EE

9

UNIVERSITY e)ﬁ
OF TWENTE.

ARCHITECTURE OF INFORMATION SYSTEMS
(AIS)

LECTURE 2 — THE ROLE OF MIDDLEWARE FOR INTEROPERABILITY IN ENTERPRISE
ARCHITECTURE

' GOALS OF THIS WEEK

After this week you should be able to
, LG.2.1. Explain the main interoperability aspects of an EIS; the interoperability requirements, and explain the

relations to the TOGAF Architecture Development Method (ADM), and to the Enterprise Application Integration
v (EAI) perspective
.4

(

4
P LG.2.4. Design SOA-based Archimate application integration viewpoints that cover business processes served by

gy web services that are provided by applications and their technology services; along with the associated
requirements realization

LG.2.2. Explain why middleware is important to address interoperability, /ist the most common types of
middleware technology, and explain the underlying principles: tiers, layers, communication styles, and
messaging)

LG.2.3. Explain SOA principles, web service technologies (e.g., RESTful), the microservices style, and messaging
integration techniques, e.g., Enterprise Service Bus (ESB) and API Gateways

UNIVERSITY
OF TWENTE.

IN THIS PRESENTATION:

MOTIVATION: INTEROPERABILITY: MIDDLEWARE: SERVICE-ORIENTED EA DESIGN FOR
COMPLEXIT EIS, EAlL, TOGAF CONCEPTS AND ARCHITECTURE (SOA) SOA-BASED IT
LANDSCAPES TECHNOLOGIES PRINCIPLES AND LANDSCAPES
TECHNOLOGIES
UNIVERSITY

OF TWENTE.

LAST LECTURE REMEMBER

* Project-based course: EA with focus on interoperability of complex IS architectures

* EIS improves business processes by integrating diverse systems, e.g., ERP, SCM, CRM,
but may cause an “spaghetti architecture”

* Enterprise evolution depends on how to deal with integration and interoperability
problems, which are associated to automation islands

* 5 main interoperability aspects that are related to application integration approach,
which are implemented by some types of middleware

* Web services are technologies to solve integration problems at business and IT levels,
supporting Service-Oriented Architecture (SOA) as a design principle

* The main elements of the architectural approach are: baseline and target
architectures, migration roadmap, gap and impact analysis

UNIVERSITY
OF TWENTE.

COMPLEX IT LANDSCAPES RENENBER,

’ ‘SPAGHETTI ARCHITECTURE’ &

» 3 ™ H
. 2 = A 7 <daf [E5] EIS: Enterprise IS
3 WYY « J Presentation - i ot |
E\;;:;n Integration Data Batry & Security & Licensing g:l,::& Suitability Forms&

- Validaion i rewemee e Point-to-point connections
V"‘i - — N -

\‘ G N = — weee © Unmanageable architecture
’ Q Sales Offce ;?;;«%{" "’ll T

AR\ .

%k{\',’\'* w resilient

- .
L R Pty oreate 00w iteraction ntegrate ST projent
.\#,_ "%&\X‘\\—/ Managemen iy oy TS ey e i sncltal
Q Ddegittan EEASSS L N ~ chaos competon _enlepreneurdigal | leadership JooduciSSYSEMS e
‘ A8 4 ,w‘\\QX\\ - chal?lgel l slakeh?lder?umu?e
AR \\\‘\;_ Underwriting - authenticity ransiormation
» Call Center \\} a[ma[]u[}lilyhusiness TS ghlgy
& = Wy & COMPANIES gy ieas ggazains® LS ANEDE s
4 Q & % PENIES eyperiences . ercunnectedﬂ[gam?lmnssewices strategy
= vents vice ‘orkflow Pr n : : ihili Inventon
He ey 90 i e ot CORSUMEES innoation fexibilty Pen ik Deople TeSOIGES

gy
Software maintenance typically requires 40-60% (some cases 90%) of the total
lifecycle effort devoted to a software. Typical effort devoted to maintenance

»50% maintenance costs came from understanding code UNIVERSITY
»Amount of code to be maintained doubled every 7 years OF TWENTE.

gy

7.

ENTERPRISE APPLICATION INTEGRATION

Applications

« Each app may have different access
mechanisms and data encoding rules
V%

) These apps must be interconnected In
gr order to communicate with each other

« A nalve approach is to connect apps one-
by-one

?

@’

”i; (n) _ <« Fornapps we get n(n-1)/2 possibly
,'/" k) k-(n—Fk)! different connections (k = 2)
'3{‘
Y

« 10 apps > 45 point-to-point connections
* 100 apps > 4.950 connections...

UNIVERSITY
OF TWENTE.

