
11 MAY 2022 1

ARCHITECTURE OF INFORMATION SYSTEMS
(AIS)
LECTURE 2 – THE ROLE OF MIDDLEWARE FOR INTEROPERABILITY IN ENTERPRISE
ARCHITECTURE

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE

GOALS OF THIS WEEK

2

After this week you should be able to

LG.2.1. Explain the main interoperability aspects of an EIS; the interoperability requirements, and explain the
relations to the TOGAF Architecture Development Method (ADM), and to the Enterprise Application Integration
(EAI) perspective

LG.2.2. Explain why middleware is important to address interoperability, list the most common types of
middleware technology, and explain the underlying principles: tiers, layers, communication styles, and
messaging)

LG.2.3. Explain SOA principles, web service technologies (e.g., RESTful), the microservices style, and messaging
integration techniques, e.g., Enterprise Service Bus (ESB) and API Gateways

LG.2.4. Design SOA-based Archimate application integration viewpoints that cover business processes served by
web services that are provided by applications and their technology services; along with the associated
requirements realization

IN THIS PRESENTATION:

3

MOTIVATION:
COMPLEX IT

LANDSCAPES

INTEROPERABILITY:
EIS, EAI, TOGAF

MIDDLEWARE:
CONCEPTS AND
TECHNOLOGIES

SERVICE-ORIENTED
ARCHITECTURE (SOA)

PRINCIPLES AND
TECHNOLOGIES

EA DESIGN FOR
SOA-BASED IT
LANDSCAPES

LAST LECTURE

• Project-based course: EA with focus on interoperability of complex IS architectures

• EIS improves business processes by integrating diverse systems, e.g., ERP, SCM, CRM,
but may cause an “spaghetti architecture”

• Enterprise evolution depends on how to deal with integration and interoperability
problems, which are associated to automation islands

• 5 main interoperability aspects that are related to application integration approach,
which are implemented by some types of middleware

• Web services are technologies to solve integration problems at business and IT levels,
supporting Service-Oriented Architecture (SOA) as a design principle

• The main elements of the architectural approach are: baseline and target
architectures, migration roadmap, gap and impact analysis

4

COMPLEX IT LANDSCAPES
‘SPAGHETTI ARCHITECTURE’

5

EIS: Enterprise IS

• Point-to-point connections

• Unmanageable architecture

Software maintenance typically requires 40-60% (some cases 90%) of the total
lifecycle effort devoted to a software. Typical effort devoted to maintenance
➢50% maintenance costs came from understanding code
➢Amount of code to be maintained doubled every 7 years

• Each app may have different access
mechanisms and data encoding rules

• These apps must be interconnected in
order to communicate with each other

• A naïve approach is to connect apps one-
by-one

• For n apps we get n(n-1)/2 possibly
different connections (k = 2)

• 10 apps → 45 point-to-point connections

• 100 apps → 4.950 connections…

6

1

4 5

2

3

ENTERPRISE APPLICATION INTEGRATION

Applications

INTEROPERABILITY

7

“ability of two or more systems or components to exchange
information and to use the information that has been
exchanged” (IEEE, 1990)

Physical interoperability

Syntactic interoperabilitySe
m

an
ti

c
in

te
ro

p
er

ab
ili

ty

Process interoperability

Pragmatic interoperability

❖Interoperability: systems A and B can exchange data, and they
can interpret and use the received data

❖Integration: uniform combining systems (A, B) into C (system)
such that users of C can use functions and data of A and B

Enterprise applications often cannot directly exchange or share
information as required by the business processes

➢Manual mediation: tedious and error-prone

➢Automated mediation: middleware solutions

1. Operational or Business: how business processes are to be shared

2. Information: how information is to be shared

3. Technical: how technical services are to be shared (connect to one another)

IT perspective → Enterprise Application Integration (EAI) is about middleware

A. Presentation: common look-and-feel, e.g., portal-like solution for processes

B. Information: corporate information shared among various applications to realize
business processes, “based upon a commonly accepted corporate ontology“

C. Application: corporate functionality is integrated and shareable so that the
applications are not duplicated and are seamlessly linked together

D. Technical: methods and shared services for the communication, storage,
processing, and access to data (…) based on standards and/or IT platforms

8

INTEROPERABILITY IN TOGAF

“Defining the degree to which the information and services are to be
shared is a very useful architectural requirement, especially in a complex
organization and/or extended enterprise”

