years multiplied by the QOL scores, 

T K 

J E hkxk(t)dt. (10) 
k=1 

QOL scores aggregate all distinct elements of a health state 
into a single number that reflects the desirability of that state, 
and they are scaled so that zero represents death and one 
represents perfect health. A common practice when utilizing 
QALY is to include discounting to account for the perception 
that a current year of life is more valuable than a future 
one. Introducing discounting into Equation (10) involves 
a trivial, but algebraically cumbersome, extension of the 
undiscounted problem. Therefore, for clarity of exposition 
we focus on the undiscounted problem. 

Traditionally, the QALY provide the basis for clinical de- 
cision making at the individual level: an individual assigns 
subjective QOL scores to all possible health states and then 
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ranks alternative clinical strategies based on the total QALY. 
But contrast, our approach represents a significant depar- 
ture from the traditional use of QALY and implies that the 
central decision maker can use QALY to rank alternative 
allocation policies. Although there are problems associated 
with this use of QALY (see Richardson and Nord 1997), re- 
cent research developments have demonstrated the utility of 
this approach (see Gold et al. 1996, Loomes and McKenzie 
1989). 

Two major assumptions underlie our use of QALY in 
the context of the organ allocation problem. First, to ensure 
the validity of objective (10) in the context of the organ 
allocation policy, one must assume that one year of 
healthy life always has the same weight regardless of 
who enjoys the benefits of this life year and when (see 
Loomes and McKenzie 1989). A consequence of this as- 
sumption is that the QOL scores should not depend on the 
age, gender, and race of the patients in each class, nor should 
they depend on the duration of the stay in each class; rather, 
they should only depend on the health state associated with 
each class. Second, although the abstract formulation (10) 
does not specify how to estimate the QOL scores for the 
different health states, we assume that the aggregate QOL 
scores are statistical averages of QOL scores elicited from 
a random sample of patients in different patient classes. Al- 
though this mechanism may create serious biases, it appears 
to be a reasonable starting point (see Torrence 1986). 

3.2. Equity 

According to Webster's English Dictionary, equity means 
justice according to natural law or right. To mathematically 
formalize this definition, one must formally define justice in 
terms of system outcomes. This would entail identifying a 
reference point that represents the natural law of justice, and 
defining equity metrics that measure deviations of the system 
outcomes from this reference point. Because justice is an 
elusive concept in our setting, we introduce two reference 
points for justice and propose two equity metrics that are 
based on two distinct system outcomes; more sophisticated 
reference points and outcomes exist but are not discussed 
here. 

The first reference point adopts an absolute equity view- 
point and starts with the premise that the most equitable 
policy is one that completely eliminates outcome discrepan- 
cies across the various patient groups. The second reference 
point adopts a relative equity viewpoint and starts with the 
premise that the first-come first-transplanted (FCFT) policy 
is the most equitable policy. The relative equity approach as- 
sesses the discrepancies across patient groups (with respect 
to various system outcomes) generated by a policy by com- 
paring them to the corresponding discrepancies produced by 
the FCFT policy: The closer a policy's discrepancies coin- 
cide with those of FCFT, the more equitable the policy. By 
contrast, in the absolute equity viewpoint, a policy's equity 
is assessed solely by the magnitude of its between-group 
di.screpancies. 

While the absolute equity viewpoint has some appeal, 
equating outcomes across all groups of patients can lead to 
policies that may be perceived as untenable; for example, the 
differential mortality rate between 10-year olds and 70-year 
olds would require giving preferential treatment to 1 0-year 
olds in order to equalize the waiting times for both groups. 
In contrast, because FCFT is viewed as the most socially just 
policy in many queueing systems (Larson 1987), it com- 
plements the concept of absolute equity and avoids some 
of the difficulties associated with it. Furthermore, FCFT is 
a natural reference point in our setting because it is widely 
considered to be a fair organ allocation policy (OIG 1991) 
and is actually employed by at least one major OPO (the 
OPO in the San Francisco Bay area). 

Both the absolute and relative equity viewpoints provide 
an aggregate approach to equity and thus fail to capture 
the impact of different allocation policies on individual pa- 
tients. As such, these viewpoints may lead to policies that 
are socially undesirable when examined from the perspec- 
tive of individuals instead of patient groups. To overcome 
this limitation, one must expand the two viewpoints to con- 
sider discrepancies both between and within demographic 
groups; the within-group discrepancies can capture the im- 
pact of policies on individuals. Zenios et al. (1999) dis- 
cuss this issue in detail and illustrate the trade-off between 
within-group and between-group discrepancies. The present 
paper focuses on between-group discrepancies because of 
the controversy surrounding demographic-based imbalances 
for various groups of transplant recipients. 

The absolute equity and relative equity viewpoints dif- 
fer in our fluid and simulation models because FCFT does 
not eliminate discrepancies between patient groups; this is 
because of screens for blood compatibility and presensiti- 
zation, the mismatch of tissue type and blood type across 
demographic groups, unequal demand-to-supply ratios of 
different groups, and different mortality rates across groups. 
Our simulation results in ?6 report between-group discrep- 
ancies for FCFT and other policies, which allows one to as- 
sess inequity under either of these viewpoints. However, for 
analytical tractability, our objective function is formulated 
from the absolute equity viewpoint. 

There are a variety of outcomes that could be used 
as a basis for assessing compliance with the two refer- 
ence points. Although QALY is a natural candidate (and 
our simulation results in ?6 report QALYs for differ- 
ent groups), our analysis focuses on two complementary 
queueing-based outcomes that have received considerable 
attention (e.g., OIG 1991, Sanfilippo et al. 1992, Gaston 
et al. 1996): the mean waiting time until transplantation 
and the likelihood of transplantation. Both outcomes are 
necessary, and consideration of one of them in isolation may 
generate an inequitable organ allocation system. The first 
outcome, which focuses on a factor of psychological impor- 
tance that underlies society's perceptions about fairness in 
queueing systems (see Larson 1987), can induce absolute 
equity in the waiting times but may do so at the expense 
of absolute equity in the likelihood of transplantation. To 
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illustrate this, consider what happens when the transplant 
candidates can be separated into a low-mortality group 
and a high-mortality group. In this case, one can enforce 
absolute equity in the waiting times by assigning a dispro- 
portionately higher fraction of organs to the low-mortality 
group; see Zenios (1999) for details. However, this will in- 
duce absolute inequity in the likelihood of transplantation. 
On the other hand, consideration of the likelihood of trans- 
plantation can alleviate this problem, but clearly it cannot 
induce absolute equity in the waiting times. Section 6 
(Table 4) highlights the distinction between the two out- 
comes and the absolute and relative equity viewpoints; it 
shows that the FCFT policy is effective at reducing differ- 
ences in the waiting times until transplantation but generates 
large differences in the likelihood of transplantation across 
groups. 

In the remainder of this section, we mathematically for- 
mulate two equity metrics that capture deviations of the 
waiting time until transplantation and the likelihood of trans- 
plantation from the absolute equity viewpoint. Although our 
mathematical formulation of equity focuses on differences 
among classes, our simulation results in ?6 concentrate on 
differences across gender, race, and age, which constitute 
sets of classes. 

Deviations of the waiting time until transplantation 
from the absolute equity viewpoint can be captured by 
the variance of the waiting time until transplantation. 
Furthermore, this variance can be decomposed into a 
between-class component and a within-class component. 
Based on our earlier discussion, we focus on the between- 
class component, which is equal to the weighted sum of 
the pairwise square difference of the steady-state wait- 
ing time until transplantation for each patient class (the 
weight of each pairwise square difference is equal to 
the product of the arrival rates of the two classes be- 
ing compared). While it would be more natural to con- 
sider the square root of the weighted sum, doing so leads 
to intractability. Because the pairwise square difference 
terms cannot be formulated in terms of the state vari- 
ables of the fluid model, we use the following cruder 
measure, which will be referred to as the waiting time 
inequity: 

' T Kw Kw 

2XE E ik(t, U(twp'~t U(t)) 
k=1 i=1 

(Xkt) _ xj(t) 
2 

dt, (11) 

where X(t, u(t)) = (X I(t, u(t)), ... .,I Kw(tU(t))) denotes the 
instantaneous arrival rate into class k under allocation 
policy u(t), and is given by 

J 

.{k(t, u(t)) = 4 + E qC(k, j)IC(k, J)xC(k, J)(t) 

for k=1, ....,Kw. (12) 

If we define R(t, u(t)) c WKXK such that 

[R(t, UWt))k, 1 

f-1, if k7 1 and 1 < k, I ?Kw; 

= A, =l 2(t, ~t ) 
_Il if k = and I <, k, 

l 
-<-Kw; 

0, otherwise, 
(13) 

then ( 1) becomes 

T 

Jx(t)'R(t, u(t))x(t) dt. ( 14) 

If the waiting time inequity can be maintained at zero, then 
(by Little's law) each candidate class would have the same 
steady-state mean waiting time. Although the waiting time of 
a class is different than its waiting time until transplantation 
(the former includes patients who die while on the waiting 
list), these two quantities are closely related, and Zenios 
(1999) demonstrates that (14) captures the first-order effect 
of equalizing the mean waiting time until transplantation 
across classes. 