INTEROPERABILITY RENENBER,

" Applications
p “ability of two or more systems or components to exchange

| s [nformation and to use the information that has been

7 exchanged” (i, 1990) - -
% "

(

y

“*Interoperability: systems A and B can exchange data, and they
- ~ N can interpret and use the received data

Pragmatic interoperabilit
A L & P Y | % Integration: uniform combining systems (A, B) into C (system)
w‘ o= | . N such that users of C can use functions and data of A and B
= Q Process interoperability
”‘ g o < Enterprise applications often cannot directly exchange or share
4 & 2 | Syntactic interoperability information as required by the business processes
v c > < - .
LA = o] »Manual mediation: tedious and error-prone
éﬂ-g,'\ Physical interoperability
\ A J » Automated mediation: middleware solutions

UNIVERSITY
OF TWENTE.

INTEROPERABILITY IN TOGAF

1. Operational or Business: how business processes are to be shared

%

wA

L}

b/
@
"4:

Information: how information is to be shared
3. Technical: how technical services are to be shared (connect to one another)

IT perspective = Enterprise Application Integration (EAI) is about middleware
A. Presentation: common look-and-feel, e.g., portal-like solution for processes

B. Information: corporate information shared among various applications to realize
business processes, “based upon a commonly accepted corporate ontology“

C. Application: corporate functionality is integrated and shareable so that the
applications are not duplicated and are seamlessly linked together

%

D. Technical: methods and shared services for the communication, storage,
processing, and access to data (...) based on standards and/or IT platforms

° UNIVERSITY
OF TWENTE.

INTEROPERABILITY IN TOGAF

ADM: ARCHITECTURE DEVELOPMENT METHOD

“Defining the degree to which the information and services are to be 28 (=

. 2@ .
shared is a very useful architectural requirement, especially in a complex S
organization and/or extended enterprise” anlE

!
§

“strongly recommended best practice”: system of systems or federated systems

uonesBI B

Business
Layer

Application
Layer

uog;e;ugwa|dw|
%
H
3
5
i

Information and service exchanges according to TOGAF ADM —>

Technology
Layer

Phase A: nature and security (business scenarios)
Phase B: defined in business terms

Phase C (data): information content detailed using corporate data and information exchange model

Phase C (app): the way applications communicate to share the information and services
Phase D: technical mechanisms (middleware)

Phase E: Commercial Off-The-Shelf (COTS) packages

Phase F: Plan how interoperability is ‘logically implemented’

UNIVERSITY
OF TWENTE.

CLASSIFICATIONS

Interoperability aspects TOGAF European Interoperability
s Y N 1. Operational or Business Framework (EIF)

’ INTEROPERABILITY
L

ﬂ Pragmatic interoperability 2. Information
> N < .
y =/) 3. Technical
S o Process interoperability
b/ 58 .
3 g Syntactic interoperability EAI .
Q £ L b 1. Presentation
‘ Physical interoperability 2. Information
» A J 3. Application . :
4 . Interoperability Maturity
y 4. Technical
e Models...
= b

Exercise: in pairs, discuss the relations among these (15min)
a) How syntactic interoperability is covered by TOGAF and EAI?

b) How about physical, process and semantic interoperability? UNIVERSITY
c) Can you map the interoperability aspects to EIF layers? 0 OF TWENTE.

INTEROPERABILITY

DISCUSSION AND BREAK

Exercise: in pairs, discuss the relations among these (15min):
* Interoperability aspects
» TOGAF, EAI and EAF classifications

a) How syntactic interoperability is covered by TOGAF and EAI?
b) How about physical, process and semantic interoperability?
c) Canyou map the interoperability aspects to EIF layers?

v LG.2.1. Explain the main interoperability aspects of an EIS; the interoperability
requirements, and explain the relations to the TOGAF Architecture Development
Method (ADM), and to the Enterprise Application Integration (EAI) perspective

UNIVERSITY
OF TWENTE.

W

4
>

”i‘s
s

&
-

DISTRIBUTED IS ARCHITECTURE REAEMEE.

TIERS AND LAYERS

Architectures for distributed
applications can be characterised by
their number of tiers: 1-tier, 2-tier, 3-
tier and N-tier

* Logical layers
* Presentation
* Application (or Integration) logic
* Resource management

* A tier combines functionality of the
logical layers, aiming at mapping it
onto physically distributed parts

Any issues with the book terminology?
“Logical tier” or ”logical layer” = layer
“one tier does not necessarily mean one physical system”

2

!

-

Client

~

Presentation

=~

J

\J
p

Application
Logic
{}

il

Resource
Management

= Evolution of 2-tier
architecture

= Proper architecture for
integration

= Avoids that integration
occurs via the client

Middle tier: not only
application logic, but also
integration!

UNIVERSITY
OF TWENTE.

DISTRIBUTED IS ARCHITECTURE REAEAEE.