9

Information and service exchanges according to TOGAF ADM →
Phase A: nature and security (business scenarios)
Phase B: defined in business terms
Phase C (data): information content detailed using corporate data and information exchange model
Phase C (app): the way applications communicate to share the information and services
Phase D: technical mechanisms (middleware)
Phase E: Commercial Off-The-Shelf (COTS) packages
Phase F: Plan how interoperability is ‘logically implemented’

INTEROPERABILITY IN TOGAF
ADM: ARCHITECTURE DEVELOPMENT METHOD

“strongly recommended best practice”: system of systems or federated systems

Interoperability aspects

10

TOGAF
1. Operational or Business
2. Information
3. Technical

EAI
1. Presentation
2. Information
3. Application
4. Technical

Interoperability Maturity
Models…

European Interoperability
Framework (EIF)

INTEROPERABILITY
CLASSIFICATIONS

Physical interoperability

Syntactic interoperabilitySe
m

an
ti

c
in

te
ro

p
er

ab
ili

ty

Process interoperability

Pragmatic interoperability

Exercise: in pairs, discuss the relations among these (15min)
a) How syntactic interoperability is covered by TOGAF and EAI?
b) How about physical, process and semantic interoperability?
c) Can you map the interoperability aspects to EIF layers?

11

INTEROPERABILITY
DISCUSSION AND BREAK

Exercise: in pairs, discuss the relations among these (15min):
• Interoperability aspects
• TOGAF, EAI and EAF classifications

a) How syntactic interoperability is covered by TOGAF and EAI?
b) How about physical, process and semantic interoperability?
c) Can you map the interoperability aspects to EIF layers?

✓ LG.2.1. Explain the main interoperability aspects of an EIS; the interoperability
requirements, and explain the relations to the TOGAF Architecture Development
Method (ADM), and to the Enterprise Application Integration (EAI) perspective

12

Architectures for distributed
applications can be characterised by
their number of tiers: 1-tier, 2-tier, 3-
tier and N-tier

• Logical layers
• Presentation

• Application (or Integration) logic

• Resource management

• A tier combines functionality of the
logical layers, aiming at mapping it
onto physically distributed parts

Any issues with the book terminology?
“Logical tier” or ”logical layer” = layer
“one tier does not necessarily mean one physical system”

DISTRIBUTED IS ARCHITECTURE
TIERS AND LAYERS

Application

Logic

Resource

Management

Client

Presentation

▪ Evolution of 2-tier
architecture

▪ Proper architecture for
integration

▪ Avoids that integration
occurs via the client

Middle tier: not only
application logic, but also
integration!

13

DISTRIBUTED IS ARCHITECTURE
3-TIER AND N-TIER WITH WEB SERVER

N-tier architecture with web server
▪ Web server forms additional tier
▪ Evolution of 3-tier architecture
▪ Setting for introducing web

services

Three-tier architecture: integration

Transaction: unit of work that updates resurce(s), e.g., a database
➢ Transactions are either completed (committed) or are completely undone
➢ Transactions are important because organizational tasks are transactional

• Middleware infrastructures cope with the interactions between tiers

• Two classic forms of communication

Synchronous communication Asynchronous communication

14

DISTRIBUTED IS ARCHITECTURE
COMMUNICATION STYLES

From programmer’s perspective!

MIDDLEWARE
THE THING IN THE MIDDLE

Middleware enables interaction between
heterogeneous and distributed software
applications

• Define common (standard) communication
mechanism and encapsulate apps in this
mechanism, so that these apps can
communicate in the same way

• (Standard) communication mechanism forms
a layer

• Most popular example: REST architectural
style (RESTful services) that exchange data in
JSON or XML formats

15

Integration layer

Middleware

1 4 52 3

Without

middleware →

With middleware:

MIDDLEWARE
INTEROPERABILITY Example

➢ A: app1 or appX (presentation layer)
➢ B: app2 or appX (application layer)

Elements 1-4: sufficient to ensure the
required communication between A and B

The programmatic interface and the common
data format together define the way that A
and B communicate with the middleware

The common data format describes how the
data should be structured so that both A and
B understand it

Programmatic interface specifies the way the
data are presented to the middleware

16

MIDDLEWARE
THE THING IN THE MIDDLE

‘Network stack’: OSI conceptual model

Standard of communication functions of a
telecommunication system or computing
system, without any regard to the system's
underlying internal technology and specific
protocol suites

17

Remote procedure calls (RPC) principles
✓ Hide the complexity of the low-level interfaces
✓ RPC realises the abstraction of ‘calling a procedure

remotely’