The second equity measure focuses on equalizing 
the likelihood of transplantation. Consider the quantity 

fT EJlu k(t)dt/(Xk+T), which converges (as T 
-* oc) to 

the percentage of class k candidates who receive transplan- 
tation. If we define the matrix D C 4Kw XKwJ where 

I { if i mod Kw = k; (15) 
0 otherwise, (5 

then the vector of likelihoods of transplantation is given by 
I0TDu(t) dt/Q(+ T). Because a quadratic function similar to 
(11 ) leads to a mathematically intractable optimal control 
problem, we take an alternative approach where the like- 
lihood of transplantation equity is captured by the service 
level constraints 

(1-?)?AT _<T Du(t)< (i+8)X T; (16) 

where A =( W , 4 )'. These constraints state that the 
likelihood of transplantation for each class should be ap- 
proximately equal to the average likelihood of transplanta- 
tion 1/p, but deviations of magnitude ? can be tolerated. 

Unfortunately, the constrained problem is not analytically 
tractable either, and so we resort to the Lagrangian version of 
(16), by inserting into the objective function the expression 

AT 

T 'Du(t)dt. (17) 

Although we have no way of knowing a priori what values 
of the Lagrange multipliers y =(yi,.. , YKw)' correspond to 
what values of the service level bounds in ( 16), in our com- 
putational results we vary y to generate a set of policies 
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with varying degrees of restrictiveness (for various sets of 
patients) with respect to the likelihood of transplantation. 

In the next section, we formulate and analyze a control 
problem that incorporates the waiting time inequity measure 
(14) and the likelihood of transplantation cost (17). 

4. ANALYSIS OF THE CONTROL PROBLEM 

We define the control problem in ?4.1, analyze the problem 
and derive a heuristic index policy in ?4.2, and simplify the 
policy in ?4.3. 

4.1. The Control Problem 

We combine the three objectives (10), (14), and (17) and the 
fluid model to obtain the following optimal control problem: 
Choose the allocation rates u(t) to maximize the tri-criteria 
objective 

AT 

(/3lh'x(t) -(1 - /)x(t)'R(t, u(t))x(t) + /Du(t)) dt, 

(18) 

subject to (6) -(9), where l E [0,1 ] and h = (h 1, . . . , hK)'. 

4.2. A Dynamic Index Policy 

Unfortunately, this control problem does not appear to admit 
a closed-form solution. Because this problem is of very high 
dimension and because our intention is to develop an alloca- 
tion scheme that might be attractive to health policy makers, 
we focus on deriving a suboptimal policy that is easy to im- 
plement and describe. We employ three approximations in 
this subsection; these approximations, in conjunction with 
one iteration of the policy improvement algorithm, allow us 
to construct a closed-form heuristic index policy. 

A key approximation. The biggest stumbling block in 
analyzing this problem is that the matrix R(t, u(t)) is a 
function of both time and the policy. Hence, our first 
approximation replaces this function by a fixed matrix 
R. The natural matrix to use is R(oo, i-), where u 
(ui11,..., uJK) is the optimal equilibrium policy; this re- 
placement would be somewhat accurate if the optimally 
controlled system operated near the optimal equilibrium 
pair x&= (xI,..., XK)' and f7 (see Horwood and Whittle 1988 
for an analysis that makes this assumption). However, the 
optimal equilibrium pair is the solution to a huge (e.g., the 
matrix A is at least 107 X 107 ) nonlinear program, and its 
derivation is not practical. Hence, we replace R(t, u(t)) by 
R = R(ox, uF), where uF = (uF, ... ., u,) are the equilib- 
rium allocation rates under the FCFT policy. (We use the 
FCFT policy to enforce consistency between the absolute 
equity viewpoint reflected in (18) and the relative equity 
viewpoint captured by FCFT. We also considered other 
alternatives for constructing R, but none performed as well 
in our numerical study.) The fixed matrix R is computed 
as follows. The rates uF are estimated from the detailed 
simulation model described in ?5. Then we substitute uF 

into the steady-state version of (6) to find the unique 
fixed point, xF (X1,. ,4)k =A-'('+ + BuF). The fixed 
point xF is then substituted into the steady-state version 
of (12), which is k(o,U F) k + =I qc(kj)Ic(kj)xc(kj) 

for k= 1,... ,Kw. Finally, Xk(ouF) is substituted into the 
matrix R(t,u(t)) in (13) to obtain R. Under this key ap- 
proximation, the objective function can be re-expressed as 

T 

maximize J"(flh'x(t) - (1 - #3)x(t)'Rx(t) + /'Du(t)) dt. 

(19) 

Problem (6)-(9) and (19) are linear quadratic control prob- 
lems with state and control constraints and can also be 
viewed as an infinite-dimensional quadratic programming 
problem. This problem is mathematically difficult and little 
is known about the structure of the optimal solution (Hartl 
et al. 1995). 

An iteration of the policy improvement algorithm. Our 
basic approach is to start with the equilibrium FCFT policy 
uF and perform one step of the policy improvement algo- 
rithm. Let V(x, t) denote the value function (as given by the 
objective in (19)) from time t to time T under the optimal 
policy, given that the state of the system at time t is x; for 
brevity of notation, we suppress the dependence of V on its 
arguments. Then Bellman's dynamic programming optimal- 
ity equation is 

-a = /h'x- (I -/3)x'Rx at 
+ max{(VxV)'(X+ -Ax + Bu) + y'Du}, (20) 

uCQ 

where Q is the set of admissible allocation policies that 
satisfy constraints (7)-(9). Our approach is as follows. 
We solve the linear differential equations (6) to obtain 
the trajectory x(t) under the equilibrium FCFT allocation 
policy (i.e., Ujk(t)= uF for all t), where uF is calculated 
from the simulation model; to avoid complications arising 
from the boundary conditions x(t) > 0, we make our second 
assumption that the trajectory x(t) is in the interior of the 
state space. This assumption is questionable in that the 
number of classes is much greater than the total number of 
customers (see the end of ?2), but it is required for 
analytical tractability. To obtain the state trajectory un- 
der policy u F we solve the boundary value problem 
dx(z)/dz- = Ax(l) + Bu F x(t) =x. Elementary results 
from the theory of ordinary differential equations show that 

x(l) = eA(t)(x - x(oc)) + A (i+ + BuF) 

for z E [t, T]. (21) 

By (19), the approximate value function under the equi- 
librium FCFT policy is 

T 
VF = [/3h'x(z) -(1 - /3)x(z)'Rx(T) + y'Du(T)]dz, 

(22) 



556 / ZENIOS, CHERTOW, AND WEIN 

where x(l) is defined in (21). This integration is performed 
in Zenios et al. (1997, Appendix B). Our last step is to 
perform one iteration of the policy improvement algorithm; 
i.e., we obtain VX VF, substitute it into the right side of (20) 
and perform the minimization assuming that x > 0. The ex- 
pression for VX VF is simplified by assuming that the time 
horizon T is very large (i.e., in years) in relation to the 
time scale of the system dynamics, which change on a daily 
or weekly basis (patients arrive and leave the waiting list 
daily). Therefore, our third approximation sets T= oc and 
t = 0 in VF V7, which generates a policy that is independent 
of the time horizon. If we define 74(x) = (O(X),., 7.K(X)) 

to be equal to (V7 V' )', then 

7r(x) = flh'A- (1 _- )(XF)RA -I _ (1 _- )(x - )', 

(23) 

where the matrix R is defined in Zenios et al. (1997, 
Appendix B). 

We can now substitute the partial derivatives (23) into 
the right side of (20) and perform the maximization. Be- 
cause the function to be optimized is linear in the controls 
and (8)-(9) are knapsack constraints, the solution gener- 
ates a dynamic index policy (Gittins 1989). If we define the 
indices 

Gjk = 9c(kJ)(X(t)) -7k(X(t)) + Ak, (24) 

then at time t the proposed policy allocates all or- 
gans of class j to the transplant candidate class k with 
the highest index Gjk(t). By (24), the cost Yk of 
the likelihood of transplantation behaves as a subsidy 
for class k patients. Because the quantity 7EK(X(t)) 

represents the marginal increase in ftT [i/h'x() - 

(l-/3)x(z)'Rx(z)]dz if one additional candidate of class 
k is allowed to join the system at time t, the in- 
dex Gjk(t) equals the subsidy Yk plus the marginal in- 

crease in 17T /3h'x(z) - (1 - 
/3)x(z)',Rx()]dz 

if an 
organ of class j is transplanted into a candidate of 
class k. 

If the expression for VE was exact, then the derived policy 
would be better than the equilibrium FCFT policy uF. How- 
ever, our expression is not exact (it assumes that x(t) >0 
and T -* oo), and we cannot draw this conclusion. Never- 
theless, this approach (performing one iteration of the pol- 
icy improvement algorithm using approximate values for V) 
has been used to design dynamic call acceptance/rejection 
protocols for queueing network models of telephone traffic 
(Ott and Krishnan 1985, Key 1990) and develop dynamic 
multidrug therapies for patients infected with HIV (Wein 
et al. 1997). 