3-TIER AND N-TIER WITH WEB SERVER

7.

| Three-tier architecture: integration N-tier architecture with web server
= \Web server forms additional tier
g % = Evolution of 3-tier architecture
% Client = Setting for introducing web
’Q [Presentation } '3

(] : : . Interactions I /‘ Web browser
Integration Logic pass firewalls! Client

11 A [- =y: N

“‘ = 1L . _s
[Wrapp er} {wrapp er} 3-tier - Web server Presentation
| ;« : HTML filter

)/ from results given by 1 F
"“ the application logic Application
Logic
: . ; Resource
Transaction: unit of work that updates resurce(s), e.g., a database Management {
» Transactions are either completed (committed) or are completely undone
» Transactions are important because organizational tasks are transactional UNIVERSITY

OF TWENTE.

7

>

¥
§

VA 4

Pty A

©

DISTRIBUTED IS ARCHITECTURE RE¥EiE.

COMMUNICATION STYLES

* Middleware infrastructures cope with the interactions between tiers

 Two classic forms of communication

Synchronous communication

/ Invoking thread\

blocking

request |-t

SR IS response

/ Invoked thread \

= Relatively simple

Asynchronous communication

/ Invoking thread\ / Invoked thread\
l
T e W

g+t ([T L [o~{pu
| !

. = Calling and called tightly coupled S

= Poor performance if processing takes
too much time or for multiple tiers

From programmer’s perspective!

= Calling and called loosely coupled

k * Intermediaries can store and process messages /

* Potentially more complex due to the need to
synchronise

a UNIVERSITY
OF TWENTE.

y

j
Without 4‘;
middleware = }2‘

ey

o>

¥
A

b/$

s)

\ 4

MIDDLEWARE
THE THING IN THE MIDDLE

With middleware:

Middleware

MIDDLEWARE

Middleware enables interaction between
heterogeneous and distributed software
applications

* Define common (standard) communication
mechanism and encapsulate apps in this
mechanism, so that these apps can
communicate in the same way

e (Standard) communication mechanism forms
a layer

* Most popular example: REST architectural
style (RESTful services) that exchange data in
JSON or XML formats

UNIVERSITY
OF TWENTE.

MIDDLEWARE
’ INTEROPERABILITY Example

N\ » A: appl or appX (presentation layer)
> B: app2 or appX (application layer)
y 1) The Communications Link
s e Elements 1-4: sufficient to ensure the

Vy“i required communication between A and B
k 1 The programmatic interface and the common
Uﬂ data format together define the way that A
& A Y B and B communicate with the middleware
® o .
Q‘ N rd The common data format describes how the
” \;) o Brooemeic ke / t data should be structured so that both A and
é/ ‘ 4) A Common Data Format B understand it
U 4 \ - | —— . — Programmatic interface spe(;ifies the way the
Pegg il data are presented to the middleware

8) Systems Management

° UNIVCRDIIY
OF TWENTE.

>

y

)
Pty A

7

f

wA
b

A

<
"

4

o’

MIDDLEWARE
THE THING IN THE MIDDLE

‘Network stack’: OSI conceptual model

Standard of communication functions of a

Flow of
Data

Sender

Application

Presentation

REMEMBER

Receiver

Application

telecommunication system or computing
system, without any regard to the system's
underlying internal technology and specific

Session

1 Presentation

..............

Transport

Session

..............

Network

Transport

Data Link

Network

protocol suites

. \I
Client ! / ‘| N Server

/ / N
L}', ,l ____________________ » \\ \\ N
J result v
@

[client stub J [server stub }
L \ J A\ i J
\ o /

. >
{ IDL compiler]‘_‘ ‘
« Common types 77 Tas —_ + Common types
. VN ifi 1
- Marshalling ,’,,’ \\\\ IDL specifications | Unmarshalling
s D K N

Physical

Data Link

TCP/IP Mapped
to OSI Layers

TCP

UDP

P

Physical

Flow of [Ethernet J[ATM]

remotely’

Protocol Between

Each Layer

Data

Remote procedure calls (RPC) principles
v Hide the complexity of the low-level interfaces
v" RPC realises the abstraction of ‘calling a procedure

UNIVERSITY
OF TWENTE.

