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Advanced Transactions and Scripting

Introduction

In the previous chapter, we introduced the basic elements of bitcoin
transactions and looked at the most common type of transaction script, the
P2PKH script. In this chapter we will look at more advanced scripting and how
we can use it to build transactions with complex conditions.

First, we will look at multisignature scripts. Next, we will examine the second
most common transaction script, Pay-to-Script-Hash, which opens up a whole
world of complex scripts. Then, we will examine new script operators that add a
time dimension to bitcoin, through timelocks. Finally, we will look at Segregated
Witness, an architectural change to the structure of transactions.

Multisignature

Multisignature scripts set a condition where N public keys are recorded in the
script and at least M of those must provide signatures to unlock the funds. This
is also known as an M-of-N scheme, where N is the total number of keys and M
is the threshold of signatures required for validation. For example, a 2-of-3
multisignature is one where three public keys are listed as potential signers and
at least two of those must be used to create signatures for a valid transaction
to spend the funds.
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At this time, standard multisignature scripts are limited to at most 3 listed
public keys, meaning you can do anything from a 1-of-1to a 3-0f-3
multisignature or any combination within that range. The limitation to 3 listed
keys might be lifted by the time this book is published, so check the
IsStandard() function to see what is currently accepted by the network. Note
that the limit of 3 keys applies only to standard (also known as "bare")
multisignature scripts, not to multisignature scripts wrapped in a Pay-to-Script-
Hash (P2SH) script. P2SH multisignature scripts are limited to 15 keys, allowing
for up to 15-0f-15 multisignature. This limitation is also imposed by the
IsStandard() function. We will learn about P2SH in Pay-to-Script-Hash (P2SH).

The general form of a locking script setting an M-of-N multisignature condition
is:

M <Public Key 1> <Public Key 2> ... <Public Key N> N CHECKMULTISIG

where N is the total number of listed public keys and M is the threshold of
required signatures to spend the output.

A locking script setting a 2-of-3 multisignature condition looks like this:

2 <Public Key A> <Public Key B> <Public Key C> 3 CHECKMULTISIG

The preceding locking script can be satisfied with an unlocking script
containing any combination of two signatures from the private keys
corresponding to the three listed public keys:

<Signature B> <Signature C>

The two scripts together would form the combined validation script:

<Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key

When executed, this combined script will evaluate to TRUE if, and only if, the
unlocking script matches the conditions set by the locking script. In this case,
the condition is whether the unlocking script has a valid signature from the two
private keys that correspond to two of the three public keys set as an
encumbrance.

A bug in CHECKMULTISIG execution
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There is a bug in CHECKMULTISIG's execution that requires a slight
workaround. When CHECKMULTISIG executes, it should consume M+N+2 items
on the stack as parameters. However, due to the bug, CHECKMULTISIG will pop
an extra value or one value more than expected.

Let's look at this in greater detail using the previous validation example:

<Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key

First, CHECKMULTISIG pops the top item, which is N (in this example "3").
Then it pops N items, which are the public keys that can sign. In this example,
public keys A, B, and C. Then, it pops one item, which is M, the quorum (how
many signatures are needed). Here M = 2. At this point, CHECKMULTISIG
should pop the final M items, which are the signatures, and see if they are valid.
However, unfortunately, a bug in the implementation causes CHECKMULTISIG
to pop one more item (M+1 total) than it should. The extra item is disregarded
when checking the signatures so it has no direct effect on CHECKMULTISIG
itself. However, an extra value must be present because if it is not present,
when CHECKMULTISIG attempts to pop on an empty stack, it will cause a stack
error and script failure (marking the transaction as invalid). Because the extra
item is disregarded it can be anything, but customarily O is used.

Because this bug became part of the consensus rules, it must now be
replicated forever. Therefore the correct script validation would look like this:

0 <Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Ke
Thus the unlocking script actually used in multisig is not:

<Signature B> <Signature C>
but instead it is:

0 <Signature B> <Signature C>

From now on, if you see a multisig unlocking script, you should expect to see an
extra 0 in the beginning, whose only purpose is as a workaround to a bug that
accidentally became a consensus rule.

Pay-to-Script-Hash (P2SH)
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Pay-to-Script-Hash (P2SH) was introduced in 2012 as a powerful new type of
transaction that greatly simplifies the use of complex transaction scripts. To
explain the need for P2SH, let's look at a practical example.

In [chO1_intro_what_is_bitcoin] we introduced Mohammed, an electronics
importer based in Dubai. Mohammed's company uses bitcoin’'s multisignature
feature extensively for its corporate accounts. Multisignature scripts are one of
the most common uses of bitcoin’s advanced scripting capabilities and are a
very powerful feature. Mohammed'’s company uses a multisignature script for
all customer payments, known in accounting terms as "accounts receivable," or
AR. With the multisignature scheme, any payments made by customers are
locked in such a way that they require at least two signatures to release, from
Mohammed and one of his partners or from his attorney who has a backup key.
A multisignature scheme like that offers corporate governance controls and
protects against theft, embezzlement, or loss.

The resulting script is quite long and looks like this:

2 <Mohammed's Public Key> <Partnerl Public Key> <Partner2 Public Key> <f

Although multisignature scripts are a powerful feature, they are cumbersome to
use. Given the preceding script, Mohammed would have to communicate this
script to every customer prior to payment. Each customer would have to use
special bitcoin wallet software with the ability to create custom transaction
scripts, and each customer would have to understand how to create a
transaction using custom scripts. Furthermore, the resulting transaction would
be about five times larger than a simple payment transaction, because this
script contains very long public keys. The burden of that extra-large
transaction would be borne by the customer in the form of fees. Finally, a large
transaction script like this would be carried in the UTXO set in RAM in every full
node, until it was spent. All of these issues make using complex locking scripts
difficult in practice.

P2SH was developed to resolve these practical difficulties and to make the use
of complex scripts as easy as a payment to a Bitcoin address. With P2SH
payments, the complex locking script is replaced with its digital fingerprint, a
cryptographic hash. When a transaction attempting to spend the UTXO is
presented later, it must contain the script that matches the hash, in addition to
the unlocking script. In simple terms, P2SH means "pay to a script matching
this hash, a script that will be presented later when this output is spent.”
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In P2SH transactions, the locking script that is replaced by a hash is referred to
as the redeem script because it is presented to the system at redemption time
rather than as a locking script. Complex script without P2SH shows the script
without P2SH and Complex script as P2SH shows the same script encoded with
P2SH.

Table 1. Complex script without P2SH

. . 2 PubKey1 PubKey?2 PubKey3 PubKey4 PubKey5 5
Locking Script
CHECKMULTISIG
Unlocking

0 Sig1 Sig2
Script 191 >19

Table 2. Complex script as P2SH

2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5 5

Redeem Script
CHECKMULTISIG

Locking Script HASH160 <20-byte hash of redeem script> EQUAL

Unlocking

. 0 Sig1 Sig2 <redeem script>
Script

As you can see from the tables, with P2SH the complex script that details the
conditions for spending the output (redeem script) is not presented in the
locking script. Instead, only a hash of it is in the locking script and the redeem
script itself is presented later, as part of the unlocking script when the output is
spent. This shifts the burden in fees and complexity from the sender (who
creates the transaction) to the recipient (who unlocks and spends the
transaction).

Let's look at Mohammed's company, the complex multisignature script, and the
resulting P2SH scripts.

First, the multisignature script that Mohammed’'s company uses for all incoming
payments from customers:

2 <Mohammed's Public Key> <Partnerl Public Key> <Partner2 Public Key> <f

If the placeholders are replaced by actual public keys (shown here as 520-bit
numbers starting with 04) you can see that this script becomes very long:
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2
04C16B8698A9ABF84250A7C3EA7EEDEF9897D1C8C6ADF47F06CF73370D74DCCAQ1CDCATC

This entire script can instead be represented by a 20-byte cryptographic hash,
by first applying the SHA256 hashing algorithm and then applying the
RIPEMD160 algorithm on the result.

We use libbitcoin-explorer (bx) on the command-line to produce the script
hash, as follows:

echo \

2\
[04C16B8698A9ABF84250A7C3EA7EEDEF9897D1C8C6ADF47FO6CF73370D74DCCAQLCDCA;
[04A2192968D8655D6A935BEAF2CA23E3FB87A3495E7AF308EDFO8DAC3C1FCBFC2C75B4E
[047E63248B75DB7379BE9CDA8CE5751D16485F431E46117B9D0OC1837C9D5737812F393(
[0421D65CBD7149B255382ED7F78E946580657EE6FDA162A187543A9D85BAAA93A4AB3AS
[043752580AFA1ECED3C68D446BCAB69ACOBA7DF50D56231BEQAABF1FDEEC78A6A45E39¢4
5 CHECKMULTISIG \

| bx script-encode | bx sha256 | bx ripemd160
54c557e07dde5bb6cb791c7a540e0a4796f5e97e

The series of commands above first encodes Mohammed's multisig redeem
script as a serialized hex-encoded bitcoin Script. The next bx command
calculates the SHA256 hash of that. The next bx command hashes again with
RIPEMD160, producing the final script-hash:

The 20-byte hash of Mohammed'’s redeem script is:

54c557e07dde5bb6cb791c7a540e0a4796f5e97e

A P2SH transaction locks the output to this hash instead of the longer redeem
script, using the locking script:

HASH160 54c557e07dde5bb6cb791c7a540e0a4796f5e97e EQUAL

which, as you can see, is much shorter. Instead of "pay to this 5-key
multisignature script," the P2SH equivalent transaction is "pay to a script with
this hash." A customer making a payment to Mohammed's company need only
include this much shorter locking script in his payment. When Mohammed and
his partners want to spend this UTXO, they must present the original redeem
script (the one whose hash locked the UTXO) and the signatures necessary to
unlock it, like this:



<Sigl> <Sig2> <2 PK1 PK2 PK3 PK4 PK5 5 CHECKMULTISIG>

The two scripts are combined in two stages. First, the redeem script is checked
against the locking script to make sure the hash matches:

<2 PK1 PK2 PK3 PK4 PK5 5 CHECKMULTISIG> HASH160 <redeem scriptHash> EQU/

If the redeem script hash matches, the unlocking script is executed on its own,
to unlock the redeem script:

<Sigl> <Sig2> 2 PK1 PK2 PK3 PK4 PK5 5 CHECKMULTISIG

Almost all the scripts described in this chapter can only be implemented as
P2SH scripts. For example, a 2 of 5 standard multisignature locking script
cannot be used directly in the locking script of an UTXO, as IsStandard() would
invalidate the transaction. To conform, a P2SH locking script can be used
instead, as seen above. A transaction that then includes a P2SH unlocking
script can be used to redeem this UTXO and will be valid so long as it does not
contain more than 15 public keys.