4.3. Policy Simplification 
The following proposition gives a closed-form expression 
for the dynamic indices Gjk(t). The proof of this result 
involves cumbersome algebraic manipulations and is 
omitted. 

PROPOSITION 1. The dynamic index in (24) is given by 
Gjk(t) = /GjX(t) + (1 - I)Gjok(t) + Yk, here 

Gj' (t) 
-hc(kj) + qc(kj) 

hk hk (25) 
11c(k~J) IPk [tk 

and 

(,k(i1 U ) Xi(,U )) 

+ E [ it UE) (1 - qc(kni)/ic(kni) ) 
1 (Xk(t) Xi ) 

-k ) qc(kj)c(kj) c(k, j) 

( ________ _ 

i 
XC C~kl) 

X FXi(t) X_ _ _ 

A(E , UF)) Ak(OUF )J) 

+KR [q~c'k IF)8Ck qc2(kJUF)ck 

(il + blj)CL2 k + kc(ikl)) 

(i qc(k, j)/Jc(k, j)(2/Jk ?i+ blc(i,lI) ? Ic(k, j) )) 

(Iii + /lc(k, j) )(/c(k, j) + /lc(i,lI) ) 

( XC(kXl)(t) (6k) 

k(0,UF) X1(ou )}J 

XJOI)Ci, U ;2 k ( OU , ) 

hC~k,)/Il~kJ + q(kJhk[ in(2) givs te qalty-djute 

(8k+Pi k + Pci, li ) ) ck 

lfexcc( qc(kAL)fc(kor a) +cla patient wt a ,clas j 

tranpln (u (P + Pc(kiJ))(tc(khj) + tc(h, pi 

willpostioreceiveadtoals transplorants) and ahl/categivested 
QAL fo aeghe classbknatient wtout transplacintatio.Hnce Gt, 

the efficiny index Gj4k(t) give the increased Noine theaLE 

hc~k j~~c~, j +Xc(k, 1)hk/0 in(25 ) gvsteqaiyajse 

lieepcac QL)for a class k trnpataaddteworcivestwt a trnslant 

ofansclant(ass uming that Pif the t p fs I 

Thel equty rcindex adeiompose irnslnto) tndhree compoensth 

which are given by th ththree summations in Equation (26). 
The fit c nent d t dependo e state of the 
system and is calculated using the equilibrium FCFT pair 
(xFnuF). When the state x(t) is close to the equilibrium 
state xF under the equilibrium FCFT policy, the second and 
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third components of Equation (26) are near zero, and the 
heuristic policy assigns priorities based largely on a static 
priority rule. The second and third components of Gf(t) 
attempt to maintain x(t) close to xF. The second compo- 
nent assigns highest priority to the candidate class with the 
waiting list size that most exceeds the waiting list size of 
the state xF. The third component anticipates the influx of 
retransplantation candidates into the waiting list by mea- 
suring the total number of patients of each class that have 
a functioning graft, and then assigns highest priority to the 
class that expects the highest influx. Although our objective 
(14) adopts the absolute equity viewpoint, our approxima- 
tion of R(t, u(t)) by R(oc, uF) has led us to a policy that is 
similar in spirit to the relative equity viewpoint. 

Two features of expression (26) may prevent its adop- 
tion by UNOS. First, it utilizes the number of functioning 
grafts of each class (Xk(t) for k=Kw + 1,.. . ,K), and this 
information is not readily available in practice. Second, the 
expression for Gjk(t) depends on the waiting list for can- 
didate classes 1I k. This represents a substantial deviation 
from the current UNOS policy, where the priority score for 
each candidate is computed using only the profile of that 
particular candidate. Thus, to make expression (26) more 
attractive, we replace xi(t) by the equilibrium FCFT value 
xF for i :& k in (26), so that the index Gjk(t) depends only 
on Xk(t). This substitution eliminates the third component 
in (26), which was an order of magnitude smaller than the 
first two components in our exploratory numerical investi- 
gations, and part of the second component, and yields 

(hc(kj) hk hk) 
Gjk(t) /Ec(kj) qc(ki)- - 

Ilk 

[tk Ak' 

X'i(oo, uF) 
( 1 - qc(k,j)) 

[tk 

+ 
w Z$<i Xz~F) (i c(kJ)I>Lc(kJ)) 

YLk k Ic(kj) + Ilk 

(A (3oukj ) ,%k(cc, F))] + 7k- 

(27) 

The equity part of expression (27) reveals that higher pri- 
ority is assigned to candidates with longer life expectancy 
and lower graft failure rates. Candidates with long life ex- 
pectancy are expected to stay on the waiting list for a longer 
amount of time and thus contribute more to the total wait- 
ing time inequity. Awarding priority to candidates with low 
graft failure rates decreases the demand for retransplan- 
tation, thereby reducing the disparity between supply and 
demand, which is the driving force behind the efficiency- 
equity trade-off. 

5. THE SIMULATION MODEL 

To assess the performance of our proposed kidney alloca- 
tion policies, we constructed a modular simulation model 
that mimics the operation of a single OPO. In the follow- 
ing subsections we provide a brief overview of the model 
and a detailed description of the component of the model 
that simulates the graft failure process. A more detailed de- 
scription of the model is provided in Zenios et al. (1997), 
and the validation of the model is described in Zenios et al. 
(1998). The limitations of the model are discussed in ?7. 

5.1. An Overview of the Model 

The simulation model is modular and contains five main 
models (see Figure 1): the candidate demographics model, 
the waiting list model, the organ allocation model, the func- 
tioning graft model, and the initialization model. The candi- 
date demographics model generates new candidates for the 
transplant waiting list. These candidates remain in the wait- 
ing list model until they either exit the system by death or 
receive an organ from the organ allocation model and move 
into the functioning graft model. Patients remain in the func- 
tioning graft model until either they exit the system by death 
or the graft fails, in which case they can either rejoin the 
waiting list or exit the system. The initial population in the 
system is generated by the initialization model. 

The state of the model consists of two vectors: one that 
maintains the characteristics of the waiting list population, 
and one that maintains the characteristics of the patients 
in the functioning graft model. The characteristics recorded 
by the model are gender, race (African-American, Cau- 
casian, all non-African-Americans are treated as Caucasian 
in this paper), age (each year between 20 and 90; pedi- 
atric candidates are excluded from the model because they 
make up only 7% of the candidates and are more than 
twice as likely as adults to receive living-related transplants), 
tissue type, pra (<60%, > 60%), prior transplants (none, 
one or more), body surface area (bsa), blood type, time of 
entry into the system, and time of entry into the current sec- 
tor of the model. In addition, the functioning graft model 
records information about the graft for each transplant re- 
cipient; this information takes the form of a single variable 
extracted from the proportional hazards model for the graft 
survival process (see ?5.2). The system state is updated 
monthly (this frequency provides accuracy and computa- 
tional efficiency) according to the sequence of events pre- 
sented in the flowchart in Figure 1. 

The main inputs for the simulation model are the pa- 
tient and donor arrival rates, the distributions for the pa- 
tient and donor characteristics, the pre-transplantation and 
post-transplantation mortality rates, the graft failure rates, 
the QOL scores; see Appendix A for a summary of these in- 
puts. These inputs were estimated using data from the UNOS 
(UNOS 1995), the United States Renal Data System (US- 
RDS 1995), and the New England Organ Bank, as well as 
data reported in the published literature. The estimation of 
all the inputs except the graft failure rates (?5.2) involved 
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Figure 1. Flowchart for the simulation model. 

Set simulation parameters: Use the candidate demographics Use the functioning graft model 

patient and donor arrival rates, model to generate new patients. to generate organ failures. 

allocation algorithms and Put new patients on the waiting _ Remove patients from the 

planning horizon. Set simulation list. functioning graft compartment and 
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model to obtain the initial A 
I conditions. Use the waiting list model to Use the organ allocation model 

generate deaths among patients to generate kidneys for the current 

Update simulation time t=t+ I on the waiting list. Remove these time period. For each kidney. 
patients from the system. determine the highest priority 

candidate in the waiting list: if 
there is a successful match then 

End of o zo 
No Use the functioning graft model move the patient from the 

to generate deaths among patients waiting list to the functioning 

with functioning grafts. Remove graft compartment. 
Yes these patients from the system. + 

Report simulation results | rGenerate statistics for waiting 
times, waiting list size, deaths, etc. 

straightforward statistical analysis, and thus the details are 
omitted. 