MIDDLEWARE
’ TRADITIONAL APPROACHES AND TYPES

P

. . ° M Constructi
Application Integration —
Message Noasage
H Col d M
J 1. File Transfer Command Mj:j:g: Message Routing e ian
2 . S h are d D ata b ase Event Message Pipes-and-Filters Aggregator Message Translamr'
Request-Reply Tvelope Werapper

. Message Router Resagquencer
3. Remote Procedure Invocation Return Address Contenl-Based Router ~ Composed Msg. Processor Content Enricher
' . Correlation |dentifier Message Filter Scatter-Gather Content Filter
. 4. M essaging Message Sequence Dynamic Filter Routing Slip Claim Check
Message Expiration Recipient List Process Manager |Mormalizer
’ Types of middleware
. Endpoint % Ay " Endpoint
1. RPC-based middleware (Web Message Router Translator ~
ices) Application Channe! ' T Application
services) | PP % ‘]2 B’ pp
‘ 2. Message-oriented middleware / A ha B
” MQ / Message brokers / Enterprise Y
‘ service bus Messaging Endpoints Hessaging' Channels~] Systems Management I
. . . . i i Me Ch] | B
4' 3. Distributed Transaction Processing |jessese Endoont Competing Consumers £ it-to-Point Channel — Dowoor
. . Mass‘a | Map ar SQ.IEEINE chumar Publish-Subcr. Channel oni ﬂnng Wire Tﬂp
Q%' 4. O bJ ect request brokers / monitors Transa?:lEnal CIFi;Ient Durable Subscriber Datatype Channel Message Histary
. Polling Consumear Idempotent Receiver Invalid Message Channel Message Store
M A 5. Remote Database middleware Evel'lfbrivan Consumer Service Activator Dead Letter Channel Smart Proxy
() Guaranteed Messaging Test Message
Channel Adapter Channel Purger
Messaging Bridge
Message Bus

65 messaging patterns ° gP[IVVE;ESNl_'I[EY

https://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html

¢
©

e

%

4

VA 4

Pty A

MIDDLEWARE
LOOSE COUPLING

Loose coupling: Property of distributed systems: a change to one subsystem (application component,
service) should not require a change to another

Integration style of chosen middleware impacts loose coupling, e.g.

e MQs handle messages as strings of bits (no IDL, no marshalling), and leaves loose coupling to applications

Message : .
g Routing Translation

Channel

Application | | -+ - — |- @ﬂ » | Application

—

L. 1
ot

Systems Management

e WS/SOAP is tied to a specific networking protocol: prevents applications from using alternative network features

e RPC, CORBA, WS use separate interface definitions, which can make it easier to generate client and server stubs for different
technology stacks

e Java RMI (a platform-specific RPC flavor) is heavily tied to the Java platform, which favors Java implementation of the client and

server
° UNIVERSITY
OF TWENTE.

MIDDLEWARE
ORCHESTRATION VS CHOREOGRAPHY

I¢

) G
n

Orchestration: there is one central component that coordinates the work

done by other parties
May grow from client that calls multiple servers, e.g. using synchronous
communication, according to some process logic in order to get work done
- Central “brain”, any changes in distributed system need consideration of
orchestrator

‘Ué

<

% w Choreography: parties react on each other using some scheme, but there

43 is no central coordinator
ﬁ ‘ ‘ o - May be implemented with event-based communication, where events are
é-:-} announced by publisher(s) and reacted upon by subscribers

- More decoupling, parties can subscribe to events of interest and do their thing

@ UNIVERSITY
OF TWENTE.

¢
©

W >
)
4

C

MIDDLEWARE
REAL-TIME AND DEFERRABLE MESSAGES

Transactional services may process

an you build real-time transaction calls with asynchronous calls?

VA 4

Pty A

v' LG.2.2. Explain why middleware is important to address interoperability, list the most
common types of middleware technology, and explain the underlying principles: tiers,
layers, communication styles, and messaging)

vﬂ 1. Real-time From business process perspective!
% 2. Deferrable messages '
’ Q “The key difference between real-time and deferrable is what happens if the message
A cannot be sent now, not how long it takes.”

UNIVERSITY
OF TWENTE.

o

wA

1

L/
A
)

4

v:"'/v
oty 2

*Functionality is offered to potential users in terms of services
*Design principle: systems designed by composing services
*Built on top of a middleware layer (platform), i.e.,
standardised communication mechanisms

*SOA is design discipline (architectural solution) not a system! Sl

Flavors (technologies)

“SOA 1.0”: SOAP-based
*Web services implemented on top of the SOAP protocol
*Often described using WSDL (language for describing services)

*Considered as 'heavyweight' Q

“SOA 2.0”: RESTful

*Based on the REST principles (URLs, resources, HTTP methods,
stateless communication)

*Increasingly popular, mainly for ad hoc service usage
*Considered as 'lightweight'

SERVICE-ORIENTED ARCHITECTURE R,,____EMEMBER/
PRINCIPLES AND TECHNOLOGIES

Only services!

UNIVERSITY
OF TWENTE.

SERVICE-ORIENTED ARCHITECTURE
SERVICE DEFINITION

A service Business Interface —O o— Business Service (O
is a logical representation of a repeatable business 7 .