Remember, because of policy set forth by the IsStandard() function
at the time of this writing, standard multisignature scripts are limited
to at most 3 listed public keys, while P2SH scripts are limited to at
most 15 listed public keys. Standard multisignature scripts can
invalidate transactions by way of their locking or unlocking script,

Tip  while P2SH scripts can invalidate transactions by way of their
unlocking script only. This is because there is no way for
IsStandard() to tell if a hash of a redeem script in a locking script
includes more signatures than the currently imposed size limitation,
so it can only observe the unlocking scripts in transaction inputs.

P2SH Addresses

Another important part of the P2SH feature is the ability to encode a script
hash as an address, as defined in BIP-13. P2SH addresses are Base58Check
encodings of the 20-byte hash of a script, just like Bitcoin addresses are
Base58Check encodings of the 20-byte hash of a public key. P2SH addresses
use the version prefix "5," which results in Base58Check-encoded addresses
that start witha "3."
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For example, Mohammed's complex script, hashed and Base58Check-encoded
as a P2SH address, becomes 39RF6JgABIHAYHkfChVBUSGMe6Nsr66Gzw. We
can confirm that with the bx command:

echo \
'54c557e07dde5bb6cb791c7a540e0a4796f5e97e "\
| bx address—-encode -v 5

39RF6JgABiHdYHkfChV6USGMe6Ns r66Gzw

Now, Mohammed can give this "address" to his customers and they can use
almost any bitcoin wallet to make a simple payment, as if it were a Bitcoin
address. The 3 prefix gives them a hint that this is a special type of address,
one corresponding to a script instead of a public key, but otherwise it works in
exactly the same way as a payment to a Bitcoin address.

P2SH addresses hide all of the complexity, so that the person making a
payment does not see the script.

Benefits of P2SH

The P2SH feature offers the following benefits compared to the direct use of
complex scripts in locking outputs:

e Complex scripts are replaced by shorter fingerprints in the transaction
output, making the transaction smaller.

e Scripts can be coded as an address, so the sender and the sender’s wallet
don't need complex engineering to implement P2SH.

e P2SH shifts the burden of constructing the script to the recipient, not the
sender.

e P2SH shifts the burden in data storage for the long script from the output
(which additionally to being stored on the blockchain is in the UTXO set) to
the input (only stored on the blockchain).

e P2SH shifts the burden in data storage for the long script from the present
time (payment) to a future time (when it is spent).

e P2SH shifts the higher transaction fee costs of a long script from the
sender to the recipient, who has to include the long redeem script to spend
it.

Redeem Script and Validation
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Prior to version 0.9.2 of the Bitcoin Core client, Pay-to-Script-Hash was limited
to the standard types of bitcoin transaction scripts, by the IsStandard()
function. That means that the redeem script presented in the spending
transaction could only be one of the standard types: P2PK, P2PKH, or multisig.

As of version 0.9.2 of the Bitcoin Core client, P2SH transactions can contain
any valid script, making the P2SH standard much more flexible and allowing for
experimentation with many novel and complex types of transactions.

You are not able to put a P2SH inside a P2SH redeem script, because the P2SH
specification is not recursive. Also, while it is technically possible to include
RETURN (see Data Recording Output (RETURN)) in a redeem script, as nothing
in the rules prevents you from doing so, it is of no practical use because
executing RETURN during validation will cause the transaction to be marked
invalid.

Note that because the redeem script is not presented to the network until you
attempt to spend a P2SH output, if you lock an output with the hash of an
invalid redeem script it will be processed regardless. The UTXO will be
successfully locked. However, you will not be able to spend it because the
spending transaction, which includes the redeem script, will not be accepted
because it is an invalid script. This creates a risk, because you can lock bitcoin
in a P2SH that cannot be spent later. The network will accept the P2SH locking
script even if it corresponds to an invalid redeem script, because the script
hash gives no indication of the script it represents.

P2SH locking scripts contain the hash of a redeem script, which
gives no clues as to the content of the redeem script itself. The

P2SH transaction will be considered valid and accepted even if

the redeem script is invalid. You might accidentally lock bitcoin

in such a way that it cannot later be spent.

Warning

Data Recording Output (RETURN)

Bitcoin's distributed and timestamped ledger, the blockchain, has potential
uses far beyond payments. Many developers have tried to use the transaction
scripting language to take advantage of the security and resilience of the
system for applications such as digital notary services, stock certificates, and
smart contracts. Early attempts to use bitcoin’s script language for these
purposes involved creating transaction outputs that recorded data on the
blockchain; for example, to record a digital fingerprint of a file in such a way
that anyone could establish proof-of-existence of that file on a specific date by
reference to that transaction.
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The use of bitcoin’s blockchain to store data unrelated to bitcoin payments is a
controversial subject. Many developers consider such use abusive and want to
discourage it. Others view it as a demonstration of the powerful capabilities of
blockchain technology and want to encourage such experimentation. Those
who object to the inclusion of nonpayment data argue that it causes
"blockchain bloat," burdening those running full Bitcoin nodes with carrying the
cost of disk storage for data that the blockchain was not intended to carry.
Moreover, such transactions create UTXO that cannot be spent, using the
destination Bitcoin address as a freeform 20-byte field. Because the address is
used for data, it doesn’t correspond to a private key and the resulting UTXO
can never be spent; it's a fake payment. These transactions that can never be
spent are therefore never removed from the UTXO set and cause the size of the
UTXO database to forever increase, or "bloat."

In version 0.9 of the Bitcoin Core client, a compromise was reached with the
introduction of the RETURN operator. RETURN allows developers to add 80
bytes of nonpayment data to a transaction output. However, unlike the use of
"fake" UTXO, the RETURN operator creates an explicitly provably unspendable
output, which does not need to be stored in the UTXO set. RETURN outputs are
recorded on the blockchain, so they consume disk space and contribute to the
increase in the blockchain's size, but they are not stored in the UTXO set and
therefore do not bloat the UTXO memory pool and burden full nodes with the
cost of more expensive RAM.

RETURN scripts look like this:

RETURN <data>

The data portion is limited to 80 bytes and most often represents a hash, such
as the output from the SHA256 algorithm (32 bytes). Many applications put a
prefix in front of the data to help identify the application. For example, the
Proof of Existence digital notarization service uses the 8-byte prefix
DOCPROOF, which is ASCIl encoded as 44 4f 43 50 52 4f 4f 46 in
hexadecimal.


https://proofofexistence.com/
https://proofofexistence.com/

Keep in mind that there is no "unlocking script" that corresponds to RETURN
that could possibly be used to "spend" a RETURN output. The whole point of
RETURN is that you can’t spend the money locked in that output, and therefore
it does not need to be held in the UTXO set as potentially spendable—RETURN
is provably unspendable. RETURN is usually an output with a zero bitcoin
amount, because any bitcoin assigned to such an output is effectively lost
forever. If a RETURN is referenced as an input in a transaction, the script
validation engine will halt the execution of the validation script and mark the
transaction as invalid. The execution of RETURN essentially causes the script to
"RETURN" with a FALSE and halt. Thus, if you accidentally reference a RETURN
output as an input in a transaction, that transaction is invalid.

A standard transaction (one that conforms to the IsStandard() checks) can
have only one RETURN output. However, a single RETURN output can be
combined in a transaction with outputs of any other type.

Two new command-line options have been added in Bitcoin Core as of version
0.10. The option datacarrier controls relay and mining of RETURN transactions,
with the default set to "1" to allow them. The option datacarriersize takes a
numeric argument specifying the maximum size in bytes of the RETURN script,
83 bytes by default, which, allows for a maximum of 80 bytes of RETURN data
plus one byte of RETURN opcode and two bytes of PUSHDATA opcode.

RETURN was initially proposed with a limit of 80 bytes, but the limit
was reduced to 40 bytes when the feature was released. In
February 2015, in version 0.10 of Bitcoin Core, the limit was raised

Note  pack to 80 bytes. Nodes may choose not to relay or mine RETURN,
or only relay and mine RETURN containing less than 80 bytes of
data.

Timelocks

Timelocks are restrictions on transactions or outputs that only allow spending
after a point in time. Bitcoin has had a transaction-level timelock feature from
the beginning. It is implemented by the nLocktime field in a transaction. Two
new timelock features were introduced in late 2015 and mid-2016 that offer
UTXO-level timelocks. These are CHECKLOCKTIMEVERIFY and
CHECKSEQUENCEVERIFY.