The model considers two main scenarios for the patient 
and donor arrival rates. The first scenario, which is referred 
to as the typical OPO, represents an OPO that covers 1/72 
of the national waiting list (recall that there are 72 OPOs 
in the United States). It assumes that the patient arrival rate 
at year t is x+(t) = 142.90 + 4.48t patients per year (t = 0 
refers to 1995), and the donor arrival rate is 57.09 donors per 
year (each donor constitutes two identical organs). On the 
other hand, the second scenario considers a congested OPO 
that faces a severe shortage of organs, and it assumes that 
the patient arrival rate at year t is A+(t) = 642.74 + 20.16t 
patients per year and the donor arrival rate is 169.0 donors 
per year (these parameters were obtained from the New 
England Organ Bank). In addition, the model assigns two 
QOL scores: 0.60 for transplant candidates and 0.75 for 
transplant recipients with a functioning graft. These QOL 
scores reflect the experience of ESRD patients surveyed in 
the published literature (Deniston et al. 1989, Hornberger 
etal. 1991). 

We conclude this subsection by highlighting the simi- 
larities and differences between the simulation model and 
the fluid model. In general, while the simulation model 
provides a very fine micro-representation of the organ 
allocation process, the fluid model provides an aggregate 
macro-representation. However, the fluid model adopts the 
following simplifications relative to the simulation model: 
(a) Rather than maintain a list of all candidates and recipi- 
ents, it simply classifies the candidates and recipients accord- 
ing to their characteristics, and keeps track of the total num- 
ber of candidates and recipients in each class; (b) instead 
of modeling the discrete stochastic flow of candidates and 
donors, it assumes a continuous and deterministic flow that 
is driven by a homogeneous inflow of donors and patients, 
and a constant-hazard mortality and graft failure process; (c) 
rather than allowing for different graft failure rates between 
first and second time recipients, it assumes that the failure 

rates are not affected by the number of transplantations; (d) 
instead of allowing a positive crossmatch, it assumes that 
crossmatching is always negative; (e) instead of allowing 
candidates to be unavailable, it assumes that candidates are 
always available for transplantation; (f) rather than allowing 
organ sharing between OPOs, it assumes no such sharing. 

5.2. The Functioning Graft Model 

The functioning graft model monitors the health of individ- 
uals after transplantation. Individuals can exit this model via 
death or graft failure, and these two processes are assumed 
to operate independently of each other. The mortality is sim- 
ulated using the mortality rates presented in Appendix A. 

The graft failure rates are modeled by a proportional 
hazards model with a nonparametric baseline; see Cox and 
Oakes (1984). The model hypothesizes that the hazard 
function for a patient with a known covariate vector x is 
h(t) =ho(t)e x, where 0 is the (unknown) vector of re- 
gression coefficients, and ho(t) is the (unknown) baseline 
hazard function; the hazard function h(t) gives the instanta- 
neous conditional probability that the organ will fail during 
[t, t + At) given that it did not fail before time t. The vector 

of covariates summarizes all risk factors that are known to 
predict the short-term and long-term graft survival, and is 
listed in Table 2. The exponent eo'x is referred to as the 
prognostic index. 

Proportional hazards models have been used to study risk 
factors associated with graft failure (Chertow et al. 1996) 
and to develop prognostic models for graft failures (Van 
Houwelingen and Thorogood 1995). In fact, we employ the 
covariates that were found to have the greatest contribution 
to the overall graft survival in Chertow et al. 

The data used for the analysis are extracted from the 
UNOS Public-Use Data Set (UNOS 1995). The data 
set is divided into two subsets: the training set, which 
is used to calibrate the model (sample size= 23, 538); 
and the validation set, which is used to validate the model 
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Table 2. Results from fitting a proportional hazard model to the training set. 

Regression Conditional 
Factor Categories Coefficient Relative Risk 

Donor and male to male or 0 (baseline) I 
recipient sex male to female or 

female to female 
female to male 0.114 + 0.059 1.120 

Recipient race Non-African-American 0 (baseline) I 
African-American 0.421 + 0.055 1.523 

Donor race Non-African-American 0 (baseline) I 
African-American 0.165 ? 0.082 1.180 

Recipient Age 0-10 0 (baseline) 1 
10-20 0.071 ? 0.203 1.073 
20-30 -0.185 + 0.190 0.831 
30-40 -0.280 ? 0.187 0.756 
40-50 -0.362 + 0.189 0.696 
50-60 -0.435 + 0.100 0.647 
60-70 -0.488 + 0.205 0.614 
70-80 -0.277 ? 0.361 0.758 

Donor Age 0-10 0 (baseline) 1 
10-20 -0.467 + 0.097 0.627 
20-30 -0.502 + 0.097 0.605 
30-40 -0.359 + 0.101 0.698 
40-50 -0.217 + 0.103 0.805 
50-60 -0.015 + 0.107 0.985 
60-70 0.181 + 0.137 1.200 
70-80 -0.403 ? 0.659 0.668 

Peak pra presensitized 0 (baseline) 1 
non-presensitized -0.384 + 0.069 0.681 

Body surface area < 1.60 0 (baseline) 1 
1.60-1.80 0.071 + 0.079 1.073 
1.80-2.00 0.104 + 0.080 1.110 
2.00-2.20 0.199 + 0.093 1.220 

> 2.20 0.353 + 0.130 1.422 

Previous 0 0 (baseline) 1 
transplants >0 0.253 + 0.065 1.288 

HLA-A mismatches 0 0 (baseline) 1 
1 0.092 + 0.103 1.096 
2 0.122 + 0.105 1.129 

HLA-B mismatches 0 0 (baseline) 1 
1 0.190 + 0.115 1.209 
2 0.264+0.114 1.302 

HLA-DR mismatches 0 0 (baseline) 1 
1 0.099 + 0.095 1.104 
2 0.250 + 0.996 1.283 

(sample size = 7,713). Patients who were lost to follow-up, 
died with a functioning graft, or had a functioning graft on 
the last day of follow-up (December 1991) were assumed 
to contribute a right-censored observation. Patients with one 
or more missing covariates were included in the analysis, 
and the missing covariates were treated as new covariates. 

The regression coefficients 0 and the nonparametric baseline 
hazard function ho(t) were obtained using the S-Plus system. 
The results are presented in Table 2 and are discussed in the 
context of our simulation results in ?6. 1. 

We perform three tests to validate the proportional haz- 
ards model. In the first test, we compare the distribution 
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Figure 2. Validation of the graft survival model. Panel (a) gives the Kaplan-Meier survivor curve (solid line) 
and the mean survivor curve predicted by our model (dotted line). Panel (b) gives the Kaplan-Meier 
survivor curve (solid lines) and the mean survivor curve predicted by our model (dotted line) for four groups: 
-0.5410 < prognostic index < - 0.3052, - 0.3052 < prognostic index < -0.0141, -0.0141 S prognostic 
index < 0.14141, and prognostic index > 0.1414. 
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of the prognostic indices in the validation set to the prog- 
nostic indices in the training set. The two distributions are 
virtually indistinguishable. In the second test, we fit the vali- 
dation data set to a proportional hazards model with a single 
covariate, the prognostic index. The resulting regression co- 
efficient is 1.0 ? 0.058, indicating that the underlying model 
is correct. The final test compares the Kaplan-Meier sur- 
vivor curve (which is a nonparametric unbiased estimate of 
the underlying survivor curve) of the validation set to the 
mean survivor curve predicted by the graft survivor model; 
see Figure 2(a). If the proposed model is correct, the mean 
survivor curve is an unbiased estimator of the exact survivor 
curve. The test also categorizes the prognostic index for the 
validation set into four groups (each group contains about 
25% of the data), and for each group, computes the Kaplan- 
Meier survivor curve and compares it to the mean survivor 
curve predicted by the proportional hazards model; see Fig- 
ure 2(b). The figures show that the mean survivor func- 
tions predict with precision the Kaplan-Meier curves. These 
three tests establish the validity of the proportional hazards 
model. 

Because the graft survival process can be summarized 
very succinctly by the prognostic index eO Ox, it is not nec- 
essary to record detailed information about the graft in the 
functioning graft model. Rather, as mentioned in ?5.1, it 
suffices to summarize all important information using the 
prognostic index. 

6. SIMULATION RESULTS 

In this section, we use the simulation model of ?5 to 
study the kidney allocation problem. The main results for 
the typical OPO are presented and discussed in ?6.1, and 
a variety of other policies and scenarios are considered 
in ?6.2. 

6.1. The Typical OPO 

This subsection describes the performance of three policies 
(FCFT, UNOS, SEEP (NB y)) for the typical OPO. 

Experimental design. For each policy and scenario con- 
sidered, the OPO was simulated for a period of 10 years 
(1995-2004); longer horizons were deemed inappropriate 
because the field of transplantation evolves at a very rapid 
pace, and predictions that extend to more than 10 years 
would be questionable. Confidence intervals of 95% for the 
performance measures were obtained by performing 40 in- 
dependent runs of the simulation model, starting from the 
same initial conditions. For the proposed SEEP (/1, 7), we set 

0 = 0 and considered several values of /1 G [0, 1]. Then we 
set f =1 (i.e., maximum efficiency) and varied the subsidy y 
for African-Americans, because they have experienced long 
waiting times until transplantation. More details about the 
experimental design and the implementation of the SEEP 
policy are provided in Zenios et al. (1997). 
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Table 3. Efficiency performance (with 95% confidence 
intervals) of different allocation policies in the 
typical OPO. 