2

1

3
4 5

6
7

Types of middleware
1. RPC-based middleware (Web

services)
2. Message-oriented middleware /

MQ / Message brokers / Enterprise
service bus

3. Distributed Transaction Processing
4. Object request brokers / monitors
5. Remote Database middleware
(…)

18

Application Integration
1. File Transfer
2. Shared Database
3. Remote Procedure Invocation
4. Messaging

65 messaging patterns

MIDDLEWARE
TRADITIONAL APPROACHES AND TYPES

https://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html

MIDDLEWARE
LOOSE COUPLING

19

Loose coupling: Property of distributed systems: a change to one subsystem (application component,
service) should not require a change to another

Integration style of chosen middleware impacts loose coupling, e.g.

• MQs handle messages as strings of bits (no IDL, no marshalling), and leaves loose coupling to applications

• WS/SOAP is tied to a specific networking protocol: prevents applications from using alternative network features

• RPC, CORBA, WS use separate interface definitions, which can make it easier to generate client and server stubs for different
technology stacks

• Java RMI (a platform‐specific RPC flavor) is heavily tied to the Java platform, which favors Java implementation of the client and
server

20

MIDDLEWARE
ORCHESTRATION VS CHOREOGRAPHY

Orchestration: there is one central component that coordinates the work
done by other parties
- May grow from client that calls multiple servers, e.g. using synchronous

communication, according to some process logic in order to get work done
- Central “brain”, any changes in distributed system need consideration of

orchestrator

Choreography: parties react on each other using some scheme, but there
is no central coordinator
- May be implemented with event‐based communication, where events are

announced by publisher(s) and reacted upon by subscribers
- More decoupling, parties can subscribe to events of interest and do their thing

21

✓ LG.2.2. Explain why middleware is important to address interoperability, list the most
common types of middleware technology, and explain the underlying principles: tiers,
layers, communication styles, and messaging)

MIDDLEWARE
REAL-TIME AND DEFERRABLE MESSAGES

Transactional services may process
1. Real-time
2. Deferrable messages

“The key difference between real-time and deferrable is what happens if the message
cannot be sent now, not how long it takes.”

Can you build real-time transaction calls with asynchronous calls?

From business process perspective!

•Functionality is offered to potential users in terms of services
•Design principle: systems designed by composing services
•Built on top of a middleware layer (platform), i.e.,
standardised communication mechanisms
•SOA is design discipline (architectural solution) not a system!

Flavors (technologies)

“SOA 1.0”: SOAP-based
•Web services implemented on top of the SOAP protocol
•Often described using WSDL (language for describing services)
•Considered as 'heavyweight'

“SOA 2.0”: RESTful
•Based on the REST principles (URLs, resources, HTTP methods,
stateless communication)
•Increasingly popular, mainly for ad hoc service usage
•Considered as 'lightweight' 22

Only services!

S1 S2 S3 S4 S5

1 4 52 3

SERVICE-ORIENTED ARCHITECTURE
PRINCIPLES AND TECHNOLOGIES

A service

• is a logical representation of a repeatable business
activity that has a specified outcome (e.g., check
customer credit, provide weather data,
consolidate drilling reports)

• is self-contained [complete in itself]

• may be composed of other services

• is a “black box” to consumers of the service
(encapsulates its functionality)

23

From http://opengroup.org/soa/source-book/soa/soa.htm

SERVICE-ORIENTED ARCHITECTURE
SERVICE DEFINITION

http://opengroup.org/soa/source-book/soa/soa.htm

24

Self-descriptive messages → consequence of stateless

communication

Service viewed as a resource

identified by an URI

http://somehost/books/1

BookQuote

WSClient

GET /books/1

READ operation

200 OK

Response

Agreed representation

Web service ≠ web page!

book information

SERVICE-ORIENTED ARCHITECTURE
RESTFUL SERVICES

• REST stands for REpresentational State Transfer
> Video: An Introduction to REST and JSON (Oracle)

• Architectural style for invoking services over the Internet
• Architectural style: set of design rules that identify the kinds of

components and connectors that may be used to compose a system

• REST is therefore not a system that you can buy, but a style to
build systems

• Defined in the PhD thesis of Roy Fielding (UCLA, 2000), still the
standard reference for REST

25

SERVICE-ORIENTED ARCHITECTURE
REST CHARACTERISTICS

https://youtu.be/u-RnFs9dby4

• Stateless client-server architecture, implying that request
messages are self-contained (self-descriptive) → all necessary
information for invoking a service is in the request message