. e e App interface <O o—» App service OO
activity that has a specified outcome (e.g., check e 10
customer credit, provide weather data, . |

pp service contract Service 2 O

consolidate drilling reports)

7

Technology Interface<OQ@—» Technology Service (O

* is self-contained [complete in itself]
* may be composed of other services

vy

e isa “black box” to consumers of the service
(encapsulates its functionality)

Pty A

From http://opengroup.org/soa/source-book/soa/soa.htm UNIVERSITY
OF TWENTE.

http://opengroup.org/soa/source-book/soa/soa.htm

SERVICE-ORIENTED ARCHITECTURE
RESTFUL SERVICES

identified by an URI

W i !
eb service # web page http://somehost/books/1

e - READ operation
P T— g
> s pTTTITTTTT T T
200 OK
4 book information Response

VA 4

Pty A

Agreed representation

Self-descriptive messages — consequence of stateless

communication
@ UNIVERSITY

OF TWENTE.

SERVICE-ORIENTED ARCHITECTURE
REST CHARACTERISTICS

« REST stands for REpresentational State Transfer
> Video: An Introduction to REST and JSON (Oracle)

 Architectural style for invoking services over the Internet

§ Architectural style: set of design rules that identify the kinds of
components and connectors that may be used to compose a system

 REST is therefore not a system that you can buy, but a style to
ouild systems

» Defined in the PhD thesis of Roy Fielding (UCLA, 2000), still the
standard reference for REST

) =

UNIVERSITY
OF TWENTE.

https://youtu.be/u-RnFs9dby4

SERVICE-ORIENTED ARCHITECTURE
REST PRINCIPLES

» Stateless client-server architecture, implying that request
messages are self-contained (self-descriptive) — all necessary
iInformation for invoking a service is in the request message

* Web services are viewed as resources and are identified by
their URIs
— URIs offer a global addressing space for services

* Web service clients and providers choose a representation to
send application content to the each other

 Client and provider have a mutual understanding of the meaning of
data since there is no formal way to describe web service interfaces

° UNIVERSITY
OF TWENTE.

’
E

é-t-sa*

SERVICE-ORIENTED ARCHITECTURE
REST PRINCIPLES

« Use of a small globally defined set of remote methods that
describe the actions to be performed on the resource

» Create-Read-Update-Delete (CRUD) actions

* In summary REST action HTTP method

e Stateless client-server Create POST
 Resources identified via URIs

_ Read GET
 State representation
« CRUD actions St PUT
« Natural match for HTTP Delete DELETE
(no coincidence: Roy Fielding was one of developers of HTTP!)

UNIVERSITY
OF TWENTE.

SERVICE-ORIENTED ARCHITECTURE
’ DATA REPRESENTATION

. * * Different representations can be used for the information
o "'i exchanged with a REST service
% * Most popular are XML and JSON (JavaScript Object Notation)

P2 . XML
‘}A « Markup language used to represent data structures
 Quite Intuitive, but rather verbose

"
% . JSON
.
;3? « Simplified format to represent data structures

* Quite popular nowadays — less verbose, fits well with JavaScript

° UNIVERSITY
OF TWENTE.

SERVICE-ORIENTED ARCHITECTURE
JSON-API

7
« JSON-API Is a specification for how a client should request

i resources and how a server should respond to those requests
A
X
)
)

¥ « Standardize implementation decisions of RESTful APIs, e.qg.,
b /& pagination, resources vs collections, metadata, related resources

 When? 2017 (Ember)

* Why was created? Standardize REST API requests and
responses

<
"

4
VA 4

\ * Relevance nowadays:. convention widely adopted (e.g., Social
Media)
httos://isonapi.ora/ Content-Type: application/vnd.api+json ° gP!PIVEIIESNI'-I!-IEY

https://jsonapi.org/

JSON API
EXAMPLE

’
%
&

Pty A

"links": {
"zelf™: "http://example.comSfarticles”,
"next™: "http://example.com/articles?page[offset]=2",
"last™: "http://example.com/articles?page[offset]=1a"
¥s
"data": [{
"type™: "articles",
"id": "1",
"attributes": {
"title": "JS0ON:API paints my bikeshed!"
}.l
"relationships™: {
"author": {
"links": {
"self": "http://example.comfarticles/1/relationships/author",
"related": "http://example.com/articles/1/author"
}J
"data™: { "type": "pecple”, "id": "9" }
}J
"comments": {
"links": {
"self": "http://example.comfarticles/1/relationships/comments”,
"related": "http://example.com/articles/1/comments™
}J
"data": [
{ "type": "comments", "id": "5" },
{ "type": "comments", "id": "12" }

h

}.l

"links": {

"gelf": "http: / /example.comfarticles 1"

h

11,
"included™: [{

"type™: "people”,

"id": "g",

"attributes": {
"firstName™: "Dan”,
"lastMame": "Gebhardt”,
"twitter™: "dgeb"

b

UNIVERSITY
OF TWENTE.