Timelocks are useful for postdating transactions and locking funds to a date in
the future. More importantly, timelocks extend bitcoin scripting into the
dimension of time, opening the door for complex multistep smart contracts.
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Transaction Locktime (nLocktime)

From the beginning, bitcoin has had a transaction-level timelock feature.
Transaction locktime is a transaction-level setting (a field in the transaction
data structure) that defines the earliest time that a transaction is valid and can
be relayed on the network or added to the blockchain. Locktime is also known
as nLocktime from the variable name used in the Bitcoin Core codebase. It is
set to zero in most transactions to indicate immediate propagation and
execution. If nLocktime is nonzero and below 500 million, it is interpreted as a
block height, meaning the transaction is not valid and is not relayed or included
in the blockchain prior to the specified block height. If it is greater than or equal
to 500 million, it is interpreted as a Unix Epoch timestamp (seconds since
Jan-1-1970) and the transaction is not valid prior to the specified time.
Transactions with nLocktime specifying a future block or time must be held by
the originating system and transmitted to the Bitcoin network only after they
become valid. If a transaction is transmitted to the network before the specified
nLocktime, the transaction will be rejected by the first node as invalid and will
not be relayed to other nodes. The use of nLocktime is equivalent to postdating
a paper check.

Transaction locktime limitations

nLocktime has the limitation that while it makes it possible to spend some
outputs in the future, it does not make it impossible to spend them until that
time. Let's explain that with the following example.

Alice signs a transaction spending one of her outputs to Bob's address, and
sets the transaction nLocktime to 3 months in the future. Alice sends that
transaction to Bob to hold. With this transaction Alice and Bob know that:

e Bob cannot transmit the transaction to redeem the funds until 3 months
have elapsed.

e Bob may transmit the transaction after 3 months.
However:

e Alice can create another transaction, double-spending the same inputs
without a locktime. Thus, Alice can spend the same UTXO before the 3
months have elapsed.

e Bob has no guarantee that Alice won’t do that.
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It is important to understand the limitations of transaction nLocktime. The only
guarantee is that Bob will not be able to redeem it before 3 months have
elapsed. There is no guarantee that Bob will get the funds. To achieve such a
guarantee, the timelock restriction must be placed on the UTXO itself and be
part of the locking script, rather than on the transaction. This is achieved by the
next form of timelock, called Check Lock Time Verify.

Check Lock Time Verify (CLTV)

In December 2015, a new form of timelock was introduced to bitcoin as a soft
fork upgrade. Based on a specification in BIP-65, a new script operator called
CHECKLOCKTIMEVERIFY (CLTV) was added to the scripting language. CLTV is
a per-output timelock, rather than a per-transaction timelock as is the case
with nLocktime. This allows for much greater flexibility in the way timelocks are
applied.

In simple terms, by adding the CLTV opcode in the redeem script of an output it
restricts the output, so that it can only be spent after the specified time has
elapsed.

While nLocktime is a transaction-level timelock, CLTV is an output-
Tip  pased timelock.

CLTV doesn't replace nLocktime, but rather restricts specific UTXO such that
they can only be spent in a future transaction with nLocktime set to a greater or
equal value.

The CLTV opcode takes one parameter as input, expressed as a number in the
same format as nLocktime (either a block height or Unix epoch time). As

indicated by the VERIFY suffix, CLTV is the type of opcode that halts execution
of the script if the outcome is FALSE. If it results in TRUE, execution continues.

In order to lock an output with CLTV, you insert it into the redeem script of the
output in the transaction that creates the output. For example, if Alice is paying
Bob's address, the output would normally contain a P2PKH script like this:

DUP HASH160 <Bob's Public Key Hash> EQUALVERIFY CHECKSIG

To lock it to a time, say 3 months from now, the transaction would be a P2SH
transaction with a redeem script like this:

<now + 3 months> CHECKLOCKTIMEVERIFY DROP DUP HASH16@ <Bob's Public Key
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where <now {plus} 3 months> is a block height or time value estimated 3
months from the time the transaction is mined: current block height + 12,960
(blocks) or current Unix epoch time + 7,760,000 (seconds). For now, don't
worry about the DROP opcode that follows CHECKLOCKTIMEVERIFY; it will be
explained shortly.

When Bob tries to spend this UTXO, he constructs a transaction that
references the UTXO as an input. He uses his signature and public key in the
unlocking script of that input and sets the transaction nLocktime to be equal to
or greater than the timelock in the CHECKLOCKTIMEVERIFY Alice set. Bob then
broadcasts the transaction on the Bitcoin network.

Bob's transaction is evaluated as follows. If the CHECKLOCKTIMEVERIFY
parameter Alice set is less than or equal to the spending transaction’s
nLocktime, script execution continues (acts as if a “no operation” or NOP
opcode was executed). Otherwise, script execution halts and the transaction is
deemed invalid.

More precisely, CHECKLOCKTIMEVERIFY fails and halts execution, marking the
transaction invalid if (source: BIP-65):

1. the stack is empty; or
2. the top item on the stack is less than O; or

3. the timelock type (height versus timestamp) of the top stack item and the
nLocktime field are not the same; or

4. the top stack item is greater than the transaction’s nLocktime field; or

5. the nSequence field of the input is Oxffffffff.

CLTV and nLocktime use the same format to describe timelocks,
either a block height or the time elapsed in seconds since Unix

Note epoch. Critically, when used together, the format of nLocktime must
match that of CLTV in the outputs—they must both reference either
block height or time in seconds.

After execution, if CLTV is satisfied, the time parameter that preceded it
remains as the top item on the stack and may need to be dropped, with DROP,
for correct execution of subsequent script opcodes. You will often see
CHECKLOCKTIMEVERIFY followed by DROP in scripts for this reason.



By using nLocktime in conjunction with CLTV, the scenario described in
Transaction locktime limitations changes. Alice can no longer spend the money
(because it's locked with Bob's key) and Bob cannot spend it before the
3-month locktime has expired.

By introducing timelock functionality directly into the scripting language, CLTV
allows us to develop some very interesting complex scripts.

The standard is defined in BIP-65 (CHECKLOCKTIMEVERIFY).

Relative Timelocks

nLocktime and CLTV are both absolute timelocks in that they specify an
absolute point in time. The next two timelock features we will examine are
relative timelocks in that they specify, as a condition of spending an output, an
elapsed time from the confirmation of the output in the blockchain.

Relative timelocks are useful because they allow a chain of two or more
interdependent transactions to be held off chain, while imposing a time
constraint on one transaction that is dependent on the elapsed time from the
confirmation of a previous transaction. In other words, the clock doesn't start
counting until the UTXO is recorded on the blockchain. This functionality is
especially useful in bidirectional state channels and Lightning Networks, as we
will see in [state_channels].

Relative timelocks, like absolute timelocks, are implemented with both a
transaction-level feature and a script-level opcode. The transaction-level
relative timelock is implemented as a consensus rule on the value of
nSequence, a transaction field that is set in every transaction input. Script-level
relative timelocks are implemented with the CHECKSEQUENCEVERIFY (CSV)
opcode.

Relative timelocks are implemented according to the specifications in BIP-68,
Relative lock-time using consensus-enforced sequence numbers and BIP-112,
CHECKSEQUENCEVERIFY.

BIP-68 and BIP-112 were activated in May 2016 as a soft fork upgrade to the
consensus rules.

Relative Timelocks with nSequence

Relative timelocks can be set on each input of a transaction, by setting the
nSequence field in each input.

Original meaning of nSequence
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The nSequence field was originally intended (but never properly implemented)
to allow modification of transactions in the mempool. In that use, a transaction
containing inputs with nSequence value below 232 - 1 (OXFFFFFFFF) indicated a
transaction that was not yet "finalized." Such a transaction would be held in the
mempool until it was replaced by another transaction spending the same inputs
with a higher nSequence value. Once a transaction was received whose inputs
had an nSequence value of OxFFFFFFFF it would be considered "finalized" and
mined.

The original meaning of nSequence was never properly implemented and the
value of nSequence is customarily set to OXFFFFFFFF in transactions that do
not utilize timelocks. For transactions with nLocktime or
CHECKLOCKTIMEVERIFY, the nSequence value must be set to less than 237 for
the timelock guards to have an effect, as explained below.

nSequence as a consensus-enforced relative timelock

Since the activation of BIP-68, new consensus rules apply for any transaction
containing an input whose nSequence value is less than 237 (bit 1<<31 is not
set). Programmatically, that means that if the most significant bit (bit 1<<31) is
not set, it is a flag that means "relative locktime." Otherwise (bit 1<<31 set), the
nSequence value is reserved for other uses such as enabling
CHECKLOCKTIMEVERIFY, nLocktime, Opt-In-Replace-By-Fee, and other future
developments.

Transaction inputs with nSequence values less than 23" are interpreted as
having a relative timelock. Such a transaction is only valid once the input has
aged by the relative timelock amount. For example, a transaction with one input
with an nSequence relative timelock of 30 blocks is only valid when at least 30
blocks have elapsed from the time the UTXO referenced in the input was
mined. Since nSequence is a per-input field, a transaction may contain any
number of timelocked inputs, all of which must have sufficiently aged for the
transaction to be valid. A transaction can include both timelocked inputs
(nSequence < 23") and inputs without a relative timelock (nSequence >= 237).