• Web services are viewed as resources and are identified by
their URIs
→ URIs offer a global addressing space for services

• Web service clients and providers choose a representation to
send application content to the each other

• Client and provider have a mutual understanding of the meaning of
data since there is no formal way to describe web service interfaces

26

SERVICE-ORIENTED ARCHITECTURE
REST PRINCIPLES

• Use of a small globally defined set of remote methods that
describe the actions to be performed on the resource

• Create-Read-Update-Delete (CRUD) actions

• In summary
• Stateless client-server

• Resources identified via URIs

• State representation

• CRUD actions

• Natural match for HTTP

(no coincidence: Roy Fielding was one of developers of HTTP!)

27

REST action HTTP method

Create POST

Read GET

Update PUT

Delete DELETE

SERVICE-ORIENTED ARCHITECTURE
REST PRINCIPLES

• Different representations can be used for the information
exchanged with a REST service

• Most popular are XML and JSON (JavaScript Object Notation)

• XML
• Markup language used to represent data structures

• Quite intuitive, but rather verbose

• JSON
• Simplified format to represent data structures

• Quite popular nowadays → less verbose, fits well with JavaScript

28

SERVICE-ORIENTED ARCHITECTURE
DATA REPRESENTATION

https://jsonapi.org/

• JSON-API is a specification for how a client should request
resources and how a server should respond to those requests

• Standardize implementation decisions of RESTful APIs, e.g.,
pagination, resources vs collections, metadata, related resources

• When? 2017 (Ember)

• Why was created? Standardize REST API requests and
responses

• Relevance nowadays: convention widely adopted (e.g., Social
Media)

Content-Type: application/vnd.api+json
29

SERVICE-ORIENTED ARCHITECTURE
JSON-API

https://jsonapi.org/

JSON API
EXAMPLE

30

https://jsonapi.org/

• OpenAPI Specification (OAS): language-agnostic interface to
RESTful APIs that allows humans and computers to discover
and understand the capabilities of the service without access to
source code, documentation, or network traffic inspection

• Consumer can understand and interact with the remote service
with a minimal amount of implementation logic

• OpenAPI definition: used by documentation generation tools
(to display the API), code generation tools (to generate servers
and clients), testing tools, and other use cases

31

http://spec.openapis.org/oas/v3.0.3

SERVICE-ORIENTED ARCHITECTURE
OPENAPI SPECIFICATION

https://jsonapi.org/
http://spec.openapis.org/oas/v3.0.3

https://jsonapi.org/

• Swagger is a set of open-source tools built around the OAS for
design, build, document and consume REST APIs

• Major Swagger tools
• Swagger Editor: browser-based editor to write OpenAPI specs

• Swagger UI: renders OpenAPI specs as interactive API documentation

• Swagger Codegen: generates server stubs and client libraries

32

https://swagger.io/specification/

https://petstore.swagger.io/

SERVICE-ORIENTED ARCHITECTURE
OPENAPI IMPLEMENTATION (SWAGGER)

https://jsonapi.org/
https://swagger.io/specification/
https://petstore.swagger.io/

33

• SOA only prescribes the use of services, so it does not prescribe

• Specific protocols (middleware) for the services to interact

• Hence the different ‘service flavours’

• The granularity (‘size’) of the services

• Services can be as big as an application or as small as single data object

• How the services are deployed (‘installed’ for execution)

• Services deployed in-house or in the cloud, and user wouldn’t notice!

❑More guidelines necessary to achieve performance (elasticity) and fast
deployment goals - streaming applications (Netflix, Spotify)

• Microservices

• ‘Smaller’ service assigned to a single development team

• Opposed to a Monolith (‘bigger’ application)

SERVICE-ORIENTED ARCHITECTURE
MICROSERVICES

“the microservice
architectural style is an
approach to developing
a single application as
a suite of small
services, each running
in its own process and
communicating with
lightweight
mechanisms, often an
HTTP resource API”
(Martin Fowler)

34

SERVICE-ORIENTED ARCHITECTURE
MICROSERVICES

MICROSERVICES
PRINCIPLES (SUMMARY FROM [ZIMMERMAN 2017])

1. Componentised via services with own process and lightweight
communication mechanisms (e.g., containers and REST)

2. Organised around business capabilities

3. Designed for failure (failures are isolated)

4. Designed with decentralisation in mind (for intelligence,
governance and data management)

5. Profits from infrastructure automation (culture of automation)

35

MICROSERVICES
TYPICAL CHARACTERISTICS

• Is ‘small’ or ‘fine-grained’ (whatever that means!)