SERVICE-ORIENTED ARCHITECTURE
OPENAPI SPECIFICATION

* OpenAPI Specification (OAS): language-agnostic interface to
RESTful APIs that allows humans and computers to discover
ﬁ and understand the capabilities of the service without access to
’\g source code, documentation, or network traffic inspection

‘A « Consumer can understand and interact with the remote service
Q‘ » with a minimal amount of implementation logic

"

4 * OpenAPI definition: used by documentation generation tools
,,%’/9 (to display the API), code generation tools (to generate servers
Bugyd and clients), testing tools, and other use cases

1
\»

https://jsonapi.org/ http://spec.openapis.org/oas/v3.0.3 UNIVERSITY
OF TWENTE.

https://jsonapi.org/
http://spec.openapis.org/oas/v3.0.3

SERVICE-ORIENTED ARCHITECTURE
OPENAPI IMPLEMENTATION (SWAGGER)

(
. r « Swagger Is a set of open-source tools built around the OAS for
"'% design, build, document and consume REST APIs
V\E Major Swagger tools
b /S

« Swagger Editor: browser-based editor to write OpenAPI specs
A - Swagger Ul: renders OpenAPI specs as interactive APl documentation

“lﬂ’ - Swagger Codegen: generates server stubs and client libraries
ﬂ pet Everything about your Pets o
v:%v :
gy _ https.//petstore.swagger.io/

— UNIVERSITY
https://jsonapi.org/ https://swagqger.io/specification/ OF TWENTE.

https://jsonapi.org/
https://swagger.io/specification/
https://petstore.swagger.io/

SERVICE-ORIENTED ARCHITECTURE
’ MICROSERVICES

e SOA only prescribes the use of services, so it does not prescribe
 Specific protocols (middleware) for the services to interact
* Hence the different ‘service flavours’
* The granularity (‘size’) of the services
* Services can be as big as an application or as small as single data object
* How the services are deployed (‘installed’ for execution)
* Services deployed in-house or in the cloud, and user wouldn’t notice!

JIMore guidelines necessary to achieve performance (elasticity) and fast
deployment goals - streaming applications (Netflix, Spotify)

¥
y
w%v
Y
* Microservices
* ‘Smaller’ service assigned to a single development team

* Opposed to a Monolith (‘bigger’ application) UNIVERSITY

OF TWENTE.

SERVICE-ORIENTED ARCHITECTURE
MICROSERVICES

A microservices architecture puts '

49

ap p ro aC h to d eve I O p I n g ... and scales by replicating the ... and scales by distributing these services
as I N g I e ap p | I C atl on as monolith on multiple servers across servers, replicating as needed.

a suite of small
services, each running w'e we v
In its own process and oV oV ®lle ®le
communicating with
lightweight w/e

j
y) h e m i Cr Oserv i Ce] ?u?ggﬂgﬂ; gﬂi‘f‘;?;;’eﬂp”:s;i’f - each element_of functionality into a
architectural style is an ® separate senvice.. &
v{i
U!Q
4 ”‘
«v

mechanisms, often an

HTTP resource API” b
(Martin Fowler)

v

By oV ofifefll (Y

° UNIVERSITY
OF TWENTE.

MICROSERVICES
PRINCIPLES (SUMMARY FROM [ZIMMERMAN 2017])

I

d

Componentised via services with own process and lightweight
communication mechanisms (e.g., containers and REST)

Organised around business capabilities
Designed for failure (failures are isolated)

Designed with decentralisation in mind (for intelligence,
governance and data management)

Profits from infrastructure automation (culture of automation)

UNIVERSITY
OF TWENTE.

MICROSERVICES
TYPICAL CHARACTERISTICS

* |s 'small’ or ‘fine-grained’ (whatever that means!)
« Uses RESTTful services
* |s deployed in a container, usually cloud environment

”?
v{i
Y/ « Developed by a single development team, which Is responsible

‘)‘ o for the whole lifecycle, including maintenance!
ﬁﬂ » Business-driven development according to the principle of

Q;/‘ Domain-Driven Design (microservices are identified by
e‘;}; analysing domain models)

Conclusion: special case of Service-Oriented Architecture!

° UNIVERSITY
OF TWENTE.

SOA AND MICROSERVICES

Monolithic vs. SOA vs. Microservices

That's... not really
accurate!

Single Unit Coarse-grained Fine-grained

“The microservices approach has emerged from real-world use, taking our
better understanding of systems and architecture to do SOA well. So you
should instead think of microservices as a specific approach for SOA in the
same way that XP or Scrum are specific approaches for Agile software
development”

From [Newman 2015] UNIVERSITY
@ OF TWENTE.

MICROSERVICES
API GATEWAYS: CONTROL ACCESS TO APIS NGINX

AP| Gateway API Gateway with Azure APl Management

. Archi r
 Authenticator C_ _te_dij _e _________

 Client authentication
« Access control (permissions)

!’
v{% =,
"L » Load balancing R ’ Developer
* Request router
Q‘ ‘ » Rate limiter
» - Exception handler
O . .
4 » Centralized logging

A .