The nSequence value is specified in either blocks or seconds, but in a slightly
different format than we saw used in nLocktime. A type-flag is used to
differentiate between values counting blocks and values counting time in
seconds. The type-flag is set in the 23rd least-significant bit (i.e., value 1<<22).
If the type-flag is set, then the nSequence value is interpreted as a multiple of
512 seconds. If the type-flag is not set, the nSequence value is interpreted as a
number of blocks.
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When interpreting nSequence as a relative timelock, only the 16 least
significant bits are considered. Once the flags (bits 32 and 23) are evaluated,
the nSequence value is usually "masked" with a 16-bit mask (e.g., nSequence &
Ox000O0FFFF).

BIP-68 definition of nSequence encoding (Source: BIP-68) shows the binary
layout of the nSequence value, as defined by BIP-68.

5 N 5 o o v
31 22 15 0
Disable Flag Type Flag Value

Figure 1. BIP-68 definition of nSequence encoding (Source: BIP-68)
Relative timelocks based on consensus enforcement of the nSequence value
are defined in BIP-68.

The standard is defined in BIP-68, Relative lock-time using consensus-
enforced sequence numbers.

Relative Timelocks with CSV

Just like CLTV and nLocktime, there is a script opcode for relative timelocks
that leverages the nSequence value in scripts. That opcode is
CHECKSEQUENCEVERIFY, commonly referred to as CSV for short.

The CSV opcode when evaluated in an UTXO's redeem script allows spending
only in a transaction whose input nSequence value is greater than or equal to
the CSV parameter. Essentially, this restricts spending the UTXO until a certain
number of blocks or seconds have elapsed relative to the time the UTXO was
mined.

As with CLTV, the value in CSV must match the format in the corresponding
nSequence value. If CSV is specified in terms of blocks, then so must
nSequence. If CSV is specified in terms of seconds, then so must nSequence.

Relative timelocks with CSV are especially useful when several (chained)
transactions are created and signed, but not propagated, when they're kept
"off-chain." A child transaction cannot be used until the parent transaction has
been propagated, mined, and aged by the time specified in the relative
timelock. One application of this use case can be seen in [state_channels] and
[lightning_network].

CSV is defined in detail in BIP-112, CHECKSEQUENCEVERIFY.
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Median-Time-Past

As part of the activation of relative timelocks, there was also a change in the
way "time" is calculated for timelocks (both absolute and relative). In bitcoin
there is a subtle, but very significant, difference between wall time and
consensus time. Bitcoin is a decentralized network, which means that each
participant has his or her own perspective of time. Events on the network do
not occur instantaneously everywhere. Network latency must be factored into
the perspective of each node. Eventually everything is synchronized to create a
common ledger. Bitcoin reaches consensus every 10 minutes about the state of
the ledger as it existed in the past.

The timestamps set in block headers are set by the miners. There is a certain
degree of latitude allowed by the consensus rules to account for differences in
clock accuracy between decentralized nodes. However, this creates an
unfortunate incentive for miners to lie about the time in a block so as to earn
extra fees by including timelocked transactions that are not yet mature. See the
following section for more information.

To remove the incentive to lie and strengthen the security of timelocks, a BIP
was proposed and activated at the same time as the BIPs for relative timelocks.
This is BIP-113, which defines a new consensus measurement of time called
Median-Time-Past.

Median-Time-Past is calculated by taking the timestamps of the last 11 blocks
and finding the median. That median time then becomes consensus time and is
used for all timelock calculations. By taking the midpoint from approximately
two hours in the past, the influence of any one block’s timestamp is reduced.
By incorporating 11 blocks, no single miner can influence the timestamps in
order to gain fees from transactions with a timelock that hasn't yet matured.

Median-Time-Past changes the implementation of time calculations for
nLocktime, CLTV, nSequence, and CSV. The consensus time calculated by
Median-Time-Past is always approximately one hour behind wall clock time. If
you create timelock transactions, you should account for it when estimating the
desired value to encode in nLocktime, nSequence, CLTV, and CSV.

Median-Time-Past is specified in BIP-113.

Timelock Defense Against Fee Sniping

Fee-sniping is a theoretical attack scenario, where miners attempting to rewrite
past blocks "snipe" higher-fee transactions from future blocks to maximize
their profitability.
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For example, let's say the highest block in existence is block #100,000. If
instead of attempting to mine block #100,001 to extend the chain, some miners
attempt to remine #100,000. These miners can choose to include any valid
transaction (that hasn’t been mined yet) in their candidate block #100,000.
They don't have to remine the block with the same transactions. In fact, they
have the incentive to select the most profitable (highest fee per kB)
transactions to include in their block. They can include any transactions that
were in the "old" block #100,000, as well as any transactions from the current
mempool. Essentially they have the option to pull transactions from the
"present" into the rewritten "past" when they re-create block #100,000.

Today, this attack is not very lucrative, because block reward is much higher
than total fees per block. But at some point in the future, transaction fees will
be the majority of the mining reward (or even the entirety of the mining reward).
At that time, this scenario becomes inevitable.

To prevent "fee sniping," when Bitcoin Core creates transactions, it uses
nLocktime to limit them to the "next block," by default. In our scenario, Bitcoin
Core would set nLocktime to 100,001 on any transaction it created. Under
normal circumstances, this nLocktime has no effect—the transactions could
only be included in block #100,001 anyway; it's the next block.

But under a blockchain fork/double-spend attack, the miners would not be able
to pull high-fee transactions from the mempool, because all those transactions
would be timelocked to block #100,001. They can only remine #100,000 with
whatever transactions were valid at that time, essentially gaining no new fees.

To achieve this, Bitcoin Core sets the nLocktime on all new transactions to
<current block # + 1> and sets the nSequence on all the inputs to OxFFFFFFFE
to enable nLocktime.

Scripts with Flow Control (Conditional Clauses)

One of the more powerful features of Bitcoin Script is flow control, also known
as conditional clauses. You are probably familiar with flow control in various
programming languages that use the construct IF...THEN...ELSE. Bitcoin
conditional clauses look a bit different, but are essentially the same construct.

At a basic level, bitcoin conditional opcodes allow us to construct a redeem
script that has two ways of being unlocked, depending on a TRUE/FALSE
outcome of evaluating a logical condition. For example, if x is TRUE, the redeem
script is A and the ELSE redeem script is B.
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Additionally, bitcoin conditional expressions can be "nested" indefinitely,
meaning that a conditional clause can contain another within it, which contains
another, etc. Bitcoin Script flow control can be used to construct very complex
scripts with hundreds or even thousands of possible execution paths. There is
no limit to nesting, but consensus rules impose a limit on the maximum size, in
bytes, of a script.

Bitcoin implements flow control using the IF, ELSE, ENDIF, and NOTIF opcodes.
Additionally, conditional expressions can contain boolean operators such as
BOOLAND, BOOLOR, and NOT.

At first glance, you may find the bitcoin’s flow control scripts confusing. That is
because Bitcoin Script is a stack language. The same way that 1 {plus} 1 looks
"backward" when expressed as 11 ADD, flow control clauses in bitcoin also
look "backward."

In most traditional (procedural) programming languages, flow control looks like
this:

Pseudocode of flow control in most programming languages

if (condition):

code to run when condition is true
else:

code to run when condition is false
code to run in either case

In a stack-based language like Bitcoin Script, the logical condition comes
before the IF, which makes it look "backward," like this:

Bitcoin Script flow control

condition
IF

code to run when condition is true
ELSE

code to run when condition is false
ENDIF
code to run in either case

When reading Bitcoin Script, remember that the condition being evaluated
comes before the IF opcode.

Conditional Clauses with VERIFY Opcodes
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Another form of conditional in Bitcoin Script is any opcode that ends in VERIFY.
The VERIFY suffix means that if the condition evaluated is not TRUE, execution
of the script terminates immediately and the transaction is deemed invalid.

Unlike an IF clause, which offers alternative execution paths, the VERIFY suffix
acts as a guard clause, continuing only if a precondition is met.

For example, the following script requires Bob's signature and a pre-image
(secret) that produces a specific hash. Both conditions must be satisfied to
unlock it:

A redeem script with an EQUALVERIFY guard clause.

HASH160 <expected hash> EQUALVERIFY <Bob's Pubkey> CHECKSIG

To redeem this, Bob must construct an unlocking script that presents a valid
pre-image and a signature:

An unlocking script to satisfy the above redeem script

<Bob's Sig> <hash pre-image>

Without presenting the pre-image, Bob can’t get to the part of the script that
checks for his signature.

This script can be written with an IF instead:

A redeem script with an IF guard clause

HASH160 <expected hash> EQUAL
IF

<Bob's Pubkey> CHECKSIG
ENDIF

Bob's unlocking script is identical:

An unlocking script to satisfy the above redeem script

<Bob's Sig> <hash pre-image>

The script with IF does the same thing as using an opcode with a VERIFY suffix;
they both operate as guard clauses. However, the VERIFY construction is more
efficient, using two fewer opcodes.



So, when do we use VERIFY and when do we use IF? If all we are trying to do is
to attach a precondition (guard clause), then VERIFY is better. If, however, we
want to have more than one execution path (flow control), then we need an
IF...ELSE flow control clause.

An opcode such as EQUAL will push the result (TRUE/FALSE) onto
the stack, leaving it there for evaluation by subsequent opcodes. In
contrast, the opcode EQUALVERIFY suffix does not leave anything on
the stack. Opcodes that end in VERIFY do not leave the result on the
stack.

Tip

Using Flow Control in Scripts

A very common use for flow control in Bitcoin Script is to construct a redeem
script that offers multiple execution paths, each a different way of redeeming
the UTXO.