Policy QALY Mean WTT 

FCFT 32.64 ? 0.12 27.90 ? 0.15 
UNOS 32.72 ? 0.13 25.41 ? 0.34 
SEEP (1.00,0) 34.20 ? 0.12 8.67 ? 0.12 
SEEP (0.83,0) 33.82 ? 0.12 21.94 ? 0.31 
SEEP (0.62,0) 33.15 ? 0.13 26.40 ? 0.31 
SEEP (0.50,0) 32.98 ? 0.11 26.81 ? 0.34 
SEEP (0.32,0) 32.73 ? 0.13 26.92 ? 0.30 
SEEP (0.00,0) 32.57 ? 0.12 26.75 ? 0.28 
SEEP (1.00, 1.6) 33.86 ? 0.13 10.61 ? 0.15 
SEEP (1.00, 1.8) 33.56 ? 0.17 10.81 ? 0.16 

Results. The results are presented in Tables 3 and 4. For 
10 policies (FCFT, UNOS, and 8 SEEP (f3,y)s), Table 
3 presents two clinical efficiency measures: the quality- 
adjusted life years (all results are reported in months and 
truncated at the end of the 10-year simulation period) 
per transplant candidate and the mean waiting time until 
transplantation (WTT); we do not report the aggregate 
likelihood of transplantation because it is unaffected by the 
allocation policy (it is dictated by the demand-to-supply 
ratio). For our three model outputs (QALY, mean waiting 
time until transplantation and likelihood of transplantation) 
and these 10 policies, Table 4 presents the difference in the 
mean output between the two genders (G), between the two 
races (R), and between patients above and below 50 years 
old (A). This table allows us to assess nine inequities from 
both the absolute equity and relative (to FCFT) equity view- 
points: gender, race, and age inequity for three performance 
measures. These differences are more informative than the 
pairwise square difference terms used in our mathematical 
objective function because they reveal the sign, not just the 
magnitude, of the difference between a pair of numbers. 

If policy A has a larger absolute value of an entry (in a 
particular column) in Table 4 than policy B, then we say that 
policy A has a larger absolute inequity (for that particular 
column) than policy B. If the absolute value of an entry 

(in a particular column) for non-FCFT policy A minus the 
corresponding FCFT entry is greater than the absolute value 
of the entry for non-FCFT policy B minus the FCFT entry, 
then we say that policy A has a larger relative inequity (for 
that particular column) than policy B. We also abbreviate 
the three performance measure inequities by QALYI, WTTI, 
and LTI and will usually preface them with two descriptors: 
absolute or relative, and gender, race or age. 

Discussion. The following seven observations can be ex- 
tracted from our numerical results. 

(1) Summary of demographic statistics: Many of the 
numerical results are driven by the historical demographic 
statistics found in Appendix A and the parameters of the 
proportional hazards model in Table 2. Before discussing 
the results, we summarize the salient characteristics of the 
data in Appendix A. African-Americans comprise 29.8% 
of the transplant candidates and 11.2% of the donors. 
Females comprise 39.0% of the candidates and 36.7% of 
the donors. Females make up 43.0% of African-American 
candidates, 37.3% of Caucasian candidates, 36.6% of 
African-American donors, and 36.7% of Caucasian donors. 
Male African-American candidates are younger (40.4% are 
less than 50) than the other three gender-race pairs (about 
25.0% are less than 50). Female candidates have 8.3% 
higher average pra than males, and African-Americans have 
10.1% higher average pra than Caucasians. Age-specific 
mortality rates are higher for dialysis patients than for trans- 
plant recipients. The mortality rates for dialysis patients and 
for transplant recipients increase with age and are higher 
for males than females. African-Americans have lower 
mortality rates on the waiting list than Caucasians but have 
higher mortality rates with transplants. Also, the differen- 
tial mortality rates, which are the age-specific mortality 
rates for dialysis patients minus the age-specific mortal- 
ity rates for transplant recipients, are significantly higher 
(e.g., 60% higher for 45-50 year olds) for Caucasians 
than African-Americans. African-American candidates are 
16.1% less likely than Caucasians to have type A blood 
and 10.6% more likely to have type B blood. Finally, the 

Table 4. Absolute Inequity Outcomes. (The columns denoted G give the difference 
Females minus Males, the columns R give the difference African- 
Americans minus Caucasians, and the columns A give the difference 
older than 50 minus younger than 50.) 

QALYI WTTI LTI 

Policy G R A G R A G R A 

FCFT 1.08 0.63 -19.15 0.22 3.11 -1.02 -0.72 12.68 -44.24 
UNOS 1.50 0.62 -18.47 -1.80 5.42 -2.49 4.04 8.56 -46.02 
SEEP (1.00,0) 1.78 -5.09 -16.03 -1.33 20.56 -6.67 3.14 -94.97 13.82 
SEEP (0.83,0) 2.02 -2.66 -18.86 -2.25 32.09 -13.10 6.35 -41.61 -25.05 
SEEP (0.62,0) 1.74 -0.28 -20.14 -1.09 11.87 -2.89 3.85 -1.50 -47.77 
SEEP (0.50,0) 1.29 0.38 -20.80 -0.53 7.02 -0.00 1.66 9.34 -54.76 
SEEP (0.32,0) 1.13 0.89 -20.85 -0.17 3.72 2.14 2.65 18.77 -60.95 
SEEP (0.00,0) 1.09 1.31 -20.83 0.05 0.81 11.91 1.49 26.07 -66.35 
SEEP (1.00, 1.6) 2.08 -0.84 -16.50 -2.14 3.95 -10.48 8.75 -16.39 20.93 
SEEP (1.00,1.8) 2.15 -0.10 -15.16 -2.41 2.24 -11.20 6.18 0.62 25.28 
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frequencies for the different tissue type proteins differ con- 
siderably between the two races (see Zenios et al. 1997, 
Appendix C). For example, protein 53 appears in 15% of 
African Americans but in only 0.8% of Caucasians. 

(2) Equity performance of FCFT. To understand how 
the facts in observation (1) and the parameter estimates in 
Table 2 affect the results, we begin with a discussion of 
the absolute equity performance measures under the FCFT 
policy in Table 4. Recall that the FCFT policy is subject to 
the screens for presensitization and blood type compatibil- 
ity. With regards to gender, females are less likely to receive 
a transplant than males because they have higher pra levels. 
Their pra levels and their lower mortality rates on the wait- 
ing list lead to slightly longer waits until transplantation. 
Despite females being less likely to receive a transplant, the 
low mortality rates for female dialysis patients and transplant 
recipients allow them to experience more QALY than 
males. 

With regards to race, African-Americans have longer 
waiting times until transplantation for three reasons: They 
have higher pra levels, lower mortality rates as dialysis 
patients, and a blood type mismatch with Caucasians cou- 
pled with a higher demand-to-supply ratio than Caucasians. 
Nevertheless, African-Americans are more likely to receive 
a transplant than Caucasians because they are younger and 
have lower mortality rates on the waiting list. This higher 
likelihood of transplantation allows African-Americans to 
experience more QALY than Caucasians, even though they 
have higher graft failure rates and higher mortality rates as 
transplant recipients. 

Turning to age equity, dialysis patients over 50 have 
higher mortality rates than younger patients, and hence ex- 
perience smaller waits until transplantation (as predicted by 
the results in Zenios 1999) and a much smaller likelihood 
of transplantation. The smaller likelihood of transplantation, 
coupled with the higher mortality rates on the waiting list 
and with functioning grafts, causes patients over 50 to have 
much fewer QALY than patients under 50. 

(3) FCFT vs. UNOS. Relative to FCFT, the UNOS pol- 
icy favors females and African-Americans via its pra points 
but puts African-Americans at a disadvantage via its tissue 
matching points. Surprisingly, these two policies have ap- 
proximately the same QALY in Table 3: The mean value 
for UNOS is only 2.4 days higher than for FCFT. Most of 
the efficiency gained by good tissue matching is offset by 
awarding priority to presensitized patients (under UNOS, 
the mean waiting time is 14.71 months for presensitized pa- 
tients and 32.49 months for nonpresensitized patients), who 
have higher graft failure rates on average. 

FCFT has the highest mean waiting time until transplan- 
tation among the 10 policies under consideration. This is 
because any policy that gives priority to a set of patients 
should generate a waiting time distribution that has fatter 
left and right tails than the distribution generated by FCFT. 
Moreover, the waiting time until transplantation distribu- 
tion comprises the left most portion of the waiting time 
distribution, because patients who die while on the waiting 

list essentially truncate much of the right tail of the waiting 
time distribution. 

With regard to inequity, UNOS's pra points reduce the 
waiting time until transplantation for females (which in- 
creases the absolute gender WTTI relative to FCFT) and 
gives females a higher likelihood of transplantation (which 
reduces the absolute gender LTI) and an increased QALY 
(which increases the absolute gender QALYI). The effect 
of UNOS's tissue matching points appears to dominate the 
effect of its pra points for African-Americans; relative to 
FCFT, UNOS generates longer waiting times until trans- 
plantation for African-Americans (and an increase in the 
absolute race WTTI). Although UNOS's tissue matching 
points reduce African-Americans' likelihood of transplanta- 
tion (and the absolute race LTI), their lower mortality rates 
on the waiting list still allow them to be more apt to re- 
ceive a transplant than Caucasians. There is no significant 
difference in QALY for African-Americans under the two 
policies: The improved tissue matching provided by UNOS 
compensates for the fewer African-American transplants un- 
dertaken by this policy. Because African-American candi- 
dates are younger on average than Caucasians, UNOS offers 
a slight advantage to older patients relative to FCFT. 