Pty A

/" Client Mobile App

Azure APl Management

e ————— e ——

API Gatewéy

<]

A

[Client WebApp MVC

-
\

| I

| :

| ASPNET Core MVC | Publisher Portal

| Container |

\]

!F
|
|
|
|
|
|

_ JavaScript/Angularjs ¢\ ___ l

Request/response manipulation | :

« Service discovery of backends AP| Management

e TLS termination Policy management

» Analytics and monitoring UNIVERSITY
» Developer documentation ° OF TWENTE.

INTEGRATION TECHNIQUES
ENTERPRISE SERVICE BUS (ESB) X API GATEWAYS

Web Portal Mobile Embedded Real-Time Apz:::;f,";zM .
A Devi A Devi A & < -« ﬁ «— >
pps/Devices pps/Devices pps CRM, etc.) AP
: HTTP
>
\ | > —_
% < . Relational
——y -y =
\ < HTTP m— DB
\ HTTP T
) =
) <
(————]
Enterprise Service Bus 9
Service Binding, Messaging, Security, Monitoring, Tra:rlsformation, etc. HTTP % “W . "\
Key / Value
Store
I y /
I E— HTTP N T
Legacy : | HTTP 4 A \
e fon Partner Systems Web Services — T x\ >)
qu He and Li Da Xu, "Integration of distributed enterprise applications: a Katuwal, K., Microservices: A Flexible Architecture for the Digital AgeVersion 1.0,
M 3 survey", IEEE Transactions on Industrial Informatics 10(1): 35-42, 2014. American Journal of Computer Science and Engineering, 2016. (Microservices): p. 20-24.

v LG.2.3. Explain SOA principles, web service technologies (e.g., RESTful), the
microservices style, and messaging integration techniques, e.g., Enterprise Service Bus ° UNIVERSITY
(ESB) and API Gateways OF TWENTE.

SERVICE-ORIENTED ARCHITECTURE
EA: ARCHIMATE DEFINITIONS

Archimate 3.1

o

W

Behavior Elements: a service, represents an explicitly defined exposed behavior

k * Business Service: represents explicitly defined Business Interface O@— Business Service O
’Q behavior that a business role, business actor, or e
business collaboration exposes to its environment App interface O~ App service O
“‘ » . A | . S . . I . I Service 1 O
» pp Ication Service: rgprgsents an gxp ICItly App service contract ——
<N defined exposed application behavior
v:%)/" * Technology Service: represents an explicitly rechndogylnterface{){ Technology Service O

defined exposed technology behavior

° UNIVERSITY
OF TWENTE.

SERVICE-ORIENTED ARCHITECTURE
ARCHIMATE

N
§ Process-application support

wA ’ —

%

S R v o o
@;ﬁ%J*

p
: A

4
A
Pty A

..

Docunent Genu'al Home & Away Home & A\ " :
“ Management = CRM 0 Policy - Finsy "Gl .. ’
- System = System | | Administration = Applic. ~ 4 1

e € @ UNIVERSITY
OF TWENTE.

SERVICE-ORIENTED ARCHITECTURE
ARCHIMATE

J‘
§ Data structure view
Via Customer

¥ e

H/‘ Customer Fila {> Custorner File Damage Claim
Data Data
Insurance Request Insurance Insurance Policy Damage Claim Clair Fel
” Dats > Request B - <

JAN

[[7) :

Travel

Car Insurance Policy Home Liability Logal ad H ? B
Insurance Policy Insurance Policy Insuranca Policy Insurance Policy
JAN AN L\ Q Q G RM. ‘
1 . o y-@ < @ UNIVERSITY

OF TWENTE.

* Documenting the organisation of the IT systems:

— Embodied in the hardware, software, and communications
technology

— Their relationship with each other and the environment

— The principles governing its design and evolution

° UNIVERSITY
OF TWENTE.

ARCHIMATE: TECHNOLOGY (PHASE D)

’§ Application/technology support map

A A
Vﬁ - HomPo%cymy - Ho?;:n:;\ci;:ay . camm::e - b:cga-tlafﬁ.ge
k | Administration| [] Application] system

Q‘A Messaging service D taacceae >

i/ :
y’" x Mainframe

A | Message Ol ‘ DBMS O\
Queing
ﬁ

° UNIVERSITY
OF TWENTE.

.