Let's look at a simple example, where we have two signers, Alice and Bob, and
either one is able to redeem. With multisig, this would be expressed as a 1-of-2
multisig script. For the sake of demonstration, we will do the same thing with an
IF clause:

IF

<Alice's Pubkey> CHECKSIG
ELSE

<Bob's Pubkey> CHECKSIG
ENDIF

Looking at this redeem script, you may be wondering: "Where is the condition?
There is nothing preceding the IF clause!"

The condition is not part of the redeem script. Instead, the condition will be
offered in the unlocking script, allowing Alice and Bob to "choose" which
execution path they want.

Alice redeems this with the unlocking script:

<Alice's Sig> 1

The 1 at the end serves as the condition (TRUE) that will make the IF clause
execute the first redemption path for which Alice has a signature.
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For Bob to redeem this, he would have to choose the second execution path by
giving a FALSE value to the IF clause:

<Bob's Sig> 0

Bob's unlocking script puts a 0 on the stack, causing the IF clause to execute
the second (ELSE) script, which requires Bob's signature.

Since IF clauses can be nested, we can create a "maze" of execution paths. The
unlocking script can provide a "map" selecting which execution path is actually
executed:

IF
script A
ELSE
IF
script B
ELSE
script C
ENDIF
ENDIF

In this scenario, there are three execution paths (script A, script B, and script
C). The unlocking script provides a path in the form of a sequence of TRUE or
FALSE values. To select path script B, for example, the unlocking script must
end in 10 (TRUE, FALSE). These values will be pushed onto the stack, so that
the second value (FALSE) ends up at the top of the stack. The outer IF clause
pops the FALSE value and executes the first ELSE clause. Then the TRUE value
moves to the top of the stack and is evaluated by the inner (nested) IF,
selecting the B execution path.

Using this construct, we can build redeem scripts with tens or hundreds of
execution paths, each offering a different way to redeem the UTXO. To spend,
we construct an unlocking script that navigates the execution path by putting
the appropriate TRUE and FALSE values on the stack at each flow control point.

Complex Script Example

In this section we combine many of the concepts from this chapter into a single
example.

Our example uses the story of Mohammed, the company owner in Dubai who is
operating an import/export business.
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In this example, Mohammed wishes to construct a company capital account
with flexible rules. The scheme he creates requires different levels of
authorization depending on timelocks. The participants in the multisig scheme
are Mohammed, his two partners Saeed and Zaira, and their company lawyer
Abdul. The three partners make decisions based on a majority rule, so two of
the three must agree. However, in the case of a problem with their keys, they
want their lawyer to be able to recover the funds with one of the three partner
signatures. Finally, if all partners are unavailable or incapacitated for a while,
they want the lawyer to be able to manage the account directly.

Here's the redeem script that Mohammed designs to achieve this (line number
prefix as XX):

Variable Multi-Signature with Timelock

01 1IF

02 IF

03 2

04 ELSE

05 <30 days> CHECKSEQUENCEVERIFY DROP

06 <Abdul the Lawyer's Pubkey> CHECKSIGVERIFY
07 1

08 ENDIF

09 <Mohammed's Pubkey> <Saeed's Pubkey> <Zaira's Pubkey> 3 CHECKMULT]
10 ELSE

11 <90 days> CHECKSEQUENCEVERIFY DROP

12 <Abdul the Lawyer's Pubkey> CHECKSIG

13 ENDIF

Mohammed's script implements three execution paths using nested IF...ELSE
flow control clauses.

In the first execution path, this script operates as a simple 2-of-3 multisig with
the three partners. This execution path consists of lines 3 and 9. Line 3 sets the
quorum of the multisig to 2 (2-of-3). This execution path can be selected by
putting TRUE TRUE at the end of the unlocking script:

Unlocking script for the first execution path (2-of-3 multisig)

0 <Mohammed's Sig> <Zaira's Sig> TRUE TRUE



The 0 at the beginning of this unlocking script is because of a bug in
CHECKMULTISIG that pops an extra value from the stack. The extra
value is disregarded by the CHECKMULTISIG, but it must be present
or the script fails. Pushing O (customarily) is a workaround to the
bug, as described in A bug in CHECKMULTISIG execution.

Tip

The second execution path can only be used after 30 days have elapsed from
the creation of the UTXO. At that time, it requires the signature of Abdul the
lawyer and one of the three partners (a 1-of-3 multisig). This is achieved by line
7, which sets the quorum for the multisig to 1. To select this execution path, the
unlocking script would end in FALSE TRUE:

Unlocking script for the second execution path (Lawyer + 1-0f-3)

0@ <Abdul the Lawyer's Sig> <Saeed's Sig> FALSE TRUE

Why FALSE TRUE? Isn't that backward? Because the two values are
Tip pushed on to the stack, with FALSE pushed first, then TRUE pushed
second. TRUE is therefore popped first by the first IF opcode.

Finally, the third execution path allows Abdul the lawyer to spend the funds
alone, but only after 90 days. To select this execution path, the unlocking script
has to end in FALSE:

Unlocking script for the third execution path (Lawyer only)

<Abdul the Lawyer's Sig> FALSE

Try running the script on paper to see how it behaves on the stack.

A few more things to consider when reading this example. See if you can find
the answers:

Why can’t the lawyer redeem the third execution path at any time by
selecting it with FALSE on the unlocking script?

How many execution paths can be used 5, 35, and 105 days, respectively,
after the UTXO is mined?

Are the funds lost if the lawyer loses his key? Does your answer change if
91 days have elapsed?
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How do the partners "reset" the clock every 29 or 89 days to prevent the
lawyer from accessing the funds?

e Why do some CHECKSIG opcodes in this script have the VERIFY suffix
while others don't?

Segregated Witness

Segregated Witness (segwit) is an upgrade to the bitcoin consensus rules and
network protocol, proposed and implemented as a BIP-9 soft-fork that was
activated on bitcoin’s mainnet on August 1st, 2017.

In cryptography, the term "witness" is used to describe a solution to a
cryptographic puzzle. In bitcoin terms, the witness satisfies a cryptographic
condition placed on an unspent transaction output (UTXO).

In the context of bitcoin, a digital signature is one type of witness, but a witness
is more broadly any solution that can satisfy the conditions imposed on an
UTXO and unlock that UTXO for spending. The term "witness” is a more
general term for an "unlocking script” or “scriptSig.”

Before segwit’s introduction, every input in a transaction was followed by the
witness data that unlocked it. The witness data was embedded in the
transaction as part of each input. The term segregated witness, or segwit for
short, simply means separating the signature or unlocking script of a specific
output. Think "separate scriptSig," or “separate signature” in the simplest form.

Segregated Witness therefore is an architectural change to bitcoin that aims to
move the witness data from the scriptSig (unlocking script) field of a
transaction into a separate witness data structure that accompanies a
transaction. Clients may request transaction data with or without the
accompanying witness data.

In this section we will look at some of the benefits of Segregated Witness,
describe the mechanism used to deploy and implement this architecture
change, and demonstrate the use of Segregated Witness in transactions and
addresses.

Segregated Witness is defined by the following BIPs:

BIP-141
The main definition of Segregated Witness.

BIP-143
Transaction Signature Verification for Version 0 Witness Program
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BIP-144
Peer Services—New network messages and serialization formats

BIP-145
getblocktemplate Updates for Segregated Witness (for mining)

BIP-173
Base32 address format for native v0-16 witness outputs

Why Segregated Witness?

Segregated Witness is an architectural change that has several effects on the
scalability, security, economic incentives, and performance of bitcoin:

Transaction Malleability
By moving the witness outside the transaction data, the transaction hash
used as an identifier no longer includes the witness data. Since the witness
data is the only part of the transaction that can be modified by a third party
(see Transaction identifiers), removing it also removes the opportunity for
transaction malleability attacks. With Segregated Witness, transaction
hashes become immutable by anyone other than the creator of the
transaction, which greatly improves the implementation of many other
protocols that rely on advanced bitcoin transaction construction, such as
payment channels, chained transactions, and lightning networks.

Script Versioning
With the introduction of Segregated Witness scripts, every locking script is
preceded by a script version number, similar to how transactions and
blocks have version numbers. The addition of a script version number
allows the scripting language to be upgraded in a backward-compatible
way (i.e., using soft fork upgrades) to introduce new script operands,
syntax, or semantics. The ability to upgrade the scripting language in a
nondisruptive way will greatly accelerate the rate of innovation in bitcoin.

Network and Storage Scaling
The witness data is often a big contributor to the total size of a transaction.
More complex scripts such as those used for multisig or payment channels
are very large. In some cases these scripts account for the majority (more
than 75%) of the data in a transaction. By moving the witness data outside
the transaction data, Segregated Witness improves bitcoin's scalability.
Nodes can prune the witness data after validating the signatures, or ignore
it altogether when doing simplified payment verification. The witness data
doesn’t need to be transmitted to all nodes and does not need to be stored
on disk by all nodes.
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Signature Verification Optimization
Segregated Witness upgrades the signature functions (CHECKSIG,
CHECKMULTISIG, etc.) to reduce the algorithm's computational complexity.
Before segwit, the algorithm used to produce a signature required a
number of hash operations that was proportional to the size of the
transaction. Data-hashing computations increased in O(n?) with respect to
the number of signature operations, introducing a substantial
computational burden on all nodes verifying the signature. With segwit, the
algorithm is changed to reduce the complexity to O(n).