(4) The efficiency-equity trade-off. The efficiency-equity 
trade-off is epitomized by comparing the FCFT policy, 
which represents the gold standard for equity under the 
relative equity viewpoint, and the SEEP(1,0), which rep- 
resents the gold standard for efficiency. Relative to FCFT, 
SEEP( 1,0) is disadvantageous to African-Americans, 
presensitized patients (and hence females and African- 
Americans), and retransplantation candidates and favors 
good tissue type matches, older recipients (because of their 
low graft failure rates), and female-to-female allocations; 
see Table 2. SEEP(1,0) increases the QALY per patient by 
1.56 months compared to FCFT. This increase is equiva- 
lent to 7596 graft years per 100,000 recipient years, which 
is 84.4% of the estimated improvement achieved by the 
introduction of immunosuppressive drugs in the late 1970s 
(Opelz and Wujciak 1995). SEEP(1,0) reduces the mean 
waiting time until transplantation by 19.2 months. This dra- 
matic reduction is achieved at the expense of low priority 
candidates, who are forced to spend prolonged periods of 
time on the waiting list and then die before receiving a trans- 
plant (however, among the 10 policies tested, SEEP(1,0) 
minimizes the number of deaths on the waiting list and the 
mean waiting time of all candidates). 

With regard to gender equity, the female-to-female effect 
in the SEEP(1,0) dominates the disadvantage females expe- 
rience via the pra points and the slightly higher proportion of 
African-American candidates who are female. Hence, rela- 
tive to FCFT, females experience shorter waiting times until 
transplantation (which increases the absolute gender WTTI), 
a higher likelihood of transplantation (which reduces the ab- 
solute gender LTI), and more QALY (which increases the 
absolute gender QALYI). African-Americans are at a dis- 
tinct disadvantage under the SEEP( 1,0) policy because they 
have high graft failure rates, high pra levels, rare tissue types 
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combined with a high demand-to-supply ratio, and small 
differential mortality rates. Consequently, they incur a large 
increase in waiting times until transplantation, are much less 
apt to receive a transplant (95.3% of all organs are allo- 
cated to Caucasians), and incur a reduction in QALY, all of 
which increase the absolute race inequity measures. The low 
graft failure rate of older patients and the fact that African- 
Americans are younger lead the SEEP(1,0) policy to favor 
older patients, who experience relatively shorter waits until 
transplantation (which increases the absolute age WTTI), 
a much higher likelihood of transplantation (which reduces 
the absolute age LTI), and more QALY (which reduces the 
absolute age QALYI). 

(5) SEEP(#, O)s. Tables 3 and 4 show that as /3 de- 
creases from 1 to 0, clinical efficiency (i.e., QALY) 
decreases and most of the (absolute and relative) inequities 
decrease. Although none of the SEEP(/1, O)s achieve good 
clinical efficiency and low absolute race WTTI and LTI, the 
SEEP(0.5, 0) increases the QALY (relative to UNOS) for 
all six patient groups (females, males, African-Americans, 
Caucasians, over 50, under 50). 

The absolute WTTIs do not exhibit monotonic behavior 
with respect to fl: They increase until fl reaches 0.83, and 
then decrease. This occurs because as fl is reduced from its 
maximum value of unity, the SEEP(/3, 0) policy starts to al- 
locate an increasingly larger fraction of the organs to some 
low priority candidates with very long waiting times, and 
these candidates cause the peak in the WTTIs. As fi de- 
creases even further, the waiting time differences between 
the low- and high-priority candidates become less signifi- 
cant and the WTTIs starts to decrease again. Although the 
numbers are not reported here, the waiting time inequities 
and the WTTI measures are quite similar when fi<0.83, 
which is reassuring in view of our substitution of the former 
for the latter in ?3. 

(6) Subsidized policies. Policies SEEP( 1,1.6) and 
SEEP(1,1.8) demonstrate that increases in the QALY per 
candidate need not always be achieved at the expense of 
equity between races, SEEP(l1,1.8) has a higher QALY and 
lower absolute race WTTI and LTI than JNOS and FCFT. 
Relative to SEEP(1,0), the subsidized policies provide su- 
perior health outcomes for African-Americans but lead to a 
reduction in QALY for Caucasians and an increase in the 
(absolute and relative) age and gender inequity measures. 
However, relative to UNOS, the SEEP(1,1.6) policy in- 
creases the QALY and reduces the mean waiting time until 
transplantation for all six patient groups. 

(7) Efficient frontier. We used the data in Tables 3 and 
4 to generate nine efficiency-equity trade-off plots (that are 
not displayed here), one for each of the columns of inequity 
numbers in Table 4. Each plot contains 10 points, one for 
each of the policies in these two tables, and we plot the 
QALY versus the inequity measure. These plots allow us to 
identify policies that are on the efficient frontier of efficiency 
and equity (i.e., there are no other policies that dominate on 
both dimensions). From the absolute equity viewpoint, 28 of 
the 90 points (i.e., policies) on the 9 plots are on an efficient 

frontier: Of these, 19 are SEEP(3, 0)s, 7 are SEEP(l, y)s, 2 
are FCFT (gender QALYI and LTI) and none are UNOS. 
Of the 38 points that are on an efficient frontier from the 
relative equity viewpoint, 23 are SEEP(/3, 0)s, 9 are FCFT 
(by definition of relative equity), 5 are SEEP(l, y)s, and 2 
are UNOS (race QALYI and age LTI). In summary, the 
SEEP(f, y)s constitute most of the efficient frontiers, and 
UNOS is far from these frontiers with respect to about half 
of the (absolute and relative) inequity measures. 

6.2. Further Results 
In this subsection we consider a variety of different poli- 
cies and several other scenarios and perform a sensitivity 
analysis. 

Patient characteristics and clinical efficiency. To investi- 
gate how the various patient characteristics that are utilized 
by the SEEP(1,0) affect the QALY per candidate, we con- 
sider several new policies that assign priorities using the 
regression coefficients of the proportional hazards model in 
?5.7. Seven policies are considered, and each policy assigns 
priorities using only one of the following patient charac- 
teristics: age, gender, race, tissue, type, prior transplants, 
body surface area (bsa), and pra. For example, the policy 
that utilizes age ignores any patient characteristic other than 
age and assigns highest priority to candidates of age 60-70 
(because they have the lowest regression coefficient in Ta- 
ble 2 and thus the lowest graft rejection rate). As a reference 
point, we also consider a policy that assigns priorities using 
all seven patient characteristics. 

The results are described in Table 5. The far-right 
column gives the increase in QALY compared to UNOS as a 
fraction of the QALY increase achieved by SEEP(1,0); i.e., 
[QALY(policy) - QALY(UNOS)]/[QALY(SEEP( 1,0)) - 
QALY(UNOS)]. The race-based policy achieves the largest 
increase (75.0%) and the bsa-based policy the smallest 
(18.92%). Furthermore, characteristics that are not used by 
the current UNOS system, such as prior transplants, are 
almost as important as the characteristics that are used by 
the current system, such as tissue types. In addition, the 
policy that utilizes all seven characteristics slightly outper- 
forms the SEEP(1,0) but the difference is not statistically 
significant (statistical significance corresponds to about a 

Table 5. The impact of various patient characteristics on 
clinical efficiency. 

Patient Quality Adjusted % of Improvement 
Characteristics Life Months Achieved 

all 34.28 ? 0.15 105.40 
race 33.83 ? 0.13 75.00 
tissue type 33.58 ? 0.12 58.08 
prior transplants 33.36 ? 0.16 43.24 
pra 33.32 ? 0.15 40.54 
age 33.18 ? 0.12 31.08 
gender 33.04 ? 0.13 21.62 
bsa 33.00?i0.16 18.92 
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10% difference in the far-right column of Table 5). This has 
important practical implications as it suggests that simple 
policies based on the prognostic index can achieve most, if 
not all, of the efficiency improvement achieved by the the- 
oretically justified SEEP. The effects of the various charac- 
teristics in Table 5 are not additive, but a detailed study of 
their interactions is beyond the scope of this paper. 

Attempted improvement of SEEP. Motivated by the struc- 
tural results in Derman et al. ( 1972) and the statistical results 
in Chertow et al. (1996), we altered the SEEP(1,0) policy 
by disallowing extreme disparities in the age of donors and 
recipients: Candidates under 35 could not receive an organ 
from donors over 65, and candidates over 65 could not re- 
ceive an organ from donors under 35. This change led to a 
reduction in efficiency relative to SEEP( 1, 0). 