%

7
»
4

A
Pty A

G RM C il
Support for poucsc Support for financial * " CRMdata should be = F o
administration . transactions maintained wntrdlk | E
AN JA | yAY

w

ARCHIMATE: DESIGN SOA

Realization of requirements

N
X Handle claim |
J N
Policy admnstmnon Finan cia s ,’ ; "
~ S services) CRM data access)

Vo
i AlétliSurance B;ck : Vi
- ; General CRM
Office Suite ;-‘ : System
7A ZA
ArchiSurance Amh_si. - ArchiSurance | : |- ———
general-purpose lsurance back-up server S
server cluster Back Office Suite ¢+« cluster Gege’;'g‘”‘ B . o general-
¥ purpose server

v

v LG.2.4. Design SOA-based Archimate application integration viewpoints that cover
business processes served by web services that are provided by applications and their
technology services; along with the associated requirements realization

UNIVERSITY
OF TWENTE.

ARCHIMATE EXAMPLE

| Customer -$- |_| Management CO Costs -$- Decrease (&) I(_ ++__| Operational;@ Centralize’@|

satisfaction boad costs excellence IT Systems
| T i

‘ ‘ W1: mistakes and je H Reduce mistakes and 1’__..-" ‘ High score operational @ ‘ ‘ I dﬁ‘

+

Improve (@)
celf-zervice

options

ambiguities in manual ambiguities in manual excellence (cooling down Management
data transfer increases data transfer of steel coils) & Operations
rejected products in QA

: Process: Provide online access to client information [y
Process1 23-4’(Manual data transfer (perform several calculations) (=43 Process 3 =53
M !
Application 1 A Data Object - ; Data Object - /"E Data Object - Application 2 : :)
Query Interface—O Toro N Es i R Tl weeform -0 | » Architecture principles
FA) e Stakeholders, business goals
Blade sylstem 1 ‘ y Blade system 2 / d nd d FIVErs
e po— | * Requirements and constraints
server-db.abc AT server- iles.xpto e
, : * Resources, capabilities,
Application 1 DB side 8] Oracle11.2 i . .
App 1 Views |_ DBMS ' Excell sheet Excell sheet Strategles d nd taCtICS
DB View for Data Object | . | | Efn";g:.ts? filled (data) . SWOT (assessments)
table

° UNIVERSITY
OF TWENTE.

ARCHIMATE EXAMPLE

| Customer -$- Management CO Costs -$- Decrease (&) I(_ ++__| Operational;@ Centralize’@|
IT Systems

satisfaction boad costs excellence
| & s
+ ; ;
1 W1: mistakes and je Reduce mistakes and 7 High score operational @ I &
r';'lprov_e @ ambiguities in manual ambiguities in manual excellence (cooling down Management
SEl-sEnvice data transfer increases data transfer of steel coils) & Operations
options rejected products in QA
Process: Provide online access to client information ° Interoperablllty
Manual data transfer (perform several calculations) (=43 Process 3 |ssues |n the curre nt
P P architecture?
pplication Data Object- | . | Data Object- Data Object - pplication
* SOA-based
Query Interface—") from app 1 from Excell sheet from app 2 Webform -0
~ i solution?

Blade system 2

Elade sy

sétyer-files.xpto

",

SEenver-d

Application 1 DB side 8] Oracle11.2 ' ,
DEMS i |
App 1 Views |_ Excell sheet Excell sheet

g templat filled (dat
DB View for Data Gb_iect| [_= (fﬂ";gr:‘s? illed (data)
table

a UNIVERSITY
OF TWENTE.

Take home

TAKE-HOME MESSAGES

;‘ * Integrating diverse systems, e.g., ERP, SCM, CRM, may cause an “spaghetti
architecture”, which makes the IT landscape unmanageable
{

yg
1)1" *

N
iy

i\
-)

* There are 5 main interoperability aspects that are addressed (to some extent) by
interoperability frameworks, which guide the application of middleware

* Service-Oriented Architecture (SOA) is a design principle, which may be implemented
with different architectural styles like REST to design rules to compose a system

* REST principles: stateless client-server, resources identified via URIs, state
representation, CRUD actions (HTTP)

* Microservice is an architectural style based on SOA to achieve performance
(elasticity) and fast deployment goals

* The Archimate language can be used to design SOA, which is supported by TOGAF
interoperability guidelines

° UNIVERSITY
OF TWENTE.

¢
©

%
iéj
‘)1',\ ‘

w‘d

Pty A

PREPARATION NEXT LECTURE
W. | Activities

Preparation
Reading main book
(Chapters 7-10)

Follow the steps in Canvas!

Proi o 1. C otional e

| 2. Role ot middl for i bility in £/
Workshop: non-functional requirements

Workshop: Architectural patterns for integration design

Project session 2: Baseline architecture modelling

Workshop: Service-oriented applications and business processes

Project session 3: Target architecture modelling and migration

O 00 N O U &b W M B

Exam preparation or guest lecture: reflect of EA for evolution

=
o

Project presentations; and Exam

@ UNIVERSITY
OF TWENTE.