Offline Signing Improvement
Segregated Witness signatures incorporate the value (amount) referenced
by each input in the hash that is signed. Previously, an offline signing
device, such as a hardware wallet, would have to verify the amount of each
input before signing a transaction. This was usually accomplished by
streaming a large amount of data about the previous transactions
referenced as inputs. Since the amount is now part of the commitment
hash that is signed, an offline device does not need the previous
transactions. If the amounts do not match (are misrepresented by a
compromised online system), the signature will be invalid.

How Segregated Witness Works

At first glance, Segregated Witness appears to be a change to how transactions
are constructed and therefore a transaction-level feature, but it is not. Rather,
Segregated Witness is a change to how individual UTXO are spent and
therefore is a per-output feature.

A transaction can spend Segregated Witness outputs or traditional (inline-
witness) outputs or both. Therefore, it does not make much sense to refer to a
transaction as a “Segregated Witness transaction.” Rather we should refer to
specific transaction outputs as “Segregated Witness outputs."

When a transaction spends an UTXO, it must provide a witness. In a traditional
UTXO, the locking script requires that witness data be provided inl/ine in the
input part of the transaction that spends the UTXO. A Segregated Witness
UTXO, however, specifies a locking script that can be satisfied with witness
data outside of the input (segregated).

Soft Fork (Backward Compatibility)
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Segregated Witness is a significant change to the way outputs and transactions
are architected. Such a change would normally require a simultaneous change
in every Bitcoin node and wallet to change the consensus rules—what is known
as a hard fork. Instead, segregated witness is introduced with a much less
disruptive change, which is backward compatible, known as a soft fork. This
type of upgrade allows non-upgraded software to ignore the changes and
continue to operate without any disruption.

Segregated Witness outputs are constructed so that older systems that are not
segwit-aware can still validate them. To an old wallet or node, a Segregated
Witness output looks like an output that anyone can spend. Such outputs can
be spent with an empty signature, therefore the fact that there is no signature
inside the transaction (it is segregated) does not invalidate the transaction.
Newer wallets and mining nodes, however, see the Segregated Witness output
and expect to find a valid witness for it in the transaction’s witness data.

Segregated Witness Output and Transaction Examples

Let's look at some of our example transactions and see how they would change
with Segregated Witness. We'll first look at how a Pay-to-Public-Key-Hash
(P2PKH) payment is transformed with the Segregated Witness program. Then,
we'll look at the Segregated Witness equivalent for Pay-to-Script-Hash (P2SH)
scripts. Finally, we'll look at how both of the preceding Segregated Witness
programs can be embedded inside a P2SH script.

Pay-to-Witnhess-Public-Key-Hash (P2WPKH)

In [cup_of_coffee], Alice created a transaction to pay Bob for a cup of coffee.
That transaction created a P2PKH output with a value of 0.015 BTC that was
spendable by Bob. The output’s script looks like this:

Example P2PKH output script

DUP HASH160 ab68025513c3dbd2f7b92a94e058115d50f654e7 EQUALVERIFY CHECKSI

With Segregated Witness, Alice would create a Pay-to-Witness-Public-Key-
Hash (P2WPKH) script, which looks like this:

Example P2WPKH output script

0 ab68025513c3dbd27b92a94e058115d507654e7
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As you can see, a Segregated Witness output’s locking script is much simpler
than a traditional output. It consists of two values that are pushed on to the
script evaluation stack. To an old (nonsegwit-aware) Bitcoin client, the two
pushes would look like an output that anyone can spend and does not require a
signature (or rather, can be spent with an empty signature). To a newer, segwit-
aware client, the first number (0) is interpreted as a version number (the
witness version) and the second part (20 bytes) is the equivalent of a locking
script known as a witness program. The 20-byte witness program is simply the
hash of the public key, as in a P2PKH script.

Now, let's look at the corresponding transaction that Bob uses to spend this
output. For the original script (nonsegwit), Bob's transaction would have to
include a signature within the transaction input:

Decoded transaction showing a P2PKH output being spent with a signature

[...]

MVinn : [
"txid": "0627052b6128912f2703066a912ea577f2ced4dadcaaba5fbd8a57286c345c21
"vout": 0,

"scriptSig": “<Bob’s scriptSig>",
]
[...]

However, to spend the Segregated Witness output, the transaction has no
signature in the input part. Instead, Bob's transaction has an empty scriptSig in
the transaction data (the first part of a transaction, which includes the input
part) and includes his signature in the witness data (the second part of a
transaction, which is separated from the transaction data):

Decoded transaction showing a P2WPKH output being spent with separate
witness data

[...]

“Vin” @ [
"txid": "0627052b612891212703066a912ea577f2ced4dadcaasba5thd8a57286c345c¢21
"vout": 0,
"scriptSig": “”,
]
[...]
“witness”: “<Bob’s witness data>"

[...]

Wallet construction of P2WPKH
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It is extremely important to note that P2WPKH should only be created by the
payee (recipient) and not converted by the sender from a known public key,
P2PKH script, or address. The receiver has no way of knowing if the sender’s
wallet has the ability to construct segwit transactions and spend P2WPKH
outputs.

Additionally, P2WPKH outputs must be constructed from the hash of a
compressed public key. Uncompressed public keys are nonstandard in segwit
and may be explicitly disabled by a future soft fork. If the hash used in the
P2WPKH came from an uncompressed public key, it may be unspendable and
you may lose funds. P2WPKH outputs should be created by the payee’s wallet
by deriving a compressed public key from their private key.

P2WPKH should be constructed by the payee (recipient) by

converting a compressed public key to a P2WPKH hash. You
Warning  should never transform a P2PKH script, Bitcoin address, or

uncompressed public key to a P2WPKH witness script.

Pay-to-Witnhess-Script-Hash (P2WSH)

The second type of witness program corresponds to a Pay-to-Script-Hash
(P2SH) script. We saw this type of script in Pay-to-Script-Hash (P2SH). In that
example, P2SH was used by Mohammed's company to express a multisignature
script. Payments to Mohammed’'s company were encoded with a locking script
like this:

Example P2SH output script

HASH160 54c557e0@7dde5bb6cb791c7a540e0a4796f5e97e EQUAL

This P2SH script references the hash of a redeem script that defines a 2-of-5
multisignature requirement to spend funds. To spend this output, Mohammed's
company would present the redeem script (whose hash matches the script
hash in the P2SH output) and the signatures necessary to satisfy that redeem
script, all inside the transaction input:

Decoded transaction showing a P2SH output being spent

[...]

MVinn : [
"txid": "abcdef12345...",
"vout": 0,

"scriptSig": “<SigA> <SigB> <2 PubA PubB PubC PubD PubE 5 CHECk
|
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Now, let’s look at how this entire example would be upgraded to segwit. If
Mohammed's customers were using a segwit-compatible wallet, they would
make a payment, creating a Pay-to-Witness-Script-Hash (P2WSH) output that
would look like this:

Example P2WSH output script

0 a9b7b38d972cabc7961dbfbcb841ad4508d133c47ba87457b4a0e8aae86dbb89

Again, as with the example of P2WPKH, you can see that the Segregated
Witness equivalent script is a lot simpler and omits the various script operands
that you see in P2SH scripts. Instead, the Segregated Witness program
consists of two values pushed to the stack: a witness version (0) and the 32-
byte SHA256 hash of the redeem script.

Mohammed's company can spend the P2WSH output by presenting the correct
redeem script and sufficient signatures to satisfy it. Both the redeem script and
the signatures would be segregated outside the spending transaction data as
part of the witness data. Within the transaction input, Mohammed's wallet
would put an empty scriptSig:

Decoded transaction showing a P2WSH output being spent with separate
witness data

[...]

“vin” : [
"txid": "abcdef12345...",
"vout": 0,

"scriptSig": “”,

]

[l L] l]

“witness”: “<SigA> <SigB> <2 PubA PubB PubC PubD PubE 5 CHECKMULTISIG>"
[l L] l]

While P2SH uses the 20-byte RIPEMD160(SHA256(script)) hash, the
P2WSH witness program uses a 32-byte SHA256(script) hash. This
difference in the selection of the hashing algorithm is deliberate and
provides stronger security to P2WSH (128 bits of security in P2WSH
versus 80 bits of security in P2SH). It is also used to differentiate
between the two types of witness programs (P2WPKH and P2WSH)
by using the length of the hash (see below).

Tip

Differentiating between P2WPKH and P2WSH
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In the previous two sections, we demonstrated two types of witness programs:
Pay-to-Witness-Public-Key-Hash (P2WPKH) and Pay-to-Witness-Script-Hash
(P2WSH). Both types of witness programs consist of a single byte version
number followed by a longer hash. They look very similar, but are interpreted
very differently: one is interpreted as a public key hash, which is satisfied by a
signature and the other as a script hash, which is satisfied by a redeem script.
The critical difference between them is the length of the hash:

e The public key hash in P2WPKH is 20 bytes
e The script hash in P2WSH is 32 bytes

This is the one difference that allows a wallet to differentiate between the two
types of witness programs. By looking at the length of the hash, a wallet can
determine what type of witness program it is, P2WPKH or P2WSH.

Upgrading to Segregated Witness

As we can see from the previous examples, upgrading to Segregated Witness is
a two-step process. First, wallets must create special segwit type outputs.
Then, these outputs can be spent by wallets that know how to construct
Segregated Witness transactions. In the examples, Alice's wallet was segwit-
aware and able to create special outputs with Segregated Witness scripts.
Bob's wallet is also segwit-aware and able to spend those outputs. What may
not be obvious from the example is that in practice, Alice's wallet needs to
know that Bob uses a segwit-aware wallet and can spend these outputs.
Otherwise, if Bob's wallet is not upgraded and Alice tries to make segwit
payments to Bob, Bob's wallet will not be able to detect these payments.