Attempted improvements of the UNOS policy. Because 
FCFT (which underlies the waiting time points of the UNOS 
policy) is nearly as efficient as UNOS, the only possible 
improvements within the current structure of the UNOS 
policy are to alter the number of points awarded to tis- 
sue matching and presensitization (recall that our model 
omits pediatric patients). To examine the first possibility, we 
analyze a variant of UNOS where priorities are assigned 
using only the tissue matching portion of the policy. The 
simulation results show that the QALY per patient for this 
policy is 33.5 + 0.15 months, which is nearly identical to 
the QALY per patient for the tissue type-based policy in 
Table 5. Hence, no further improvements can be achieved 
with this portion of the policy. 

Observation (3) in ?6.1 motivates us to consider a variant 
of UNOS where the priority points for presensitized patients 
are decreased from four to one. This variant increases the 
QALY by 0.41 months and increases the mean waiting time 
until transplantation by 1.01 months. It also decreases six 
of the nine absolute inequity measures (all except age QA- 
LYI, race WTTI, and age WTTI) and six of the nine relative 
inequity measures (the gender and age inequities). Over- 
all, African-Americans, prior transplant recipients (these pa- 
tients get priority under UNOS because they have higher pra 
levels on average) and females are slightly worse off under 
this variant of the UNOS policy. 

The congested OPO. The large variation in the demand- 
to-supply ratio among the various OPOs leads to significant 
disparities in performance across OPOs. The simulation re- 
sults for the congested OPO, which has a 34.2% higher 
demand-to-supply ratio than the typical OPO, confirm that 
the demand-to-supply ratio underlies the equity-efficiency 
trade-off: Compared to the typical OPO, the efficiency mea- 
sures decrease considerably, and all the absolute inequity 
measures (except for age LTI) increase. Averaging over the 
eight policies that were tested (the 10 policies in Table 3 
with the exception of SEEP(l, 1.8) and SEEP(0.62, 0)), we 
find that the QALY decreases by 3.81 months (this loss 
is roughly twice the estimated gain achieved by immuno- 

suppressive drugs) and the mean waiting time until trans- 
plantation increases by 15.64 months (a 70.6% increase). 
A comparison of FCFT and SEEP(1,0) for the congested 
and typical OPOs shows that as the demand-to-supply ra- 
tio increases, the efficiency-equity trade-off becomes more 
severe; i.e., increases in the QALY per patient are achieved 
at the expense of larger increases in all the absolute inequity 
measures (except for age LTI). 

Effect of organ supply. To explore the impact of organ 
shortage on the performance of our policies, we simulated 
FCFT, UNOS, SEEP(l,0) and SEEP(0.5,0), assuming that 
the organ supply increases by 20%. The results show that 
increasing the organ supply improves the clinical efficiency 
and decreases all the absolute inequity measures. Averaging 
over the four policies, we find that the QALY per candidate 
increases by 1.03 months (which is 66% of the improvement 
achieved by SEEP(1, 0) in the typical OPO), and the mean 
waiting time until transplantation decreases by 1.42 months. 

Effect of QOL Scores. Because the QOL scores represent 
a subjective evaluation of different health states, we now 
evaluate the sensitivity of our results to these scores. We 
performed additional simulation runs for the SEEP( 1, 0) and 
SEEP(0.5, 0) using the typical OPO and QOL scores of 0.5 
and 0.7 (the original value was 0.6) for waiting list patients 
(QOL scores for transplant recipients remained at 0.75). The 
results did not produce statistically significant differences in 
the waiting times until transplantation or the (unadjusted) 
life years per patient. This suggests that the relative ranking 
of the indices (27) is not sensitive to the actual QOL scores, 
and patients who would receive an organ based on one set 
of QOL scores would most likely receive the same organ 
under a different set of scores (provided that the QOL for 
transplantation is sufficiently higher that the QOL for the 
waiting list). 

7. CONCLUDING REMARKS 

The efficiency-equity trade-off in kidney transplantation 
can be alleviated by decreasing the demand-to-supply ratio 
(in total and within specific demographic groups), reduc- 
ing demographic- and nondemographic-based differences 
in graft survival rate, and employing an organ allocation 
policy that explicitly addresses this trade-off. The first ap- 
proach requires changes in the legal system or the attitudes 
or behavior of the general public, and the second approach 
entails considerable advances in clinical research. Because 
these changes are not expected to be achieved in the fore- 
seeable future, this paper has analyzed the third approach. 

This trade-off is very complex, and there are a variety 
of ways to measure performance, segment the ESRD pop- 
ulation into groups, and assess equity. We focus on three 
metrics that span the basic issues: quality-adjusted life 
years, waiting time until transplantation, and likelihood of 
transplantation. We report on nine types of equities, which 
are generated by comparing these three quantities across 
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gender, race (African-Americans and Caucasians), and age 
(patients above and below 50). In addition, we believe that 
the problem's complexity demands that inequity be assessed 
relative to a benchmark that represents perfect equity. We 
discuss two simple and natural benchmarks that lead to two 
approaches for assessing equity: an absolute equity view- 
point, which takes as its gold standard a hypothetical policy 
that equalizes all three performance measures across all the 
demographic groups; and a relative equity viewpoint, which 
uses the first-come first-transplanted policy as its gold stan- 
dard. These two viewpoints lead to different conclusions: 
FCFT does not treat different demographic groups identi- 
cally with regard to our three performance measures because 
it is subject to pre-screening for presensitization and blood 
compatibility and because of demographic-based differences 
in survival rates of dialysis patients and demand-to-supply 
ratios. Most notably, African-Americans experience longer 
waits until transplantation but are more likely to receive 
a transplant, and patients over 50 are much less likely to 
receive a transplant and have less QALY than patients 
under 50. 

We have developed a mathematical model that describes 
the first-order dynamics of the ESRD population and super- 
imposed on it an objective function that maximizes QALY 
and minimizes inequity in waiting times and inequity in 
likelihood of transplantation. Our analysis, which includes a 
number of simplifying approximations, eventually leads to 
a closed-form heuristic dynamic index policy. This policy 
assigns priorities using a mixture of efficiency points and 
equity points that are similar to the points used by UNOS, 
but it uses (in a nonobvious way) a larger set of historical 
information about the patient and donor characteristics and 
their relationship to clinical efficiency, and employs subsi- 
dies that can be used to reduce disparities between specific 
groups. 

We have constructed (and validated in Zenios et al. 1998) 
a large-scale simulation model to test an empirically cal- 
ibrated version of our index policy. Although the simula- 
tion results demonstrate that this index policy outperforms 
FCFT and the UNOS policy, we have attempted neither to 
compare the performance measures generated by the large- 
scale simulation model and the simplifying fluid model nor 
to assess the suboptimality (within the fluid model) of our 
dynamic index policy. 

A surprising result from our simulation study is that the 
policy currently used by UNOS is not appreciably more ef- 
ficient (in terms of quality-adjusted life years per patient) 
than the FCFT policy; hence, if one views QALY as the 
primary efficiency measure and adopts the relative inequity 
viewpoint, then FCFT is preferable to UNOS. In contrast, 
the most efficient policy within our class of proposed poli- 
cies (i.e., there is no weight given to equity and no subsidy 
points) achieves an increase in QALY per patient (relative to 
FCFT over a 10-year period) that is 84.4% of the estimated 
improvement achieved by immuno-suppressive drugs and is 
roughly comparable to what would be achieved by a 30% 
increase in the supply of donated organs. Much of the effi- 

ciency gains are achieved by employing demographic (e.g., 
favoring female-to-female transplants, penalizing African- 
American candidates) and nondemographic (e.g., penaliz- 
ing re-transplantations) factors that are not included in the 
UNOS policy. 

However, African-Americans fare poorly under this pol- 
icy on all three performance measures. Nevertheless, our 
proposed policy can reduce these inequities by increasing the 
weight given to equity or by providing a subsidy to African- 
Americans. Tables 3 and 4 show that our class of policies 
generate efficient frontiers on the efficiency-equity trade-off 
plots that dominate the UNOS policy for most equity mea- 
sures; however, fine tuning of both the equity weight and the 
subsidies is required to generate a policy that dominates the 
UNOS policy on all nine equity measures simultaneously. 

Rather than seek policies that are on the efficient frontier 
of efficiency and equity, another approach is to find poli- 
cies that simultaneously improve the health outcomes of 
all patient groups (even though such policies may increase 
discrepancies across groups). One of our proposed policies 
(SEEP( 1, 1.6)) increases the QALY and decreases the mean 
waiting time until transplantation for all six patient groups 
(females, males, African-Americans, Caucasians, over 50 
years old, under 50) relative to the UNOS policy. 

Our simulation model has several limitations, and there- 
fore our simulation results should be regarded with some 
degree of caution. As noted by Paltiel (1997), the kidney 
allocation process is actually a two-step process, where a 
centralized point system offers an organ to the top candi- 
date and then the candidate decides whether or not to ac- 
cept the offer. Although our assumption that the candidate 
acceptance probability is independent of the centralized al- 
location policy is simplistic, it is also conservative: Because 
our proposed policies generate more efficient policies than 
UNOS and because well-informed candidates are less likely 
to turn down a well-matched kidney, our assumption un- 
derestimates the relative efficiency improvements gained by 
our proposed policy. 

