

LINKED DATA AND SEMANTIC WEB

LECTURE 0 – COURSE INFORMATION

IN THIS PRESENTATION:

TEACHING STAFF

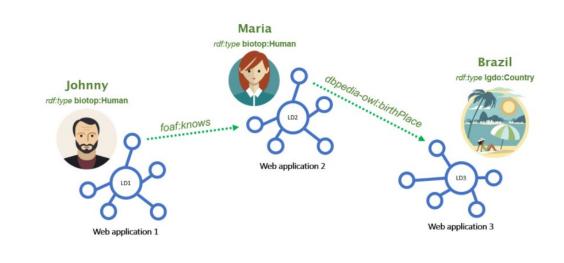
Luís Ferreira Pires SCS/EEMCS

Shenghui Wang HMI/EEMCS

Luiz Olavo Bonino SCS/EEMCS

João Moreira SCS/EEMCS

Erwin Folmer
IEBIS/BMS – Kadaster


External lecturer

Wouter Beek (VU / Triply)

THIS COURSE IS ABOUT...

- The Semantic Web (SW): extension of the World Wide Web to make Internet data machine-readable in a way that can be consumed and understood by machines
- **Linked Data (LD):** structured data interlinked with other data built upon the SW stack, enabling applications to share information in a way that can be automatically 'understood' by computers

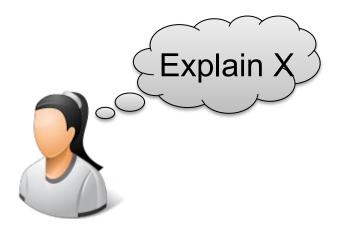
INTENDED LEARNING GOALS OF THE COURSE

Level	Content	Assessment
Explain and apply	Principles of Linked Data, and the Semantic Web standards / technologies	Exam and project
Explain and address	Linked Data challenges for developing Semantic Web applications	Exam and project
Design	Semantic models following ontology engineering methodology for LD datasets	Project
Evaluate	Semantic Web application based on different datasets for data analytics	Project

Different from FAIR data stewardship and Ontology-Driven CM courses!

Project Based Learning: this course is technical

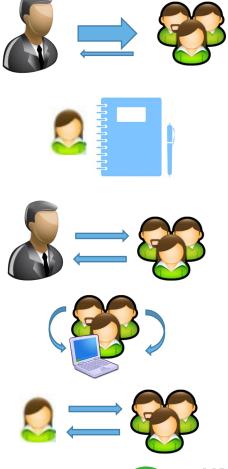
- → you will implement a SW app, so no hand-waving about technology!
- Previous knowledge: REST, XML/JSON (schema), relational database (SQL)
- Complementary materials: see Canvas



CONSTRUCTIVE ALIGNMENT

Intended Learning Outcomes

Teaching and Learning Activities



COURSE ACTIVITIES

- Lectures
 Overview of the subject(s) of the week.

 8 sessions
- Self-learning
 Described on Canvas, week by week
- Lab (practical) sessions
 Apply knowledge on assignments and receive feedback, not graded but required for the exam
- Project sessions
 Work with your pairs
- Project presentation and final exam

"If you don't eat yer meat, you can't have any pudding.

How can you have any pudding if you don't eat yer meat?"

COURSE TIMETABLE AND CANVAS

https://canvas.utwente.nl/courses/9784

Week	Topics	Lecture	Lab session	Lecturer
Week 1	Introduction	09/02 13:45 - 15:30	11/02 13:45 - 17:30	Luiz Olavo Bonino
Week 2	Ontology engineering	16/02 10:45 - 12:30	18/02 13:45 - 17:30	Joao Moreira / Luís Ferreira Pires
Week 3	W3C RDF, vocabularies, triplification	01/03 10:45 - 12:30	04/03 13:45 - 17:30	Joao Moreira
Week 4	Logics and W3C OWL	08/03 10:45 - 12:30	11/03 13:45 - 17:30	Luís Ferreira Pires
Week 5	Triple stores and W3C SPARQL	15/03 10:45 - 12:30	18/03 13:45 - 17:30	Erwin Folmer / Wouter Beek
Week 6	Ontology matching	22/03 10:45 - 12:30*	25/03 13:45 - 17:30	Shenghui Wang
Week 7	RDF validation with SHACL	29/03 10:45 - 12:30*	01/04 13:45 - 17:30	Luiz Olavo Bonino
Week 8	Applications	05/04 10:45 - 12:30*	08/04 13:45 - 17:30	Shenghui Wang
Week 9	Project presentations	13/04 13:45 - 17:30	-	
Week 10	Exam	20/04 13:45 - 16:30	-	

Week 1: https://canvas.utwente.nl/courses/9784/pages/week-1?module_item_id=300769

 Look for partners with the same motivation and sign up on Canvas

 Submit deliverables through Canvas (assignments)

Feedback on all milestones,
 M4 will be graded

All milestone deliverables: report and "live"

M0: Case analysis and refinement

M1: Tripliflication of non-LD dataset

> with existing vocabularies, published on web

M2: Ontology engineering

> Ontology developed published on web

M3: Integrated analysis

➤ Linking (& matching), querying and analyzing datasets (M1, M2) with online dashboard

M4: Project presentation and final report

https://canvas.utwente.nl/courses/9784/pages/project-assignment-description?module_item_id=300812

ASSESSMENT

- Results from exercises (lab sessions) grant access to the exam
- Each project group uploads evidences to Canvas

Final grade

$$F = (P + E) / 2$$

where

P = Project grade

E = Exam grade

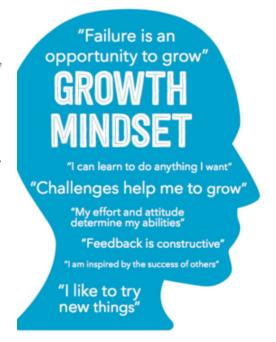
> Check *Assessment* section (Canvas home)

https://canvas.utwente.nl/courses/9784/pages/materials-and-tools

Books: B1. Introduction to ontology engineering. 2020. C. Maria Keet.

[For reference] B2. A Semantic Web Primer Grigoris Antoniou and Frank van Harmelen. 2008. 2nd ed.

[For reference] B3. Semantic Web Services. 2011. Dieter Fensel Federico, Michele Facca, Elena Simperlloan Toma.


Papers, videos, W3C specifications: Will be informed in the week description.

Software tools

- 1. Protégé: ontology editor and a knowledge management system
- 2. Visual Paradigm: CASE Tool supporting UML
- Apache Jena Fuseki: triplestore ("SPARQL server")
- 4. OpenRefine: data cleanup and transformation (data wrangling)
- 5. RDF Libraries for programming:
 - Java Apache Jena
 - Python RDFLib

REQUIRED ATTITUDE

- Take responsibility of your own learning process!
- There is more you need to know than what is told during the lectures in order to do the exercises and the exam
 - RESTful architecture
 - Data XML/JSON + schemas
 - Data querying databases (e.g., SQL)

Not everything can be explained in the lectures: be prepared to search, read and think a lot! >> We're open for QA

Originality

- You are allowed and even encouraged to communicate with other groups to ask for tips
- But literally copying work from other groups will be punished as fraud

Feedback

- Prepare the sessions properly so that you can get feedback from your peer students and the teachers
- Use the Discussion Board on Canvas to get feedback and answers to frequently asked questions from peer students and the teachers!