For P2ZWPKH and P2WSH payment types, both the sender and the
recipient wallets need to be upgraded to be able to use segwit.

Tip Furthermore, the sender’s wallet needs to know that the recipient’s
wallet is segwit-aware.

Segregated Witness will not be implemented simultaneously across the entire
network. Rather, Segregated Witness is implemented as a backward-
compatible upgrade, where old and new clients can coexist. Wallet developers
will independently upgrade wallet software to add segwit capabilities. The
P2WPKH and P2WSH payment types are used when both sender and recipient
are segwit-aware. The traditional P2PKH and P2SH will continue to work for
non-upgraded wallets. That leaves two important scenarios, which are
addressed in the next section:
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Ability of a sender’s wallet that is not segwit-aware to make a payment to a
recipient’s wallet that can process segwit transactions

o Ability of a sender’s wallet that is segwit-aware to recognize and
distinguish between recipients that are segwit-aware and ones that are not,
by their addresses.

Embedding Segregated Witness inside P2SH

Let's assume, for example, that Alice’s wallet is not upgraded to segwit, but
Bob's wallet is upgraded and can handle segwit transactions. Alice and Bob can
use "old" non-segwit transactions. But Bob would likely want to use segwit to
reduce transaction fees, taking advantage of the discount that applies to
witness data.

In this case Bob's wallet can construct a P2SH address that contains a segwit
script inside it. Alice's wallet sees this as a "normal" P2SH address and can
make payments to it without any knowledge of segwit. Bob's wallet can then
spend this payment with a segwit transaction, taking full advantage of segwit
and reducing transaction fees.

Both forms of witness scripts, P2WPKH and P2WSH, can be embedded in a
P2SH address. The first is noted as P2SH(P2WPKH) and the second is noted as
P2SH(P2WSH).

Pay-to-Witness-Public-Key-Hash inside Pay-to-Script-Hash

The first form of witness script we will examine is P2SH(P2WPKH). This is a
Pay-to-Witness-Public-Key-Hash witness program, embedded inside a Pay-to-
Script-Hash script, so that it can be used by a wallet that is not aware of
segwit.

Bob's wallet constructs a P2WPKH witness program with Bob's public key. This
witness program is then hashed and the resulting hash is encoded as a P2SH
script. The P2SH script is converted to a Bitcoin address, one that starts with a
"3," as we saw in the Pay-to-Script-Hash (P2SH) section.

Bob's wallet starts with the P2WPKH witness program we saw earlier:

Bob's P2WPKH witness program

0 ab68025513c3dbd2f7b92a94e0581f5d50f654e7

The P2WPKH witness program consists of the witness version and Bob's 20-
byte public key hash.
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Bob's wallet then hashes the preceding witness program, first with SHA256,
then with RIPEMD160, producing another 20-byte hash.

Let's use bx on the command-line to replicate that:

HASH160 of the P2WPKH witness program

echo \

'0 [ab68025513c3dbd2f7b92a94e0581f5d50f654e7] '\
| bx script-encode | bx sha256 | bx ripemd160

3e0547268b3b19288b3adef9719ec8659f4b2b0ob

Next, the redeem script hash is converted to a Bitcoin address. Let's use bx on
the command-line again:

P2SH address

echo \
'3e0547268b3b19288b3adef9719ec8659f4b2bob"' \
| bx address—-encode -v 5
37Lx99uaGn5avkKBxiW26HjedQE3LrDCZru

Now, Bob can display this address for customers to pay for their coffee. Alice's
wallet can make a payment to 37Lx99uaGn5avKBxiW26HjedQE3LrDCZru, just
as it would to any other Bitcoin address.

To pay Bob, Alice's wallet would lock the output with a P2SH script:

HASH160 3e0547268b3b19288b3adef9719ec865914b2b@b EQUAL

Even though Alice's wallet has no support for segwit, the payment it creates
can be spent by Bob with a segwit transaction.

Pay-to-Withess-Script-Hash inside Pay-to-Script-Hash

Similarly, a P2WSH witness program for a multisig script or other complicated
script can be embedded inside a P2SH script and address, making it possible
for any wallet to make payments that are segwit compatible.

As we saw in Pay-to-Witness-Script-Hash (P2WSH), Mohammed's company is
using Segregated Witness payments with multisignature scripts. To make it
possible for any client to pay his company, regardless of whether their wallets
are upgraded for segwit, Mohammed's wallet can embed the P2WSH witness
program inside a P2SH script.
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First, Mohammed'’s wallet hashes the redeem script with SHA256 (just once).
Let's use bx to do that on the command-line:

Mohammed's wallet creates a P2WSH witness program

echo \

2 \ [04C16B8698A9ABF84250A7C3EA7EEDEF9897D1C8C6ADF47F06CF73370D74DCCAQ1L(
[04A2192968D8655D6A935BEAF2CA23E3FB87A3495E7AF308EDFO8DAC3C1FCBFC2C75B4E
[047E63248B75DB7379BE9CDA8CE5751D16485F431E46117B9D@C1837C9D5737812F393(
[0421D65CBD7149B255382ED7F78E946580657EE6FDA162A187543A9D85BAAA93A4AB3AS
[043752580AFA1ECED3C68D446BCAB69ACOBA7DF50D56231BEOAABF1FDEEC78A6A45E39¢
5 CHECKMULTISIG \

| bx script-encode | bx sha256
9592d601848d04b172905e0ddb@adde59f1590f1e553ffc81lddc4b@ed927dd73

Next, the hashed redeem script is turned into a P2WSH witness program:

0 9592d601848d04b172905e0ddb@adde59f1590f1e553ffc81ddc4b@ed927dd73

Then, the witness program itself is hashed with SHA256 and RIPEMD160,
producing a new 20-byte hash, as used in traditional P2SH. Let's use bx on the
command-line to do that:

The HASH160 of the P2WSH witness program

echo \
'@ [9592d601848d04b172905e0ddb@adde59f1590f1e553ffc81ddc4b@ed927dd73] '\
| bx script-encode | bx sha256 | bx ripemd160
86762607e8fe87c0c37740cddee880988b9455b2

Next, the wallet constructs a P2SH Bitcoin address from this hash. Again, we
use bx to calculate on the command-line:

P2SH Bitcoin address

echo \
'86762607e8fe87c0c37740cddee880988b9455b2 '\
| bx address—-encode -v 5

3Dwz1IMXhM6EfFoJChHCxh1jWHb8GQgRenG

Now, Mohammed's clients can make payments to this address without any need
to support segwit. To send a payment to Mohammed, a wallet would lock the
output with the following P2SH script:

P2SH script used to lock payments to Mohammed's multisig



HASH160 86762607e8fe87c0c37740cddee880988b9455b2 EQUAL

Mohammed's company can then construct segwit transactions to spend these
payments, taking advantage of segwit features including lower transaction fees.

Segregated Witness addresses

Even after segwit activation, it will take some time until most wallets are
upgraded. At first, segwit will be embedded in P2SH, as we saw in the previous
section, to ease compatibility between segwit-aware and unaware wallets.

However, once wallets are broadly supporting segwit, it makes sense to encode
witness scripts directly in a native address format designed for segwit, rather
than embed it in P2SH.

The native segwit address format is defined in BIP-173:

BIP-173
Base32 address format for native vO-16 witness outputs

BIP-173 only encodes witness (P2WPKH and P2WSH) scripts. It is not
compatible with non-segwit P2PKH or P2SH scripts. BIP-173 is a checksummed
Base32 encoding, as compared to the Base58 encoding of a "traditional"
Bitcoin address. BIP-173 addresses are also called bech32 addresses,
pronounced "beh-ch thirty two", alluding to the use of a "BCH" error detection
algorithm and 32-character encoding set.

BIP-173 addresses use 32 lower-case-only alphanumeric character set,
carefully selected to reduce errors from misreading or mistyping. By choosing a
lower-case-only character set, bech32 is easier to read, speak, and 45% more
efficient to encode in QR codes.

The BCH error detection algorithm is a vast improvement over the previous
checksum algorithm (from Base58Check), allowing not only detection but also
correction of errors. Address-input interfaces (such as text-fields in forms) can
detect and highlight which character was most likely mistyped when they
detect an error.

From the BIP-173 specification, here are some examples of bech32 addresses:

Mainnet P2ZWPKH
bc1gw508d6qgejxtdgdybr3zarvaryOcbxw7kv8f3t4

Testnet P2ZWPKH
tb1gw508d6qgejxtdgdybr3zarvaryOchxw7kxpjzsx
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Mainnet P2WSH
bc1grp33g0qg5chtxsp9arysrxdk6zdkfs4ncedxjOgdcccefvpysxf3qgccfmv3

Testnet P2ZWSH
tb1grp33g0qg5chtxsp9arysrxdk6zdkfs4ncedxjOgdcccefvpysxf3q0sI5k7

As you can see in these examples, a segwit bech32 string is up to 90
characters long and consists of three parts:

The human readable part
This prefix "bc" or "tb" identifying mainnet or testnet

The separator
The digit "1", which is not part of the 32-character encoding set and can
only appear in this position as a separator

The data part

A minimum of 6 alphanumeric characters, the checksum encoded witness
script

At this time, only a few wallets accept or produce native segwit bech32
addresses, but as segwit adoption increases, you will see these more and more
often.