A second weakness relates to the timing of the waiting list 
registration. The choice of when to register a patient on the 
waiting list remains ambiguous, and patients who register 
prematurely can gain an unfair advantage. Furthermore, in 
the absence of uniform criteria for waiting list registrations, 
there is always the potential for abuse. Currently, there are no 
uniform criteria, and thus the possibility of abuse represents 
a real concern. Unfortunately, our model fails to capture the 
effect of such abuses. 

The remaining weaknesses of our model relate to the data. 
Lack of data about new waiting list registrations prevents 
us from developing direct estimates about the demographics 
of new transplant candidates and their mortality rates. We 
assumed that all deaths with graft failures were a result of 
competing risks, but an analysis of historical data is needed 
to determine how many deaths were a result of graft failures; 
anecdotal evidence suggests that the vast majority of deaths 
with graft failure are indeed a result of competing risks. 
Also, the data utilized by the proportional hazards model in 
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?5.2 provide little information about the nonimmunologi- 
cal characteristics of transplant donors (e.g., kidney size, 
pre-existing conditions). Incorporation of these additional 
factors is expected to produce a more accurate model and 
more effective allocation policies. In addition, the regres- 
sion coefficients in the proportional hazards model for re- 
cipients and donors over 70 years old are imprecise, but 
this uncertainty should be resolved as more recent data be- 
comes available. Although the recipient race coefficient in 
the proportional hazards model is known with great preci- 
sion, it would be remiss to use this quantity before gaining 
a better understanding of the reasons behind its large mag- 
nitude; possible contributors (aside from the variables in 
the proportional hazards model) to African-Americans' high 
graft failure rate include their reduced access to immuno- 
suppressive drugs (Kasiske et al. 1991), the high error rate 
in tissue type identification (Opelz et al. 1993), inter-OPO 
variation (UNOS 1995), and their long waiting times until 
transplantation (in addition, Kerman et al. 1992 show that 
African-Americans' high pra levels may be due in part to 
pre-transplant blood transfusions from Caucasians). Finally, 
most of the simulation results presented here are for a hy- 
pothetical "typical OPO" and should not be extrapolated to 
any of the OPOs that are currently operating in the United 
States. 

In summary, the kidney allocation problem is extremely 
difficult for two reasons. First, equity is a complex and mul- 
tifaceted concept that incorporates a variety of performance 
metrics and patient groups. Second, system performance 
is driven by the demographic and nondemographic factors 
affecting graft failure rates, demographic-based survival 
rates of dialysis patients and transplant recipients, and the 
demographic and nondemographic composition (e.g., tissue 

type and blood type) of the waiting list and donor pool; see 
Table 2 and observation (1) in ?6.1 for a summary of these 
factors. 

Devising an effective and fair allocation policy is an ar- 
duous task that involves difficult choices. This paper has 
attempted to clarify the choices involved and demonstrate 
how and reveal why different policies affect different groups 
of patients. Although any policy will inevitably be disad- 
vantageous to some groups of patients, we have illustrated 
that it is possible, by employing a large set of demographic 
and nondemographic information, to develop policies that 
simultaneously improve the health outcomes of the six de- 
mographic groups of patients considered here. Clearly, the 
final decision on an organ allocation policy cannot be 
reached by relying solely on the type of models and results 
presented in this paper. Rather, we hope that our analytical 
and empirical results enrich the decision making process 
by providing a systematic framework for generating and 
comparing various policies. 

In our view, the development of a kidney allocation 
scheme requires policy makers to answer three difficult 
questions. First, what is the relative importance of the vari- 
ous equity metrics (e.g., waiting time until transplantation 
vs. likelihood of transplantation vs. QALY, gender vs. race 
vs. age, within-group vs. between-group)? Second, how 
is equity assessed (e.g., is it measured with respect to the 
performance of the FCFT policy, with respect to having 
perfectly balanced performance across all demographic 
groups, or with respect to a more sophisticated bench- 
mark)? Third, what is the relative importance of efficiency 
and equity? Ultimately, any recommendation for revising 
the current allocation policy will only be successful if it 
meets the stringent requirements of public approval. 
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APPENDIX A. SUMMARY OF BASELINE PARAMETERS FOR THE SIMULATION MODEL 

Variable Density Source 

Candidate Demographics 
Fraction of first time 0.128 0.262 a 
transplant candidates 0.170 0.441 
by gender and race(') 
Fraction of first time 0.020 0.031 0.042 0.046 0.053 0.069 0.087 0.116 0.144 0.156 0.114 0.075 0.034 0.015 a 
transplant candidates 0.021 0.035 0.040 0.044 0.048 0.053 0.068 0.091 0.131 0.158 0.137 0.105 0.053 0.019 
by age given gender 0.024 0.040 0.061 0.091 0.097 0.091 0.095 0.101 0.112 0.109 0.082 0.057 0.027 0.012 
and race(2) 0.015 0.027 0.039 0.046 0.055 0.058 0.065 0.079 0.111 0.151 0.150 0.119 0.062 0.023 

Fraction of first time 0.251 0.210 0.035 0.505 b 
transplant candidates by 0.442 0.104 0.028 0.456 
blood type given race(3) 

Fraction of first time 0.674 0.326 b 
transplant candidates 0.784 0.216 
by pra given gender 0.768 0.232 
and race(4) 0.855 0.145 

Donor Demographics 
Fraction of donors 0.025 0.230 b 
by gender and race(l) 0.071 0.561 
Fraction of donors 0.074 0.240 0.257 0.151 0.134 0.099 0.044 0.002 b 
by age given gender 0.086 0.224 0.234 0.168 0.147 0.102 0.036 0.002 
and race(5) 0.069 0.212 0.252 0.177 0.149 0.106 0.033 0.002 

0.068 0.223 0.246 0.174 0.144 0.107 0.036 0.002 
Fraction of donors 0.251 0.210 0.035 0.505 b 
by blood type 0.442 0.104 0.028 0.456 
given race(3) 

Distribution of Body 
Surface Area(6) log(BSA) 

N(-0.420 + 0.121 l(male donor) + 0.693 l(age= 11-20) + 0.881 l(age =21-30) 
+0.921 l(age=31-40) + 0.948 l(age=41-50) + 0.952 l(age=51-60) 

+l(age = 61-70) + l(age = 71-80),0.1471) 
Mortality Rates 

Annual mortality rates 0.060 0.085 0.080 0.097 0.105 0.108 0.134 0.145 0.179 0.230 0.271 0.336 0.394 a 
for dialysis patients 0.055 0.071 0.106 0.113 0.127 0.156 0.175 0.216 0.262 0.312 0.366 0.430 0.498 
by age, gender 0.056 0.088 0.108 0.123 0.116 0.121 0.137 0.154 0.191 0.241 0.303 0.364 0.407 
and race(7) 0.051 0.073 0.102 0.125 0.148 0.161 0.196 0.242 0.290 0.324 0.388 0.447 0.553 
Annual mortality rates 0.011 0.022 0.017 0.026 0.027 0.030 0.046 0.046 0.071 0.073 0.151 0.151 0.151 a 
for transplant recipients by 0.006 0.009 0.013 0.019 0.026 0.033 0.032 0.039 0.043 0.075 0.086 0.062 0.062 
age, gender and race(7) 0.012 0.019 0.019 0.019 0.034 0.050 0.057 0.060 0.095 0.127 0.070 0.102 0.102 

0.011 0.010 0.016 0.021 0.030 0.038 0.047 0.047 0.074 0.086 0.100 0.094 0.242 
Static Waiting List 

Presensitized African-Americans 3844 c 
Nonpresensitized 9889 

African-Americans 
Presensitized Caucasians 2471 
Nonpresensitized Caucasians 11251 

(1) The two rows refer to the two sexes (FM), and the two columns to the two races (African-American, Caucasian). 
(2) The four rows refer to (Female African-American, Female Caucasian, Male African-American, Male Caucasian), and the 14 columns refer to the age ranges 

(20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85+). 
(3) The two rows refer to (African-American, Caucasian), and the four columns to blood types (A, B, AB, 0). 
(4) The two rows refer to pra (<60%, >60%) and the four columns refer to (Female African-American, Female Caucasian, Male African-American, Male Caucasian). 
(5) The four rows refer to (Female African-American, Female Caucasian, Male African-American, Male Caucasian), and the 8 columns refer to the age ranges 

(0-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80). 
(6) This model assumes that the body surface area for each donor is generated from a log normal distribution. The mean of this distribution depends on the 

donor's age and gender. The standard deviation is 0.1471. The model provides an excellent fit to the data in the UNOS Public-Use Data Set (see Zenios, 1996). 
(7) The four rows refer to (Female African-American, Female Caucasian, Male African-American, Male Caucasian), and the 13 columns refer to the age ranges 

(20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84). 
a USRDS Annual Report 1995. 
b UNOS Public-Use Data Set. 
C 

Zenios (1996). 
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