• Uses RESTful services

• Is deployed in a container, usually cloud environment

• Developed by a single development team, which is responsible
for the whole lifecycle, including maintenance!

• Business-driven development according to the principle of
Domain-Driven Design (microservices are identified by
analysing domain models)

Conclusion: special case of Service-Oriented Architecture!

36

SOA AND MICROSERVICES

“The microservices approach has emerged from real-world use, taking our
better understanding of systems and architecture to do SOA well. So you
should instead think of microservices as a specific approach for SOA in the
same way that XP or Scrum are specific approaches for Agile software
development”

37

From [Newman 2015]

That’s… not really

accurate!

API Gateway

• Authenticator

• Client authentication

• Access control (permissions)

• Load balancing

• Request router

• Rate limiter

• Exception handler

• Centralized logging

• Request/response manipulation

• Service discovery of backends

• TLS termination

38

MICROSERVICES
API GATEWAYS: CONTROL ACCESS TO APIS

API Management
• Policy management

• Analytics and monitoring

• Developer documentation

39

INTEGRATION TECHNIQUES
ENTERPRISE SERVICE BUS (ESB) X API GATEWAYS

Wu He and Li Da Xu, "Integration of distributed enterprise applications: a

survey", IEEE Transactions on Industrial Informatics 10(1): 35-42, 2014.

Katuwal, K., Microservices: A Flexible Architecture for the Digital Age Version 1.0.

American Journal of Computer Science and Engineering, 2016. (Microservices): p. 20-24.

✓ LG.2.3. Explain SOA principles, web service technologies (e.g., RESTful), the
microservices style, and messaging integration techniques, e.g., Enterprise Service Bus
(ESB) and API Gateways

40

Archimate 3.1

• Business Service: represents explicitly defined
behavior that a business role, business actor, or
business collaboration exposes to its environment

• Application Service: represents an explicitly
defined exposed application behavior

• Technology Service: represents an explicitly
defined exposed technology behavior

Behavior Elements: a service, represents an explicitly defined exposed behavior

SERVICE-ORIENTED ARCHITECTURE
EA: ARCHIMATE DEFINITIONS

41

SERVICE-ORIENTED ARCHITECTURE
ARCHIMATE

42

SERVICE-ORIENTED ARCHITECTURE
ARCHIMATE

ARCHIMATE: TECHNOLOGY (PHASE D)

43

ARCHIMATE: TECHNOLOGY (PHASE D)

44

ARCHIMATE: DESIGN SOA

45

✓ LG.2.4. Design SOA-based Archimate application integration viewpoints that cover
business processes served by web services that are provided by applications and their
technology services; along with the associated requirements realization

ARCHIMATE EXAMPLE

46

• Architecture principles
• Stakeholders, business goals

and drivers
• Requirements and constraints
• Resources, capabilities,

strategies and tactics
• SWOT (assessments)

ARCHIMATE EXAMPLE

47

• Interoperability
issues in the current
architecture?

• SOA-based
solution?

TAKE-HOME MESSAGES

• Integrating diverse systems, e.g., ERP, SCM, CRM, may cause an “spaghetti
architecture”, which makes the IT landscape unmanageable

• There are 5 main interoperability aspects that are addressed (to some extent) by
interoperability frameworks, which guide the application of middleware

• Service-Oriented Architecture (SOA) is a design principle, which may be implemented
with different architectural styles like REST to design rules to compose a system

• REST principles: stateless client-server, resources identified via URIs, state
representation, CRUD actions (HTTP)

• Microservice is an architectural style based on SOA to achieve performance
(elasticity) and fast deployment goals

• The Archimate language can be used to design SOA, which is supported by TOGAF
interoperability guidelines

48

PREPARATION NEXT LECTURE

Preparation

Reading main book

(Chapters 7-10)

Follow the steps in Canvas!

49

W. Activities

1 Lecture 1: Enterprise Information Systems

2 Project session 1: Organizational case analysis

3 Lecture 2: Role of middleware for interoperability in EA

4 Workshop: non-functional requirements

5 Workshop: Architectural patterns for integration design

6 Project session 2: Baseline architecture modelling

7 Workshop: Service-oriented applications and business processes

8 Project session 3: Target architecture modelling and migration

9 Exam preparation or guest lecture: reflect of EA for evolution

10 Project presentations; and Exam