Bitcoin non-segwit (legacy) and segwit addresses shows bitcoin non-segwit
(legacy) and segwit addresses.

Table 3. Bitcoin non-segwit (legacy) and segwit addresses

Type Encoding = Prefix
Legacy P2PKH Address Baseb8 1
Legacy Testnet P2PKH Address Baseb58 m or n
Legacy P2SH Address Baseb8 3
Legacy Testnet P2SH Address Baseb8 2

Nested (embedded) Segwit P2SH(P2WPKH) Address  Baseb58 3

Nested (embedded) Segwit P2SH(P2WSH) Address Baseb8 3
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Native Segwit P2WPKH Address Bech32 bc

Native Segwit Testnet P2WPKH Address Bech32 tb1
Native Segwit P2WSH Address Bech32 bc1
Native Segwit Testnet P2WSH Address Bech32 tb1

Transaction identifiers

One of the greatest benefits of Segregated Witness is that it eliminates third-
party transaction malleability.

Before segwit, transactions could have their signatures subtly modified by third
parties, changing their transaction ID (hash) without changing any fundamental
properties (inputs, outputs, amounts). This created opportunities for denial-of-
service attacks as well as attacks against poorly written wallet software that
assumed unconfirmed transaction hashes were immutable.

With the introduction of Segregated Witness, transactions have two identifiers,
txid and wtxid. The traditional transaction ID txid is the double-SHA256 hash of
the serialized transaction, without the witness data. A transaction wixid is the
double-SHA256 hash of the new serialization format of the transaction with
witness data.

The traditional txid is calculated in exactly the same way as with a nonsegwit
transaction. However, since a pure segwit transaction (a transaction that only
contains segwit inputs) has empty scriptSigs in every input, there is no part of
the transaction that can be modified by a third party. Therefore, in a pure
segwit transaction, the txid is immutable by a third party, even when the
transaction is unconfirmed.

The wtxid is like an "extended" ID, in that the hash also incorporates the
witness data. If a transaction is transmitted without witness data, then the
wixid and txid are identical. Note that since the witxid includes witness data
(signatures) and since witness data may be malleable, the wtxid should be
considered malleable until the transaction is confirmed. Only the txid of a pure
segwit transaction can be considered immutable by third parties.

Tip


https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc#transaction-identifiers
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc#transaction-identifiers

Segregated Witness transactions have two IDs: txid and wtxid. The
txid is the hash of the transaction without the witness data and the
wixid is the hash inclusive of witness data. Only pure segwit
transactions (transactions that only contain segwit inputs) have a
txid that is not susceptible to third-party transaction malleability.

Segregated Witness' New Signing Algorithm

Segregated Witness modifies the semantics of the four signature verification
functions (CHECKSIG, CHECKSIGVERIFY, CHECKMULTISIG, and
CHECKMULTISIGVERIFY), changing the way a transaction commitment hash is
calculated.

Signatures in bitcoin transactions are applied on a commitment hash, which is
calculated from the transaction data, locking specific parts of the data
indicating the signer’s commitment to those values. For example, in a simple
SIGHASH_ALL type signature, the commitment hash includes all inputs and
outputs.

Unfortunately, the way the commitment hash was calculated introduced the
possibility that a node verifying the signature can be forced to perform a
significant number of hash computations. Specifically, the hash operations
increase in O(n?) with respect to the number of signature operations in the
transaction. An attacker could therefore create a transaction with a very large
number of signature operations, causing the entire Bitcoin network to have to
perform hundreds or thousands of hash operations to verify the transaction.

Segwit represented an opportunity to address this problem by changing the
way the commitment hash is calculated. For segwit version O witness programs,
signature verification occurs using an improved commitment hash algorithm as
specified in BIP-143.


https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc#segregated-witness-new-signing-algorithm
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc#segregated-witness-new-signing-algorithm

The new algorithm achieves two important goals. Firstly, the number of hash
operations increases by a much more gradual O(n) to the number of signature
operations, reducing the opportunity to create denial-of-service attacks with
overly complex transactions. Secondly, the commitment hash now also includes
the value (amounts) of each input as part of the commitment. This means that a
signer can commit to a specific input value without needing to "fetch" and
check the previous transaction referenced by the input. In the case of offline
devices, such as hardware wallets, this greatly simplifies the communication
between the host and the hardware wallet, removing the need to stream
previous transactions for validation. A hardware wallet can accept the input
value "as stated" by an untrusted host. Since the signature is invalid if that
input value is not correct, the hardware wallet doesn’t need to validate the
value before signing the input.

Economic Incentives for Segregated Witness

Bitcoin mining nodes and full nodes incur costs for the resources used to
support the Bitcoin network and the blockchain. As the volume of bitcoin
transactions increases, so does the cost of resources (CPU, network
bandwidth, disk space, memory). Miners are compensated for these costs
through fees that are proportional to the size (in bytes) of each transaction.
Nonmining full nodes are not compensated, so they incur these costs because
they have a need to run an authoritative fully validating full-index node, perhaps
because they use the node to operate a bitcoin business.

Without transaction fees, the growth in bitcoin data would arguably increase
dramatically. Fees are intended to align the needs of bitcoin users with the
burden their transactions impose on the network, through a market-based price
discovery mechanism.

The calculation of fees based on transaction size treats all the data in the
transaction as equal in cost. But from the perspective of full nodes and miners,
some parts of a transaction carry much higher costs. Every transaction added
to the Bitcoin network affects the consumption of four resources on nodes:

Disk Space
Every transaction is stored in the blockchain, adding to the total size of the
blockchain. The blockchain is stored on disk, but the storage can be
optimized by “pruning” (deleting) older transactions.

CcPU
Every transaction must be validated, which requires CPU time.

Bandwidth
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Every transaction is transmitted (through flood propagation) across the
network at least once. Without any optimization in the block propagation
protocol, transactions are transmitted again as part of a block, doubling the
impact on network capacity.

Memory
Nodes that validate transactions keep the UTXO index or the entire UTXO
set in memory to speed up validation. Because memory is at least one
order of magnitude more expensive than disk, growth of the UTXO set
contributes disproportionately to the cost of running a node.

As you can see from the list, not every part of a transaction has an equal impact
on the cost of running a node or on the ability of bitcoin to scale to support
more transactions. The most expensive part of a transaction are the newly
created outputs, as they are added to the in-memory UTXO set. By
comparison, signatures (aka witness data) add the least burden to the network
and the cost of running a node, because witness data are only validated once
and then never used again. Furthermore, immediately after receiving a new
transaction and validating witness data, nodes can discard that witness data. If
fees are calculated on transaction size, without discriminating between these
two types of data, then the market incentives of fees are not aligned with the
actual costs imposed by a transaction. In fact, the current fee structure actually
encourages the opposite behavior, because witness data is the largest part of a
transaction.

The incentives created by fees matter because they affect the behavior of
wallets. All wallets must implement some strategy for assembling transactions
that takes into consideration a number of factors, such as privacy (reducing
address reuse), fragmentation (making lots of loose change), and fees. If the
fees are overwhelmingly motivating wallets to use as few inputs as possible in
transactions, this can lead to UTXO picking and change address strategies that
inadvertently bloat the UTXO set.

Transactions consume UTXO in their inputs and create new UTXO with their
outputs. A transaction, therefore, that has more inputs than outputs will result
in a decrease in the UTXO set, whereas a transaction that has more outputs
than inputs will result in an increase in the UTXO set. Let's consider the
difference between inputs and outputs and call that the “Net-new-UTXQO."
That's an important metric, as it tells us what impact a transaction will have on
the most expensive network-wide resource, the in-memory UTXO set. A
transaction with positive Net-new-UTXO adds to that burden. A transaction
with a negative Net-new-UTXO reduces the burden. We would therefore want
to encourage transactions that are either negative Net-new-UTXO or neutral
with zero Net-new-UTXO.



Let's look at an example of what incentives are created by the transaction fee
calculation, with and without Segregated Witness. We will look at two different
transactions. Transaction A is a 3-input, 2-output transaction, which has a Net-
new-UTXO metric of -1, meaning it consumes one more UTXO than it creates,
reducing the UTXO set by one. Transaction B is a 2-input, 3-output transaction,
which has a Net-new-UTXO metric of 1, meaning it adds one UTXO to the
UTXO set, imposing additional cost on the entire Bitcoin network. Both
transactions use multisignature (2-of-3) scripts to demonstrate how complex
scripts increase the impact of segregated witness on fees. Let's assume a
transaction feerate of 30 satoshi per byte and a 75% fee discount on witness
data:

Without Segregated Witness
Transaction A fee: 28,590 satoshi

Transaction B fee: 20,760 satoshi

With Segregated Witness
Transaction A fee: 12,255 satoshi

Transaction B fee: 10,425 satoshi

Both transactions are less expensive when segregated witness is implemented.
Comparing the costs between the two transactions, we see that before
Segregated Witness, the transaction with the positive Net-new-UTXO has
significant cost-savings. With Segregated Witness, the cost difference shrinks
significantly in absolute as well as relative terms. While it would require inputs
to become cheaper than outputs to incentivize UTXO set consolidation, this
discount reduces the incentive to create new UTXO in order to avoid using
more inputs.

Segregated Witness therefore has two main effects on the fees paid by bitcoin
users. Firstly, segwit reduces the overall cost of transactions by discounting
witness data and increasing the capacity of the Bitcoin blockchain. Secondly,
segwit’s discount on witness data partially mitigates a misalignment of
incentives that may have inadvertently created more bloat in the UTXO set.



